DSpace Repository

Using fuzzy cognitive maps in modelling and representing weather lore for seasonal weather forecasting over east and Southern Africa

Show simple item record

dc.contributor.author Mwagha, Solomon Mwanjele
dc.contributor.author Masinde, Muthoni
dc.date.accessioned 2018-10-24T08:05:40Z
dc.date.available 2018-10-24T08:05:40Z
dc.date.issued 2017
dc.identifier.issn 1683-0296
dc.identifier.uri http://hdl.handle.net/11462/1713
dc.description Published Article en_US
dc.description.abstract The creation of scientific weather forecasts is troubled by many technological challenges while their utilization is dismal. Consequently, the majority of small-scale farmers in Africa continue to consult weather lore to reach various cropping decisions. Weather lore is a body of informal folklore associated with the prediction of the weather based on indigenous knowledge and human observation of the environment. As such, it tends to be more holistic and more localized to the farmers’ context. However, weather lore has limitations such as inability to offer forecasts beyond a season. Different types of weather lore exist and utilize almost all available human senses (feel, smell, sight and hear). Out of all the types of weather lore in existence, it is the visual or observed weather lore that is mostly used by indigenous societies to come up with weather predictions. Further, meteorologists continue to treat weather lore knowledge as superstition partly because there is no means to scientifically evaluate and validate it. The visualization and characterization of visual sky objects (such as moon, clouds, stars, rainbow, etc) in forecasting weather is a significant subject of research. In order to realize the integration of visual weather lore knowledge in modern weather forecasting systems, there is a need to represent and scientifically substantiate weather lore. This article is aimed at coming up with a method of organizing the weather lore from the visual perspective of humans. To achieve this objective, we used fuzzy cognitive mapping to model and represent causal relationships between weather lore concepts and weather outcomes. The results demonstrated that FCMs are efficient for matrix representation of selected weather outcome scenarios caused visual weather lore concepts. Based on these results the recommendation of this study is to use this approach as a preliminary processing task towards verifying weather lore. en_US
dc.format.extent 1 096 420 bytes, 1 file
dc.format.mimetype Application/PDF
dc.language.iso en_US en_US
dc.publisher Indilinga African Journal of Indigenous Knowledge Systems en_US
dc.relation.ispartofseries Volume 16;Number 1
dc.subject Weather lore en_US
dc.subject indigenous knowledge en_US
dc.subject drought forecasting en_US
dc.subject fuzzy logic en_US
dc.subject cognitive mapping en_US
dc.title Using fuzzy cognitive maps in modelling and representing weather lore for seasonal weather forecasting over east and Southern Africa en_US
dc.type Article en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


My Account