dc.description.abstract |
Information and Communication Technology (ICT) has given rise to new technologies and solutions that were not possible a few years ago. One of these new technologies is electronic voting, also known as e-voting, which is the use of computerised equipment to cast a vote.
One of the subsets of e-voting is mobile voting (m-voting). M-voting is the use of mobile phones to cast a vote outside the restricted electoral boundaries. Mobile phones are pervasive; they offer connection anywhere, at any time. However, utilising a fast-growing medium such as the mobile phone to cast a vote, poses various new security threats and challenges. Mobile phones utilise equivalent software design used by personal computers which makes them vulnerable or exposed to parallel security challenges like viruses, Trojans and worms.
In the past, security solutions for mobile phones encountered several restrictions in practice. Several methods were used; however, these methods were developed to allow lightweight intrusion detection software to operate directly on the mobile phone. Nevertheless, such security solutions are bound to fail securing a device from intrusions as they are constrained by the restricted memory, storage, computational resources, and battery power of mobile phones.
This study compared and evaluated two intrusion detection systems (IDSs), namely Snort and Suricata, in order to propose a cloud-based intrusion detection and prevention system (CIDPS) for m-voting in South Africa. It employed simulation as the primary research strategy to evaluate the IDSs. A quantitative research method was used to collect and analyse data.
The researcher established that as much as Snort has been the preferred intrusion detection and prevention system (IDPS) in the past, Suricata presented more effective and accurate results close to what the researcher anticipated. The results also revealed that, though Suricata was proven effective enough to protect m-voting while saving the computational resources of mobile phones, more work needs to be done to alleviate the false-negative alerts caused by the anomaly detection method. This study adopted Suricata as a suitable cloud-based analysis engine to protect a mobile voting application like XaP. |
en_US |