dc.description.abstract |
Internet of Things (IoT) is a concept that involves giving objects a digital identity and limited
artificial intelligence, which helps the objects to be interactive, process data, make decisions,
communicate and react to events virtually with minimum human intervention. IoT is intensified
by advancements in hardware and software engineering and promises to close the gap that exists
between the physical and digital worlds. IoT is paving ways to address complex phenomena,
through designing and implementation of intelligent systems that can monitor phenomena,
perform real-time data interpretation, react to events, and swiftly communicate observations. The
primary goal of IoT is ubiquitous computing using wireless sensors and communication
protocols such as Bluetooth, Wireless Fidelity (Wi-Fi), ZigBee and General Packet Radio
Service (GPRS).
Insecurity, of assets and lives, is a problem around the world. One application area of IoT is
tracking and monitoring; it could therefore be used to solve asset insecurity. A preliminary
investigation revealed that security systems in place at Central University of Technology, Free
State (CUT) are disjointed; they do not instantaneously and intelligently conscientize security
personnel about security breaches using real time messages. As a result, many assets have been
stolen, particularly laptops. The main objective of this research was to prove that a real-life application built over a generic
IoT architecture that innovatively and intelligently integrates: (1) wireless sensors; (2) radio
frequency identification (RFID) tags and readers; (3) fingerprint readers; and (4) mobile phones,
can be used to dispel laptop theft. To achieve this, the researcher developed a system, using the
heterogeneous devices mentioned above and a middleware that harnessed their unique
capabilities to bring out the full potential of IoT in intelligently curbing laptop theft.
The resulting system has the ability to: (1) monitor the presence of a laptop using RFID reader
that pro-actively interrogates a passive tag attached to the laptop; (2) detect unauthorized
removal of a laptop under monitoring; (3) instantly communicate security violations via cell
phones; and (4) use Windows location sensors to track the position of a laptop using Googlemaps.
The system also manages administrative tasks such as laptop registration, assignment and withdrawal which used to be handled manually. Experiments conducted using the resulting
system prototype proved the hypothesis outlined for this research. |
en_US |