Natural convection from a spinning cone in Casson fluid embedded in porous medium with injection, temperature dependent viscosity and thermal conductivity

GILBERT MAKANDA
Central University of Technology
Department of Mathematical
and Physical Sciences
Free State, Private Bag X20539,
Bloemfontein, 9300
SOUTH AFRICA
gilbertmakanda@yahoo.com

PRECIOUS SIBANDA
School of Mathematics, Statistics
and Computer Science,
University of Kwa-Zulu Natal
Private bag, X01, Scottsville 3209,
Pietermaritzburg
SOUTH AFRICA
sibandap@ukzn.ac.za

Abstract: In the present study, a numerical analysis on natural convection Casson fluid flow from a spinning cone in porous medium with injection, temperature-dependent viscosity and thermal conductivity is considered. The surface of the cone is heated under linear surface temperature (LST). The boundary layer partial differential equations were converted into a system of ordinary differential equations which were then solved using spectral relaxation method (SRM). In this study, we study the effects of varying fluid parameters on logarithm of the SRM decoupling error. The results obtained in this study were compared with others in the literature and found to be in excellent agreement. The application of the SRM on a spinning cone has not been studied. The boundary layer velocity, temperature and concentration profiles are computed for different values of the physical parameters. In particular, the effect of the Casson parameter, spin parameter, Eckert number, temperature dependent viscosity parameter, thermal conductivity parameter on rotational velocity and temperature profiles was studied. Increasing the Casson and temperature-dependent viscosity parameters both reduce the logarithm of the SRM decoupling error. Increasing the Eckert and spin parameters both increase the logarithm of the SRM decoupling error.

Key–Words: Casson fluid, spinning cone, partial slip, Spectral relaxation method

1 Introduction

The problem of free convection from spinning objects has attracted attention from researchers due to their practical application in industry. The applications of natural convection from spinning objects in conjunction to temperature dependent viscosity and thermal conductivity arise in molten metals, manufacturing of plastics, paints, design of cooking materials.

Studies in free or natural convection have been done by several researchers among others Chamkha and Rashad [2], who studied natural convection from a vertical cone in a nanofluid in porous media. Naryanay et. Al. [3] investigated free magnetohydrodynamic flow and convection from a spinning cone. Ece [4] studied free convection flow about a cone under mixed thermal boundary conditions in the presence of a magnetic field. Other studies on cone geometry include those of Cheng [5], [6] and [7] who explored free convection fluid flow under variable temperature, mixed boundary conditions in porous media and Soret and Dufour effects.

The study of Casson fluid flow has been done by many researchers, examples of these fluids are toothpaste, soup, blood, paint etc. Ramachandra et al. [17] investigated the flow of Casson fluid from a horizontal cylinder with partial slip. Mukhopadhyay and Vajravelu [18] studied diffusion of chemically reactive species in Casson fluid flow. The study of Casson fluid flow were also done by among others Mukhopadhyay et. al.[19], Nadeem et al. [20], Pramanic [21] and Hayat et al. [22]. These studies advanced the research in Casson fluid flow, they studied Casson fluid flow over unsteady and exponentially stretching surfaces stretching surfaces in the presence of thermal radiation and porous medium.

The study of Casson fluid flow is more practical when temperature-dependent viscosity and thermal conductivity on the surface of flow is considered. The consideration of these aspects have een done by among others Animasaun [23], who considered variable viscosity and thermal conductivity along an exponentially stretching sheet embeded in a thermally

In the present study we investigate the effects of temperature-dependent viscosity and thermal conductivity in natural convection from a spinning cone with injection in porous medium. The present work is also a further development of the work of Makanda and Sibanda [1] in which the linear surface temperature (LST) and linear surface heat flux (LSHF) are considered. The study of Casson fluid has not been widely investigated for heat transfer past a spinning cone. Similarity transformations are used to convert the governing equations into a system of ordinary differential equations which are then solved by using the spectral relaxation method (SRM). The numerical method used is validated by comparison to previous work by other authors. In this work we investigate the effect of varying physical parameters on the convergence of the numerical method used. We further study the effects of various fluid parameters on velocity, rotational velocity and temperature profiles with the presentation of graphical illustrations.

2 Mathematical formulation

The steady, laminar, viscous and buoyancy driven convection heat transfer flow from a spinning vertical cone with injection, temperature-dependent viscosity and thermal conductivity effects in a Casson fluid. The surface of the cone maintained at a uniform temperature T_s ($> T_\infty$). Ω is the angular velocity of the spinning cone, u, v and w are the velocity components in the x, y and z respectively. g is the acceleration due to gravity (see Figure 1).

\[
\frac{\partial}{\partial x} (ru) + \frac{\partial}{\partial y} (rv) = 0, \quad (2)
\]

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - \frac{w^2}{x} = \frac{\mu(T)}{\rho} \left(1 + \frac{1}{\beta}\right) \frac{\partial^2 u}{\partial y^2} - \frac{\mu(T)}{\rho K} u + \frac{1}{\rho} \frac{\partial \mu(T)}{\partial T} \frac{\partial u}{\partial y} + g\beta_T(T - T_\infty) \cos \theta, \quad (3)
\]

\[
u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + \frac{uw}{x} = \frac{\mu(T)}{\rho} \left(1 + \frac{1}{\beta}\right) \frac{\partial^2 w}{\partial y^2} - \frac{\mu(T)}{\rho K} w, \quad (4)
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = k(T) \frac{\partial^2 T}{\partial y^2} + \frac{1}{\rho C_p} \frac{\partial k(T)}{\partial T} \left(\frac{\partial T}{\partial y}\right)^2 + \frac{\mu(T)}{\rho C_p} \left(1 + \frac{1}{\beta}\right) \left(\frac{\partial u}{\partial y}\right)^2 \quad (5)
\]
Eqs. (2)-(5) are subject to boundary conditions

\[
\begin{align*}
 u &= 0, \quad v = -V_a, \quad w = r\Omega, \\
 T &= T_{\infty} + A\left(\frac{x}{L}\right), \quad y = 0, \\
 u &\to 0, \quad w \to 0, \quad T \to T_{\infty}, \text{ as } y \to \infty,
\end{align*}
\]

where the subscripts \(a\) and \(\infty\) refer to the surface and ambient conditions.

We assume linear surface temperature on the cone surface. The dynamic viscosity and thermal conductivity vary as a linear function of temperature as in Animasaun [23].

\[
\begin{align*}
 \mu(T) &= \mu_0[a_1 + b_1(T_a - T)], \\
 \kappa(T) &= \kappa_0[a_2 + b_2(T - T_\infty)].
\end{align*}
\]

where \(\mu_0\) is the coefficient of viscosity and \(\kappa_0\) is the constant value of the coefficient of thermal conductivity further away from the cone surface, \(\rho\) is the density of the fluid, \(A, a_1, a_2, b_1, b_2\) are constants; in this study we consider \(a_1 = a_2 = 1\) only, \(K\) is permeability parameter and \(C_p\) is the specific heat capacity.

We introduce the non-dimensional variables

\[
\begin{align*}
 (X, Y, R) &= \left(\frac{x}{L}, \frac{y}{L}G_{r}^{\frac{1}{2}}, \frac{r}{L}\right), \\
 (U, V, W) &= \left(\frac{U}{U_0}, \frac{G_{r}^{\frac{1}{2}}V}{U_0}, \frac{r\Omega}{L}\right), \\
 \bar{T} &= \frac{T - T_\infty}{T_a - T_\infty},
\end{align*}
\]

where \(U_0 = [g\beta T(T_a - T_\infty)\cos \phi L]^{\frac{1}{2}}\) The dimensionless groups for this model is given by

\[
\begin{align*}
 Da &= \frac{K}{L^2}, \quad Gr = \left(\frac{U_0 L}{\nu}\right)^2, \quad Pr^{*} = \frac{\nu_0}{\alpha}, \\
 Ec &= \frac{U_0^2}{C_p(T_w - T_{\infty})}, \quad Re = \frac{\Omega L^2}{\nu_0}, \\
 \epsilon_1 &= b_1(T_a - T_\infty), \quad \epsilon_2 = b_2(T_a - T_\infty),
\end{align*}
\]

We introduce the stream function \(\psi\) and similarity variables as

\[
\begin{align*}
 U &= \frac{1}{\hat{R}} \frac{\partial \psi}{\partial \hat{Y}}, \quad V = -\frac{1}{\hat{R}} \frac{\partial \psi}{\partial \hat{X}}, \quad W = X\hat{R}g, \\
 \psi &= X\hat{R}f(\eta), \quad \bar{T} = X\hat{\theta}(\eta).
\end{align*}
\]

By first substituting the non-dimensional variables (9) into Eqs. (2)-(5) and using similarity variables (11), the governing equations reduce to

\[
\begin{align*}
 [1 + \epsilon_1 - \epsilon_1\theta] \left(1 + \frac{1}{\beta}\right) f'''' + 2ff'' - f'' - \xi g^2 \\
 - \epsilon_1\theta f'''' + k_p[1 + \epsilon_1 - \epsilon_1\theta]f' + \theta = 0, \\
 [1 + \epsilon_1 - \epsilon_1\theta] \left(1 + \frac{1}{\beta}\right) g'''' + 2fg'' - 2f'g \\
 + k_p[1 + \epsilon_1 - \epsilon_1\theta]g' = 0, \\
 (1 + \epsilon_2)\theta'' + Pr(2f\theta' - f'\theta) + \epsilon_2(\theta')^2 \\
 + EcPr \left(1 + \frac{1}{\beta}\right)[1 + \epsilon_1 - \epsilon_1\theta]f''' = 0
\end{align*}
\]

with boundary conditions;

\[
\begin{align*}
 f(0) &= f_w, \quad f'(0) = 0, \quad g(0) = 1, \quad \theta(0) = 1, \\
 f'(\infty) &\to 0, \quad g(\infty) \to 0, \quad \theta(\infty) \to 0.
\end{align*}
\]

where \(f_w\) is the injection parameter, \(Pr\) is the Prandtl number, \(Da\) is the Darcy number, \(Gr\) is the Grashof number and \(Ec\) is the Eckert number, \(Re\) is the Reynolds number, \(\xi\) is the spin parameter, \(k_p\) is the inertia parameter, \(\epsilon_1\) is the temperature-dependent viscosity parameter and \(\epsilon_2\) is the thermal-conductivity parameter. The parameter \(f_w\) is the blowing/suction parameter. The case \(f_w < 0\) represents blowing and \(f_w > 0\) represents suction. The engineering parameters of interest are the local skin friction coefficient and the local Nusselt number which are defined as follows.

The shear stress at the surface of the cone is given by

\[
\tau_a = \frac{\mu \left(1 + \frac{1}{\beta}\right) U_0}{LGr^{-\frac{1}{4}}} Xf''(0)
\]

where \(\mu\) is the coefficient of viscosity, the skin friction coefficient is given by

\[
C_f = \frac{\tau_a}{\frac{1}{2}\rho U_0^2}
\]

Using Eqs.(16) and (17) gives

\[
C_fGr^{\frac{1}{4}} = 2(1 + \frac{1}{\beta})Xf''(0).
\]

The heat transfer from the cone surface into the fluid is given by

\[
q_a = \frac{-k(T_a - T_\infty)}{LGr^{-\frac{1}{4}}} X\theta'(0),
\]

\(k\) is the thermal conductivity of the fluid, The Nusselt number under LST is given by

\[
Nu = \frac{L}{k} \frac{q_a}{k(T_a - T_\infty)}
\]

Eqs.(19) and (20) together with Eqs. (9) and (10) give

\[
NuGr^{-\frac{1}{4}} = -X\theta'(0).
\]
3 Results and discussion

In this section we discuss the physics of the problem by studying the effects of the physical parameters on velocity $f''(\eta)$, rotational velocity $g(\eta)$ and temperature profiles $\theta(\eta)$. We also study the variation of both skin friction and local Nusselt number with the physical parameters. For validation of the numerical method used in this study, results for the skin friction coefficient $f''(0)$ and heat transfer coefficient $-\theta'(0)$ for the Newtonian fluid were compared to those of Ece [4] and the SRM, for $1/\beta \to 0$, $\epsilon_1 = \epsilon_2 = f_w = \xi = Ec = 0$ and the Darcian drag force terms $-k_p f' = k_p g = 0$. The comparison is shown in Table 1 and it is found to be in excellent agreement to five decimal places.

Table 1: Comparison of the values of $f''(0)$ and $-\theta'(0)$ of Ece [4] with the SRM.

<table>
<thead>
<tr>
<th>Pr</th>
<th>Ece [4]</th>
<th>SRM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$f''(0) - \theta'(0)$</td>
<td>$f''(0) - \theta'(0)$</td>
</tr>
<tr>
<td>1</td>
<td>0.68150212 0.63886614</td>
<td>0.68148625 0.63885897</td>
</tr>
<tr>
<td>10</td>
<td>0.43327726 1.27552680</td>
<td>0.43327848 1.27552816</td>
</tr>
</tbody>
</table>

Table 2 shows the effect the variation of the spin parameter ξ on $(1 + \frac{1}{\beta}) f''(0)$ and $-\theta'(0)$ and number of iterations.

<table>
<thead>
<tr>
<th>Pr</th>
<th>β</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>ξ</th>
<th>iter</th>
<th>$(1 + \frac{1}{\beta}) f''(0) - \theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.68143508 0.63885452</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>100</td>
<td>0.50313924 0.59904833</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>0</td>
<td>100</td>
<td>0.34600459 0.55931154</td>
</tr>
</tbody>
</table>

Table 3 shows the effect the variation of the Casson parameter β on the skin friction and heat transfer coefficients. Increasing the Casson parameter increases both skin friction and heat transfer coefficients. The different solutions were obtained using the same number of iterations.

<table>
<thead>
<tr>
<th>Pr</th>
<th>β</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>ξ</th>
<th>iter</th>
<th>$(1 + \frac{1}{\beta}) f''(0) - \theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>68</td>
<td>0.3997800 0.56724300</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>0.5419735 0.60638362</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0.58667938 0.61667938</td>
</tr>
</tbody>
</table>

Table 4 shows the effect the variation of the viscosity parameter ϵ_1 on the skin friction and heat transfer coefficients. Increasing the temperature-dependent viscosity parameter increases both skin friction and heat transfer coefficients. The different solutions were obtained using different number of iterations.

<table>
<thead>
<tr>
<th>Pr</th>
<th>β</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>ξ</th>
<th>iter</th>
<th>$(1 + \frac{1}{\beta}) f''(0) - \theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.68145088 0.63755644</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0.68083002 0.63458268</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0.69589002 0.63060665</td>
</tr>
</tbody>
</table>

Table 5 shows the effect the variation of the thermal conductivity parameter ϵ_2 on the skin friction and heat transfer coefficients. Increasing the thermal conductivity parameter increases both skin friction and heat transfer coefficients. The different solutions were obtained using the same number of iterations.

<table>
<thead>
<tr>
<th>Pr</th>
<th>β</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>ξ</th>
<th>iter</th>
<th>$(1 + \frac{1}{\beta}) f''(0) - \theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0.73015561 0.53907580</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0.67282338 0.63459328</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>0.38363922 1.70342833</td>
</tr>
</tbody>
</table>

Table 6 shows the effect the variation of the Prandtl number Pr on the skin friction and heat transfer coefficients. Increasing the Prandtl number decreases both skin friction and heat transfer coefficients. The different solutions were obtained using different number of iterations.

<table>
<thead>
<tr>
<th>Pr</th>
<th>β</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>ξ</th>
<th>iter</th>
<th>$(1 + \frac{1}{\beta}) f''(0) - \theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0.38363922 1.70342833</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0.67282338 0.63459328</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>0.38363922 1.70342833</td>
</tr>
</tbody>
</table>

The problem of free convection Casson fluid flow from a spinning cone in porous medium with injection, temperature-dependent viscosity and thermal conductivity is solved numerically using the spectral relaxation method (SRM). The results depicted in Figsures 2-16 are the results obtained by SRM. A tolerance of 10^{-8} for the method was used. The values are generated at selected values of the Darcian drag force term k_p, the Prandtl number Pr, and the Casson parameter β.

Figure 2: Effects of varying β on logarithm of SRM on decoupling error

Figure 2 shows the effect of increasing the Casson parameter on convergence of the method used. Increasing the Casson parameter result in the increased error (non-accurate) at the same number of iterations. Increasing the Casson parameter would have an effect on the condition number of the solution matrix of the system of equations making it less accurate. The case $\beta = 1$ yields the solution in only 70 iterations compared to the other two cases $\beta = 3, 5$ that yields the solution after more than 90 iterations.

Figure 3: Effects of varying Ec on logarithm of SRM on decoupling error

Figure 3 shows the effect of increasing the Eckert number on convergence of the method used. Increasing the Eckert number result in the increase in error at the same number of iterations. Increasing the Eckert number would affect the matrix condition number in the same manner as the Casson parameter but the case $Ec = 0$ yields more accurate solutions than than the cases $Ec = 2, 4$ after the same number of iterations.

Figure 4: Effects of varying ϵ_1 on logarithm of SRM on decoupling error

Figure 4 shows the effect of increasing the temperature-dependent viscosity parameter on convergence of the method used. Increasing the temperature-dependent viscosity parameter result in the reduction of the error at the same number of iterations. Increasing this parameter affects the system matrix condition number in such a way that increase the accuracy of the solution. The case $\epsilon_1 = 0$ is less accurate than the other two cases.

Figure 5: Effects of varying ξ on logarithm of SRM on decoupling error

Figure 5 shows the effect of increasing the spin parameter on convergence of the method used. Increasing the spin parameter result in the increase in error at the same number of iterations. This parameter affects the condition number in such a way that it reduces the accuracy of the method. The case $\xi = 0$ yields more accurate solutions than the other two cases.
Figure 6: Effects of varying Ec on rotational velocity and velocity profiles

Figure 6 depict the effect of increasing the Eckert number Ec on velocity $f'(\eta)$ and rotational velocity $g(\eta)$ profiles. Increasing the Eckert number increase $f'(\eta)$ profiles and decrease rotational $g(\eta)$ velocity profiles. Increasing the Eckert number increase temperature in the boundary layer thereby increasing velocity close to the boundary. The rotational velocity is decreased due to the increase $f'(\eta)$ which is in the perpendicular direction to the rotational velocity $g(\eta)$.

Figure 7: Effects of varying ϵ_1 on rotational velocity and velocity profiles

Figure 7 show the effect of increasing the temperature-dependent viscosity parameter ϵ_1 on velocity $f'(\eta)$ and rotational velocity $g(\eta)$ profiles. Increasing the temperature-dependent viscosity parameter increase both $f'(\eta)$ profiles and rotational $g(\eta)$ velocity profiles. Increasing the temperature-dependent viscosity would have an effect of increasing the velocity profiles close to the cone surface caused by higher temperatures. A reverse effect is noted further from the surface due to lower temperatures and high viscosity. The rotational velocity increases more pronounced at the surface due to the spinning cone.

Figure 8: Effects of varying ϵ_2 on rotational velocity and velocity profiles

Figure 8 show the effect of increasing the thermal conductivity parameter ϵ_2 on velocity $f'(\eta)$ and rotational velocity $g(\eta)$ profiles. Increasing the thermal conductivity parameter increase $f'(\eta)$ profiles and decrease rotational $g(\eta)$ velocity profiles. Increasing the thermal conductivity increase the surface temperature causing an increase in the velocity profiles. The reduction in rotational velocity is due to the fact that rotation is perpendicular direction to the velocity profiles.

Figure 9: Effects of varying f_w on rotational velocity and velocity profiles

Figure 9 show the effect of increasing the injection parameter f_w on velocity $f'(\eta)$ and rotational velocity $g(\eta)$ profiles. Increasing the injection parameter increase both velocity $f'(\eta)$ profiles and rotational $g(\eta)$ velocity profiles. Injection of more fluid at the surface of the cone tend to assist the flow. As more fluid is introduced into the boundary layer, rotation sweeps it across the cone and this fluid mass tend to assist rotational velocity due to inertia.
Increasing the spin parameter tends to assist rotation but reduce the velocity profiles to the direction of the spin which acts perpendicular to the velocity profiles.

Increasing the Prandtl number decrease both the \(f'(\eta) \) profiles and rotational \(g(\eta) \) velocity profiles. Increasing the Prandtl numbers mean smaller thermal boundary layer than the momentum boundary layer. There is low temperature which reduce velocity profiles. Rotational velocity profiles are increased to a larger momentum boundary layer.

Increasing the Casson parameter decrease temperature profiles. Increasing the Casson parameter decrease both the \(f'(\eta) \) profiles and rotational \(g(\eta) \) velocity profiles. Increasing the Casson parameter tend to make the fluid more Newtonian increasing the velocity profiles close to the surface, the reverse effect noted is due to rotation. The increase in velocity profiles noted close to the surface cause a reduction in the rotational velocity.

Figure 10 show the effect of increasing the Prandtl number \(Pr \) on velocity \(f'(\eta) \) and rotational velocity \(g(\eta) \) profiles. Increasing the Prandtl number decrease the \(f'(\eta) \) profiles and increase rotational \(g(\eta) \) velocity profiles. Increased Prandtl numbers mean smaller thermal boundary layer than the momentum boundary layer.

Figure 11 show the effect of increasing the spin parameter \(\xi \) on velocity \(f'(\eta) \) and rotational velocity \(g(\eta) \) profiles. Increasing the spin parameter decrease the \(f'(\eta) \) profiles and increase rotational \(g(\eta) \) velocity profiles. Increasing the spin parameter tends to assist rotation but reduce the velocity profiles to the direction of the spin which acts perpendicular to the velocity profiles.

Figure 12 show the effect of increasing the Casson parameter \(\beta \) on velocity \(f'(\eta) \) and rotational velocity \(g(\eta) \) profiles. Increasing the Casson parameter decrease both the \(f'(\eta) \) profiles and rotational \(g(\eta) \) velocity profiles. Increasing the Casson parameter tend to make the fluid more Newtonian increasing the velocity profiles close to the surface, the reverse effect noted is due to rotation. The increase in velocity profiles noted close to the surface cause a reduction in the rotational velocity.

Figure 13 show the effect of increasing the Casson parameter \(\beta \) on temperature \(\theta(\eta) \) profiles. Increasing the Casson parameter decrease temperature profiles. Increasing the Casson parameter implies less velocity due to low temperature in the boundary layer thereby reducing temperature profiles.
Figure 14: Effects of temperature-dependent viscosity ϵ_1 on temperature profiles

Figure 14 show the effect of increasing the temperature-dependent viscosity ϵ_1 on temperature $\theta(\eta)$ profiles. Increasing the temperature-dependent viscosity decrease temperature profiles. The temperature and viscosity are inversely proportional. If the temperature increase the viscosity reduces. Therefore increasing the viscosity parameter would have an effect of decreasing the temperature.

Figure 15: Effects of thermal conductivity parameter ϵ_2 on temperature profiles

Figure 15 show the effect of increasing the thermal conductivity parameter ϵ_2 on temperature $\theta(\eta)$ profiles. Increasing the thermal conductivity parameter increase temperature profiles. Increasing thermal conductivity would have an effect of increasing the surface temperature of the cone therey increasing temperature in the boundary layer.

Figure 16: Effects of spin parameter ξ on temperature profiles

Figure 15 show the effect of increasing the spin parameter ξ on temperature $\theta(\eta)$ profiles. Increasing the spin parameter increase temperature profiles. As the spin parameter is increased there is more molecule interaction in the boundary layer causing a rise in temperature sometimes referred to as viscous dissipation.

4 Conclusion

The investigation presented in this analysis of effects of temperature-dependent viscosity and thermal conductivity on free convection from a spinning cone with injection in Casson fluid in porous medium provides numerical solutions for the boundary velocity, rotational velocity and heat transfer. The coupled nonlinear governing differential equations were solved using the spectral relaxation method (SRM). The interesting results in this work are the consideration of rotational velocity profiles rarely reported in the literature and the effect of various fluid parameters on the convergence of the numerical method used. It is generally observed that increasing the Casson parameter β and temperature-dependent viscosity parameter both reduce the logarithm of the SRM decoupling error. Increasing both the Eckert number and spin parameter increase the logarithm of the SRM decoupling error. The convergence of the spectral relaxation method (SRM) is stable compared to other numerical methods such as the finite difference, this method can be used to solve boundary value problems. Increasing the Eckert number increase the velocity profiles $f'(\eta)$ and decrease rotational velocity $g(\eta)$ profiles. Increasing both the Prandtl number and spin parameter decrease the velocity profiles $f'(\eta)$ and increase rotational velocity $g(\eta)$ profiles. This work opens a way in further research on how to deal with computational errors such as interpolation, discretization, truncation errors and badly scaled or ill-conditioned large matrices.
References:

