Abstract:
The dual-tree complex wavelet transform (DTCWT) solves the problems of shift variance and low directional selectivity in two and higher dimensions found with the commonly used discrete wavelet transform (DWT). It has been proposed for applications such as texture classification and content-based image retrieval. In this paper, the performance of the dual-tree complex wavelet transform for fabric defect detection is evaluated. As experimental samples, the fabric images from TILDA, a textile texture database from the Workgroup on Texture Analysis of the German Research Council (DFG), are used. The mean energies of real and imaginary parts of complex wavelet coefficients taken separately are identified as effective features for the purpose of fabric defect detection. Then it is shown that the use of the dual-tree complex wavelet transform yields greater performance as compared to the undecimated wavelet transform (UDWT) with a detection rate of 4.5% to 15.8% higher depending on the fabric type.