Abstract:
Heart valve surgery and valvular heart disease still pose a significant threat to patients worldwide. The aortic valve doesn't remain healthy and has largely been the focus of innovation and the development of replacement heart valves. Improving the ability of blood to flow througha prosthetic valve while minimizing the load on the heart is regarded as one of the performance objectives of prosthetic heart valves. In order to meet valvular performance objectives and to assess whether potential prosthetic heart valves meets hydrodynamic performance, testing simulated under in vivo flow conditions is necessary.
Pulse duplication is widely accepted as a valid method to determine the performance of heart valves during their development. Few specialised centres exist to perform pulse duplication tests accurately and in accordance to the required ISO and FDA standards for cardiovascular implants. Real-time patient data of prosthetic heart valves is however not obtained with pulse duplication but with echocardiography. Modern day pulse duplicators come equipped with viewing chambers that can allow for echocardiographic measurements.
Therefore, the aim of this study was to perform pulse duplication and echocardiography simultaneously on five different prosthetic heart valves using a commercial ViVitro pulse duplicator system.
METHODS
A hydrodynamic evaluation was performed on five prosthetic heart valves (i) Medtronic-Hall mechanical valve (tilting disc), (ii) Carbomedics mechanical valve (bileaflet), (iii) Glycar mechanical valve (Glycar), (iv) Edwards Perimount (tissue valve), (v) ViVitro reference (ViVitro) using pulse duplication and echocardiography. All the valves were inserted in the aortic position of the pulse duplicator and echocardiographic measurements was performed simultaneously. Each of the valves were tested at 5 different testing conditions by varying the stroke volume and beats per minute. The study concludes with a comparison between the pulse duplicator data and the echocardiography data acquired.
RESULTS
Pulse duplication: -The Glycar valve had the largest pressure drop across the valve at the lowest CO (3.6 L/min) of 17.15 mmHg, although it increased steadily at a slower rate than the other four valves. The Glycar and tissue valve had the highest EOA of 1.885 cm2 and 1.884 cm2 respectively at a peak CO of 9.6 L/min. The bi-leaflet valve had the highest EOA of 2.002 cm2 (CO 3.6 L/min), however the EOA deteriorated as the CO increased resulting in an EOA of 1.572 cm2 at a CO of 9.6L/min. The tissue valve had the largest RF for all testing conditions, ranging from 16.3% (CO 8.0 L/min) to 25.6% (4.9 L/min) where the bi-leaflet valve had the lowest (0.72% - 3.42%).
Echocardiography: -The Glycar valve had the lowest overall pressure drop for all CO. The pulse duplicator pressure drop results were more consistent than three echocardiography results measured on the pulse duplicator. The bileaflet and Glycar valves EOA showed better consistency across the CO range than the ViVitro, tissue and tilting disk valves. The data showed that no definite correlation between all the valves exists between echocardiography and pulse duplication for EOA. However, a correlation for pressure drop between the pulse duplicator and echocardiographic data was demonstrated for both the tissue and bi-leaflet valve.