DSpace Repository

A pilot study to integrate HIV drug resistance gold standard interpretation algorithms using neural networks

Show simple item record

dc.contributor.author Singh, Y.
dc.contributor.author Mars, M.
dc.contributor.other Central University of Technology, Free State, Bloemfontein
dc.date.accessioned 2015-10-05T10:26:53Z
dc.date.available 2015-10-05T10:26:53Z
dc.date.issued 2013
dc.date.issued 2013
dc.identifier.issn 16844998
dc.identifier.uri http://hdl.handle.net/11462/639
dc.description Published Article en_US
dc.description.abstract There are several HIV drug resistant interpretation algorithms which produce different resistance measures even if applied to the same resistance profile. This discrepancy leads to confusion in the mind of the physician when choosing the best ARV therapy. en_US
dc.format.extent 279 496 bytes, 1 file
dc.format.mimetype Application/PDF
dc.language.iso en_US en_US
dc.publisher Journal for New Generation Sciences, Vol 11, Issue 2: Central University of Technology, Free State, Bloemfontein
dc.relation.ispartofseries Journal for New Generation Sciences;Vol 11, Issue 2
dc.subject Machine learning en_US
dc.subject Artificial intelligence en_US
dc.subject Neural networks en_US
dc.subject HIV drug resistance en_US
dc.title A pilot study to integrate HIV drug resistance gold standard interpretation algorithms using neural networks en_US
dc.type Article en_US
dc.rights.holder Central University of Technology, Free State, Bloemfontein


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account