Abstract:
Traditional designs for component-handling platforms are rigidly linked to the product being produced. Control and monitoring methods for these platforms consist of various proprietary hardware controllers containing the control logic for the production process. Should the configuration of the component handling platform change, the controllers need to be taken offline and reprogrammed to take the changes into account.
The current thinking in component-handling system design is the notion of re-configurability. Reconfigurability means that with minimum or no downtime the system can be adapted to produce another product type or overcome a device failure. The re-configurable component handling platform is built-up from groups of independent devices. These groups or cells are each responsible for some aspect of the overall production process. By moving or swopping different versions of these cells within the component-handling platform, re-configurability is achieved. Such a dynamic system requires a flexible communications platform and high-level software control architecture to accommodate the reconfigurable nature of the system.
This work represents the design and testing of the core of a re-configurable production control software platform. Multiple software components work together to control and monitor a re-configurable component handling platform.
The design and implementation of a production database, production ontology, communications architecture and the core multi-agent control application linking all these components together is presented.