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Abstract

In this paper we apply Bayes factors to grouped data. Group testing is where 
units are pooled together and tested as a group rather than individually. The 
Bayes factor is the ratio of the posterior probabilities of the null and the 
alternative hypotheses divided by the ratio of the prior probabilities for the null 
and the alternative hypotheses. A beta prior will be used, also known as a 
conjugate prior for the binomial distribution. An application to mosquito data 
will be considered, where a comparison is made between West Nile virus 
(WNV) infection prevalences in field collected Culex nigripalpus mosquitoes 
trapped at different heights. 
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1. INTRODUCTION

In Bayesian terminology we are not testing, but doing model comparison. 
Jeffreys (1961) introduced and developed the Bayesian approach to 
hypothesis testing. See Kass and Raftery (1995) and Robert et al. (2009) for a 
detailed discussion and explanation of Bayes factors, where they emphasize 
different points on Bayes factors. In this paper we will focus on Bayes factors 
for grouped data, where model comparison will be made for two proportions 
from grouped data. Group testing is where units are pooled together and 
tested as a group rather than individually. Group testing is also known as 
pooled testing, where pooled testing was introduced by Dorfman (1943). 
Dorfman (1943) used group testing for medical screening purposes to identify 
infected individuals. Bayes factors will be applied to an example by Biggerstaff 
(2008), where a comparison was made between West Nile virus (WNV) 
infection prevalences in field collected Culex nigripalpus mosquitoes trapped 
at different heights. 

Not much has been done in literature from a Bayesian point of view on group 
testing. Hanson et al. (2006) used a two-stage sampling procedure and 
developed a Bayesian method that allows for sampling multiple sites in a 
specific region. Gastwirth and Johnson (1994) used independent beta priors. 
Chick (1996) used the beta (α, ß). prior for obtaining posterior distributions of 
the unknown proportion p. The methods were applied to grouped test data for 
gene transfer experiments and limiting dilution assay data for 
immunocompetency studies. Raubenheimer and van der Merwe (2014) 
looked at estimation of binomial proportions from pooled samples using an 
objective prior. 
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Where point estimates and credibility intervals were calculated for a single 
proportion as well as the difference between two binomial proportions from 
pooled samples with unequal pool sizes, using the data from Biggerstaff 
(2008). 

The importance of Bayes factors will be discussed in Section 2. Notation, the 
likelihood function and some theoretical aspects will be considered in Section 
3. Bayes factors for grouped data from binomial distributions will be discussed 
and shown in Section 4, simulation studies will be considered in Section 5 and 
the application will be considered in Section 6. The discussion and conclusion 
will be given in Section 7. 

2. THE IMPORTANCE OF BAYES FACTORS

Bayes factors can be used as an alternative to p-values. The editors of the 
journal Basic and Applied Social Psychology (BASP) banned null hypothesis 
significance testing procedures from their articles. The editors of BASP said 
that null hypothesis significance testing procedures are invalid, and 
manuscripts containing these will be highly scrutinized and authors will have 
to remove all vestiges of null hypothesis significance testing procedures. The 
editors of BASP have reserved the right to make case-by-case judgments with 
regards to manuscripts containing Bayesian methods. Jim Berger 
commented the following in the ISBA March 2015 bulletin: “Where I diverge 
with the editors is that they do not offer a viable alternative to the p-value; the 
solution is objective Bayesian alternatives, which are simultaneously 
Bayesian and frequentist.” Berger and Pericchi (2015) wrote the following in 
their paper “Science needs to abandon p-values and adopt Bayes factors”. 
This predicts exciting times for Bayesian statistics as a whole and Bayes 
factors in particular.

Kass and Raftery (1995) made the following comparison between Bayes 
factors and non-Bayesian significance testing:

• There is no reason to expect a p-value to be similar to the posterior 
probability that the null hypothesis is correct. But partly because this 
misinterpretation of the p-value is common among non-statisticians, it 
is of some interest to compare the results. There is a general feeling 
that Bayes factors are more conservative than p-values, mainly 
because when comparisons are made, it becomes clear that a p-
value of 0.05 cannot represent much evidence against the null 
hypothesis.

• Frequentist tests tend to reject the null hypothesis almost 
systematically in very large samples, whereas Bayes factors do not.

• Bayes factors, like Bayesian procedures generally, follow the 
likelihood principle. As a result, in settings such as clinical trials where 
cases may accrue sequentially, Bayes factors may be applied without 
concerns about unscheduled analysis of the data.
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• Bayes factors can be applied as easily to non-nested models as to 
nested ones.

• Non-Bayesian significance tests were developed for the comparison 
of two models, but practical data analysis often involves far more than 
two models, at least implicitly. In this case, carrying out multiple 
frequentist tests to guide a search for the best model can give very 
misleading results. By allowing us to take into account model 
uncertainty, Bayes factors can avoid this problem.

Bayes factors offer a way of evaluating evidence in favour of a null hypothesis, 
and they provide a way of including other information when assessing the 
evidence for a hypothesis.

3. NOTATION AND LIKELIHOOD FUNCTION FOR 
BINOMIAL PROPORTIONS FROM POOLED SAMPLES

Assume that the proportion of successes in a given population is p. We will 
refer to an infected individual as a success in a binomial trial. The following 
notation will be used in this paper: 

N - number of individuals to be sampled independently from the population 
m  - the size of the pool where i = 1, 2, ..., M*i

M* - the number of distinct pool sizes 
n - the number of pools of size mi i

X  - the number of the n  pools that is positive. i i

In the case of grouped data assume that X , X , ... X are independent binomial 1 2 M* 
mi mi

random variables with parameters n and 1-(1-p) , i.e. X  ~bin(n ,1-(1-p) ).i  i i

The likelihood function is given by 

In this paper we are interested in comparing two proportions, say p  and p . 1 2

The likelihood function will then be:



152

A conjugate prior to the binomial distribution is used. Conjugacy may be 
defined as a joint property of the prior and the likelihood function that provides 
a posterior from the same distribution family as the prior, (Robert, 2001). 
Statisticians make use of conjugate priors to be certain that the posterior is 
predictable in its form. Consider a beta prior, i.e. p~beta(α, ß) for the p’si

Journal for New Generation Sciences: Volume 13  Number 3

4. BAYES  FACTORS

The Bayes factor is the ratio of the posterior probabilities of the null and the 
alternative hypotheses divided by the ratio of the prior probabilities for the null 
and the alternative hypotheses (Robert, 2001). The classical approach to 
hypothesis testing is not probability based; one could not place a probability 
on a hypothesis because a hypothesis is not a random variable in the 
frequentist sense. Using a frequentist approach, one has to make do with 
quantities like the p - value where this is conditional on H  being true. We do not 0

know if H  is true, the real question is actually P(H  is true/data). The Bayesian 0 0

wants to find a probability that H  is true. The Bayes factor is a summary of the 0

evidence provided by the data in favour of a scientific theory, represented by a 
statistical model, as opposed to another (Kass and Raftery, 1995). In 
Bayesian terminology we are not testing as in the classical sense, but we are 
comparing two possible models. This is also known as model comparison or 
Bayes factor analysis. For example, comparing model ƒ(x/Ɵ ,y) with model 0

ƒ(x/Ɵ, y). Where Ɵ is unspecified parameter and y is a nuisance parameter. In 

this instance we are interested in testing H : Ɵ = Ɵ  against H : Ɵ ≠ Ɵ , where 0 0 1 0

H  is the null hypothesis and H  the alternative hypothesis. Instead of calling 0 1

the two options hypotheses, we shall call them models M  and M , 0 1

respectively. The probability that M  is the 'correct' model will then be 0

calculated. 

* *4.1 Two Samples with M  = M  = 11 2

We first consider the simplest case where n  = n  = n and m  = m  = m. The n’s 1 2 1 2

can be different, as long as the m’s are the same. Then the equality of the p’s is 
equivalent to the model M : Ɵ  = Ɵ  = Ɵ which will be compared to the model 0 1 2

mM : Ɵ  ≠ Ɵ . Here we have Ɵ = (1-p) . Under M  the prior on Ɵ is beta(α, ß), 1 1 2 0

while under M  we have two independent beta(α, ß) priors.1

The Bayes factor in favour of M  is given by0
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Another approach to calculate Bayes factors, is to use fractional Bayes 
factors. This was proposed by O'Hagan (1995). Here one uses part of the 
information from the data to create proper priors from improper priors. It uses a 
fraction of the likelihood to obtain proper priors. If we let α = ß = ½ i.e. 
considering a beta(½, ½) prior for the p’s we actually make use of the Jeffreys 
prior. In this case the Jeffreys prior is proper, and there is no need to make use 
of the fractional Bayes factor. If we let α = ß = 0  i.e considering a beta(0, 0) 
prior for the p’s, we actually make use of the Haldane prior. This prior was 
introduced by Haldane (1932). According to Zellner (1977) the Haldane prior 
is popular due to the posterior mean being equal to the maximum likelihood 
estimator. In this case the Haldane prior is improper, and we can't use the 
Bayes factor and therefore have to make use of partial Bayes factors, to be 
more specific the fractional Bayes factor. To create a proper prior for the 
parameters under the models, a fraction b of the likelihood should be used. For 
illustration and comparison purposes we will consider the fractional Bayes 
factor when using the Jeffreys and Haldane priors. The fractional Bayes factor 
in favour of model M is given by0  

When using the Haldane prior, the fractional Bayes factor in favour of model 
M  is given by0

When using the Jeffreys prior, the fractional Bayes factor in favour of model M  0

is given by

4.2 General Case for Two Samples

For the choice of prior given in the previous section, let α = ß = ½ i.e. 
considering a beta(½, ½) prior for the p’s. Consider two models M : p  = p  = p 0 1 2

and M : p  ≠ p  1 1 2
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Under model M  the likelihood will be0
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and the marginal likelihood is then

Under model M  the likelihood will be1

and the marginal likelihood is then

The Bayes factor in favour of M  is given by0

If one assumes that the two models are equally likely beforehand, i.e. P(M ) = 0

P(M ) 1 the posterior probability of model M  is0

5.  SIMULATION RESULTS FOR TWO SAMPLES WITH M * = M * = 11 2

Here we consider the simplest case where n  =  n  = n and m  = m  = m. Then 1 2 1 2

the equality of the p’s is equivalent to the model M :θ  = θ  = θ, which will be 0 1 2
m

compared to the model M :θ  ≠ θ . Here we have θ=(1-p) . Under M  the prior 1 1 2 0

on θ is beta(α, β), while under M  we have two independent beta(α, β) priors. 1

We consider two different priors here, one where α = β = ½, the Jeffreys prior, 
and one where α = β = 1, the uniform prior. Figures 1, 2, 3 and 4 show the 
posterior probabilities for M   when α = β = ½ as well as when α = β = 1. This is 0

for the selected value of x  and a range of outcomes for x when n= 20, 50, 100 1 2  

and 200. In general the results look reasonable, with probabilities usually 
lower with the smaller values of α and β, except when n is small. 
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We will now apply the fractional Bayes factor using the Jeffreys and Haldane 
priors when b = 0.01, x  = 2 and n = 20, 50, 100 and 200. The results are 1

displayed in Table 1. In this case the Jeffreys prior is proper, and there is no 
need to make use of the fractional Bayes factor. It is used here just for 
comparison purposes. 

Table 1: Posterior probabilities, given that b = 0.01, x  = 2 and n = 20, 50, 100 1

and 200.

Jeffreys
 

Haldane
 

Jeffreys
 

Haldane
 

Jeffreys
 

Haldane Jeffreys Haldane

 
n = 20

 
n = 50

 
n = 100

 
n = 200

0 

 

0.5592 

 

0.6414 

 

0.6774 

 

0.6971 

1

  

0.7679 

 

0.9748 

 

0.8202 

 

0.9746 

 

0.8418 

 

0.9745 0.8531 0.9745

2 

 

0.7971 

 

0.9755 

 

0.8432 

 

0.9749 

 

0.8622 

 

0.9748 0.8722 0.9747 

3 

 

0.7777 

 

0.9708 

 

0.8288 

 

0.9701 

 

0.8496 

 

0.9700 0.8606 0.9700

4 

 

0.7251 

 

0.9604 

 

0.7900 

 

0.9603 

 

0.8159 

 

0.9604 0.8294 0.6905 

5 

 

0.6390 

 

0.9412 

 

0.7267 

 

0.9433 

 

0.7606 

 

0.9440 0.7782 0.9445

6 

 

0.5195 

 

0.9068 

 

0.6369 

 

0.9150 

 

0.6815 

 

0.9175 0.7047 0.9188 

7 

 

0.3783 

 

0.8457 

 

0.5231 

 

0.8692 

 

0.5789 

 

0.8756 0.6081 0.8787 

8 

 

0.2408 

 

0.7422 

 

0.3962 

 

0.7975 

 

0.4597 

 

0.8115 0.4936 0.8180 

9 

 

0.1330 

 

0.5851 

 

0.2744 

 

0.6928 

 

0.3381 

 

0.7190 0.3734 0.7312 

10

 

0.0643 

 

0.3914 

 

0.1740 

 

0.5558 

 

0.2299 

 

0.5977 0.2625 0.6171 

11 0.0276 0.2139 0.1023 0.4029 0.1459 0.4579 0.1725 0.4841 

12 0.0106 0.0959 0.0565 0.2616 0.0874 0.3204 0.1073 0.3496 

13 0.0037 0.0363 0.0298 0.1535 0.0501 0.2055 0.0639 0.2331 

14 0.0011 0.0120 0.0151 0.0830 0.0278 0.1226 0.0368 0.1450 

15 0.0003 0.0034 0.0074 0.0423 0.0150 0.0692 0.0208 0.0857 

x2

The probabilities when using the Haldane prior are considerably higher than 
those from the Jeffreys prior. In the case of the Haldane prior all x’s must be 
larger than zero, and b>0. One of the main questions is: What should the value 

of b be? We know that P(M │▁x )→1 when b→0 and P(M   │▁x )→0.5 when b→1, 0 0

so the posterior probability can be manipulated by the choice of b. The usual 
-1 qpractice is to choose b α n , and O’Hagan (1995) suggested b= / , where q is n

the minimal sample size.

6. APPLICATION

The Bayes factors discussed in the previous section will be applied to an 
example considered by Biggerstaff (2008). Godsey et al. (2005) and Godsey 
et al. (2013) studied the West Nile virus (WNV) infection prevalences in Culex 
nigripalpus mosquitoes in Louisiana in 2002 and 2002 – 2004, respectively. 
The West Nile virus is transmitted by mosquitoes and can cause in humans 
ranging from simple fevers to encephalitis, Marfin and Gubler (2001). 
Biggerstaff (2008) considered an example where a comparison is made 
between West Nile virus (WNV) infection prevalences in field collected Culex 
nigripalpus mosquitoes trapped at different heights. Table 2 summarises the 
data used by Biggerstaff (2008). 
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The general case for two samples will be considered here.
 
Table 2: Summary of Culex nigripalpus mosquitoes trapped at different 
heights of  6m and 1.5m

Journal for New Generation Sciences: Volume 13  Number 3

Sample 1 Sample 2 
height = 6m height = 1.5m

Total 

 

2 021 1 324 
Number of pools 

 

53 

 

31
Average pool size 38.1321 42.7097 
Minimum pool size 1 5 
Maximum pool size 50 100 
Number of positive pools 7 1 

Using numerical integration, the Biggerstaff data yielded B =2.3331 with 01

corresponding posterior probability of P(M  │▁x )=0.7000. This is moderate 0

evidence in favour of model M0. Using the sample and pool sizes as given in 
*Biggerstaff (2008) where M =19, with p =0.004, we simulated 10 000 1 1

outcomes of the 19×1 vector ▁x .  By simulating 19 binomial observations, 1

each with a sample size and a different probability. This was done since the 
*pool sizes differ. The same was done with the second sample where M =16, 2

with p =0.001. Using numerical integration, the Bayes factors and posterior 2

probabilities were calculated and the histograms are shown in Figure 5. The 
mean of B  is 3.6241 and the mean posterior probability is 0.6202, still 01

favouring a single p slightly. 

It is interesting to note that 626 of the 10 000 simulations gave the same result 
as the Biggerstaff (2008) data, 7 positives from the samples with p  and one 1

positive from the samples with p , although not necessarily from samples with 2

the same pool sizes. The range of posterior probabilities for the 626 
simulations is (0.6925; 0.7208), with mean of 0.7030. So the pools from which 
the positive observations come do not have a large effect on the posterior.
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Kass and Raftery (1995) gave the following categories for interpreting the 
Bayes factor, B :10

Using these scales and categories to judge the evidence against M  for B , we 0 01

obtain the following results: 

• 85.12% of the time, the evidence was poor; 
9.06% of the time, it was substantial; 
5.49% of the time, it was strong; 
0.33% of the time, it was decisive.

The impact of the West Nile virus on the economy

Zohrabian et al. (2004) stated that in 2002, an epidemic of WNV illness 
focused in the mid-western United States resulted in 4,156 reported cases; 
2,942 cases had central nervous system (CNS) illness (meningitis, 
encephalitis, or acute flaccid paralysis), and 284 died. A total of 329 persons 
with WNV disease were reported in Louisiana, with illness onsets from June to 
November. Economic data about epidemics are essential for estimating the 
costs and benefits of strengthening and maintaining prevention and control 
programs, improving existing surveillance systems, and introducing other 
proposed interventions, such as vaccines. 

•
•
•
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Zohrabian et al. (2004) calculated the costs of the WNV epidemic as the sum 
of

1. The medical costs (inpatient and outpatient).
2. Non-medical costs, such as productivity losses caused by 

illness and premature death.
3. The costs incurred by public health and other government 

agencies for epidemic control.

Where the costs were estimated from June 2002, when the epidemic was first 
recognized, until February 2003, three months after the onset of illness of the 
last reported patient. Zohrabian et al. (2004) estimated that the costs from 
June 2002 to February 2003 attributable to the 2002 WNV epidemic in 
Louisiana were $20.1 million, including a $10.9 million cost of illness and a 
$9.2 million cost of public health response. The costs associated with WNV 
epidemics can be used to evaluate the economics of WNV prevention and 
control programs.

7. CONCLUSION

In this paper we looked at the Bayes factor for grouped data. We also 
considered fractional Bayes factors. The Bayes factor was applied to an 
example considered in Biggerstaff (2008), where a comparison was made 
between West Nile virus (WNV) infection prevalences in field collected Culex 
nigripalpus mosquitoes trapped at different heights. The two sample case with 
M *=M *=1 was first considered, where two priors were used 1 2

beta(α=1/2,β=1/2) and beta(α=1,β=1). The posterior probabilities were 
usually lower with the smaller values of α and β, except for small n. For the 
fractional Bayes factor two priors were considered a beta(α=1/2,β=1/2), 
Jeffreys prior, and a beta(α=0,β=0), Haldane prior. The probabilities when 
using the Haldane prior are considerably higher than those from the Jeffreys 
prior. 

For the general case a beta(1/2,1/2) prior was used for the Bayes factor. Using 
numerical integration, the Bayes factors and posterior probabilities were 
calculated. The mean of B  is 3.6241 and the mean posterior probability is 01

0.6202, favouring a single p slightly. As far as we know, Bayes factors have not 
been applied to this type of problem, where one deals with pooled samples. 
The Bayes factor offers an alternative to the classical method where one uses 
p-values. From our results we found that a single proportion is favoured, 
implying that the pools from which the positive observations come do not have 
a large effect on the posterior. With the recent developments in some journals, 
where frequentists’ inferential procedures are banned, more researchers 
should consult the Bayesian method. This predicts exciting times for Bayesian 
statistics as a whole and Bayes factors in particular.
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