A feasibility study on the use of agent-based
Image recognition on a desktop computer for
the purpose of quality control in a

production environment

Bertram Peter Haskins
N.Dip., B.Tech.

Study submitted in accordance with the requirements for the degree

MAGISTER TECHNOLOGIAE: INFORMATION TECHNOLOGY
in the
SCHOOL OF INFORMATION AND COMMUNICATION
TECHNOLOGY
of the
FACULTY OF ENGINEERING, INFORMATION AND
COMMUNICATION TECHNOLOGY
at the
CENTRAL UNIVERSITY OF TECHNOLOGY, FREE STATE

2006

Supervisor: Mr P Veldtsman
Co-Supervisor: Mr CH Wessels

Declaration

|, BERTRAM PETER HASKINS, identity number 8110115041088, and student
number 20002696 do hereby declare that this research project which has been
submitted to the Central University of Technology, Free State for the Degree
MAGISTER TECHNOLOGIAE: INFORMATION TECHNOLOGY , is my own
independent work; and complies with the Code of Academic Integrity, as well as
other relevant policies, procedures, rules and regulations of the Central
University of Technology, Free State; and has not been submitted before by any
other person in fulfilment (or partial fulfilment) of the requirements for the

attainment of any qualification.

SIGNATURE OF STUDENT DATE

Bertram Haskins 2006 i

Acknowledgements

The author would like to thank the following people for all their help and

understanding:

® Pieter Veldtsman and Casper Wessels; my supervisors. Without their

help, | would never have navigated through these unknown waters.
® Professor GD Jordaan; for adding that little bit of extra polish.

® My parents. Without their support and motivation, | might have given up

before ever completing the study.

® My friends; for putting up with my anti-social behaviour these past few

months.

® The Good Lord; for giving me the strength to pull through.

Bertram Haskins 2006 iii

Preface

This study is the culmination of a lot of hard work and sleepless nights, but

seeing the completed project at the end of the day makes it all worthwhile.

“Nothing ever comes to one, that is worth having, except

as a result of hard work.”

Booker T. Washington; teacher and political rights activist in America in the late 1800’s

and early 1900’s.

Bertram Haskins 2006 v

Summary

A multi-threaded, multi-agent image recognition software application called
RecMaster has been developed specifically for the purpose of quality control in a
production environment. This entails using the system as a monitor to identify
invalid objects moving on a conveyor belt and to pass on the relevant information
to an attached device, such as a robotic arm, which will remove the invalid

object.

The main purpose of developing this system was to prove that a desktop
computer could run an image recognition system efficiently, without the need for
high-end, high-cost, specialised computer hardware. The programme operates
by assigning each agent a task in the recognition process and then waiting for
resources to become available. Tasks related to edge detection, colour
inversion, image binarisation and perimeter determination were assigned to

individual agents.

Each agent is loaded onto its own processing thread, with some of the agents
delegating their subtasks to other processing threads. This enables the

application to utilise the available system resources more efficiently.

The application is very limited in its scope, as it requires a uniform image
background as well as little to no variance in camera zoom levels and object to
lens distance. This study focused solely on the development of the application
software, and not on the setting up of the actual imaging hardware. The imaging
device, on which the system was tested, was a web cam capable of a 640 x 480
resolution. As such, all image capture and processing was done on images with
a horizontal resolution of 640 pixels and a vertical resolution of 480 pixels, so as

not to distort image quality.

Bertram Haskins 2006 v

The application locates objects on an image feed - which can be in the format of
a still image, a video file or a camera feed - and compares these objects to a
model of the object that was created previously. The coordinates of the object
are calculated and translated into coordinates on the conveyor system. These
coordinates are then passed on to an external recipient, such as a robotic arm,

via a serial link.

The system has been applied to the model of a DVD, and tested against a variety
of similar and dissimilar objects to determine its accuracy. The tests were run on
both an AMD- and Intel-based desktop computer system, with the results
indicating that both systems are capable of efficiently running the application. On
average, the AMD-based system tended to be 81% faster at matching objects in

still images, and 100% faster at matching objects in moving images.

The system made matches within an average time frame of 250 ms, making the
process fast enough to be used on an actual conveyor system. On still images,
the results showed an 87% success rate for the AMD-based system, and 73% for

Intel. For moving images, however, both systems showed a 100% success rate.

Bertram Haskins 2006 Vi

Opsomming

'n Multi-draad, multi-agent voorwerperkennings-sagtewareprogram, naamlik
RecMaster, is ontwikkel vir die spesifieke doel om kwaliteitbeheer in 'n produksie-
omgewing toe te pas. Dit behels dat die stelsel as 'n monitor gebruik word om
ontoepaslike voorwerpe wat op 'n vervoerband beweeg, uit te ken en die inligting
na die relevante aangehegte toestel te stuur, byvoorbeeld 'n robotiese arm, wat

die foutiewe voorwerp dan sal verwyder.

Die hoofdoel met betrekking tot die ontwikkeling van die stelsel was om te bewys
dat 'n tafelrekenaar 'n voorwerperkenningsisteem effektief kan hanteer, en dus
die aankoop van duur, gespesialiseerde rekenaarhardeware kan uitskakel. Die
program funksioneer deur aan elke agent 'n taak in die erkenningsproses toe te
ken en dan te wag vir bronne om beskikbaar te raak. Take wat verband hou met
randopsporing, Kkleurinversie, beeldbinerisering en omtrekbepaling is aan

individuele agente toegeken.

Elke agent word op sy eie prosesseringsdraad gelaai, waarna sommige van die
agente hul subtake delegeer aan ander prosesseringsdrade. Die tegniek stel die

program in staat om die beskikbare stelselbronne beter te benut.

Die toepassing is baie beperk in sy omvang, aangesien dit 'n eenvormige
beeldagtergrond benodig, sowel as ‘n geringe tot geen afwyking in die
vergrotingsvlak van die kamera en die afstand van lens na voorwerp. Hierdie
studie het slegs gefokus op die ontwikkeling van die sagtewareprogram, en nie
op die opstel van die optiese hardeware nie. Die optiese toestel waarop die
stelsel getoets is, was 'n webkamera wat teen ‘n 640 x 480 resolusie kan werk.
Alle foto's is dus geneem en verwerk teen 'n horisontale resolusie van 640
pieksels en 'n vertikale resolusie van 480 pieksels ten einde te verseker dat die

kwaliteit van die beeld nie verlaag word nie.

Bertram Haskins 2006 vii

Die program spoor voorwerpe op in ‘n beeldinvoer, wat die vorm van ‘n foto-,
videoleér- of lopende kamera-invoer kan wees. Hierdie voorwerpe word dan met
‘n voorafgemaakte model van die voorwerp vergelyk. Die koodrdinate van die
objek word vasgestel en na koordinate op die vervoerband omgeskakel. Hierdie
koordinate word dan deur middel van ‘n seriekoppeling na ‘n eksterne ontvanger

S00s ‘n robotiese arm aangestuur.

Die stelsel is op ‘n model van ‘n DVD en ‘n verskeidenheid soortgelyke en nie-
soortgelyke voorwerpe toegepas ten einde die akkuraatheid daarvan te toets.
Die toetse is op beide AMD- en Intel-gebaseerde tafelrekenaarstelsels gedoen.
Die resultate het getoon dat beide die stelsels die sisteem effektief kan behartig.
Die AMD-gebaseerde stelsel was gemiddeld 81% vinniger in die proses om
voorwerpe en ‘n model bymekaar te bring in foto’s, en 100% vinniger in die

proses om voorwerpe en ‘n model bymekaar te bring in bewegende beelde.

Die model-voorwerpkoppelings wat die stelsel gemaak het, is binne ‘n
gemiddelde tydsduur van 250 ms gedoen. Dit maak die proses vinnig genoeg
om op ‘n werklike vervoerband gebruik te word. Op foto’s het die AMD-
gebaseerde stelsel 87% sukses behaal, en die Intel-gebaseerde stelsel 73%.
Beide stelsels het 100% sukses behaal op bewegende beelde.

Bertram Haskins 2006 Vil

Table of Contents

DT ox F= U= 1[0 o RS UPPTPRTR il
ACKNOWIEAGEMENLS ...t e e et e e e e eeanees i
PIEIACE ...ttt \Y
SUIMIMIAIY ettt e e et e ett e et et e e eaa e e eea e e e e e e et e e et e e et neeeaeeeaneeennns v
OPSOMIMING ...ttt eees —eeeeeeaat e e e e aeeeeesaba i a e e e eeaeeeessbbnnaeeeeeeees Vil
1. INTRODUCGCTION ..ttt ettt e et e et e e et e e et e e et e e et e e e eneaees 1
1.1 CUITENTTIENAS ooiiiiiiiiiiiiiieiiieeee ettt e e e e e e e e eeees 1
1.2 The purpose Of thisS StUAY ...oeeeviiiiiie e e 1
1.3 StUAY OVEIVIEW ...ttt ettt e e e e e ettt e e e e e e e e e eeneana s 2
1.4 The RECMASIEr SYSIEIM ..ottt e s 3
1.5 StudY NYPOLNESIS e 3
1.6 Satisfying the hypothesiS ovviiiii e 4
1.7 Overview of the remaining Chaptersooiiiiiiiii e 4
2. AGENT AND VISION TECHNOLOGIES.......ccioiiieiet i 6
2.0 AGENES it 6
2.1.1 A general desCription ccoovviiiiiiiiie et e e e e e e e e e eeaanen 6
N A o 1T oL S [I o] = U 1o = USSP 7
2.1.3 The agent’'s eNVIFONMENT ...ooiiiiiiiiie ettt eeeeeeneees 8
2.1.4 Programme OF QENT7 ... e e 9
2.1.5 MUlti-agent SYSIEMS iiii e 12
2.1.6 Disadvantages of USINg agentS cccovviiiiiiiiiiiie e 14
2.1.7 An organisational framework for agents ..o 15

2.2 Machine Vision and Pattern Recognition coouuiiiiiiieeiiiiiiiiiiee e 17
2.2.1 A general desCription ccooviiiiiiiiiii e 17
2.2.2 Pattern reCoOgNItION cccieeeeeiiieiiiiiie s e e e e e e e e eeeate e e e e e e e ee e e e e eeaees 19
2.2.2.1 Data COIECHION ... e eeeaeees 20
2.2.2.1.1 Two-dimensional techniqUes cccooviiiiiiiiiiiiiiiie e 20
2.2.2.1.2 Three-dimensional depth imaging cccccvviiiieieeeeeeeeeiens 21
2.2.2.1.3 Storage considerationSccuuvviiiiieeeeeeeeeiiiinae e e e eeeeaenns 23

2.2.2.2 ReQISIIAtION ...eeuiiiiii et aaaeees 24

Bertram Haskins 2006 IX

2.2.2.3 PrePrOCESSING .uuuiiiieeeeiieeiiiiiaeaeeeeeeeeeaattsaaseeeeaaessasnnnaaaaeeeaeennnnnns 25

2.2.2.4 SEgMENTALION uiiieeieiieeiiiee e e e e e e e e e e ee e e e e e e e e eannnan 28
2.2.2.5 NOrmMaliSAtION ...uuuiiiieeiieieiei et eeeeaeees 28
2.2.2.6 Feature extraction and edge detectionccouvviiiiiiieinieinnnns 29
2.2.2.7 Recognition: Classification and post-proce sSsSing 35
2.2.2.8 TrAINING ..eeeeeeieiiiiieie e e e e e e e e e e e e e e e e e et a e e e e e e aaeeeasanaaaeeeeaeennnnnns 37
2.2.3 Obstacles to pattern recognition in image pro CesSiNg 39
2.3 Agent-based COMPULET VISION ...oooiiiiiiiiiiiee et 41
pZ I o1 £ Vo 1] o T 44
3. PROGRAMME DEVELOPMENTcciiiiiiiiitiiiiieees et 47
G0 R =T [0 T30 [(=T od 1 o] o [PPSR 47
3.2 COlOUN INVEISION ..ottt e e e e aa e e e e e 49
3.3 Converting the image to binarycceiiiiiiiiiiieeer e 50
3.4 Measuring the ODJECT oeeiiiiii e 51
3.5 Creating the EAgeGraphoooii oo 54
3.6 The blackboard ... 55
3.7 Creating the agentSoooviiiiiii i 57
3.8 Creating the MOodeloouiiiiiii e 59
3.9 Performing reCogNItioON iiiiieiiieiiiiie et 60
3.10 Fleshing out the programme ... 61
3.11 Conveying real-world measurements cooevviiiiiiiieeeeeeeee e 62
4. BENCHMARKS ..ottt cee e e e e sttt e e e e e e e st e e e e e e e e e s annnnnnees 63
RS (]| I g F= T 1= PP 64
4.1.1 Creating the model ... 64
4.1.2 Choosing comparative IMageS ccevvveeuviiiiieeeeeereeeesiinaaeeeeeeeeennnnns 65
4.1.3 Objects found iN IMAJES ..veevvviiiiiie e eeeeeeeie e e e e e e e e e eeanenes 68
4.1.4 Matches found 0N ODJECES ...evuiiiiiii e 69
4.1.5 Individual Image tYPES .oieeeieiiiiee e 72
L5 1 DVD ittt e e a e e e e e 73
4.1.5.2 DVD SPINAIE ...euniii i 75
4.1.5.3 BleNEr tOP wevvuiiiiieieei i 76

Bertram Haskins 2006 X

R T] ()Y o1 | o I PSPPSR 77

4.1.5.5 Canned frUit Capccovvviviiiiiiee e e e e e 78
4.1.5.6 Playing Cardccoooeiiiiiiiiiiie e 79
4.1.5.7 ReMOLE CONLIOI ... eeeeeees 81

4.1.6 Total recognition tiIME oveeiiiiiie e e e e e e e e eeaaenes 82

4.2 VIAEO MOUE ... 84
4.2.1 Creating the model ... 84
2 5 L L PP 86
e T = 1 1= o [T g (o] S RSEPPPPRR 88
4.2.4 Canned fruit bottle Cap ..oovvveveeiiiie e 89
4.2.5 Playing Cardooouuiiiiiii e 91
4.2.6 DVD\blender top\playing cardcoooeiuiiiiiiniieeiiieeeiie e 92
4.2.7 ReCOgNItION tIME ..uuiiiie e e et e e e e et e e e e e e e e eennnnes 95
4.2.8 FINAl thOUGNT oo e e e e eanaees 96

5. CONCLUSION ..ottt et e e e e et n e e et e e e et e e eaaeaees 97
5.1 Agent Implementation coooiii oo 97
5.2 Threading the SYSTEM ..ooeiiiiiii e e 98
5.3 Satisfying the research hypothesis ..., 98
5.4 Avenues for future research ... 101
5.5 FINal tNOUQGNT oo 102
REFERENGCES ...ttt e e e e e e s et eeaaaeeeeaens 104
A. PROGRAM DESIGNuttiiiiiiiieis it teeeeeaaasiieaeeeea e e e e s asnnreeeeeaaaaaaaans 111
AL SPIASN SCIEEN ...t eeeeaeee 111
A.1.1 Important unnamed COMPONENES ..oooiiiiiiiiiiee e 111
A.L2 TIMer tMSPIAaSh ... e e e eaaaees 111
A.1.3 Procedural flow diagramcccooeoiiiiiiiiiiiie e 112

A.2 MaiN INTEITACE ... e eeaeees 112
A.2.1 MainMenu MaiNMENU ouuuuiiiiiie it eeeaeeees 112
A.2.2 TOOIBAr thMainuuiiiiiiiiiiiiiiiiiiiii e 112
A.2.3 Panel PNIMaINcooi i a e 113
A.2.5 Procedural flow diagram ... 113

Bertram Haskins 2006 Xi

ALS INEW MO .o e 113

A.3.1 LIStBOX IDMOAEIS uuiiiiiiiiiiiiiiiiiiiiii e 113
A.3.2 TextBoX tXIMOdel ... 114
A3 BULIONS e 114
A.3.4 Procedural flow diagram cccooeeiiiiiiiiiiii e 114
Al Delete MOUEI ... 115
A.4.1 LiStBOX IDMOAEIS ... 115
A2 TEXIBOXES ..ottt et e et e et e e e e s 115
AL 3 BULIONS ..o 115
A.4.4 Procedural flow diagram ccooeeeiiiiiiiiiiee e 116
A5 L0A MOUEI .o eaaaee 116
ALD.L LISIBOXES ..ttt ettt e e ettt e e e e eeaaeee 117
A.D5.2 TEXIBOXES ..t 117
AS. B BULIONS ..o 117
A.5.4 Procedural flow diagram ccoooeeiiiiiiiiii e 118
A6 Update MOUEI ... 118
A.B.1 TOOIBAISuuuiiiiiiiiiiiiiiiiiiiiiiiitib bbb e 119
A.B.2 TADPAJES ...oeeeeiiiiiie e 120
A.B.3 PICIUIEBOXES ..euiiiiiii ittt e et e e e e e eeeeeene 120
ALB. A BULIONS ..ottt e e a e 121
A.6.5 RATIOBUIIONS .. .uiiiiiiiiiiiiiiiiiiiiiiiiiii e 121
A.6.6 Timer tmCamVideoCapturecooveeviiiiiiiieeeeeee e eeeeeeaanens 121
ALB.7 LADRIS .. 121
A.6.8 Procedural flow diagram ccooeiiiiiiiiiiii e 122
AT VIEW MOAEL ..o 123
A.7.1 PictureBox picModellmages cooovveiiiiiiiii e 123
AT 2 BULIONS .ottt e e e e e e e e e e s 123
AT.3 LADRIS .o 123
A.7.4 Procedural flow diagramccoooeiiiiiiiiiiiiie e 124
A.8 Set Conveyor MeaSUIrEMENTS ccuuiiiiiiieiiie et 124
A.8.1 Panel PnlCamooo oo 125

Bertram Haskins 2006 Xii

AB.2 LADEIS ..o 125

A.B.3 TEXIBOXES ..o 125
A.8.4 RAIOBUIIONS eiiiiiiieiiiiieeeeiii ettt e e e e eeeeeees 125
A.8.5 BUtton cMAUPAALE oooiiiiiiiiie e 125
A.8.6 Procedural flow diagramcccooeeiiiiiiiiiiiiie e 126
A.9 Perform ReCOgNItION ... e e e e eeaanees 126
ALD. L TOOIBAIS ...ttt e e e e e eeaeee 127
A.D.2 TADPAGES ... 127
A.9.3 PICIUIEBOXES ...uuiiiiiiiiiiiiiiiiiiiiiiiitiiiibiibaeibebb e 127
A9 4 BUTIONS ..o 128
A.9.5 RAIOBUIIONS uiiiiii ittt e e e e eeeeeee 128
A.9.6 Timer tmContiNUOUSMOTE iiiii it 128
ALD.7 LADEIS .ttt 128
A.10. Capture Still IMAQGES ...cooe oo e e 130
A.10.1 TOOIBAr tDTYPE et eeeeaaeee 130
A.10.2 TabPage tabCamVidE0ccoooiiiiiiiiiiiiiiiiee e 130
A.10.3 PICIUIEBOXES ...uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii bbb e 130
A.10.4 Panel pnlCamVidE0uuuiiiiiiiiiiiieiiiiie e e e e e eeaaanees 130
ALLO.5 BULIONS e 131
A.10.6 MENUIEIMS ..o 131
A.10.7 Procedural flow diagramccooviiiiiiiiiiiee e e 131
N 0T o) U] £ =TV To [o LSRR 132
A.11.1 Procedural flow diagramooooiiiiiiiiiiiii e 132
A.12 AJUSE BIGNINESS oot eeaeees 133
A.12.1 PICIUIEBOXES ...uviiiiiiiiiiiiiiiiiiiiiiiiiiiiitibiiiib bbb 133
A.12.1.1 PICONQINGAL ..o 133
A.L12.1.2 PICPIEVIEW ...ttt e s 133
A.12.2 TrackBar scrollBrightn@SS coooiiiiiiiiiee e 133
A.12.3 Label IDIVAIUEuuiiiiiiiiiiiiiiii e 133
AL2.4 BUIONS oo e e 133
A.12.5 Procedural flow diagramcooooiiiiiiiiiiiii e 134

Bertram Haskins 2006 Xiii

A L3 AJUSE CONTFAST oo e e e e e e e e e e e e e eeannnes 135

A.L3 PICIUIEBOXES ...uuiuiiiiiiiiiiiiiiiiiiiiiiiiiitibbbiaibbbs e 135
A.13.1.1 PICONGINGAL . 135
A.L13.1.2 PICPIEVIEW ...t 135

A.13.2 TrackBar SCrollCONTrast cccccceiummmmmmimiiiiiiiiiiiiiaes 135

A.13.3 Label IDIVAIUEuuiiiiiiiiiiiiii e 135

ALL34 BULIONS ettt e e e e e e e 135

A.13.5 Procedural flow diagramcooooiiiiiiiiiiii e 136

A.14 Edge DeteCtion AQENT ccooiiiiiiice e a e 137
A.14.1 Procedural flow diagramccooviiiiiiiiiiiie e 137
A.15 INVert ColoUrs AQENT ..ot e e 138
A.15.1 Procedural flow diagramoooooiiiiiiiiiiiii e 138
N G o T =1 g F= U A Ao =] o | USSR 139
A.16.1 Procedural flow diagramccooviiiiiiiiiiiiee e 139
A.L7 Perimeter AQENT ..ottt aeeeanee 140
A.17.1 Procedural flow diagramooooiiiiiiiiiiiiii e 140
A.18 Edge Graph AQENLeeiii e 141
A.18.1 Procedural flow diagramccoovviiiiiiiiiieee e 141
A.19 Remove Background Class ... 142
A.19.1 Procedural flow diagramccoooiiiiiiiiiiiii e 142
A.20 OVErAY ClaSSccvveriiiiiiiieeeee it e e e e e e e e e e e e e e e e et eaeeeaeeeennnes 143
A.20.1 Procedural flow diagramccooviiiiiiiiiiiie e 143
C. RECMASTER ACCURACY TESTS...oi it e 144
C.1 TS PUIMPOSE ettt e ettt e ettt e e e et e e e e et e e e e eata e e e eennnaaeaeees 144
C.2 TESt DESCIIPLON ..vvuiieie e e e e s e e e e e e e e e araaa s 144
C.3 TESETESUIIS oottt e et e e e e e e e e e eeeees 145

Bertram Haskins 2006 Xiv

List of Figures

Chapter 2

Figure 2 - 1 Normal program flOWccoooiiiiiiiiiiiie e 10
Figure 2 - 2 Program flow when agents are USedcccoevvviviiinnieeeeeeeeiiininnnnn. 11
Figure 2 - 3 SODel MaSKS ... 33
Figure 2 - 4 RODErt’'s CroSS MASKS......uuuuiiiiieeieiieiiiiiiie e e e e e ee e et e e e e e eeeenanne s 33
Chapter 3

Figure 3 - 1 Edge detection code SNIPPELccevuiiiiiiiiiieeiieeeiie e 48
Figure 3 - 2 Colour inversion code SNIPPELccuvvieiiiiiieeeeeeeeiiee e e 49
Figure 3 - 3 Binary conversion code SNIPPEL..........uieeiieeeeiiieeiiiiieie e e eeeeeeeaiins 50
FIQUIe 3 - 4 PIXel MaAP ... 52
Figure 3 - 5 EdgeGraph example ... 55
Figure 3 - 6 Agent Creation and CommuUNICAtIONceeevvvvriiiiiiiiee e ee e 56
Figure 3 - 7 Whiteboard agent initialization code snippet..........cccceeeeevvvvviiinnnnnnn. 58
Figure 3 - 8 Greyscaling code SNIPPELccoeiiiiiiiiiiiiii e 59
Chapter 4

Figure 4 - 1 DVD mMOdel IMAQEcoovvuiiiiii e ee s 65
Figure 4 - 2 Example of DVD teSt iMage.........ccvvuviiiiiiiiieeeeeeeeeicee e e e 66
Figure 4 - 3 Example of DVD Spindle teStcouuuiiiiiiiiieiiieei e 66
Figure 4 - 4 Example of Blender test image............eeeiiieeiiiiiiiiiiiiie e 66
Figure 4 - 5 Example of a Grey Bottle Capcuveieiiiieiiiieeiiiiei e 66
Figure 4 - 6 Example of a Canned Fruit..........cccovviiiiii e 66
Figure 4 - 7 Example of a Playing Cardcoouuiiiiiiiiiiiiiieiic e 66
Figure 4 - 8 Example of Remote Control test imagecoeuvviiiiiieeiiieeeiiininnn. 67
Figure 4 - 9 Objects FOUNd grapheoiiiiiiieiieee e 68
Figure 4 - 10 Matches Found graph.............coovvieiiiiiiiii e 70
Figure 4 - 11 Thread movements 0N an IMAQGEcoeeveeeeeeeeiiiiiiiae e e eeeeeeinines 71
Figure 4 - 12 DVD Perimeter graphccoooo oo 73
Figure 4 - 13 DVD Property Matches graph..........cccoooviieeiiiiieiiiiiii e 73

Bertram Haskins 2006 XV

Figure 4 - 14 DVD Recognition Speed graph..........ccooooviiiiiiiiiiiiiiieeeeiiin 74

Figure 4 - 15 DVD Spindle Perimeter graphuooiiiieeiiiiiiiiii e 75
Figure 4 - 16 DVD Spindle Recognition Speed graph........cccccceeeeviieeevvveeiiinnnnnnn. 76
Figure 4 - 17 Blender Top Perimeter graphceeiiiiieiiiieeieee e 76
Figure 4 - 18 Blender Top Recognition Speed graph..........ccouuciiiiiiieiiiieiiiininnn. 77
Figure 4 - 19 Grey Cap Perimeter graph.........cooouuiiiiiiiiieiiieeei e 78
Figure 4 - 20 Canned Fruit Cap Perimeter graph...........ccccovvvviiiiiii e, 79
Figure 4 - 21 Playing Card Perimeter graphcceeeiiieiiiiieecceee e 79
Figure 4 - 22 Playing Card Recognition Speed graph..........c.ceiiiiiiiiiiiieiiiiinnnn. 80
Figure 4 - 23 Remote Control Perimeter graph.......cccoooveeiiiiiiiiiiiiieeeeeeiiinn 81
Figure 4 - 24 Remote Control Property Matches graphccccoevivieiiiiviiiinnnnnnn. 81
Figure 4 - 25 Remote Control Recognition Speed graphccccoeevveeevvveviiinnnnnnn. 82
Figure 4 - 26 Average S| Recognition Speed graph............coouiiiiiiiiiiiiieiiiiinnn. 83
Figure 4 - 27 DVD Perimeter graphccooo oo 87
Figure 4 - 28 DVD MatCh graphsuvueiiiiie e 88
Figure 4 - 29 Blender Top Object Found Graphs...........ccccvvvviiiiiiiiiieceeeeen, 89
Figure 4 - 30 Canned Fruit Bottle Cap Perimeter graph...........cccooovviiiiiiiiiiinnnnn. 90
Figure 4 - 31a Canned Fruit Bottle Cap Found graphscccccoeviiiiiiiiiiiiinnnnn. 90
Figure 4 - 32 Playing Card Perimeter graphccceeeiiieiiiiieecieee e 92
Figure 4 - 33 DVD\Blender Top\Playing Card Perimeter graphc..c..e...... 93
Figure 4 - 34a DVD\Blender Top\Playing Card Object Found graph................... 93
Figure 4 - 35 DVD\Blender Top\Playing Card Match graphcccoevvvvvivinnnnnnn. 94
Figure 4 - 36 Average Video Recognition Speed graph........ccccceeevveieevvveeiiinnnnnnn. 95
Appendix A

Figure A - 1 Splash Screen procedural flow diagram............ccccuviiiiiiiieiiiiennnnns 112
Figure A - 2 Main Interface procedural flow diagramcccccccceeeiiiiieeeeeeeennns 113
Figure A - 3 New Model procedural flow diagramccccevvvviiiiiiiiiiieeeeeeeeinns 114
Figure A - 4 Delete Model procedural flow diagram............cccceevviiiiiiinieiiieennnns 116
Figure A - 5 Load Model procedural flow diagramcccceveviiiiiiiniieeeiieeeinns 118
Figure A - 6 Update Model procedural flow diagram............cccccovvieiiiieeeenneennnns 122

Bertram Haskins 2006 Xvi

Figure A - 7 View Model procedural flow diagram.............cccoveviiiiiiinnieeinneeennns 124

Figure A - 8 Set Conveyor Measurements procedural flow diagram................. 126
Figure A - 9 Perform Recognition procedural flow diagramcccvvveeeens 129
Figure A - 10 Capture Still Images procedural flow diagram................cccevveeens 131
Figure A - 11 Create Video procedural flow diagramccccvvviiininiiiiiieennns 132
Figure A - 12 Adjust Brightness procedural flow diagramccccoeeeeiiiiininnns 134
Figure A - 13 Adjust Contrast procedural flow diagram.............ccccceeevveeeevvinnnnns 136
Figure A - 14 Edge Detection Agent procedural flow diagram 137
Figure A - 15 Invert Colours Agent procedural flow diagramccceeeeeeens 138
Figure A - 16 To Binary Agent procedural flow diagramcccccoeveeiiiiiininnnns 139
Figure A - 17 Perimeter Agent procedural flow diagramccccoeeveeevvvnnnnnns 140
Figure A - 18 Edge Graph Agent procedural flow diagramc.coceevvvvvnnnns 141
Figure A - 19 Remove Background Class procedural flow diagram.................. 142
Figure A - 20 Overlay Class procedural flow diagram............ccccccceeiiiiieeiiiiennnns 143

Bertram Haskins 2006 XVii

List of Tables

Chapter 2

Table 2 - 1 MAS and RecMaster characteristiCS..........ocooeveriiiiiiiiees 12
Table 2 - 2 General agent traitScoooiiiiiiiiiii e 16
Table 2 - 3 Pattern Recognition breakdown..............ouuuiiiiiiiiiiiiiiiiiiii e 19
Table 2 - 4 Image processing MethodsS..........coooeeviviiiiiiiiii e 26
Table 2 - 5 Gradient diSCONtINUILY tYPES.....uuuiiei i 30
Table 2 - 6 Main edge detection teChNIQUESccovvuiiiiiiiiiiiieei e 31
Table 2 - 7 First-order edge detection teChniques...........cccoooiiiiiiiiiiiiiiiieee s 32
Table 2 - 8 Image manipulation OPEeratorscoeuuvuviiiiieeeeeeeeeeeee e e e e 34
Table 2 - 9 Methods of model-based image recognitionccccceeeeveieiiieennnns 36
Table 2 - 10 Vision agent abilitiesoouuuiiiiiii e 43
Table 2 - 11 Applications that combine agents with image recognition............... 44
Chapter 3

Table 3 -1 Program @gentSoooi oot eeaaeans 57
Table 3 - 2 Additional RecMaster ClasSes..........coovvvviiiiiiiiii e 58
Chapter 4

Table 4 - 1 Specifications of teSt SYStEMS........ccceviviiiiiiiiiiie e, 63
Table 4 - 2 Logged VAIUEBSuuiiiiiiiie e e e e e e eees 63
Table 4 - 3 Still image mode model specificationsooovvvveiiiiiiiinieeeeeeeees 64
Table 4 - 4 TeStIMAJE TYPES ..uvuuiiie ettt e e e e e e e e e eeeanenns 65
Table 4 - 5 Results of the Objects Found graphcccooeeviiiiiiiiiiiiiii e, 69
Table 4 - 6 Results of the Matches Found graph..........cccooovoiiiiiiiiiis 70
Table 4 - 7 TSt VIAEO LYPES...uuuuiiei et eeeeeaeees 85
Table 4 - 8 Video mode model specificationsccceeeiiieeiiiieeiiiiieie e 86
Chapter 5

Table 5 -1 Agent CharacCteriStiCScoiiiiiiiiii e 97

Bertram Haskins 2006 Xviii

Appendix A

Table A -1 New Model BUttONS.......coooiiiii e 114
Table A - 2 Delete Model teXtDOXES ... 115
Table A - 3 Delete Model DUITONS. ... 115
Table A - 4 Load Model lISthOXES........cooviiiiiiiiii e 117
Table A -5 Load Model tEXIDOXESoooiiiiiiiiiiiie e 117
Table A - 6 Load Model BUTEONS ... 117
Table A - 7 Update Model tooIbarsouveiiiiiiiiiieeeeie e 119
Table A - 8 Update Model tabpagesuuuiiiiiiiiiiiiiiiii e 120
Table A - 9 Update Model piCtUrE€DOXES........uuiiiiiiiiiiiiiiiiie e 120
Table A - 10 Update Model BULIONScovviiiiiiiiecccceeecee e 121
Table A - 11 Update Model radiobuttonsccoovviviiiiiiiiiieeecceeeee e 121
Table A - 12 View Model DUTEONScoooiiiiiii e 123
Table A - 13 Set Conveyor Measurements textboxes...........cccooeevviiiieiiinnn. 125
Table A - 14 Set Conveyor Measurements radiobuttonsccccvvveiieeeeene. 125
Table A - 15 Perform Recognition toolbarscoovvviiiiiii e 127
Table A - 16 Perform Recognition tabpagescoovvviiiiiiiiiinieeeeceeeeiii e 127
Table A - 17 Perform Recognition piCtureboXeseeiiiiiiiiiiiiiiiiiiiieeee, 127
Table A - 18 Perform Recognition bUttONSccceeevvviiviiiiiie e 128
Table A - 19 Perform Recognition radiobuttonscccceeeiiiiiiiiceiiiiciie e, 128
Table A - 20 Capture Still Images DUttons ... 131
Table A - 21 Capture Still Images menu IteMS..........ooouuiiiiiiiieeeeieeee e 131
Table A - 22 Adjust Brightness BUttONS...........cccooeeeiiiiiiiicci e 133
Table A - 23 Adjust Contrast DULONSuvveiiiiieieicreee e 135

Appendix C

Table C - 1 TeSt SNAPES....cco e 144
Table C - 2 ReCOgNItioN rESUILS......cccieeiieieeeice s 145
Table C - 3 Model defiCIBNCIES......coii i 146

Bertram Haskins 2006 XiX

List of Abbreviations

3D
AMD
AVI
CD
CD-R
CCD
cm
cm/s
CPU
DVD
DVD-R

JPEG

m/s
MAS
MB

ms

SI
TV

Three-dimensional
American Micro-Devices
Audio-Video Interchange
Compact Disc
CD-Recordable
Charge-coupled Device
centimetre(s)
centimetres per second
Central Processing Unit
Digital Versatile Disc
DVD-Recordable

Integrated Circuit

Joint Photographic Experts Group

metre(s)

metres per second
Multi-Agent System
Megabyte
milliseconds
second(s)

Still Image

Television

Bertram Haskins

2006

XX

Chapter 1

Chapter 1
1. INTRODUCTION

Over the years, desktop computing applications have evolved from simple data
capturing tasks to the complicated desktop applications we have today.
Processing power has increased exponentially, and along with it the complexity
of applications that can be run. Applications that were previously in the domain
of super and mini computers are now moving down to the desktop
microcomputer domain. Yesterday’'s cutting edge has become today’s utility
blade.

1.1 Current trends

Fabrication plants formerly needed expensive high-end computing power to keep
the fabrication process running smoothly. Most of this processing power went
towards operating robotic limbs and other complicated fabrication machinery.
The inspection of fabrication quality was normally a hands-on process, with rows
of workers manually inspecting each part. But with stronger, more affordable
computing power available, a shift was made towards computer-controlled quality
inspection. Although the image processing done in quality control will always be
a very processor-intensive operation, the rapid progress of modern technology

has now made it possible to run these systems on a desktop environment.
1.2 The purpose of this study

The purpose of this study was to develop such a quality control image
recognition system and have it run on a desktop system. To make the study a bit
more interesting and to utilise the power of the desktop system more fully, some

of the application’s tasks were threaded, thus allowing them to run

Bertram Haskins 2006 1

Chapter 1

simultaneously on a single-processor desktop system, as they would in a multi-
processor system. Different processing tasks were also allocated to pieces of
software code called agents. Each of these independent pieces of code
completes its task in isolation before transferring its results to the next agent in
line. That means that each of these pieces of code work together to accomplish
the image processing task. The theory behind these technologies is discussed to

a limited extent in the second chapter of this study.
1.3 Study Overview

The main part of this study consisted of the actual development of an agent-
based, multi-threaded image recognition application called RecMaster, as
detailed in Chapter 3, Appendix A and Appendix B (on the included disc). The
scope of the study was very narrow, as it only deals with the recognition of
objects at a fixed distance from the capture device in relatively constant light
conditions. The optimal placement of imaging devices did not form part of this
study, as it is more hardware-related. The RecMaster application’s acceptance
or rejection of an object is based on a model that was previously created by the
application user. The coordinates of any object found is then output via a serial
link to the intended recipient device or application. The included version of
RecMaster was developed in Visual Studio 2003 and does not include serial link
capability; a recompiled Visual Studio 2005 version (not included) does, however,

make provision for variable output via serial link.

The results of benchmarking the system on both an AMD- and Intel processor-
based system are available in Chapter 4, as well as in Chapter 5, which deals

with the conclusions drawn from this study.

Bertram Haskins 2006 2

Chapter 1

1.4 The RecMaster system

The main reason behind this study was to aid in the trial of a conveyor-based
system under development at the Faculty of Engineering, Information and
Communication Technology of the Central University of Technology, Free State.
This system will incorporate a vision-based quality control system to determine
whether items running on a conveyor from a rapid-prototyping device have been
correctly manufactured or not. If an imperfection is detected on the
manufactured item, coordinates need to be passed to a robotic arm, which will
remove the defective item. The RecMaster system has, however, not been
tested with an attached device such a robotic arm, as this does not fall within the

scope of the development process.
1.5 Study hypothesis

The aim of this study is to prove the following:

Modern desktop computing systems are able to reliably perform recognition-
based quality control functions at an acceptable rate in an industrial environment,
using a multi-threaded, agent-based image recognition system using a digital
camera, where:

* An acceptable rate is defined as matching objects to predefined models
within the period of time that the object is within complete view of the
associated digital camera system, and

* Reliable performance is considered as providing consistent, accurate

results.

Bertram Haskins 2006 3

Chapter 1

1.6 Satisfying the hypothesis

The hypothesis will be satisfied if the following criteria are met:

1. The RecMaster system is able to perform image recognition by matching
an object to a previously created model at least 75 % of the time.

2. The RecMaster system is able to perform matching on still images within a
time frame of at least 500 milliseconds.

3. The RecMaster system is able to perform matching on a video or camera
feed while the object is still within the viewfinder at least 75 % of the time.

4. The RecMaster system is able to perform these matches consistently, i.e.

creating matches at least 75 % of the time.
1.7 Overview of the remaining chapters

Chapter 2 will shed some light on the underlying agent and machine vision

technologies, and will also provide a brief insight into what threading signifies.

Chapter 3 discusses the underlying logic behind the development of the
RecMaster image recognition programme. The chapter focuses on the
processes involved in building up a model reference as well as how the model is
used to perform recognition. Code snippets as well as diagrams are included to

aid in the understanding of these processes.

Chapter 4 consists of the results obtained from using the RecMaster programme
on different input feeds to perform recognition. The system has been tested on
two different PC architectures in order to see whether systems from different

manufacturers will be able to properly run the RecMaster programme.

Bertram Haskins 2006 4

Chapter 1

Finally, Chapter 5 contains the conclusions drawn from this study as well as any

thoughts on further system development.

Bertram Haskins 2006 5

Chapter 2

Chapter 2
2. AGENT AND VISION TECHNOLOGIES

This chapter is a review of the basic approaches used in agent-based, threaded
and computer vision applications, as well as instances where they have been
successfully used in conjunction with one another. By no means does it presume
to lay out all of the technical nuances of these various technologies and
concepts, but rather acts as a general introduction in order for the reader to

understand RecMaster’s underlying technologies.
2.1 Agents

2.1.1 A general description

Computer programmes normally do what the user tells them to, performing a set
of predefined algorithms when the user elects to do so. Agents, however, are
programmes that are initialised once and can then run without any further user
interference. They are computer programmes capable of flexible, autonomous
action - and may support a wide range of different behaviours, defined as rules or

based on machine learning algorithms such as neural networks.

Sycara [71] defines an agent as a set of conflicting tasks where only one can be
active at any given time (a task being a high-level behavioural sequence, as
opposed to the low-level actions performed directly with actuators). Another
more formal definition of agents is: “Anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through
effectors” [56].

Bertram Haskins 2006 6

Chapter 2

2.1.2 Agents in practice

Agents are frequently used when lots of small programmes or algorithms need to
be run at the same time. These programmes tend to share the same basic code,
with slight variations to give them individual functions, but this need not be the
case. Agents form membership in a unit on a cooperative basis, with each agent
contributing some knowledge, but not enough to solve the problem. They
communicate with one another via messages on a shared blackboard [35]. The
blackboard is simply a central repository for all shared information. The ‘chalk’ is
controlled by a facilitator, allowing agents to write to the blackboard in the order
that best suits the problem. Such a blackboard session typically begins by a
problem being written onto the blackboard. As individual agents realise they can
contribute to the solution with their own expertise, they approach the facilitator
and are allowed to add new information to the blackboard. In some intelligent
agent models, the agents negotiate deals amongst themselves to ensure that the
most effective agents contribute the solution.

Agents have been used to present weather reports on mobile phones, drive
trucks, monitor environments to support life on other planets and perform many
other sophisticated tasks [15]. Agents are especially useful as monitors — for
instance, the Australian Bureau of Meteorology [21] makes use of agents in
conjunction with people to monitor even the slightest changes in weather. Some
medical equipment also makes use of agents to monitor and assist in the real-
time application of Medical Protocols in a distributed hospital environment with
computer-based medical records [2]. Thus, agents can be used to assist or even

replace people in many different types of applications.

Agents are most useful in open systems. An open system is one in which the
structure of the system itself is capable of dynamic change [71]. The
characteristics of such a system are that its components are not known in

advance, i.e. they can change over time. The best-known example of such an

Bertram Haskins 2006 7

Chapter 2

open system is the Internet. Agents are all over the Internet, in the form of
search engine spiders. These agents locate sites and store their indexes in a
database for users to browse [53]. Thus, a common trait in all kinds of agents is
that they can act or perform specific tasks in the place of someone or something
else [50]. This makes agents a valuable tool in our ever-advancing technological
society, as we are always striving to find ways to reduce our own workload and
make processes more efficient. Agents will enable us to make use of our
computing resources more efficiently, thus freeing up time that would normally be

spent on menial tasks and putting it to better use.

2.1.3 The agent’s environment

An (autonomous) agent is a system that is integrated into an environment to such
an extent that it acts as part of it, sensing what will happen in the future and
acting on this in pursuit of its own agenda to affect future events [28]. In
particular, an agent receives information about its environment via sensors and
has the ability to change this environment through actions [67]. If the
environment is changed, the agent may no longer be viable — for instance, if an
agent can only interact using network protocols, but there are none in use on the

system, then the agent cannot function.

The environment can be defined as whatever provides input and receives output.
If receiving input is likened to sensing and producing output to acting, then every
programme is an agent. Thus, if we want to arrive at a useful contrast between
agent and programme, some of the notions of environment, sensing and acting

must be restricted [28].

Bertram Haskins 2006 8

Chapter 2

2.1.4 Programme or agent?

A normal software programme runs once and then goes to sleep until it is called
again; either by the user or by an explicit command built into the system. In other
words, the programme does not have temporal continuity [36]. A programme that
is classified as agent normally runs all the time, or rests until it senses the need
to be active again. Agents are sometimes defined as software that takes action
without user intervention and operates concurrently while the user is either idle or
taking other actions [50] - in other words, there is no need for the user to activate
or control it after its initial activation. Most software programmes have some form
of input through which they sense and interact with their environment. This input
is then acted upon to create output. When this output affects what the
programme senses as its input, then such a programme might be classified as an
agent. Thus, all software agents are programmes, but not all programmes are

agents [28].

The flowchart in Figure 2 - 1 demonstrates how a traditional programme would
sequentially process its assigned tasks. Even though a needed resource has
already been created, the processes have to wait until they are programmatically
called to act upon the resource.

Bertram Haskins 2006 9

Chapter 2

Start Program

|

Create Resource 1

|

Use Resource 1 to
create Resource 2

}

Use Resource 1 to
create Resource 3

|

Use Resource 2 to
create Dutput

|

Use Resource 3 to
create Output

|

End Program

Figure 2 - 1 Normal program flow

If the programme is changed to an agent-based system, it would operate more

efficiently. All the agents are created after the programme is initiated; all they

need to do now is to wait for their required resources to become available and

process them immediately as they do. This process is demonstrated in Figure 2

- 2.

Bertram Haskins

2006

10

Chapter 2

Start Program

¥ ¥ L 4
Create and Start Create and Start Create and Start
ProcessResource ProcessResource2 ProcessResource3
Agent Agent Agent
Create Resource 1 Wi ait I Wait *

Resource 1

Avalable?

Resource 1

Available?

Create Output

Create Output

v

¥

&

Wyait

All
Cutput
Complete?

Destroy Agents

'

End Program

Figure 2 - 2 Program flow when agents are used

Bertram Haskins

2006

11

Chapter 2

2.1.5 Multi-agent systems

It has been stated that agents are indeed forms of programmes, so - if
conventional programming logic prevails - we can conclude that they may have
subroutines, which - in turn - might be agents in their own right. This kind of
system is called a Multi-Agent System (MAS). Table 2 - 1 describes the
characteristics a MAS requires, as well as how the RecMaster system fits these

characteristics.
Table 2 - 1 MAS and RecMaster characteristics

_ Images loaded into the RecMaster
An environment
system

_ _ Objects: images
Objects and agents (the agents being _ _
Agents: All the agents defined in the
the only ones to act)
RecMaster system.

Relations between all the entities Agents act on objects and share results.

A set of operations that can be . ,
N Each agent has its own assigned task.
performed by the entities

Changes that take place in the Each agent acts on the image object
environment over time, and also due | and changes it before transferring it to

to the agents’ actions [27] another agent.

A MAS usually consists of a population of autonomous agents that cooperate
with one another to reach common objectives. These systems offer modularity,
which means that, if a problem domain is complex, large or unpredictable, it can
be better addressed by splitting it up into a number of functionally specific
modules. This subdivision allows each agent to use the most appropriate solution
for solving its particular problem [71]. This normally works using a layered
architecture, in which each layer acts independently. The layers may be
implemented horizontally or vertically [55]. In a horizontal implementation, each

layer senses the environment (raw sensor data) and acts on it. It does not need

Bertram Haskins 2006 12

Chapter 2

to confer with any other layer to perform its task. This is typically called a discrete
multi-agent system. A multi-agent system is discrete if it is independent, and if
the agendas of the agents bear no relation to one another [26]. In a vertical
implementation, the layers are stacked. Agents still act autonomously, but only
the bottom-most layer deals with the actual raw sensor data as its input. This
layer creates an output, which is sensed by the next layer and used as input. So
it continues up to the top layer, with each layer using the previous layer’'s output
as input. This implementation is typically called fully connected.

The developed system is implemented in such a manner, with the bottom-most
agent acting upon the raw input image and then passing a processed image to

the next agent, and so on and so forth. The website www.calresco.org defines

“fully connected” as every agent interfacing with every other agent in the system
[51].

Planning the steps to be performed in a single agent system is quite
straightforward, and consists simply of constructing a sequence of actions that
take into consideration goals, capabilities and environmental constraints.
Planning a MAS is more complicated in that the actions other agents take can
have an effect on an individual agent, as each individual agent would have to

wait for another agent to compute information it requires to continue [44].

Multi-Agent Systems are usually used to solve problems that are too large for a
centralised agent to solve [70], as it may be too resource-intensive or too risky to
have everything done by a single agent. MAS may also be used to connect
multiple existing legacy systems [41]. Since it may prove inordinately expensive
to completely recode an old software programme to make it compatible with new
technology, it may be more cost-effective to encapsulate the existing programme
in an agent wrapper and have the agent interact with the rest of the system. This
method can be used to have several legacy programmes interact with each

other. MASSs have the ability to use the computational resources of the host

Bertram Haskins 2006 13

Chapter 2

hardware system more efficiently. They are more reliable, as another agent may
be able to take over the work of a failed agent. Programmes that use MAS
architecture can also be extended and maintained more easily, as there is less
coding to be revised than in a normal subroutine-based programme. Due to their
inherent flexibility these agents can be reused in another system, thus saving

time, money and resources.

Designing such a MAS is not easy, since you will have to deal with all the
problems of a traditional distributed programme, as well as the dynamic and
sometimes unpredictable behaviour of individual agents. In order to even
attempt such an endeavour you will need a well-planned design, as well as an
application that lends itself perfectly to MAS architecture, or the entire exercise

will be a waste of time and resources.

2.1.6 Disadvantages of using agents

It will be evident from the discussion of many of the functions and nuances of
agent architecture thus far that agent-based applications provide numerous
advantages over normal top-down applications - in fact, they even serve to
improve the performance of conventional legacy software. However, like any
other approach this technique is not without flaws. Thus, agents also have a few

disadvantages, of which Sycara [71] lists the following:

1. Itis difficult to formulate, describe, decompose and allocate problems and
study results among a group of intelligent agents.
Enabling agents to communicate and interact is not always easy.

3. Getting agents to act coherently when making decisions or taking action
may prove difficult and time-consuming.

4. Individual agents need to be enabled to represent and reason about the
actions, plans and knowledge of other agents, and to coordinate with

them.

Bertram Haskins 2006 14

Chapter 2

5. Agents need to recognise and reconcile disparate viewpoints and
conflicting intentions amongst themselves in order to coordinate their

actions.

2.1.7 An organisational framework for agents

Agents make use of organisations to provide a framework for their interactions.
This framework facilitates the definition of roles, behaviour expectations and
authority relations. Organisations are generally, conceptualised in terms of their
structure, namely the pattern of information and control relations that exists
among agents, as well as the distribution of problem-solving capabilities [71].
Using a structure provides every agent in a MAS with information on how the
group functions, solves problems and distributes tasks among its members. In a
more open-ended environment, such as the Internet, there is no definite way of
imposing structure. Agents enter and exit systems on the Internet without user
knowledge or intervention. Agents that operate in an open environment
sometimes request the use of another agent, called a middle agent, to help
gather the information or resources they need [24]. Middle agents are capable of
either gathering information on their own or delegating their tasks to other middle
agents, until the original agent’s request has been fulfilled. To determine where
agents fit into the organisational structure they may be classified on the basis of
some general traits (listed in Table 2 — 2), taken from a sampling of popular
literature [19] [57] [59]:

Bertram Haskins 2006 15

Chapter 2

Table 2 - 2 General agent traits

Autonomy The degree to which agents can act on their own.
Cooperation The ability to communicate with other agents.
Hybrid This is a combination of some of the aforementioned traits.
Mobility The ability to move around in an environment.
Role This refers to where the agents are used.
Reactivity The ability to react appropriately to their environment.

Assigning individual tasks to agents before execution has definite advantages.
When agents are informed of their task beforehand, less communication is
needed between individual agents during run-time thus freeing up valuable
computing resources. In a desktop application environment in which all tasks are
known beforehand, this method of task distribution will provide the optimum
usage of resources. The reason for this is that, unlike applications that run in a
dynamic online environment, desktop applications normally have a
predetermined set of static tasks to perform. This would allow the programmer to
permanently assign a task to each agent in order to make better use of the
limited desktop resources and ensure that no resources are wasted as agents try
to dynamically decide, amongst themselves, which one is better suited to the
task. Another advantage of pre-programmed agents is that they reduce the
chance of individuals wasting time by performing the same task, thus creating the

possibility of solution inconsistency.

There is, however, a major drawback to the static assignment of tasks to agents
beforehand: if too many static assignments are made, the programme will not be
readily adaptable to a dynamic environment. However, if the environment is well
mapped out and predictable, static assignment of agents is preferable. Dynamic

allocation of agents takes place according to the Producer/Consumer model [10].

Bertram Haskins 2006 16

Chapter 2

An agent that receives a task to perform will first determine whether it can break
the task down into subtasks that can be performed concurrently. If so, this agent
acts as the Producer. The Producer announces that there are tasks to be
performed. Individual agents (Consumers) then bid on the tasks, which are
assigned on a best-bid basis. This dynamic architecture makes good use of the
available processing power, as there is always another agent to pick up the slack
if the tasks become too much. Although additional resources need to be set
aside for the agent communication process, this is a small price to pay for the

greater efficiency and expandability they provide.

The option of static implementation was chosen for the development of the
RecMaster system. The reason for this decision is that, firstly, since the system is
not yet so huge that dynamic allocation would provide a significant performance
boost, it may - in fact - be detrimental, causing extra overhead. Secondly, it adds
reliability, as the developer always knows which part of the image processing
each agent will handle.

The next section will deal with the processes involved in Machine Vision and

Pattern Recognition.
2.2 Machine Vision and Pattern Recognition

2.2.1 A general description

Although Machine Vision is a well-researched part of the field of Artificial
Intelligence, entirely satisfactory solutions have only been found for a very small
number of problems. Machine vision focuses on providing computers with the
functions typical of human vision. However, most current computer vision
systems are vastly different from biological vision systems and, in most ways,
inferior to such systems. One definition of Computer Vision is “to make useful

decisions about real physical objects and scenes based on sensed images” [68].

Bertram Haskins 2006 17

Chapter 2

In the field of industrial automation alone, its applications include guidance to
enable robots to correctly pick up and place manufactured parts, as used in a
system called Visionscape Express, developed by the MASS Group [52]. Other
uses include non-destructive quality and integrity inspection, and on-line
measurements. The use of machine vision technology is growing very rapidly,
spurred by manufacturers’ need for increasingly fine control over the quality of

manufactured parts.

Machine vision technology uses an imaging system and a computer to analyse
an image and to make decisions based on that analysis. The most basic types of
machine vision applications are those used for inspection [72] [64] and control.
In inspection applications, the machine vision optics and imaging system enable
the processor to "see" objects precisely, and thus make valid decisions regarding
the identification of parts to be approved or rejected. Such an inspection
application was developed for this study. In control applications, sophisticated
optics and software are used to direct the manufacturing process or even the
movement of some form of robotic apparatus - such as that used in the KARES
system, which consists of a wheelchair-mounted robotic arm [47]. It is really hard
to draw a fine, distinguishing line between inspection and control applications,
since inspection applications will still provide some means of control when they
direct a robotic arm to remove a rejected part, while a control application will
need to constantly inspect its work to ensure that it is machining the parts
correctly. Inspection and control applications therefore run the same basic
processes, but viewed from different perspectives.

Typically, applications utilise a video or still camera placed above or to the side of
the inspection point. The camera captures an image of a part and sends it to a
vision processor. The camera captures an image of a part and sends it to a

vision processor. From there on, the process of pattern recognition takes over.

Bertram Haskins 2006 18

Chapter 2

2.2.2 Pattern recognition

Pattern Recognition is an information reduction process: the assignment of visual
or logical patterns to classes based on the features of these patterns and their
relationships [45]. It deals with the classification of objects in pattern categories.
Each category is unique, based on specific features. The application attempts to
classify each object of the image in a category upon comparison of the individual
features with the features of the general category [30].

The basic premise of pattern recognition is that there is an unknown object or set
of objects that needs to be analysed by the programme. During analysis these
objects need to be broken down into familiar constructs to aid the eventual

recognition of the object via its sum parts.

According to popular literature [45] [75], Pattern Recognition can be broken down
into eight generally identifiable parts. These eight parts, as well as which

sections they are discussed in, are listed in Table 2 — 3.

Table 2 - 3 Pattern Recognition breakdown

1 | Data Collection 2221
2 | Registration 2222
3 | Preprocessing 2.22.3
4 | Segmentation 2224
5 | Normalisation 2225
6 | Feature extraction and edge detection 2226
7 | Recognition 2.2.2.7
8 | Training 2.2.2.8

Bertram Haskins 2006 19

Chapter 2

2.2.2.1 Data collection

In order to initiate pattern recognition, we need a set of measurements to build up
a pattern vector. Mathematically, a pattern can be represented as a multi-
dimensional vector, with the components in the vector corresponding to the
elements in the pattern [40]. Depending on the needs of the application, this may
take place either two- or three-dimensionally. Either technique used will
generate data, which will need to be stored for analysis. These storage

techniques are discussed in section 2.2.2.1.3.

2.2.2.1.1 Two-dimensional techniques

Two-dimensional techniques normally rely on a video signal captured by either a
TV or a CCD camera. A TV camera works by focusing an image onto a
photoconductive target [16]. The target is then scanned line by line by an
electron beam, which produces an electrical current as the beam passes over the
target. The strength of the current is directly proportional to the intensity of the
light striking the photoconductive target. This current is then translated into a

video signal.

A CCD camera works on the same premise as a TV camera, but provides the
solution as a single IC device. The video signal output by a CCD camera also
has less geometric distortion and a more linear form of video output. Care
should be taken to ensure that the data collected by the equipment is of the
highest quality available. This is achieved by ensuring that pictures are taken at
the highest resolution available, that the camera is always in focus and that there
is optimal and predictable lighting in the area to be photographed. These
measures need to be taken to limit additional noise on the raw image to the

minimum.

Bertram Haskins 2006 20

Chapter 2

The video signals obtained from either the TV or CCD camera are then fed into a
device called a frame grabber, which digitises the signal. This process makes
the sample signal easily accessible by storing its individual frames in computer
memory or as a file. This allows the video signal to be processed numerically by

the computer.

This study uses the two-dimensional approach. Any single camera (or other
attached video capture device), video file or single image will provide appropriate
input. The only catch is that the images taken from any of these diverse sources
all need to have the same object to lens distance and a constant zoom setting,
as the system does not compensate for size differences caused by variance in
distance or level of zoom. This study focuses solely on the development of the
system itself; the correct placement of imaging devices to take advantage of

environmental conditions does not fall within the scope of this study.

2.2.2.1.2 Three-dimensional depth imaging

Three-dimensional techniques add extra information to the captured image in the
form of depth or perspective. The simplest and most convenient way of
representing and storing the depth measurements taken from a scene is a depth
map. According to Shirai [69], a depth map is a two-dimensional array where the
x and y distance information corresponds with the rows and columns of the array
as in an ordinary image, and the corresponding depth readings (z values) are
stored in the array’s elements (pixels). Depth maps are like greyscale images
except that, instead of intensity information, they contain information about the z-

axis.

Several methods can be used to acquire the 3D depth image. The first method is
known as laser ranging [1]. This method works by directing a laser beam at the
object to be measured. Any light reflecting off the object is measured according

to the time taken for the reflected light to bounce back towards the receiver. This

Bertram Haskins 2006 21

Chapter 2

time duration is then used to calculate depth. These kinds of systems are
normally used for longer distances (e.g. calculating the distance from the Earth’s

surface to the moon), rather than short distances.

Another method of acquiring a 3D depth image is called Structured Light [65]. In
this method, a pattern of light (e.g. a grid) is projected onto the object in question.
The shape of the object’'s surface is then deduced from any distortions of the
pattern on the object's surface. If the camera and projector geometry are

precisely known, then depth can be deduced by a process of triangulation.

The next method is called the Moiré Fringe Method [34], and is actually a
derivative of the Structured Light method. It also makes use of a projected
pattern - in this case specifically a grid pattern - but employs a second reference
grid pattern that is situated in front of the image acquisition device. An image is
then formed on the plane of the reference grid pattern, which causes
interference. These interferences form Moiré Fringe contour patterns, which
appear as dark and light stripes [69]. Although this method is capable of
producing very accurate depth data, it is computationally expensive and large

angles may sometimes be missed when too many fringe patterns are formed.

A less widely used method is known as Shape from Shading [39]. In this
method, a single fixed camera is used to capture 2 or more images of a specific
object. Each of the images captured will have different lighting conditions.
Although some depth information may be obtained from the changes in
brightness on the object’s surface, this method is more suited to two-dimensional
image acquisition since it's a single camera implementation. For more reliable
3D image acquisition, a second camera is needed. This method is known the
Passive Stereoscopic Method, but may still not produce totally reliable depth
maps. The Active Stereoscopic Method, on the other hand, makes use of a

strong light source (normally a laser beam) and is employed in industrial

Bertram Haskins 2006 22

Chapter 2

applications that provide a very controlled environment, thus producing very

reliable depth maps.

2.2.2.1.3 Storage considerations

A lot of storage space will be required for all the collected data used to create a
pattern recognition system. Image processing tends to eat up hard-drive space
rapidly, since storage space needs to be reserved for the video being streamed
and the images currently in use, as well as the store of images used in training
the recognition model. In addition to all this storage space, there is also a need
for secondary or back-up storage. In a desktop system, this will most probably
take the form of CD-R or DVD-R. The amount of storage space needed can be
reduced by compressing the images. Depending on whether you make use of a
lossless or lossy algorithm [58], you may have to sacrifice some of the smaller
details in the image. Rather take fewer data samples than more samples of
lesser quality - even though more samples might give a better data range, it may
not be entirely accurate. It is therefore preferable to take a few high-quality
samples to obtain a smaller data range, but one that is far more representative of

the object being modelled.

The RecMaster system, which was developed for the purpose of this study (as
outlined in Chapter 1), contains a few different items that will influence the
required capacity of the storage medium. The first item is the actual model
information files. These files are generally small, as they are only text files;
however, the model directory can grow in size as EdgeGraphs are added to the
model. For each image or frame used to train the model, an EdgeGraph is
added to the model directory. This EdgeGraph has the same resolution as the
original file, and is stored in JPEG (lossy) format.

The system also provides users with the option of acquiring image captures from

a video file or camera (device) source. These images are also stored in JPEG

Bertram Haskins 2006 23

Chapter 2

(lossy) format and have a resolution of 640 x 480 pixels, so they take up very

little storage space.

The system components discussed so far would not really take up too much
space in permanent or temporary (memory) storage. However, the system also
makes provision for video capture from a camera (device) source. Video capture
IS a very processor- and memory-intensive operation; it also eats up hard drive
storage at a very rapid rate, as it is done in an uncompressed .avi format. This
means that a 30-second video file can use up as much as 200MB, not including
the swap space used on the hard drive. The files can, however, be compressed
with a third-party tool, which will significantly reduce the amount of storage space
needed.

Thus, depending on how the system is used, it may take up very little storage
space or a whole lot of space. As with any other application that handles video
or audio files, it is always prudent to check the amount of storage space available
before attempting any processing. As always, backups are essential - both for

preserving the data and for conserving precious hard drive space.

2.2.2.2 Registration

The registration step can be regarded as the alignment of the data with the
internal model of the system. Before any further processing of our image can
take place, the system needs to determine exactly which parts of the image are
of interest. This is facilitated by the RecMaster system having at least some prior
knowledge of the environment in which the data capturing is done. When
exercising quality control on a conveyor belt, it would be beneficial to know the
exact size of the environment our device is focusing on — i.e. the length of the X-
and Y-axis. It may also be necessary to know the speed and direction in which

the conveyor belt is moving in relation to our device image. The system that was

Bertram Haskins 2006 24

Chapter 2

developed facilitates the input of these variables, thus providing the means to

match on-screen coordinates with their real-world counterparts.

2.2.2.3 Preprocessing

No matter how much we try to control the environment in which data captures are
made, or even at how high a quality the camera settings are, there will always
still be unacceptable levels of noise on the picture to some extent. Noise in an
image means that there are many rapid transitions (over a short distance) in
intensity from high to low and back again or vice versa, as faulty pixels are
encountered [31]. Although noise can be anything that hinders an image
recognition programme in performing its task, it may be caused by either the
acquisition process or by the way in which the image is transmitted to the
intended application — however, it is generally quite easily removed by running
the data (image) through a filter. A good example for image recognition would be
to run either a median filter - which removes point noise - or an edge sharpening
filter, which makes edges more easily detectable. The RecMaster system is
implemented without either of these two functions since they would only add
another layer of processing, which might give a slight boost to recognition

accuracy, but would certainly cause deterioration in overall system performance.

For any vision system to work effectively, the image must first be processed to
remove any noise, improve the image’s contrast or brightness, remove blurring
caused by camera movement and correct geometrical distortions caused by the
lens. These techniques ensure that all images upon which the vision system
operate are properly normalised, thus reducing the risk of deviances affecting the
recognition process. The option of adjusting brightness or contrast is available in
the RecMaster system whenever still images are processed. This allows the

user to normalise the images slightly, which makes the results more reliable.

Bertram Haskins 2006 25

Chapter 2

During image processing, an array or matrix of pixels is normally used as input to
produce another improved array of pixels. Ballard and Brown [6] suggest that
image processing methods may be broadly divided into two classes as described
in Table 2 — 4.

Table 2 - 4 Image processing methods

These methods directly process the input pixel array. This
can be done by working on the image in a byte by byte
manner, with each byte containing either a red, green or
blue value in a 24-bit image. Another way is to analyze the
pixels themselves, i.e. including their colour values, as
Real Space . . .
single entities and then detract some meaning from them.
methods)) _)
The size of the input array depends on the size of the image.
A 640 x 480 resolution image consists of an array of 640
horizontal and 480 vertical pixels. Both the byte and pixel
handling techniques were used in the implementation of the

RecMaster system.

These methods first derive a new representation of the input

. data by performing a Fourier Transform, which is then
Fourier space o _ _
processed. When this is complete, an inverse Fourier
methods _ _) _
transform is performed on the resulting data to yield the final

output image.

The process of image smoothing attempts to remove any noise that could be
detrimental to the image recognition process, and may be performed on either

the real space image or its Fourier Transform equivalent.

The Fourier method is a sampling method that is used to gain in-depth
information about an image. Holota and Nemecek [37] define the Fourier method

as converting an image under inspection into reciprocal space (Fourier space) —

Bertram Haskins 2006 26

Chapter 2

i.e. expressing the image in terms of spatial frequencies. Any image has lines;
brightness along these lines can be measured at equally spaced distances (also
known as spatial frequency values). Each of these frequency values is referred
to as a frequency component [6]. Since images consist of two-dimensional
arrays of pixel measurements, this information can also be described as a two-
dimensional grid of spatial frequencies. This whole process of converting an
image into its frequency components is called the Fourier Transform, and yields
what is known as the Fourier space description of the image. When we want to
transform this Fourier space description back into its real (spatial) form we use a
method called the inverse Fourier Transform, which basically just reverses the

process.

Fourier frequency grids are very handy for interpreting the contents of an image.
Large values at a high frequency mean that the data is changing rapidly over a
short distance, e.g. a page of text, while large values at a low frequency mean
that there are relatively few changes, making large-scale features more important
- e.g. a large, simple object, such as a cube, in the centre of an image. Generally
a Gaussian filter is run on the image before a Fourier Transform is performed;

this smoothes over most of the salt-and-pepper (spot) noise on the image.

There are a number of techniques that may be used to reduce the high

frequencies in a Fourier Transform:
1. ldeal Low-pass Filters
2. Low-Pass Butterworth Filters

3. Real Space Smoothing Methods

A discussion of these methods does not fall within the context of this study.

Bertram Haskins 2006 27

Chapter 2

2.2.2.4 Segmentation

Segmentation is the partitioning of an image into parts that are coherent on the
basis of a certain criterion [23]. This part of the process is actually not so well
defined, and may take place alongside the registration and pre-processing
subprocesses. During the process of segmentation the input data is split into
meaningful subparts, which may be used for classification. Segmentation
information is only passed along to the rest of the processes after the total
amount of data has been processed. This may either be done in the form of tags
or labels, added to the existing data (image), or the separate segmented parts
may be passed along individually. It was decided to pass the information along
individually for the RecMaster programme - either as a processed image or as

recorded measurements.

2.2.2.5 Normalisation

In any range of data there will always be variances. These variances need to be
cancelled out in order for the pattern recognition to succeed. A good example
would be the recognition of an image of a teacup. In one image the teacup’s ear
is pointing left, while in another it is pointing right. It’'s still the same teacup, but in
the ‘eyes’ of the system its dimensions will be different. Normalisation is the
process through which the images are reconciled with each other in order to
facilitate the image recognition process. In the case of the teacup example, the
image just needs to be rotated. However, the process used in the RecMaster
system does not need to rotate the image, as it actually measures the perimeter
and area of the object and determines whether it fits into a specific bounding box.
These variables would stay the same, no matter from which direction the image
is viewed. Another example [45] is used in handwriting recognition: our
handwriting is not always straight or upwards, but somehow slanted to the left or

right. Estimating the slant and reversing it can achieve normalised characters.

Bertram Haskins 2006 28

Chapter 2

2.2.2.6 Feature extraction and edge detection

The main purpose of feature extraction is to reduce the number of features to a
set of a few significant ones while maintaining the classification rate [60]. During
this process, the information that is deemed most relevant to the classification
process is extracted from the raw data. If the feature extraction scheme was well
designed, it should only select those distinct features that allow for classification
and ignore those caused by human, technical or environmental variance. This
limits the amount of memory and storage space needed during the pattern
recognition process. It also speeds up the classification process by reducing
estimation errors. Something to keep in mind during the feature extraction
process is the aspect of scale or metric. In some applications, an aspect of
varying distance might be involved in the image recognition input data. The
system needs to perform a linear transformation on the data to ensure
compatibility. In the RecMaster system distance and angle from the camera to
the objects must always remain constant, as the system does not do any

processing to correct variances in these fields.

One good method of reducing the number of features in an image is to apply
edge detection [14]. For any vision system to work properly, the object to be
focused on needs to be positively differentiated from its surroundings. The
underlying principle of edge detection is simple enough, as edges can normally
be classified as the boundary between two dissimilar regions in an image [14].
Tadrous [73] offers another definition of an edge detector, namely that it aims to
identify changes in the image intensity that corresponds to the visual perception
of an edge. These edges are normally fairly cheap to compute, and provide
strong visual clues to aid in the recognition process. One drawback of the Edge
Detection process is that any noise on the image will be clearly shown after the
edge detection algorithm has been run; it is therefore recommended that noise
reduction be implemented on an image before any edge detection algorithms are

executed. Using a threshold is a good way to remove some unnecessary noise.

Bertram Haskins 2006 29

Chapter 2

This works by setting a specific value. Depending on how the threshold is
implemented, any generated pixel values that are higher or lower than the
threshold will be ignored. Thresholds were used in the RecMaster system to

remove unnecessary noise during the edge detection process.
Most edge detection techniques can be broken up into 2 phases [14]:

1. Finding pixels in an image where edges are likely to occur, by looking for
discontinuities in gradients. These candidate points for edges are
normally called edge points.

2. Linking these edge points in some way to produce descriptions of edges in

terms of lines, curves, etc.

These edge points may be regarded as a point in an image where a discontinuity
in gradient occurs across some line [14]. Discontinuities may be classified as
one of 3 types of the types listed in Table 2 — 5.

Table 2 - 5 Gradient discontinuity types

Gradient _ _ _
_ o The gradient of the pixel values changes across a line.
Discontinuity

Jump
_ o The pixel values change suddenly across some line.
Discontinuity

_ o The pixel values increase rapidly and then decrease again
Bar Discontinuity) . i
across some line, or decreases and then increases again.

The gradient can be defined as a vector, the components of which measure how
rapidly pixel values are changing in terms of distance in the x and y directions.
The presence of a gradient discontinuity may be detected by calculating the
change in gradient at the specific pixel location. This may be done by first

determining the gradient magnitude measure, and then the gradient direction.

Bertram Haskins 2006 30

Chapter 2

These techniques normally involve applying masks to the image on a per-pixel
basis, beginning at the top left-hand corner. A general value is then calculated
along the x or y axis by using the mask coefficients in a weighted sum of the
value of the specific pixel and its neighbours. These masks are generally
referred to as convolution masks. lossifidis, Krathanassi and Rokos [43]
describe convolution as an operation that expresses the relation between the
input and the output of a linear, time-invariant system. A convolution mask is
usually much smaller than the actual image. The mask is therefore moved over

the image, manipulating a square of pixels at a time.

There are many different implementations of these masks, each providing
basically the same result. Selection of the correct implementation depends on

the needs of the specific application.

There are many different edge detection algorithms, each using its own method
or mask. These techniques can be divided into two different types as described
in Table 2 — 6.

Table 2 - 6 Main edge detection techniques

These operators are based on the 1st derivative of the

intensity, which provides the intensity gradient of the
First Order /

o original data. This information is used to seek out
Derivative [62]

peaks in the intensity gradient. A First-order technique

was used in the RecMaster system.

Some other edge-detection operators are based on the
2nd derivative of the intensity, which is obtained by
Second Order / processing the 1st-order results. This is essentially the
Derivative [62] rate of change in intensity gradient and is best at

detecting lines, but implements more processor

overhead.

Bertram Haskins 2006 31

Chapter 2

A few First-order edge detection techniques are presented in Table 2 — 7.

Table 2 - 7 First-order edge detection techniques

The Sobel operator is typically used on greyscale images
to locate the approximate absolute gradient at each point.
This is done by performing a 2-D spatial gradient

Sobel [32] measurement on an image. Sobel uses two 3x3
convolution masks. One mask is used to estimate the x-
direction gradient, while the other is used to estimate the
gradient in the y-direction. The Sobel masks are shown in

Figure 2 — 3.

This algorithm performs a two-dimensional spatial gradient
Robert’'s Cross | measurement on an image. It works on the assumption

[22] that regions of high spatial frequency often correspond
with edges. It is used mostly on greyscale images, along
with the masks shown in Figure 2 — 4.

Prewitt is an edge detection method that calculates the
maximum response of a set of convolution kernels to find
the local edge orientation for each pixel. The values for
the output orientation image lie between 1 and 8,
depending on which of the 8 kernels produced the
maximum response.

Prewitt [46] [62]
This edge detection method is also called edge template
matching since a set of edge templates is matched to the
image, each representing an edge in a certain orientation.
The edge magnitude and orientation of a pixel are then
determined by the template that matches the local area of

the pixel the best.

Bertram Haskins 2006 32

Chapter 2

Canny edge
detector [17]

The Canny operator works in multiple stages. The first

step is to perform a Gaussian smoothing on the image.

Any edges in the image are represented by ridges. The

algorithm then tracks along the top of the ridges and sets

pixels that are not on the top of these ridges, to zero. This

gives a thin line, representing the sought-after edge.

-1 0 +1 + | +2 | H
-2 0 +2 0 0 0
-1 0 +1 -1 -2 | -

Sobe! X-Gradient Mask

Sobe! V-Gradient Mask

Figure 2 - 3 Sobel masks

+1

0

-1

HK-Gradient Mask

+1

-1

0

YoGradient Mask

Figure 2 - 4 Robert’s Cross masks

Various methods of edge detection were experimented with for the RecMaster

system, including column-by-column detection of colour variance as well as a few

convolution masks of the programmer’s own design.

These masks ranged in

size as well as implementation (vertical, horizontal, both and tracing the first edge

found); the results returned, although actually comparable to those of the other

algorithms, were noisy, took too long to finish processing or returned too many

edges by not thresholding correctly. Based on the above-mentioned process of

trial of error it was eventually decided to use the Sobel algorithm, as it produced

the edges best suited to the study in a short enough duration of time. The Sobel

algorithm itself also integrated easily into the RecMaster system.

Bertram Haskins

2006

33

Chapter 2

Laplacian of Gaussian [32] is an example of a second-order technique. The
Laplacian is a 2-D isotropic measure of the 2" spatial derivative of an image. It is
often used for edge detection since it highlights regions of rapid intensity change
in an image, i.e. transitions between background and object. The Laplacian is
generally applied to an image once it has been smoothed over by an effect such

as a Gaussian filter.

There are also a few other image manipulation operators that are commonly
used in conjunction with edge detectors; some of them are described in Table 2 -
8.

Table 2 - 8 Image manipulation operators

_ _ This image manipulation smoothes over noisy images
Gaussian smoothing _)) i
by making use of a Two-Dimensional convolution

33
133] mask.
Dilation acts on a binary image to gradually enlarge the
o boundaries of foreground pixel regions. This causes
Dilation [31]

areas of foreground pixels to expand, while holes within

those regions become smaller.

Erosion acts on a binary image to erode away the
. boundaries of foreground pixel regions. This causes
Erosion [32]) R
areas of foreground pixels to shrink in size, and any

holes inside the specified object to become larger.

Bertram Haskins 2006 34

Chapter 2

2.2.2.7 Recognition: Classification and post-proce ssing

All processes up to this point have been preparing the data to be used as input
for the classification process. During this process, individual segments are
compared to predefined classes or models and assigned a value that signifies
the likelihood of a match. During the Post-processing phase, a correlation is
drawn between individual segments in order to determine the correct
classification. In other words, this is the phase in which the actual recognition

takes place, as the input model is compared to the stored model.

Recognition is the main and final aim of any vision system. Horn [38] names a

few uses for recognition:

1. To move around and safely avoid objects
2. To pick up and place various objects
3. Toinspect objects

One way of recognising simple objects is by means of invariants. Bob Bailey
describes invariance as the generation of shape features functioning
independently of parameters that cannot be controlled in an image [5]. They
have the advantage of providing a simple means of comparison, as well as
providing both position and orientation information; however, they may prove too
simplistic for some applications, as they do not provide a unique means of
identification.

Another recognition method makes use of models. These techniques work by
first creating a model of the object to be recognised. The model can be created
by teaching the software by example. The process of recognition then becomes
an Atrtificial Intelligence matching problem, as the software needs to try and find a
match between the stored model and the scene being analysed. There are three

broad methods of model-based image recognition (see Table 2 -9).

Bertram Haskins 2006 35

Chapter 2

Table 2 - 9 Methods of model-based image recognition

- This implementation makes use of a binary tree, with each
e

_ node on the tree representing a model primitive, such as a
Interpretation

specific edge, surface or texture. The recognition process
Tree Search

then takes the form of a search through the tree nodes to find
Method

matching primitives [12].

The This implementation takes each of the model’s primitives and

Relaxation tries to match it to primitives identified in the scene. Each of

Labelling these primitives is then given a probability (percentage) to
Method indicate the likelihood of a match [20].

Primitives of both the object model and the scene to be
recognised are represented as two separate relational graphs.

These graphs consist of a set of nodes, which represent

The Graph _ _
. object or scene features, and are connected by lines called
Searching . _ o
links or edges. These nodes connect in ways that indicate the
Method

relationship between the features they represent. Recognition
then becomes a task of matching these 2 graphs to each
other [7].

A proprietary method, called Simple Variable Matching, was used in order to
enable the RecMaster system to find a match. Simple Variable Matching
basically works in the same manner as the Relaxation Labelling Method, in that
certain variables (primitives) are defined for a model. When recognition takes
place, the program generates new variables (primitives) for the object on the
image and then compares these variables to those stored in the model. The
difference between Relaxation Labelling and the Simple Variable Matching
method is that the pre-defined primitives, used in simple variable matching,
define a range of possible values for the specific primitive. When the new

primitive is generated it is simply compared to the range of values stored in the

Bertram Haskins 2006 36

Chapter 2

model. If the new value falls within the range, it triggers a match to that primitive.
Thus, there is no percentage-orientated match to each primitive, but rather a true
or a false match. If more than 80% of these variables (primitives) match, then
the object as a whole is matched to the model.

2.2.2.8 Training

This is actually a process performed separately from the rest of the recognition
process; it normally takes place beforehand. It involves the selection of certain
features, mostly by a user, and teaching the system to recognise these features.
This ensures that, during the classification process, the system has a pattern with
which to compare its extracted segments. The training process can be divided
into two subtasks: deciding which features to use in describing the concept and
deciding how to combine those features [11]. At a practical level, the algorithms
employed in the training process need to be easily scalable to domains with
many irrelevant features. This means that we need to train the system to a point
at which the training examples reach a desired level of accuracy, called the
sample complexity. These kinds of algorithms are called induction algorithms.
The website LCSWeb defines an induction algorithm as a function that uses an
existing classifier to create one or more new classifiers [9]. Induction is based on
specific facts (examples) instead of general axioms, as is deduction - in other
words, the inductive inference tries to obtain a complete and correct description
of a given phenomenon from specific observations of it [4]. The most frequent
application of inductive learning is concept learning, which aims to find symbolic
descriptions and express them in high-level terms that are understandable by

people.

This raises the subject of bias, which Mitchell and Utgoff define as anything
influencing the way in which the induction is made [54]. Why bias? The fact that
the symbolic descriptions are understandable by people makes it possible for

them to add their input to the process, based on their own preferences.

Bertram Haskins 2006 37

Chapter 2

Depending on the user’s level of expertise and experience, this input may either
boost the system performance or have a detrimental effect. However, all these
algorithms have different approaches when it comes to deciding which features
to focus on. One example, called the nearest-neighbour method, retrieves the
nearest match training model and then classifies test instances by comparing all
available attributes. The problem with this approach, however, is that irrelevant
training examples severely slow down the learning rate - in fact, the number of
training examples needed to reach a given level of accuracy grows exponentially

with the number of irrelevant attributes [42].

Another induction method attempts to explicitly select relevant features and reject
irrelevant ones by focusing on only a small subset of features. This allows the

algorithms to significantly reduce the number of samples under consideration.

One big problem with all of these methods is how to determine which features
are relevant to the recognition process, and which are irrelevant. As already
stated, the higher the number of irrelevant features present in our training
examples, the more examples we will need to accurately train our model. Thus,
selecting only the most relevant features is of critical importance. However,
relevant feature selection in the RecMaster system will not present as big a
problem as in the case of facial recognition or scenery recognition from aerial
photographs, for instance. Working on objects running off a conveyor belt from a
fixed angle, with fixed lighting, will make the selection of relevant features much
more predictable. Blum and Langley [11] suggest that the process of feature

selection has four basic issues that need to be dealt with:

1. The starting point for the search must be determined.
2. It must be decided how the search will be organised.
3. The strategy, that will be used to evaluate the strengths of alternative

features, must be decided on.

Bertram Haskins 2006 38

Chapter 2

4. It must be determined when the search needs to be halted, either

successfully or unsuccessfully.

It is believed that these 4 issues will easily fit into the framework of the proposed
system, and will greatly assist in the selection of relevant features. The

Recmaster system fits into this framework as follows:

1. The search begins simultaneously at the top and left of the image.

2. The search works simultaneously from top to bottom and left to right,
terminating when a perimeter pixel is found.

3. The system always evaluates perimeter, area, the bounding box’s X-axis
length and the bounding box’s Y-axis length. The number of edges on the
EdgeGraph is only evaluated if the first 4 values do not provide an
adequate match.

4. The search is halted unsuccessfully if the perimeter does not match the
minimum search parameters, if only 2 or less of the first 4 values match or
if less than 4 values match in total. The search is halted successfully if 4

of the 5 values match.

2.2.3 Obstacles to pattern recognition in image pro cessing

Pattern recognition in images is very resource-intensive, since most pixel-based
techniques treat each pixel as a separate random variable. Incorporating prior
knowledge (training) reduces this randomness of pixels, but how to incorporate
this prior knowledge into the system is not always certain. This prior knowledge
can range from object shape, texture and colour to how to best optimise the
recognition process. However, most image recognition programmes ignore the
prior information of neighbouring pixel correlation, concentrating on the direct
extraction of features using distance or error measurements instead. During the

process of segmentation and recognition, a large humber of dimensions can be

Bertram Haskins 2006 39

Chapter 2

generated very rapidly, which may overwhelm the system - especially when

algorithms are being applied on a per pixel basis.

Something else to keep in mind while working on image recognition is: What are
the assumptions about the image? In other words, can it be assumed with
relative certainty that the specifically sought after object is indeed in the image.
With this assumption made, can one use a refined, deformable model to search
for it or does one not make any assumptions at all? When making no assumption
will one attempt to extract any information possible from the image, hoping it will

match up with something in memory?

When one does indeed make an assumption, then the technique used is known
as the top-down approach [13]. This approach assumes that the sought after
object is actually in the image, so it makes use of a specific deformable model in

its interpretation process, thus drastically cutting down on resource usage.

However, when no assumption is made about whether or not the object is in the
image, then the technique is known as the bottom-up approach to image
interpretation. This involves analysing an image by applying filters and
algorithms to obtain basic information that may be used to draw a comparison
between information in an on-line knowledge store. This method was not very
successful in implementation, as it had to work under the assumption of a small
world with a complete world model in which only a limited number of objects was

allowed, which could be constrained by tight descriptions [23].

However, the best interpretation method consists of a combination of these two
models. This entails doing the basic image recognition in conjunction with
assumptions gained from prior knowledge; the information obtained through this
process is then compared with the sum total of information stored in the
knowledge base in order to make a correct interpretation. The process

implemented in the RecMaster system works in this manner, performing image

Bertram Haskins 2006 40

Chapter 2

recognition on an image or frame by looking for a specific minimum-sized object.

When one is found, it is matched to the saved model.

The next section will describe how agents can be used to increase the

performance of an image processing application through preset task delegation.

2.3 Agent-based computer vision

As discussed earlier, most agent-based problem-solving techniques involve the
subdivision of an overall task into smaller subtasks. There are several ways of
accomplishing this in actual practice, as described by Rana and Rosin [63]:

One method involves dividing an image into separate subsections and then
assigning individual agents to these sections for processing. Once the entire
section has been processed the information is not shared with the other agents,
but is rather passed along to another system component for evaluation and
presentation. This method does not make full use of the benefit of agent-based
programming, as no underlying agent communication is involved. Thus, the
processing could just as easily have been done using a conventional top-down

design approach.

Another method makes use of the inherent hierarchical nature of agents. This
method divides the task up into layers. Agents at the bottom-most layer of the
hierarchy will work on individual pixels; the next level of agents will govern
regions of the image and will use the output from the lower layer as its input.
Agents that govern regions may have overlapping fields in their control
environment, as this helps to ensure continuity between the regions and may
assist in spotting trends. There may be any number of layers, depending on the

task at hand, but mostly the top layer will be concerned with taking the

Bertram Haskins 2006 41

Chapter 2

cumulative input from the lower layers and drawing useful conclusions to present

to the user.

Yet another method works on the basis of assigning a specific low-level
processing task to each agent. These tasks will encompass many of the

activities one would normally associate with image processing, such as:

Colour detection

Hue detection
Brightness thresholding
Edge detection

a bk N

Pattern recognition

Any one of these agents may be applied to the image at different levels of
resolution. In essence, each agent in this kind of implementation basically acts
as a filter. This type of image processing could also have been implemented just
as easily in a basic top-down design approach, as there is no communication
between the individual filter agents. The user may decide which agents are
needed for each type of image, but an approach more suited to the agent
architecture would be to implement them in a mini-hierarchy. This would involve
a single higher-level agent governing the use of all these lower-layer agents —

adding at least some level of autonomy and agent communication to this method.

The agents were implemented in a basic top-down approach in the RecMaster
system, with each agent acting as a filter, but passing the processed image to
the next upon completion of processing. Thus, each agent relies on the previous
one for successful performance. The individual agents however communicate
via a controller agent, called the Whiteboard agent. Whenever one agent is
finished processing the shared object (image), controlled by the Whiteboard, the

Whiteboard will grant access to the next agent in line.

Bertram Haskins 2006 42

Chapter 2

There are also different opinions on how the image interpretation process should
take place when used in conjunction with an agent-based system. The specific
control processes used to maintain control over the image processing task have
traditionally been the source of bottlenecks. Bosch, Bovenkamp, Dijkstra and
Reiber [13] suggest that a vision agent should have at least the following groups
of abilities (see Table 2 — 10).

Table 2 - 10 Vision agent abilities

Image This entails object detection, object adjustments and

processing hypostudy testing.

o This encompasses all forms of communication between
Communication |
individual agents or groups of agents.

This involves the storage, retrieval and removal of image

Bookkeeping _
objects.
Conflict Agents should be able to resolve any differences in
Resolution interpretation amongst themselves.

The agents in the RecMaster system all perform some form of image processing
task, and they communicate their findings to one another. According to Bosch,
Bovenkamp, Dijkstra and Reiber [13], the first control issue that needs to be dealt
with is: what should an agent do, given its knowledge state and the abilities it
possesses? They have chosen to implement a model in which these tasks are
dealt with at what is called the system control level. This level is very abstract,
and is hard-wired into their system’s architecture. What this model basically
entails is that each agent in their architecture works according to a specific cycle
of events, e.g. the first step would consist of reading input, then it elaborates on
its current working memory state, decides what to do next, fires specific rules
related to the situation and finally produces output. After the output is produced,
the whole sequence is repeated again. Although this may sound like a very rigid

and specific task list to be used in an autonomous system, it is a very efficient

Bertram Haskins 2006 43

Chapter 2

approach since individual agents still work on their own tasks and then
communicate their findings to the next agent so that the cycle can continue.
Even in an agent-based system, some measure of control is necessary to ensure
that the processing spectrum for an individual agent is not too vague for it to fully

and successfully accomplish its task.

This section is concluded by giving short descriptions of applications that have
successfully married the concepts of agents and image recognition (see Table 2 -
11).

Table 2 - 11 Applications that combine agents with image recognition

iJADE iIJade is a truly intelligent multi-resolution neuro-agent based
Surveillant automatic surveillance system [48].

OURVS OURVS is an agent-based vision system for controlling
robots competing in the RoboCup Soccer Tournament [18].
VIBRA is a Multi-Agent Architecture for visually guided

VIBRA robotic tasks. It integrates visual perception, planning,
reaction and execution in order to solve complex tasks [8].
The objective of this system is to recognise multiple objects in

MORE a single image of a real-world scene, including complex
occlusions [25].

The next section is a brief discussion on threading.
2.4 Threading

The desktop computer industry has been dominated of late by chipsets
manufactured by two major companies. One of these companies is called Intel.
Intel has been a pioneering force in desktop computing from 1979 [61], when it
introduced its x86 instruction set. Many of the current chipset architectural

Bertram Haskins 2006 44

Chapter 2

technologies and advances were first available in Intel chips. Another company
named American Micro-Devices (AMD) started off playing catch-up to Intel, but
has - in recent years - matched Intel's performance and even surpassed the giant
in some ways. A lesser known fact is that AMD has been in contention with Intel
for a very long time. AMD started off making clones of the Intel chipsets, some of
which - such as the 386DX-40 CPU - topped Intel's 486SX chip in terms of
speed, performance and cost [75]. Two of the areas in which AMD excel have
made their chips very attractive, the first being that their chips can handle more
instructions per clock cycle, and the other - which is of great interest to

consumers - being the affordability of their chips.

This study will not focus on each and every chipset nuance, but rather give a
description of a technology that has become more and more prevalent in recent
years, and has been incorporated into the RecMaster system that was
developed. This technology is called multi-threading. Although multi-threading is
incorporated differently in the Intel and AMD chipsets, it can be abstractly
referenced with the same high-level code in both cases, without the programmer
having to explicitly manipulate low-level code for each of the different

implementations.

But what is multi-threading? In the past, programme performance was improved
by splitting a programme into multiple streams called threads. These threads
were then queued and sent to multiple processors. The new Intel and AMD
technologies enable programmes to run multiple streams or threads on a single
processor. This facilitates a higher level of parallelism, which results in improved

processor performance and better utilisation of system resources. [3]

The reason for this performance increase is that, since a lot of current desktop
software actually needs to multitask for optimal performance, the programmers
have already built threading into the software. However, these programmes

could never perform at their best, as multi-processor systems are expensive and

Bertram Haskins 2006 45

Chapter 2

mostly out of the average consumer’s price range. Multi-threading offers a
solution by allowing a single-processor system to behave more like a multi-

processor system.

These threads are actually perfect for implementing an agent-based system, or
even just a system in which more than one image needs to be processed
simultaneously. Whereas the system would previously have needed to wait for
one line of processing to complete before another begins, it can now depend on
the operating system and processor to schedule the different processes to be

performed in a round-robin fashion, thus dramatically improving recognition.

The combination of multi-agent systems, efficient image processing algorithms
and threading make a desktop image recognition system much more viable than
it would have been a few years ago. It brings affordable, high-end desktop

image processing to the consumer market.

The next chapter discusses the development of the RecMaster system.

Bertram Haskins 2006 46

Chapter 3

Chapter 3
3. PROGRAMME DEVELOPMENT

The culmination of this study was the development of an image recognition
system called RecMaster. This chapter outlines key areas of the development
process. The design and code behind any of the features discussed in this
chapter are available in Appendix A and Appendix B (available in the Windows
Start Menu after program installation). All coding of the RecMaster system was
done in Microsoft Visual C# 2003.

3.1 Edge detection

In any image recognition system the processes used during the image
processing phase are the most important, as there would be no system without
these processes. The development process was therefore initiated by seeking
the best way to process images. The process that was used was selected on the
basis of literature study and the attendance of a workshop on image recognition,
presented by Dr. Herbert Frey [29] from the Fachhochschule Ulm (University of

Applied Sciences) in Germany.

The first step was to find the edges on any image the system was presented
with. Some time was spent developing systems for edge detection. These
systems were mostly based on convolution masks of differing sizes and weights,
but some of them functioned by analysing an image column-by-column and row-
by-row in order to find jumps in colour values. These systems all worked, to
some extent. Some were fast, but did not provide adequate edges; others were
slower, but returned viable edges. Some actually worked as required, providing
fast performance and viable edges, but the problem was that a means of setting
thresholds had not been provided. These systems returned an excess of edge

data, and running a second dilation filter (see 2.2.2.6 Feature extraction and

Bertram Haskins 2006 47

Chapter 3

edge detection) on the image would add unnecessary overhead.

In the end,

through literature studies the Sobel [50] edge detection algorithm was identified

as the most suitable. This algorithm is based on a convolution mask that finds

the median value of a 3 x 3 matrix of pixels and then sets the centre pixel to this

value, depending on its relation to the threshold value. The mask is applied to an

image from left to right and top to bottom. A snippet of the source code is shown

in Figure 3 - 1. A fully explained version of the entire source code is available as

Appendix B in the Windows Start Menu, after program installation.

unsafe

{

int stride = bmData, Stride;
System. IntPtr Scand = bmData. Scanl;
System. IntPtr Scanl2 = bmData2 Scanl;

byte * p = (byte *)ivoid *)Scand;

byte * p2 = (hyte *)(void M) ScanlZ;
int Offzet = stride - piclnUse Width*3,
int ¥Width = piclnlUse Width * 3,

int Pixel =0

int Pixelhax =0,

p += stride;
p2 += stride,

forint y=1;y=piclnUse. Height-1;++y)

{

;
p += 3 + Offset;

p+=3

p2 +=3;
for(int %=3; % < Width-3; ++x)

{

PixelMax = Math. Abs((p2 - stride + 3)[0] - (p2+stride-

_ 3, _ _
Pixel = Math Abs((p2 + stride + 3)[0] - (p2 - stride —
30y
if (Fixel=Fixeltax)
Pixelbax = Pixel;
Pixel = Math Abs((p2 - stride)[0] - (p2 + stride)[0]);
if (Fixel=FixelMax)
PixelMax = Pixel;
Pixel = Math. Abs((p2+3[0] - (p2 - 2O];
if (Fixel=Fixeltax)
PixelMax = Pixel;
If (FixelMax < Threshold)
Pixelbax =0,
p[d] = (byte) PixelMax;
=
++p2,

p2 += 3 + Offset;

}

Figure 3 - 1 Edge detection code snippet

Bertram Haskins

2006

48

Chapter 3

3.2 Colour inversion

The edges returned by the Sobel algorithm are sufficient for gaining information
about the object on the image. The only problem with the algorithm is that it
returns an image that consists of a dark background, with the edges indicated in
the original colour of the image. To make the objects on the image stand out a
bit more, it was necessary to invert the colours of the image. This would make
the dark background light and the coloured edges dark. The process behind this
is quite simple. The images used in this system are all 24-bit images, meaning
that 3 bytes are used to represent each pixel. Each of these bytes respectively
represents the pixel's Red, Green or Blue value. Each byte of the image was
analysed individually, with every 3 bytes representing a pixel. The highest value
that can be represented in a byte is 255, so the byte’'s inverse value was
determined by subtracting the current byte value from 255. The source code in

Figure 3 - 2 demonstrates the colour inversion process.

int stride = bmData. Stride;
aystem. IntPtr Scand = bmData. Scanl;
ungafe

d
byte * p = (byte *{void *)Scanl;
int Offset = stride - piclnlUse Width * 3;
int ¥Width = piclnlJse. Width * 3;
forint v = 0y < piclnUse Height ;++y)
{

forfint % = 0; % < WWidth; +x]

pl0] = (byte)255-p[0]);
++p;

p += Offset;

Figure 3 - 2 Colour inversion code snippet

Bertram Haskins 2006 49

Chapter 3

3.3 Converting the image to binary

This study ignores any colour values present in an object, as they would add
extra overhead during the recognition phase and make it more difficult to trace
the perimeter in the next step of the process. It was therefore decided to convert
the image to binary. This means that any light colours will be converted to white,
and any dark colours will be converted to black. This is done by going through
the image pixel by pixel, and adding up the 3 byte values of each pixel. This byte
total is then divided by 3, and compared to a threshold value. If the value is
smaller than the threshold all 3 bytes are set to zero, giving the pixel a black
colour. If the value is higher than or equal to the threshold all 3 bytes are set to
255, giving the pixel a white colour. A snippet of the binary conversion algorithm

is shown in Figure 3 - 3.

int stride = bmData. Stride;
Systerm. IntPtr Scanl = brmData. Scanl;
unsafe
{
byte * p = (byte Flivoid *)Scand;
int Offset = stride - picinUse YWidth™3,
byte red, green, blue;
byte binary;
forfint v=0;y < picinllse. Height; ++y)
{

forfint x=0; x < piclnJse Width; ++x)
{

blue = p[0];
green = p[1];
red = p[2];

binary = (byte) ((blue + green + red) *0.333];
if (binary < Threshald)
plO]=p[1]=pl2]=0;
else
pl0] = p[1] = pl2] = 255;
p+=3
}
p += Cffset;

Figure 3 - 3 Binary conversion code snippet

Bertram Haskins 2006 50

Chapter 3

3.4 Measuring the object

Because the scope of this project is very limited, the algorithms implemented are
designed to deal with a uniform background environment with an object in the
foreground, just as on a conveyor belt. This was by no means ever intended to
be a general-purpose image recognition system. Based on the assumption that
we are working on a uniform background with an object in the foreground, the
filters that were run on the image thus far should leave us with a white
background and our object’s edges indicated in black. The next step would be to
actually take measurements of the object. These measurements could be stored
during the training phase and used as comparison during the recognition phase.
The first noticeable difference between this filter and the implementation of the
previous filters lies in the way the image is processed. The other filters work by
manipulating the image line-by-line, byte-by-byte. This filter, however, works on
a per pixel basis, treating the image more as a two-dimensional array. Originally
the filter was implemented by working with the bytes, as this would be a more
low-level and ultimately timesaving approach (for the processor). However, the
recursive method employed in this filter lends itself better to the grid-based
technique. At the moment, this filter takes the longest of all to complete all its

functions.

The first task was to determine in which direction the programme would be
searching on the image; i.e. how it would find the object the fastest. To this end,
6 threads were created; 3 of them running over the image from top to bottom with
regular spaces between them, and 3 of them running over the image from left to
right, also with regular spaces between them. These threads all have the same
purpose, namely to find the first black pixel. The first one to find it will change the
value of a shared variable, so that the rest will all stop their search as well. It will
also log the coordinates of the pixel's location. An agent could have been
created to perform this task, but trial-and-error proved that running 6 functions on
independent threads proved more resource friendly.

Bertram Haskins 2006 51

Chapter 3

This pixel marks the beginning of our search for the object’s perimeter. Since no
dilation algorithms were run on the image, the edges indicated may be a few
pixels thick. This algorithm’s first task is therefore to change this so that only the
outermost layer of object pixels remains. As it does so, it also counts the number
of pixels in the perimeter. The process of finding the right algorithm in order to
correctly determine the perimeter took up a considerable amount of time.

Eventually, the following solution was found.

The first step in determining the perimeter is to find the pixel following the first
pixel. To keep the search organised, the mask shown in Figure 3 — 4 is used.
Searches are always conducted in an anti-clockwise direction using the numbers

1 -8 in Figure 3 — 4 as a reference.

2 1 8

3 First/Current |7
Pixel

4 5 6

Figure 3 - 4 Pixel map

For the first pixel, the search for the next pixel begins at value 2 and moves anti-
clockwise to 1. The mask value, on which the next pixel is found, is saved and
the coordinates of the current pixel are set to the coordinates of the found pixel.
This is used to remember the current direction. The value of the perimeter
counter is also incremented from 1. This same mask is then applied for the next
pixel, but the value of First Pixel is now substituted with that of Current Pixel.

Bertram Haskins 2006 52

Chapter 3

The direction that was saved during the search for the second pixel is now used
to guide the search for the next one in line. In other words, if the second pixel
was found on value 3, then the search for the next pixel will begin at value 3 and
move anti-clockwise to value 2. For each new pixel found, the perimeter value is
incremented. This process will continue until the entire perimeter has been
mapped out. During this process, the highest and lowest x-axis and y-axis

values of the object will also be saved.

After the perimeter has been mapped out, the image is scanned again to find the
surface area of the object. This is done by running through the image from the
lowest x-axis value of the object, to the highest. For every x-axis value, the image
is run through along its y-axis. The first and last perimeter pixel’'s coordinates are
recorded and subtracted from one another, giving the number of pixels inside the
object along the y-axis. The surface area of the object is obtained by adding up

all these y-axis difference values.

The highest and lowest x- and y-axis values represent the object’s bounding box.
A bounding box is an imaginary 4-sided box that can be drawn around the object
to a perfect fit. Subtracting the highest and lowest x-axis values from each other
yields the x-axis length of the bounding box, and subtracting the highest and
lowest y-axis values from each other yields the y-axis height of the bounding box.
The algorithms involved in creating these values are too long to show here;
please consult Appendix B (available after program installation) for a complete

source code listing.
All these calculations leave us with four measured values:
Perimeter

Area

Length of bounding box X-axis

0N

Height of bounding box Y-axis

Bertram Haskins 2006 53

Chapter 3

3.5 Creating the EdgeGraph

The previous algorithm provided us with 4 values that could be stored and used
in comparison to perform recognition. However, sometimes these 4 values are
not enough to provide a positive match. To this end one more value was added,
which would provide the original number of edges on the object before only the
perimeter was extracted. These edges are counted along the centre of the

object, so a bounding box is needed for accurate measurement.

This algorithm analyses the pixels along the object’s central y-axis to determine
which pixels are black and which ones are white. This information is used to
create a binary string of the central y-axis, with 1's representing black and 0’s
representing white. The string is then analysed to determine the number of times
that strings of 1's are present. Each of these strings of 1's represents an edge,

and is counted. This information is also used to draw an EdgeGraph.

The EdgeGraph is basically a graph that depicts the spatial relationship between
the edges of the object. It uses the O’s of the string to increase the spaces on the
graph, and the 1’s to indicate how high a specific edge must be drawn.

Figure 3 — 5 shows the outlines of a circular object with the central Y-axis
indicated in red and the corresponding EdgeGraph drawn from this Y-axis. The
lines in blue indicate the correspondence of the first half of the EdgeGraph to the

edges of the circular object.

Bertram Haskins 2006 54

Chapter 3

Irmage Top Irmage Bottom

Figure 3 - 5 EdgeGraph example

3.6 The blackboard

The aforementioned processes of edge detection, colour inversion, image
binarisation, object measurement and EdgeGraph creation are performed by
individual agents. Each agent is responsible for handling one step in the overall
process. These agents use a shared blackboard system to communicate with
one another. The blackboard system consists of an object of a class named
Whiteboard. Each of the agents has a connection to this Whiteboard object,
which allows them to see the same variables. Some of these variables indicate
the current state in the processing sequence so that only a certain agent is
allowed to operate on an image at a given time, depending on the value of the
variables. The variables are incremented or decremented by individual agents

as processing occurs. This creates a very simple form of communication

Bertram Haskins 2006 55

Chapter 3

between the agents, allowing them to inform other agents when they are finished

with their part of the processing. This process is shown in Figure 3 — 6.

Create
Whiteboard
¥
Whiteboard:
Load Image(s)
¥
Whiteboard:
Set Image
Processing
Counters
' | ' I }
Create and Create and Create and Create and Create and
Start Start Start Start Start
MainEdge- InvertColours- TaBinary- Perimeter- EdgeGraph-
Detection- Agent Agent Agent Agent
Agent
- - -] - - -
Wait d Wait Wi'ait ™ Wi'ait ™ Wi'ait
Mo Mo Mo Mo
Yes fes Yes Yes
Process Process Process Process Process
Image and Image and Image and Image and Image and
Increrment Increrment Increment Increment Increment
Counter Counter Counter Counter Counter
Yes
Images Images Images Images Image=

Left?

Left ?

Left ®

Wait

Left ?

Left ?

Destroy Agents

'

Destray
Whiteboard

Figure 3 - 6 Agent Creation and Communication

Bertram Haskins

2006

56

Chapter 3

3.7 Creating the agents

The blackboard system provides individual agents with a means of letting others
know when they have completed their processing tasks. However, the
programmer still needed to figure out how the agents were actually going to be
created and destroyed, as well as how to incorporate the different algorithms into
them. To this end, 5 agents were created to bear the brunt of the image

processing work. The agents and their functions are listed in Table 3 — 1.

Table 3 - 1 Program agents

MainEdgeDetectionAgent | Edge Detection.
InvertColoursAgent Invert Image Colours.
ToBinaryAgent Create a binary (two-colour) image.
PerimeterAgent Calculate the perimeter, area and bounding box of the object.
EdgeGraphAgent Draw the EdgeGraph and determine the number of median edges.

Initially the agents were activated whenever a new subset of the program was
initiated, e.g. the Recognition phase of the programme. All the agents were
therefore created and loaded onto individual threads, where they would then just
sit and wait for something to happen. Although the waiting phase is not
resource-heavy, it does consume resources to some extent. Consequently it
was finally decided that the agents and threads would be created at the
beginning of each phase of the programme, e.g. Recognition, but would only be
set to their waiting state whenever a specific part of a phase (e.g. Video Mode)
was activated. Whenever the specific activity ends, the threads are stopped and
the agents are taken out of their waiting state. If the agents are needed again,
their waiting states are restarted and the threads activated again. Figure 3 -7 is
an example of how agents are set to a waiting state, activated and then set to

rest after their function has been completed.

Bertram Haskins 2006 57

Chapter 3

K Creates the shared YWhiteboard object. Then initializes all of the

A agents and loads them onto individual threads.

whiteboard = new Whiteboard{bitmap);

MEDagent = new MainEdgeDetectiondgent(540 480 whiteboard);

MEDthread = new Thread(new ThreadStart(MEDagent. StartvWWait)), MEDthread. Start();
[Cagent = new InvenColoursAgent(B40 480 whiteb oard);

[Cthread = new Thread(new ThreadStart(|Cagent. StartWait)), [Cthread. Start();
TBagent = new ToBinaryAgent(B40 480 whiteboard),

TBthread = new Thread(new ThreadStat(TBagent. StartWait)); TBthread. Start();
FPagent = new Perimeterfgent(whiteboard 5 5 535 4757,

Pthread = new Thread (new ThreadStart(Pagent. StartWait)); Pthread. Stan();
EGagent = new Edge GraphAgent fwhiteboard 5 435 5 535);

EGthread = new Thread{new ThreadStant{E Gagent. StartVWait)); EGthread. Start();
A Tells the first agent to start processing.

Whiteboard. Increment();

StillRecognitionF orCamideo();

A Ends the agents' waiting process and stops the agents.

whiteboard. BunStatWait = 1;

MEDthread. Join();

Cthread. Jain();

TBthread.Join();

Pthread.Jaoin();

EGthread.Jain();

Figure 3 - 7 Whiteboard agent initialization code snippet

In the end, 2 additional classes were also created to help present data to the
user. These classes (as listed in Table 3 — 2) are only used in the Update model
phase, and only when the user wants to see more information about an image

processed in Still Image Mode.

Table 3 - 2 Additional RecMaster classes

RemoveOutsideBackground | Sets the area outside the object's bounding box to white.

Traces the edges located by the MainEdgeDetectionAgent and
Overlay the perimeter located by the PerimeterAgent onto a greyscale

version of the original image.

The RemoveOutsideBackground class works simply by running through all of the
pixels of an image and then setting all the values outside the object’'s bounding
box (as located by the PerimeterAgent) to white.

The Overlay class processes a copy of the original image by first converting it to

greyscale and then tracing over the greyscale image with the data created by the

Bertram Haskins 2006 58

Chapter 3

MainEdgeDetectionAgent and the PerimeterAgent. All tracing is done by setting

the intended pixels to red.

Greyscaling the image is a simple matter of adding up the Red, Green and Blue
values of each pixel. This new value is then divided by 3 to determine the
average. This average is then assigned to the Red, Green and Blue values of
the pixel, overwriting the original values and recreating the colour of the specific
image as a median colour. This is done for every pixel on the image. A snippet

of the process is shown in Figure 3 - 8.

int stride = bmData. Stride;
system. IntPtr Scanl = bmData. Scand;
unsafe
|
byte * p = (bhyte ®)ivoid *)Scand;
int Offset = stride - piclnUse Width™3;
byte red, green, blue;
forint v=0;y<picinllse Haight; ++y)
{
forint x=0; x = piclnlUse \Width; ++x)
{

blue = p[0];
green = p[1];
red = p[2];
F[O] = p[1] = p[2] = (byte) ((blue + green + red) * 0.333);
p+=3
;
p += Cffset;

Figure 3 - 8 Greyscaling code snippet

3.8 Creating the model

The next step in the development process was to create a way for the values to
be recorded from different sources, and then to save the values to a file. To this
end, several options were created for the system to gather the required
information. There are four different modes in which the information can be

gathered:

Bertram Haskins 2006 59

Chapter 3

Using a single still image
Using multiple still images, all being processed by different threads

Using frames from a video file

A

Using frames from a camera or other device feed

The processes behind these different modes are discussed in Appendixes A and
B. The processing of these various modes makes it possible to build up a model

by recording the following values:

. Perimeter
. Area

1
2
3. Length of the bounding box X-axis
4. Height of the bounding box Y-axis
5

. Number of edges on the EdgeGraph

The measurements of each new processed image or frame are used to adjust
and fine-tune the range of values for the model. In the model creation and
updating process, all 5 values always need to be calculated. The only problem is
that - as this project’s scope is so limited - it is necessary to always use the same
two-dimensional view of the object, or else the model would become bloated and
useless. Separate models therefore need to be created for the top, sides and

bottom of an object.

3.9 Performing recognition

The creation of a model gave the programme a frame of reference within which
to perform recognition. The next step was to use the model to find the object in
an image. This is also done in three different modes, using the exact same

technique that was used in creating the model. These three modes are:

Bertram Haskins 2006 60

Chapter 3

1. Using a single still image
2. Using frames from a video file
3. Using frames from a camera or other device feed

The first 4 values are always calculated and compared to those stored in the
model. Each of these individual values needs to fall within the range of values
stored in the model file for that specific aspect of the model. If the measured
value falls within the specified range, then this value triggers a match to the
aspect. If only three of these four comparative values are matched then the fifth
value (number of edges on the EdgeGraph) is also calculated and compared to
try and find a total of four individual aspect matches. If less than four of the
aspects trigger a match, then the object is not recognized as fitting the model.
The fault tolerance of the model depends entirely on the quality and accuracy of
the images used to build the model. The greater number of accurate images
used in the model’'s construction, the greater the chances become of an accurate
match to an aspect. The reverse is also true: if the model is fed inaccurate date,
then the matching process will also become inaccurate. The process is

explained in greater detail in Appendixes A and B.

The recognition phase makes it possible to use more than one model at a time,

so that different views of an object can be taken into account.

3.10 Fleshing out the programme

With the main functions of the programme completed, it was decided to add extra
functionality to the programme in the form of still image capture, as well as video
capture from a camera (device) feed. These functions are explained in
Appendixes A and B.

Bertram Haskins 2006 61

Chapter 3

3.11 Conveying real-world measurements

If the programme was to be useful in a quality control environment, some way
had to be found to map on-screen coordinates to real-world coordinates on the
conveyor belt. To achieve this, a section was added in which real-world x-axis
and y-axis measurements (in millimetres) of the device feed view could be
entered into the system, along with the speed and direction of the conveyor belt

on which the system is operating.

The speed and direction are very important. Since it can take up to 300
milliseconds for recognition to be completed in extreme cases, the object might
not be exactly where it was originally when the recognition process began. To
accommodate this, a calculation needs to be done to determine the object’s
present position on the conveyor. This is important, since the eventual end goal
of the system is to provide an external robotic arm with the coordinates of an
object on the conveyor, so that it can be picked up. At the moment, the values
are calculated but not passed to an external source, as this is not within the
scope of the study. (Another version of the RecMaster system - compiled in
Visual Studio 2005 - has been partially completed, and does allow for the

passing of variables via a serial link.)

This chapter explained the theory behind most of the system’s main issues.
More detailed technical specifications regarding the design and explanations of
the source code can be found in Appendixes A and B (available in the Start
Menu after program installation). The next chapter discusses the results of

benchmarking the RecMaster system.

Bertram Haskins 2006 62

Chapter 4

Chapter 4
4. BENCHMARKS

The completed RecMaster system needed to be evaluated for performance. This
chapter presents the findings of benchmarking the system on both an AMD and
an Intel system. These two different architectures were used in order to
determine which system would best suit the RecMaster programme, and to prove
that both of them are, in fact, capable of running the RecMaster system. The
specifications of the AMD- and Intel-based systems used in this study are
indicated in Table 4 -1.

Table 4 - 1 Specifications of test systems

Processor Athlon64 3200+ Pentium IV 3.2 GHz
Memory 1 GB RAM 1 GB RAM

Hard Drive 120 GB Hard Drive 120 GB Hard Drive

Video Card GeForce 6800GS 256 MB GeForce 6800GS 256 MB

The data used in this benchmarking study has been obtained from a logging
system written into the RecMaster system itself. All logged events are written to
a text file, and then exported to Microsoft Excel for comparative study. Listed in
Table 4 - 2 is a list of descriptors that are included in the logging process,

together with possible values:
Table 4 - 2 Logged values

Operating Mode Still, Video or Camera
Sub-operating Mode Whole, Area, Single Image or Continuous
Filename Path of selected file, void if in camera mode
Current Date Format: mm/dd/yyyy e.g. 04/24/2006
Current Time Format: hh:mm:ss AM/PM e.g. 9:19:46 AM

Object Found

Y(es) or N(0)

Overall Match Found

Y(es) or N(0)

Recognition Time

Time in milliseconds from process beginning to
end.

Informative Message

Informs the user of the percentage match found,
and to which model.

Object Perimeter Value

Value in number of pixels

Object Area Value

Value in number of pixels

Bertram Haskins

2006 63

Chapter 4

Object Bounding Box X-axis Length Value in number of pixels
Object Bounding Box Y-axis Length Value in number of pixels
Number of Edges on the Object's Value in number of pixels (if any)
Edgegraph
Match Found on Perimeter Y(es) or N(0)
Match Found on Area Y(es) or N(0)

Match Found on Bounding Box X-Axis Y(es) or N(0)
Match Found on Bounding Box Y-Axis Y(es) or N(0)
Match Found on Number of Edges Y(es) or N(0)
Displays the current playing time of the video
file when the frame was processed.

Time Stamp of Video File (Video Mode only)

4.1 Still images
4.1.1 Creating the model

The first step in benchmarking the RecMaster system was to create a model to
use during the recognition process. The chosen object from which a model was
created was a blank DVD, of which an example is shown in Figure 4.1. The
model was thus also named DVD. All of the images and videos used in
benchmarking the system or creating models can be found in RecMaster’s install
directory. To create the model, fifteen 640 x 480 pixel images of a DVD were
taken with a camera attached to the system. These images were then analysed
using whole image mode in the Update model process. The model’s
specifications are shown in Table 4 — 3.

Table 4 - 3 Still image mode model specifications

Perimeter 713 764
Area 48102 53611
Bounding Box X-Axis Length 251 264
Bounding Box Y-Axis Length 242 257
Edges on EdgeGraph 6 8

The RecMaster system saves time by only inspecting objects with a perimeter
that is at least 75% of the length of the lowest Perimeter Range value of the

chosen model. In this case the value was calculated as follows:

Bertram Haskins 2006 64

Chapter 4

713 *75/100 =534.75

If the perimeter of any object found by the RecMaster system does not have a
value of at least 535, then the object will not be investigated further. The
reasoning behind the 75% cut-off value is that if the object’'s perimeter is too far
below the required perimeter match value, the chance of succeeding in matching
the object using only the remaining match values is too slight. Thus, the cut-off

value conserves valuable processing resources.

Figure 4 - 1 DVD model image

4.1.2 Choosing comparative images

In order to test the accuracy of the model, it needs to be determined whether the
system can recognise a DVD object in an image. To this end, a list of images

was selected in which the system was to search for DVD objects:
Table 4 - 4 Test image types

15 images of a DVD Figure 4 - 2

15 images of a DVD Spindle Figure 4 - 3

15 images of a Blender Top Figure 4 - 4

15 images of a Grey Bottle Cap Figure 4 - 5

15 images of a Canned Fruit Bottle Cap Figure 4 - 6
15 images of a Playing Card Figure 4 - 7

15 images of a Remote Control Figure 4 - 8

Bertram Haskins 2006

Chapter 4

®

Figure 4 - 2 Example of DVD test image
Figure 4 - 3 Example of DVD Spindle test

image

Figure 4 - 4 Example of Blender test image
Figure 4 - 5 Example of a Grey Bottle Cap

test image

Figure 4 - 6 Example of a Canned Fruit

Bottle Cap test image

Figure 4 - 7 Example of a Playing Card

test image

Bertram Haskins 2006 66

Chapter 4

Figure 4 - 8 Example of Remote Control test image

Groups of 15 images were chosen, because it gives the benchmarks a larger
scope than a simple decimal sampling of ten images. It was not deemed
necessary to use more than 15 images, as the consistency of the results shown
in Appendix C seemed to indicate that the system would yield similar results no

matter how large the test sampling.

The groups of images were not selected randomly. The first set of images, which
contains a DVD object, is used to determine whether the model will actually

recognise a DVD object.

The sets of images containing DVD Spindles and Blender Tops were chosen
because these objects have the same general size and shape as a DVD, so they
are used to test whether the model will be able to distinguish between a DVD and

a closely related object.

The sets of images containing the Grey and Canned Fruit Bottle Caps were
chosen because these objects have the same general shape as a DVD, but a

different size.

The last sets of images containing the Playing Cards and Remote Controls were

chosen because their shape and size do not correspond to those of a DVD.

Bertram Haskins 2006 67

Chapter 4

All the objects were photographed using the same web cam, against a uniform
blue background. This is important, as the system has been tuned to function on
a uniform background with the object in the foreground. The background colour
of the images may vary slightly, since the web cam automatically compensates

for differing light conditions.

The results obtained by running each of these groups of images through the
Perform Recognition process in Still Image mode of the RecMaster system, are
indicated below.

4.1.3 Objects found in images

The first step in determining whether the system is performing to expectation was

to ascertain in how many of the images an object was actually found.

14 A
12
2
g 10
S gl m AMD
S B Intel
o 61
€
S5 4
z
2 .
0 - T . T
DVD Spindle Blender Grey Canned Playing Remote
Top Cap Fruit Card Control
Cap
Object Type

Figure 4 - 9 Objects Found graph

Figure 4 - 9 indicates the results shown in Table 4 — 5.

Bertram Haskins 2006 68

Chapter 4

Table 4 - 5 Results of the Objects Found graph

DVD 15 15 13 100 87
DVD Spindle 15 14 14 93 93
Blender Top 15 15 15 100 100
Grey Cap 15 0 0 0 0

Canned Fruit Cap 15 1 0 7 0

Playing Card 15 12 12 80 80
Remote Control 15 14 14 93 93

All results are rounded off to the nearest whole value. The findings on the AMD
and the Intel system were relatively consistent, with differing results only on the
DVD and Canned Fruit Cap images. On the DVD images the AMD system had a
13% higher success rate than the Intel-based system, while on the Canned Fruit
Cap images the AMD system had a 7% higher success rate at finding objects in
images. These results seem to indicate that the AMD system is more effective in
running the Perform Recognition process, but a final conclusion will only be
reached in this regard once more results have been obtained. Another aspect of
Figure 4.9 that requires attention is the low success rate obtained with the Grey
Cap and Canned Fruit Cap images. The individual benchmarking results for the
Grey Cap (4.1.5.4) and the Canned Fruit Bottle Cap (4.1.5.5) shed some light on

these poor results.

4.1.4 Matches found on objects

The test in section 4.1.3 indicated that the system is indeed capable of finding
objects on images - but how accurate are these findings, and can the objects
actually be matched to a model? The next set of results seems to confirm that
the system does have these capabilities.

Bertram Haskins 2006 69

Chapter 4

E AMD
M Intel

Number of Matches

DVD Spindle Blender Grey Canned Playing Remote
Top Cap Fruit Card Control
Cap

Object Type

Figure 4 - 10 Matches Found graph

Figure 4 - 10 indicates the results shown in Table 4 — 6.

Table 4 - 6 Results of the Matches Found graph

DVD 15 13 13 11 87 85 87 73
DVD Spindle 14 14

Blender Top 15 15

Grey Cap 0 0

Canned Fruit

Cap 1 0

Playing Card 12 12

Remote Control 14 14 0 0 0 0 0 0

All results are rounded off to the nearest whole value. The findings indicate that

matches were only made to objects found in the images that actually contain

Bertram Haskins 2006 70

Chapter 4

DVD objects. This proves that the RecMaster system was not fooled by the
Spindles or the Blender Tops, which have similar sizes and shapes to that of a
DVD. None of the other objects could fool the system either. It is interesting to
note that the AMD-based system had an 87% success rate, both for the number
of matches made to objects found and the overall match percentage of the
number of images. The Intel-based system had an 85% success rate for the
number of matches made to objects found, which is only 2% less than the AMD-
based system; however, it obtained a 73% success rate for the overall match
percentage of the number of images. This is 14% less than the AMD-based
system. Why would this difference exist if the same images were used for testing
both systems? Figure 4 - 11 is a representation of the processing threads

traversing an image as they search for a perimeter pixel.

Thread 1 Thread 2

Thread 4

Theead 5

L

Thread &

L J J

Figure 4 - 11 Thread movements on an image

Threads 1 — 6 run simultaneously. Whenever one of them locates a perimeter
pixel, all the other threads stop processing. Since the AMD and Intel systems do
not operate at exactly the same speed and inherently do not schedule their
threads in the same way, it may occur that one system locates a different start
pixel. Even though noise has been reduced as much as possible, it may occur
that a chosen start pixel is noise-related, and not located on the targeted object.

This would then yield an unlocated object.

Bertram Haskins 2006 71

Chapter 4

Figures 4.9 and 4.10 prove that the RecMaster system is capable of
distinguishing different objects with the aid of the created model. This proves
that the system is capable of performing the required image recognition task — at
least in still image mode. It also seems to indicate that the AMD-based system is

inherently better at both finding objects and matching them to the chosen model.

Next, the results of each of the different image types were studied to determine
how the system arrived at its findings, as well as how rapidly these findings were
extracted, i.e. how fast the RecMaster system’s Perform Recognition process

performance is in Still Image mode.

4.1.5 Individual image types

The first thing the system does when determining a match is to investigate the
perimeter of the located object. If the perimeter is below the calculated cut-off
value, which in this case is 535, processing on the image will be stopped and the
system will specify that no image has been found — this conserves valuable
processing resources. If the perimeter is above or equal to the cut-off value, the
rest of the object’s values will be calculated and matched to the model. As soon
as all aspects have been calculated, the system will determine how long this

entire process has taken.

Bertram Haskins 2006 72

Chapter 4

4.1.5.1 DVD

800

Perimeter

1 2 3 4 5 6 7 8 9:10 11:12 13 14 15

Images

m AMD
H Intel

Figure 4 - 12 DVD Perimeter graph

Figure 4 - 12 clearly indicates that the system did not find a perimeter above 535

for Images 10 and 11 on the Intel-based system. This corresponds to the results

on Figure 4 - 9, which indicated that the AMD-based system found 15 objects,

and the Intel-based system only 13.

Number of Matches

m AMD

H Intel

Perimeter Area X-Distance Y-Distance EdgeGraph

Match Type

Figure 4 - 13 DVD Property Matches graph

Bertram Haskins 2006

73

Chapter 4

Figure 4 - 13 indicates that both the AMD- and Intel-based systems only relied on
the first 4 object characteristics to secure a match to the DVD model. No
matches were made on the EdgeGraph value - in fact, the data indicates that the
EdgeGraph value was only calculated for the second DVD image, and not for any
other images in the entire test; nevertheless, no matches were obtained from it.
It seems that perimeter is the match value that is used most often. The
RecMaster system relied on perimeter to try and form a match in 15 of the
objects on the AMD system and 13 of the objects on the Intel system, which

corresponds directly to the number of objects found.

m AMD
H Intel

Time (in milliseconds)

1 2 3 4 5 6 7 8 9:10 11:12 13 14 15

Image

Figure 4 - 14 DVD Recognition Speed graph

Figure 4 - 14 displays the time that it took (in milliseconds) for each object to be
fully processed, whether it ended up as a match to the DVD model or not. The
graph again clearly shows that no objects were found by the Intel-based system
in Images 10 and 11. It also shows that, for all the images, the AMD-based

system was much faster in completing the recognition process.

Bertram Haskins 2006 74

Chapter 4

4.1.5.2 DVD spindle

2000
1800

m AMD
m Intel

Perimeter

1 2 3 4:5:6 7 8 9 10 11 12 13 14 15

Images

Figure 4 - 15 DVD Spindle Perimeter graph
Figure 4 - 15 reflects the results shown in figure 4 - 9, which indicated that there
was only one DVD spindle image on both systems in which an object could not
be found. This seems to be Image 5, which is the only image with a perimeter

value lying below the cut-off value of 535.

Analysis of the data has shown that none of the objects found have any values
matching those of the DVD model. This implies that, even though the size and
shape of the object was similar to that of a DVD, the RecMaster system was not

fooled.

Bertram Haskins 2006 75

Chapter 4

450
400

Time (in milliseconds)

350 -
300 -
250 -
200 -
150 -
100 -

a1
o
|

1 2 3 4:5:6 7 8 9 10 11 12 13 14 15

Image

m AMD
| Intel

Figure 4 - 16 DVD Spindle Recognition Speed graph

Figure 4 - 16 again clearly shows that neither system found any objects in Image

5. It also shows that, for all the objects, the AMD-based system was much faster

in completing the recognition process.

4.1.5.3 Blender top

970

960

Perimeter

950 +

940 -

930 +

920 -

910 +

900 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Images

m AMD
m Intel

Figure 4 - 17 Blender Top Perimeter graph

Bertram Haskins

2006

76

Chapter 4

Figure 4 - 17 clearly shows that objects were found in each of the images by both
systems. It also shows that there was a variance of only 40 pixels between the
lowest and highest perimeters, which makes the results very consistent.

Analysis of the data has shown that none of the objects found have any values
matching those of the DVD model. This implies that, even though the size and
shape of the object is similar to that of a DVD, the RecMaster system was not

fooled.

450
400
350 -
300 -
250
200 -
150
100

m AMD
H Intel

Time (in milliseconds)

n
o
|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Image

Figure 4 - 18 Blender Top Recognition Speed graph

Figure 4 - 18 again confirms that an object was found in each of the images by
both systems. It also follows the same trend as in the previous groups of

images, in which the AMD system outperforms the Intel system on all counts.

4.1.5.4 Grey cap

Figure 4 - 19 explains the results of Figure 4 - 9, which indicates that no Grey

Cap objects were found for either system. The system did, in fact, find evidence

Bertram Haskins 2006 7

Chapter 4

of objects on all but Image 14 for AMD and Intel, but all the perimeters of these
objects were below 535, which is the cut-off value. Consequently, the RecMaster

system immediately marked all these images as containing no objects.

m AMD
m Intel

Perimeter

1 2 3 4 5 6 7 8 9 10 11 12 13:14:15

Images

Figure 4 - 19 Grey Cap Perimeter graph

4.1.5.5 Canned fruit cap

Figure 4 - 20 explains the results of Figure 4 - 9, which indicated that no Canned
Fruit Cap objects were found on the Intel system, and only 1 was found on the
AMD system. Again, the system did - in fact - find evidence of objects on all but
Image 8 for both systems, but all the perimeters of these objects - except for
Image 1 on the AMD system - were below 535, which is the cut-off value.
Consequently, the RecMaster system immediately marked all these images as
containing no objects. The object found in Image 1 took 171 milliseconds to

process.

Bertram Haskins 2006 78

Chapter 4

% m AMD
£ m Intel
()
o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Images
Figure 4 - 20 Canned Fruit Cap Perimeter graph
4.1.5.6 Playing card
800
% m AMD
£ m Intel
()
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Images

Figure 4 - 21 Playing Card Perimeter graph

Figure 4 - 21 indicates that objects were found in all the images, except for
Images 8 and 13. An object was found in Image 5, but its perimeter only had a
value of 529, which is below the cut-off value. Thus, only 12 objects in total were

found in the 15 playing card images.

Bertram Haskins 2006 79

Chapter 4

None of the characteristics of the playing card objects triggered any matches on

the DVD model.

Time (in milliseconds)

350

300

250 -

200 -

150 A

100 A

50

0 -

m AMD
H Intel

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Image

Figure 4 - 22 Playing Card Recognition Speed graph

Figure 4 - 22 clearly supports the findings of Figures 4 - 9 and 4 - 21, which

indicate that only 12 objects were found in the 15 images.

show that the AMD system performed much faster than the Intel system.

Again, the results

Bertram Haskins 2006

80

Chapter 4

4.1.5.7 Remote control

1200

1000

= AMD
m Intel

Perimeter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Image

Figure 4 - 23 Remote Control Perimeter graph

Figure 4 - 23 indicates that objects were found in all the images except for Image

15, thus supporting the results shown in Figure 4 - 9.

8 - = AMD
H Intel

Number of Matches

Perimeter Area X-Distance Y-Distance EdgeGraph

Match Type

Figure 4 - 24 Remote Control Property Matches graph

As Figure 4 - 24 indicates, the Remote Control objects did indeed trigger some
matches to the DVD model’s characteristics. Matching Area characteristics were

indicated in 4 objects, and matching X-axis Distance characteristics in another 2.

Bertram Haskins 2006 81

Chapter 4

However, none of these characteristics were adequate to trigger a complete

match of the DVD model. Thus, the model’s integrity remains intact.

450

= AMD
M Intel

Time (in milliseconds)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Image

Figure 4 - 25 Remote Control Recognition Speed graph
Figure 4 - 25 clearly supports the findings of Figures 4 - 9 and 4 - 23, which
indicate that only 14 objects were found in the 15 images. Again, the results

show that the AMD system performed much faster than the Intel system.

4.1.6 Total recognition time

All the results have indicated that the RecMaster system is indeed capable of
correctly performing recognition using a predetermined model. The speeds at
which these recognition processes are performed differ from one image type to
the next, as well as between the 2 different system architectures.

Bertram Haskins 2006 82

Chapter 4

500
450 -
400 - 343 360
350 -
300 -
250 -
200 -
150 +
100 +

50 -

m AMD
H Intel

Time (in milliseconds)

Match No Match
Type

Figure 4 - 26 Average S| Recognition Speed graph

Figure 4 - 26 shows the average speed of both systems with regard to
processing an object. The average speed is calculated on the basis of all the
images processed in this benchmark, and is calculated both for objects that were
matched, as well as for those that were not matched. The following facts have
been derived from Figure 4 — 26:

1. Onthe AMD system, it takes 16 milliseconds longer on average for the
system to process an unmatched object than it does to process a matched
one.

2. On the Intel system, it takes 17 milliseconds longer on average for the
system to process an unmatched object than it does to process a matched
one.

3. The closeness of these two differences signifies that the time difference
between the processing of matched and unmatched objects is relatively
constant.

4. The Intel system takes about 81% longer on average to find an object
match than the AMD system does.

Bertram Haskins 2006 83

Chapter 4

5. The Intel system takes about 76% longer on average to find an

unmatched object than the AMD system does.

These results seem to indicate that the AMD-based system is much more
suitable for running the RecMaster system than the Intel-based system. In
defence of the Intel system, however, it must be conceded that the RecMaster
system was developed and tested on an AMD system, so it may just be slightly
more tweaked towards AMD architecture. Another influencing factor may be
different background processes running on either of the two systems. Although
all unnecessary processes were halted before conducting the benchmarks, one

can never be entirely sure that this possibility was ruled out.

4.2 Video Mode

4.2.1 Creating the model

All the benchmarks that were conducted in single whole image mode have
confirmed that the system is capable of correctly performing image recognition
on a chosen model. The next step is to determine whether the system can
duplicate these results on a continuous input feed, i.e. a camera feed or a video
file.

The image processing technique used on the continuous input feed is the exact
same as the one used on single images. The system works by capturing frames
from the given input feed, and then processing them as still images. Because it
has already been proved that the system works in still image mode, the tests
done on the continuous feed are not intended to prove this again. Rather, these
benchmarks will operate on the assumption that the system does indeed work
and, as such, will only endeavour to prove that the system can duplicate the

previous results on a continuous feed. To do this, it only needs to be proved that

Bertram Haskins 2006 84

Chapter 4

the system can indeed recognise a DVD in a continuous feed, and will ignore any

objects that do not fit the model.

To this end, the tests have been simplified somewhat. The system will be
provided with 5 input feeds, each consisting of a video file. The details of these

video files are listed in Table 4 — 7.

Table 4 - 7 Test video types

DVD DVD 15
Blender Blender Top 15
Canned Fruit Cap Canned Fruit Cap 15
Playing Card Playing Card 15
3-object Combo DVD, Blender Top and Playing Card | Each object appears 5 times = 15

The reasons for the four chosen object types are listed below:

1. The DVD is to make sure that the model can find the intended object.

2. The Blender Top is to make sure that the model can still distinguish the
DVD from an object of similar shape and size.

3. The Canned Fruit Bottle Cap is to make sure that the model can still
distinguish the DVD from an object of similar shape.

4. The Playing Card acts as a control, since it has a totally different shape
and size than that of the DVD.

The 5 feeds were again benchmarked on both an AMD and an Intel system. To
guarantee consistency of the results, it had to be ensured that both systems
would receive the same input. To this end, it was decided to use a video feed
instead of a direct camera feed. During the course of developing the RecMaster
system, the results from processing a camera feed and a video feed were
deemed comparable. The results should therefore be a good indication of the

system’s capability.

Bertram Haskins 2006 85

Chapter 4

Since the height of the camera in relation to the objects is not the same as for the
still images, a new DVD model - named DVD_Continuous - had to be created for
the continuous feed. This model was built up by running the RecMaster system
in Camera Update Mode. In this mode, the system was set to only accept the
specifications when the object’s perimeter was between 500 and 650 pixels —
these numbers were arrived at through a process of trial and error. The new
model’s specifications are liste in Table 4 — 8.

Table 4 - 8 Video mode model specifications

Perimeter 542 617
Area 22595 33598
Bounding Box X-Axis Length 135 216
Bounding Box Y-Axis Length 186 193
Edges on EdgeGraph 2 5

This means that the minimum perimeter cut-off value that will allow an object to

qualify is calculated as follows:

542 x 75/ 100 = 407

Anything found on a captured frame with a perimeter above or equal to 407, will

gualify as an object.

4.2.2 DVD

The first step in determining whether the model could be used to identify objects
in continuous mode, is to test it on a video file that is known to actually contain
DVD objects. To this end, a video file of 15 DVD’s was created, and run on both

the AMD and Intel machines in Continuous Recognition Mode.

Bertram Haskins 2006 86

Chapter 4

5500
5000
4500
4000
3500
3000 A B Intel
2500 B AMD
2000
1500 -
1000 '

500

Perimeter

Time

Figure 4 - 27 DVD Perimeter graph

Figure 4 - 27’s X-axis indicates the flow of time for the video file, and the Y-axis
indicates the perimeter value found during the specific time period. The figure
clearly indicates 15 distinct perimeter groups - both for AMD and Intel - with all of
them showing at least one perimeter above 407; this implies that an object was
found for each of the 15 DVD objects in the video file.

These results are supported by Figure 4 - 28. This figure consists of a separate
graph for AMD and Intel. A line on either of these 2 figures indicates a match.
Both graphs have 15 lines, indicating 15 matches. This gives both the AMD and

Intel solutions a 100 % success rate on matching the model to the DVD video.

Bertram Haskins 2006 87

Chapter 4

AND DVD Match Graph

Match

oo
o
EIL
i
o
el
ar
ook
ar
ar
b
ar
o
L8

Intel VD Match Graph

Match

oo
o
el
o
o
EIL
i}
ar
o)
ar
b
ar
o
L8

Time

Figure 4 - 28 DVD Match graphs
4.2.3 Blender top

The next step was to determine whether the model could still distinguish between

objects of a similar size and shape in continuous mode.

Figure 4 - 29 consists of two graphs - one for AMD and one for Intel. These
graphs have a line for each object found on the Blender Top Video. Again, it is
noted that the figures each have 15 distinct groupings of lines, meaning that both
of the solutions achieved a 100% success rate at finding objects. However, no

Bertram Haskins 2006 88

Chapter 4

matches were made, which implies that the system also has a 100% success
rate in applying the model to the Blender Top video.

AMD Blender Top Object Found Graph

Foundd

Intel Blender Top Object Found Graph

Foundd

anan.
anaan
an
anaar
s
an
s
»
»
LAt

3
]

Tme

Figure 4 - 29 Blender Top Object Found Graphs

4.2.4 Canned fruit bottle cap

Next, it had to be determined whether the model could still distinguish between
objects of a similar shape in continuous mode.

In Figure 4 - 30, which again plots perimeter against video time, we clearly see
14 groupings and then a separate 15" grouping for AMD and Intel; however, this
still means that both the systems did find all 15 Canned Fruit Bottle Cap images.
Only 3 of the Canned Fruit Bottle Caps triggered the AMD system to create a

Bertram Haskins 2006 89

Chapter 4

perimeter higher than 407 (Figure 4 — 31b), while the same video triggered the
Intel solution on 8 out of the 15 images (Figure 4 — 31a). Nevertheless, none of
these triggers really constitute an error on the part of the system as no matches
were made to the model, thus keeping the system’s 100% match record intact.
However, these triggers do show that the Intel-based system wasted more
processing resources on objects that shouldn’'t have been processed further,
although this could also mean that the Intel system was better at extracting

perimeter information.

3000

2500

2000

H Intel
B AMD

1500

Perimeter

1000

500 +

| hl ||| ||| || F
0

Time

Figure 4 - 30 Canned Fruit Bottle Cap Perimeter graph

Intel Canned Fruit Cap Object Fourndd Graph

Found

Tirne

Figure 4 - 31a Canned Fruit Bottle Cap Found graphs

Bertram Haskins 2006 90

Chapter 4

AMD Canned Fruit Cap Object Found Graph

Found

Tirme

Figure 4 - 31b Canned Fruit Bottle Cap Found graphs

4.2.5 Playing card

To determine whether the model could still distinguish between objects of a
dissimilar shape and size in continuous mode, the system was provided with a

video file of 15 playing cards against which to try and match the model.

Figure 4 - 32 shows that the Intel system ended up with 15 groupings of
perimeters, and the AMD system only with 14. In each of these groupings, both
systems had at least one perimeter above 407. This means that the Intel system
found 15 out of 15 objects, while the AMD system only found 14 - making the
Intel system about 7% more effective at finding objects on the Playing Card
video. However, these results are actually cancelled out due to the fact that no
matches were found to the model on either system, which implies that - even
though the AMD system was less reliable - it still did not make a recognition
error. This also means that the RecMaster system retains a 100% success rate

at matching the model to objects.

Bertram Haskins 2006 o1

Chapter 4

6000
5500
5000
4500 -
4000
3500
3000
2500 -
2000 -
1500 -
1000 " | |
500

W Intel
B AMD

Perimeter

Time

Figure 4 - 32 Playing Card Perimeter graph

4.2.6 DVD\blender top\playing card

The last step was to determine whether the model could distinguish between
different kinds of objects in one video. To this end a video was created,
consisting of 5 DVD objects intermixed with Blender Top and Playing Card
objects. For this test, the Canned Fruit Bottle Cap objects were left out, since the
tests done in both Still Image and Video Mode have shown that the system
generally does not process them due to the fact that their perimeters are too low.
For the sake of keeping the data set smaller, it was therefore opted to exclude

the Canned Fruit Bottle Cap objects from this test.

Bertram Haskins 2006 92

Chapter 4

W Intel
B AMD

Perimeter

Figure 4 - 33 DVD\Blender Top\Playing Card Perimeter graph

Figure 4 - 33 indicates that the AMD-based system found perimeters above the
cut-off value for each of the 15 objects passing under the camera. The Intel
system, on the other hand, did not find an adequate perimeter on the 9™ object.
This means that, on this test, the AMD system had a 7% higher success rate at
finding objects than the Intel system. These results are reflected in Figure 4 - 34,

which displays the number of objects found on each system.

AMD 3 Object Combo Object Found Graph

LA

Time

Found

Figure 4 - 34a DVD\Blender Top\Playing Card Object Found graph

Bertram Haskins 2006 93

Chapter 4

Intel 3 Ohject Combo Object Found Graph

Found

Time

Figure 4 - 34b DVD\Blender Top\Playing Card Object Found graph

Lastly, Figure 4 - 35 indicates that both systems found 5 DVD objects in the
DVD\Blender Top\Playing Card video. This gives both systems a 100% success
rate at matching the model in Continuous mode. This also negates the 7% lead
that the AMD system had in finding objects on the video, as both systems ended

up with the same, correct final result.

AMD 3 Object Combo Match Graph
F
-
L]
=
Tirn=
Intel 3 Ohject Combo Mateh Graph

Time

Figure 4 - 35 DVD\Blender Top\Playing Card Match graph

Bertram Haskins 2006 94

Chapter 4

4.2.7 Recognition time

The Video Mode tests have all shown that both systems are indeed capable of
correctly applying the chosen model. This is good news, as it means that the
system will be capable of running on basically any desktop system that meets the
minimum specifications. The last thing tested was the overall average time it
took for each system to find either a positive match or no match. Figure 4 - 36
shows the results of this test.

500
450 -
400 -
350 -
300 +
250 ~
200 +
150 -
100 -

50 -

430

336

E AMD
H Intel

Time (in milliseconds)

Match No Match
Type

Figure 4 - 36 Average Video Recognition Speed graph

Figure 4 - 36 brings the following facts to light:

1. On the AMD system, it takes 84 milliseconds longer on average for the
system to process an unmatched object than it does to process a matched
one.

2. On the Intel system, it takes 94 milliseconds longer on average for the
system to process an unmatched object than it does to process a matched

one.

Bertram Haskins 2006 95

Chapter 4

3. The closeness of these 2 differences signifies that the time difference
between the processing of matched and unmatched objects is relatively
constant.

4. The Intel system takes about 100% longer on average to find an object
match than the AMD system does.

5. The Intel system takes about 71% longer on average to find an

unmatched object than the AMD system does.

4.2.8 Final thought

Both of the systems have proved capable of running the RecMaster system at an
acceptable success rate, thus proving the feasibility of running this image
recognition system on an average desktop computer. The AMD system,
however, has continuously proved faster at performing recognition tasks, both in
Still Image and Video Mode. This seems to suggest that the system lends itself
better to an AMD environment, which would probably make sense, as the system
was developed on an AMD-based system and, as such, all the troubleshooting
was done to accommodate this system. Thus, it is recommended that the
RecMaster system be run on an AMD-based system in order to obtain the best

performance.

The last chapter will outline the programmer’s final thoughts and conclude the

study.

Bertram Haskins 2006 96

Conclusion

Chapter 5
5. CONCLUSION

The development of the system was a great learning experience in the processes
involved in image recognition. Apart from the algorithms used in the system,
there are a great many others that did not fit into the system, but may be well
suited to other tasks. Working through all of these algorithms would be a whole

study in itself.
5.1 Agent implementation

One particularly problematic aspect of the development process was the actual
implementation of the agents, as the programmer did not use an existing agent
development framework. There are several methods that can be followed to
implement agents, as outlined in Chapter 2. As Weiss [74] puts it; there is no
universally accepted definition of the term agent - the only thing that everyone
has seemed to reach consensus on is that they need to be autonomous. It was
therefore decided to just conform to a few of the agent characteristics recognised

in common literature. These characteristics are listed in Table 5 - 1.

Table 5 - 1 Agent characteristics

Communicate via | The agents in the RecMaster system pass information

Blackboard along to one another

Cooperation and | They each have an assigned task to complete before

Specific Roles handing off the results to another agent

They are created and set to a waiting state until they
Autonomy

have the necessary information on which to act

Bertram Haskins 2006 97

Conclusion

The agents were implemented as classes in the RecMaster system, making them
reusable in any other system. However, they were not compiled separately for
the purpose of redistribution. The agents were created and then set to a waiting
state until they are needed or another agent has completed its task.

5.2 Threading the system

The process of threading the system was limited to allowing several images to be
processed at the same time, searching for an object’s perimeter in an image and
allowing the agents to run simultaneously in a waiting state in the background. It
was attempted to thread the application so that different copies of the same
agent would operate on different parts of the same image and the results
obtained would then be combined by a master agent, but this proved to slow

down the process of image recognition, rather than speed it up.
5.3 Satisfying the research hypothesis

The aim of this study was to prove the following:

It is possible for today’s desktop computing systems to perform recognition-
based quality control at an acceptable and reliable rate, using a multi-threaded,
agent-based image recognition program. An acceptable rate is defined as
matching objects to a model within the timeframe that the object is within view

and a reliable rate is defined as providing consistent, accurate results.
In order to satisfy the hypothesis the following criteria needed to be met:

1. The RecMaster system is able to perform image recognition by matching

an object to a previously created model at least 75 % of the time.

Bertram Haskins 2006 98

Conclusion

2. The RecMaster system is able to perform matching on still images within a
time frame of at least 500 milliseconds.

3. The RecMaster system is able to perform matching on a video or camera
feed while the object is still within the viewfinder at least 75 % of the time.

4. The RecMaster system is able to perform these matches consistently, i.e.

creating matches at least 75 % of the time.

To this end, in Chapter 4, the system was tested in Still Image and Video Mode.
The Still Image tests were more focused on testing the actual functioning of the
image recognition system. Since the Still Image tests proved the system’s
functionality, the Video Mode was used to test the system’s performance on an
actual moving feed, which is the main purpose of the system. The results of
testing the system generated the following facts, which are stated in order to

satisfy the hypothesis.

1. The results of Table 4 — 2 show that the system has a success rate higher
than 75 % for all of the object groups it was tested against, except for 2 of
the object groups, as shown in Figure 4 -19 and Figure 4 -20, which has
lower perimeters than the cut-off value. These objects were not tested to
their full extent in order to save on processing resources. These results
satisfy the first criterion of the hypothesis.

2. The results of Figure 4 — 26 show that both of the systems on which
RecMaster was tested (AMD and Intel) are capable of forming matches,
on still images, well under 500 ms. In fact the AMD system did so in an
average time of 189 ms and the Intel system in an average time of 343
ms. This is far less than the 500 ms stated in order to satisfy the second
criterion.

3. The results of Figure 4 - 36 shows that the AMD system is capable of
forming matches, on a video feed, in only 167 ms and the Intel system
takes 336 ms to do the same. This however does not prove that the

system is able to perform the match while the object is still within the

Bertram Haskins 2006 99

Conclusion

viewfinder. In order to calculate whether the object is still within the
viewfinder after the match has been made, the following measurements

are needed:

Width of the conveyor: 47 cm.

Height of the conveyor: 35 cm.

Direction of the conveyor: Right to left in relation to the viewfinder.
Speed of the conveyor: Unknown.

® 2 6o T o

Time object spends in view: About 2 s.

Unfortunately the exact speed of the conveyor was not known, so the
following expression was used to calculate its speed:

47 cm /2 s/ 100 cm = 0.235 metres per second

Thus, the conveyor, on which the objects were placed, moves at a speed
of about 0.235 m/s or 23.5 cm/s. These variables were used to calculate
the distance an object would move during the recognition process on each

of the systems:

AMD: 0.167 seconds *23.5cm =3.9cm
Intel: 0.336 seconds *23.5cm=7.9cm

Results are rounded off to 1 decimal value. This means that, on the AMD
system, the object could be 3.9 cm from the edge of the screen and still be
recognised before it leaves the view, while on the Intel system it could be
7.9 cm from the edge and still be recognised. On the AMD system, this
means that the object could be recognised before leaving the view over
91.7 % of the total 47 cm view length. For the Intel system the percentage
is a bit lower, with only 83.1 % of the total 47 cm view length guaranteeing

recognition before the object leaves the view. In both cases the

Bertram Haskins 2006 100

Conclusion

percentage is higher than 75 %, meaning that the third criterion of the
hypothesis has been satisfied.

4. Table 4 — 6 indicates that the AMD system had a 87 % success rate at
forming correct matches, on still images, while it formed no incorrect
matches at all. On the same test the Intel system has a 73 % success

rate at forming correct matches, on still images

As all the Video Mode data in Chapter 5 indicates, the system consistently
located each of the objects the model was trained to find, on both of the
system it was tested on. This means that the system has a 100% success
rate at matching objects to the model; furthermore, it did not provide any
false positives. In other words, it did not match any objects to the model
that should not have been matched, giving it a 100% reliability and
consistency rate. Thus, it was only in one of the tests that the system
could not reach a 75 % match rate. In other words in three of the four
tests the system did consistently form a match to the intended object,

satisfying the fourth criterion of the hypothesis.

5.4 Avenues for future research

The aforementioned results satisfy all of the criteria set for the success of the
study. However, no system is perfect. There are always those issues which
need a little bit more polish or were not implemented exactly as the original vision
entailed. Following are a few of the shortcomings of the study which may be

improved by further study.

1. The system needs a relatively uniform background in order to function
properly. This means that the RecMaster system is currently only suitable
for use on a specific type of conveyor system, namely those consisting of
a black belt running on a motor and a spool. Conveyor systems using a

linked metal track conveyor would not be able to use the RecMaster

Bertram Haskins 2006 101

Conclusion

system, because the angular nature of the background would interfere
with the functioning of the filter responsible for finding the object’s outline
(see 3.4 Measuring the object).

2. The system operates in a limited brightness spectrum, meaning that the
light conditions during the model creation period and the recognition
period should be as close as possible.

3. The system does not take lens distance into account, and therefore does
not do any scaling. The recognition should therefore be done on a feed in
which the object to lens distance is the same as when the model was
created.

4. Colour values are ignored, so the system only looks at the edges and the
general shape of the object. If an object accidentally comes out green
instead of blue, the system would currently not detect this mistake.

5. The system also needs a relatively steadfast level of image contrast
during the model creation and recognition phases. These limitations make
the implementation scope of the system relatively narrow, and will be

improved upon if another incarnation of the system is required.
5.5 Final thought

It has been demonstrated that the developed system is capable of performing
recognition on both still images and a video or camera feed. Even though there
are still some imperfections in the system which may benefit from future
development, the system has proven itself capable of performing its intended
task using the underlying technologies of agents and threading. Whether the
system will be implemented as is or only after future additions has yet to be seen.
There is no doubt that the final implementation of the system will benefit the
process of quality control in a production environment by aiding the operator to
distinguish between correctly and incorrectly manufactured objects. It also has

the added benefit of being able to perform recognition by making use of standard

Bertram Haskins 2006 102

Conclusion

desktop computing equipment; therefore providing a financially sound incentive

for its implementation.

This marks the end of a long journey of discovery, but as Greg Anderson, a best-

selling American author and founder of the American Wellness Project, puts it

“Focus on the journey, not the destination. Joy is found
not in finishing an activity but in doing it.”

Bertram Haskins 2006 103

Resources

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Abidi, Mongi, Boughorbel, Faysal and Koscan, Andreas, modelling 3D Objects
from Range Maps and Color Images using a Warping-based Approach, 6th
International Conference on Quality Control and Vision, May 2003

Alsinet, T., Ansotegui, C., Bejar, R., Fernandez, C. and Manya, F., Automated
monitoring of medical protocols: a secure and distributed architecture, Atrtificial
Intelligence in Medicine 27 , Elsevier, 2003

Anderson, Dave (Site Founder), PC TechGuide: AMD Technology,
http://www.pctechguide.com/22non-inte.htm, 18 April 2004

Armengol, Eva and Lopez de Mantaras, Ramon, Machine Learning from
examples: Inductive and Lazy methods, Data & Knowledge Engineering,
Elsevier, November 1997

Bailey, Bob, Moments in image processing,
http://www.csie.ntnu.edu.tw/~bbailey/Moments%20in%20IP.htm, November
2002, Retrieved 6 July 2005

Ballard, D.H. and Brown, C.M., Computer Vision, Prentice Hall, New Jersey,
1982

Barnsley, Micheal J. and Barr, Stuart L., Distinguishing urban land-use
categories in fine spatial resolution land-cover data using a graph-based,
structural pattern recognition system, Computer, Environment and Systems 21,
Pergamon, 1997

Barros, L., Bianchi, R. and Rillo, A., The VIBRA Multi-Agent Architecture:
integrating purposive vision with deliberative and reactive planning,
http://www.lti.pcs.usp.br/~rbianchi/publications/boletim-poli1998.pdf, 1998,
Retrieved 19 May 2005

Barry, Alwyn, LCSWEB, http://Icsweb.cs.bath.ac.uk/LCSWiki/InductionAlgorithm,
2005, Retrieved 25 January 2006

Berg, Daniel J. and Lewis, Bill, Multithreaded Programming with PThreads, Sun

Microsystems Press/Prentice Hall, 1998

Bertram Haskins 2006 104

Resources

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

Blum, Avrim L. and Langley, Pat, Selection of relevant features and examples in
machine learning, Artificial Intelligence, Elsevier, May 1996

Borges, Dibio L. and Fisher, Robert B., Class-based recognition of 3D objects
represented by volumetric primitives, Image and Vision Computing 15 p. 655 -
664, August 1997

Bosch, J.G., Dijkstra, J. and Reiber, J.H.C., Multi-agent segmentation of IVUS
images, EGP Bovenkamp, www.sciencedirect.com, 16 September 2003

Boyle, R., Hlavac, V. and Sonka, M., Image Processing, Analysis and Machine
Vision, Chapman & Hall, 1993

Braue, David, Al think, therefore I am,
http://www.apcmag.com/apc/v3.nsf/0/C89F33A82CCA4BBCA256DECO00036F27,
16 December 2003, Retrieved 19 May 2005

BURLE Industries Inc., Photosensitive Camera Tubes and Devices Handbook,
BURLE Industries Inc., http://www.burle.com/cgi-
bin/byteserver.pl/pdf/pctdhbook.pdf, 2005, 25 January 2006

Canny, J., A Computational Approach to Edge Detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, Nov. 1986

Chelberg, David M., Gillen, Matthew, Parott, David, Welch, Lonnie and Zhou,
Qiang, Agent-based computer vision in a dynamic, real-time environment,
Pattern Recognition 37, Issue 4, pages 691 - 705, April 2004

Chira, Camelia, Software Agents, IDIMS Report, 21 February 2003

Christmas, William, Kittler, Josef and Kostin, Alexey, Object recognition by
symmetrised graph matching using relaxation labeling with an inhibitory
mechanism, Pattern Recognition Letters 26 , Issue 3, pages 381 - 393, February
2005

Dance, Sandy and Gorman, Malcolm, Intelligent Agents in the Australian Bureau
of Meteorology, http://www.agentcities.org/Challenge02/Proc/, April 2004,
Retrieved on 19 May 2005

Davies, E., Machine Vision: Theory, Algorithms and Practicalities, Academic
Press, 1990

de Ridder, D., Egmont-Peterson, M. and Handels, H., Image Processing with

Bertram Haskins 2006 105

Resources

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Neural Networks — a review, Pattern Recognition 35, Issue 10, pages 2279 -
2301, October 2002

Decker, K., Sycara, K. and Williamson, M., Middle-Agents for the Internet,
Proceedings of IJCAI-97, January 1997

Deguchi, Koichiro and Yanai, Keiji, A Multi-resolution Image Understanding
System Based on Multi-agent Architecture for High-resolution Images, IEICE
Transactions on Information and Systems, Vol.E84-D, No.12, December 2001
Doran, J.E., Franklin, S., Jennings, N.R. and Norman, T.J., On Cooperation in
Multi-Agent Systems, http://www.agent.ai/doc/upload/200302/dora97.pdf, 1997,
Retrieved on 19 May 2005

Ferber, Jacques, Multi-Agent System: An Introduction to Distributed Atrtificial
Intelligence, Harlow: Addison Wesley Longman, 1999

Franklin, Stan and Graesser, Art, Agent or Program. Is it an Agent, or just a
Program?, Proceedings of the Third International Workshop on Agent Theories,
Architectures and Languages, 1996

Frey, Herbert, Machine Vision, Machine Vision Workshop, Central University of
Technology, Free State, 19 — 21 September 2005

Gonzalez, R. and Tou, J., Pattern Recognition Principles, Addison-Wesley
Publishing Company, Massachusetts, 1974

Gonzalez, R.C. and Woods, R.E., Digital Image processing (3™ ed.), Addison
Wesley, 1992

Green, Bill, Edge Detection Tutorial, www.pages.drexel.edu/~weg22/edge.html,
2002, Retrieved on 22 March 2006

Haralick, R. and Shapiro, L., Computer and Robot Vision Vol. 1, Addison-Wesley
Publishing Company, 1992

Harding, K.G. and Tait, R., Moire techniques applied to automated inspection of
machined parts, In Vision 1986 Conference Proceedings (Machine Vision
Association of SME), 1986

Hayes-Roth, B., A blackboard architecture for control, Artificial Intelligence
Volume 26, Issue 3, pages 251 - 321, July 1985

Hedger, Stuart, Artificial Intelligence: Intelligent Agents and the Internet,

Bertram Haskins 2006 106

Resources

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

http://osiris.sunderland.ac.uk/cbowww/Al/TEXTS/AGENTS5/ass_ht~1.htm, 23
January 1997, Retrieved on 19 May 2005

Holota, Radek and Nemecek, Stanislav, Recognition of Oriented Structures by
2D Fourier Transform, http://home.zcu.cz/~holota5/publ/rdsb2dft.pdf, 30
September 2002, Retrieved on 22 March 2006

Horn, B.K.P., Robot Vision, MIT Press, 1986

Horn, B.K.P., Shape from Shading: A Method for Obtaining the shape of a
Smooth Opaque from One View, Ph.D. Study, Massachusetts Institute Of
Technology, 1970

Howard, lan, Speech Fundamental Period Estimation Using Pattern
Classification, PhD Study, Faculty of Science, Phonetics & Linguistics, UCL,
University of London, 1991

Hughes, Stephen, Lewis, Mike, Manojlvich, Josep and Prasithsangaree,
Phongsak, UTSAF: A Multi-Agent —Based Software Bridge for Interoperability
between Distributed Military and Commercial Gaming Simulations, Simulation
Vol. 80 No. 12, 2004

Iba, W and Langley, P, Average-case analysis of a nearest neighbor algorithm,
in : Proceedings IJCAI-93, Chanbery, France, 1993

lossifidis, C., Karathanassi, V. and Rokos, D., Application of machine vision
techniques in the quality control of pharmaceutical solutions, Computers in
Industry Volume 32, Issue 2, pages 169 - 179, December 1996

Kalp, D., Paolucci, M., Shehory, O. and Sycara, K., A Planning Component for
RETSINA Agents, Lecture Notes in Artificial Intelligence, Intelligent Agents VI. M.
Wooldridge and Y. Lesperance (Eds.), 1999

Laaksonen, Jorma, Lampinen, Jouko and Oja, Erkki, Pattern Recognition, Image
Processing and Pattern Recognition, Academic Press, 1998

Langner, Jens, Leaves Recognition V1.0: Neuronal Network based recognition
system of leaf images, http://www.jens-langner.de/lrecog/, 28 October 2004,
Retrieved on 20 March 2006

Lee, Heyoung, Son, Won-Kyung and Bien, Zeungnam, KARES: Intelligent

wheelchair-mounted robotic arm system using vision and force sensor, Robotics

Bertram Haskins 2006 107

Resources

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

and Autonomous Systems Volume 28, Issue 1, pages 83 - 94, July 1999

Lee, Raymond S.T., iJADE Surveillant — an intelligent multi-resolution composite
neuro-oscillatory agent-based surveillance system, Pattern Recognition Volume
36, Issue 6, pages 1425 - 1444, June 2003

Lewis, Steven H. and Milewski, Allen E., Delegating to Software Agents,
International Journal for Human-Computer Studies Volume 46, Issue 4, pages
485 - 500, April 1997

Lieberman, Henry, Autonomous Interface Agents, Proceedings of the ACM
Conference on Computers and Human Interface, CHI-97, Atlanta, Georgia,
March 1997

Lucas, Chris, Complex Systems Glossary, http://www.calresco.org/glossary.htm,
June 2005, Retrieved on 20 March 2006

MASS Group Inc., Manufacturing Automation Software & Systems Group,
http://www.massgroup.com/Products/visionsystems2.asp, 2005, Retrieved on 13
February 2006

McCallum, Andrew Kachites and Rennie, Jason, Using Reinforcement to
Learning to Spider the Web Efficiently, Proceedings of the Sixteenth International
Conference on Machine Learning (ICML), 1999

Mitchell, T.N. and Utgoff, P.E., Acquisition of appropriate bias for inductive
concept learning, Proceedings of the National Conference on Atrtificial
Intelligence, 1982

Munneke, Derek, Wahlstrohm, Kirsten and Zaccara, Linda, Intelligent Software
Robots on the Internet, http://www.cis.unisa.edu.au/~cisdm/papers/iagents
/IntelligentAgentsinternet.html, October 1998, Retrieved on 18 May 2005

Norvig, Peter and Russel, Stuart J., Artificial Intelligence: A Modern Approach,
Englewood Cliffs, Prentice Hall, 1995

Nwana, Hyacinth S., Software Agents: An Overview, Knowledge Engineering
Review Vol. 11, Cambridge University Press, 1996

Okkalides, Demetrios, Assessment of commercial compression algorithms, of the
lossy DCT and lossless types, applied to diagnostic digital image files,

Computerized Medical Imaging and Graphics Volume 22, Issue 1, pages 25 - 30,

Bertram Haskins 2006 108

Resources

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]

January/February 1998

Pedrycz, W. and Vasilakos, A.V. (Eds.), Computational Intelligence in
Telecommunications Networks, CRC Press, 2000

Pernkopf, Franz, Bayesian network classifiers versus selective k-NN classifier,
Pattern Recognition, Volume 38, Issue 1, pages 1 - 10, October 2003

Public Domain, Dr Dobbs: Microprocessor Resources,
http://www.x86.org/articles/computalk/help.htm, Retrieved on 15 June 2005
Public Domain, Wikipedia (Keywords: Edge Detection), www.en.wikipedia.org,
Retrieved on 20 March 2006

Rana, Omer F. and Rosin, Paul L., Agent-based computer vision, Pattern
Recognition Volume 37, Issue 4, pages 627 - 629, April 2004

Ravishankar Rao, A., Future directions in industrial machine vision: a case study
of semiconductor manufacturing applications, Image and Vision Computing
Volume 14, Issue 1, pages 3 -19, February 1996

Scharstein, Daniel and Szeliski, Richard, High Accuracy Stereo Depth Maps
using Structured Light, CVPR, pages 195-202, 2003

Scheidegger, Thomas, The Code Project: DirectShow.NET,
http://www.codeproject.com/cs/media/directshownet.asp, 23 Jul 2002, Retrieved
on 6 July 2006

Schleiffer, Ralf, An Intelligent Agent model, European Journal of Operational
Research Volume 166, Issue 3, pages 666 - 693, November 2005

Shapiro, L. and Stockman, G., Computer Vision, Prentice Hall, 2001

Shirai, Y., Three-Dimensional Computer Vision, Springer-Verlag, New York,
1987

Smirnova, Vira, Multi-Agent System for Distributed Data Fusion in a Peer-to-Peer
Environment, Master’s Study, November 2002

Sycara, Katia P., Multiagent Systems, Al Magazine, pages 79 - 92, Summer
1998

Sylla, Cheickna, Experimental investigation of human and machine-vision
arrangements in inspection tasks, Control Engineering Practice Volume 10, Issue
3, pages 347 - 361, March 2002

Bertram Haskins 2006 109

Resources

[73]

[74]

[75]

Tadrous, Paul J., A simple and sensitive method for directional edge detection in
noisy A simple and sensitive method for directional edge detection in noisy
images, Pattern Recognition Volume 28, Issue 10, pages 1575 - 1586, October
1995

Weiss, Gerhard, Multiagent Systems: A Modern Approach to Distributed Atrtificial
Intelligence, MIT Press, Cambridge, MA, 1999

Zheng, Lihong and He, Xiangjian, Classification Techniques in Pattern
Recognition, http://wscg.zcu.cz/wscg2005/Papers_2005/Poster/K43-full.pdf,
2005, 20 March 2006

Bertram Haskins 2006 110

Appendix A

Appendix A
A. PROGRAM DESIGN

This section outlines the most important aspects of the RecMaster system. The
function of each aspect, of the programme, is described and a listing of its
components with their individual functions is provided. Every aspect is also
accompanied by a diagram outlining its main procedural flow. The top-most item
of each flowchart always indicates the form or process from which processing

has passed.

A.1 Splash Screen

This form provides the user with a load screen to show which program is loading
and who the author of the program is. It acts as an intermediary between the
operating system and the program’s main interface.

The most important components of the form are as follows:
A.1.1 Important unnamed components

1. A picture box in which to display the program’s logo.
2. Alabel in which to display the program’s name.

3. A label in which to display the author’'s name.

A.1.2 Timer tmSplash

This Timer is used to keep track of the length of time that the Splash Screen is

being displayed.

Bertram Haskins 2006 111

Appendix A

A.1.3 Procedural flow diagram

Operating
System

v

Splash Screen

¥

Main Interface

Figure A - 1 Splash Screen procedural flow diagram

A.2 Main Interface

This form acts as the link to all of the other program functions. Basically, it only

acts as a menu and a container for all of the other forms.

The most important components of the form are as follows:

A.2.1 MainMenu MainMenu

This MainMenu acts as a drop-down menu, containing links to all of the

program’s main aspects.

A.2.2 ToolBar tbMain

This ToolBar acts as a visual menu, containing links to most of the program’s

main aspects.

Bertram Haskins 2006 112

Appendix A

A.2.3 Panel pniMain

This Panel acts as an always visual information display.

A.2.5 Procedural flow diagram

Splash Screen

e et

Main Interface

[
v _ ' _ v v v v v

Set Canveyer Create Still
Mew Model Load Maodel Delete Model Dimensions Irmages Create Wideo Euxit

¥ ¥ L
Perfarm
Update Model iew hodel Recognition

Figure A - 2 Main Interface procedural flow diagram

Procedural flow continues on from the Splash Screen into the various functions
of the program. The Load Model function is not visible on the main interface; it
acts as an intermediary for 3 functions that are visible on the main interface,

namely Update Model, View Model and Perform Recognition.

A.3 New Model

This form allows the user to view the names of the Models which are already in
the system and then type the name of a new Model to create. The user has the
options of either creating the Model and continuing on to the Update Model

process or returning to the Main Interface.

The most important components of the form are as follows:
A.3.1 ListBox IbModels

Bertram Haskins 2006 113

Appendix A

This ListBox displays the names of all of the Models currently in the system.

A.3.2 TextBox txtModel

This TextBox allows the user to type the name of the new Model to be created.

A.3.3 Buttons
Table A - 1 New Model buttons

This Button makes sure that the new Model name does not
cmdCreate)])

exist and then creates the Model file and directory.

This Button returns the user to the main interface without saving
cmdCancel)

anything.

A.3.4 Procedural flow diagram

_______ S
Load Models
¥
Type Mew
Model Mame
|
¥ ¥
Create Cancel

Figure A - 3 New Model procedural flow diagram
In practice the procedural flow would pass from Create to the Update Model
process, but this is not really integral and as such is omitted. The Update Model
process is typically accessed from the main interface and is only added here as a

convenience.

Bertram Haskins 2006 114

Appendix A

A.4 Delete Model

This form allows the user to view the names of the Models which are already in
the system and then select the name of a Model to delete. The user has the

options of either deleting the selected Model or returning to the Main Interface.

The most important components of the form are as follows:

A.4.1 ListBox IbModels

This ListBox displays the names of all of the Models currently in the system and

allows the user to select one.

A.4.2 TextBoxes

Table A - 2 Delete Model textboxes

txtModel This TextBox displays the name of the Model to be deleted.

N This TextBox displays the last time that the current Model was
txtLastModified

updated.

A.4.3 Buttons
Table A - 3 Delete Model buttons

This Button deletes the selected Model and determines if there
cmdDelete) _
are any Models left in the system after deletion.

cmdCancel | This Button returns the user to the main interface.

Bertram Haskins 2006 115

Appendix A

A.4.4 Procedural flow diagram

s SETEE
Load Madels
¥
* Select Model
v] L
Delete Cancel

Figure A - 4 Delete Model procedural flow diagram

A.5 Load Model

This form allows the user to view the names of the Models which are already in

the system and then select the name of a Model(s) to use. This form acts as an

intermediary between the main interface and either the Update Model, View

Model or Perform Recognition processes. The Model(s) selected on this form is

used in the follow-up process. The user has the options of either loading the

selected Model(s) or returning to the Main Interface.

The most important components of the form are as follows:

Bertram Haskins

2006

116

Appendix A

A.5.1 ListBoxes

Table A - 4 Load Model listboxes

IbModels This ListBox displays the names of all of the Models currently

in the system and allows the user to select one.

IbSelected This ListBox displays the names of the Models selected to be

used in the Perform Recognition process.

A.5.2 TextBoxes

Table A - 5 Load Model textboxes

txtModel This TextBox displays the name of the Model to be deleted.

txtLastModified | This TextBox displays the last time that the current Model was
updated.

A.5.3 Buttons

Table A - 6 Load Model buttons

This Button loads either the Update Model, View Model or
cmdLoad Perform Recognition process and initializes them with the
Model(s) chosen.

cmdCancel This Button returns the user to the main interface.

Bertram Haskins 2006 117

Appendix A

A.5.4 Procedural flow diagram

_______ .
Load Models
¥
Select
hodel (=)
|
¥ ¥
Load Cancel
I
¥ ¥ ¥
Ferfarm
Lipdate Madel Yiew Madel Fecaognition

Figure A - 5 Load Model procedural flow diagram
A.6 Update Model

This form updates the measurements of a chosen Model. These measurements

consist of 5 fields:

Object Perimeter
Object Area
Distance between furthest X-axis points of object (bounding box)

Distance between furthest y-axis points of object (bounding box)

a bk N

Number of Edges on the object's Edgegraph

Bertram Haskins 2006 118

Appendix A

These values are obtained by running the various agents on a single image,
multiple images, frames of a video file or frames of a camera (device) feed. In
single image, batch image and single frame of video/camera mode the decision
is in the users hands as to whether or not to accept the calculated
measurements. In continuous video/camera mode frames are continuously
captured so there is no time for the user to accept each set of measurements. It
works by allowing the user to accept a range of values for the perimeter. If the
perimeter measurements fall within the range, then all of the measurements are
accepted. In order for this to work correctly, a few samples have to be taken in
single image, batch image or single frame of video/camera mode so that a frame

of reference is known for the perimeter values.

The most important components of the form are as follows:

A.6.1 ToolBars
Table A - 7 Update Model toolbars

This ToolBar allows the user to select which Mode
tbUpdateModel))
processing should be performed in.

This ToolBar allows the user to select the Adjust
tbPictureAdjustment | Brightness and Adjust Contrast options in Single Image
Mode.

_ _ This ToolBar allows the user to choose between Single
tbVideoOptions . o
Frame and Continuous Mode in Video or Camera Mode.

Bertram Haskins 2006 119

Appendix A

A.6.2 TabPages
Table A - 8 Update Model tabpages

This TabPage displays the Single Image Mode
tabNormal
components.
This TabPage displays the extended results from Single
tabRoughEdges)
Image Mode processing.
This TabPage displays the Batch Image Mode
tabBatch
components.
tabCamVideo This TabPage displays the Video and Camera Modes.

A.6.3 PictureBoxes
Table A - 9 Update Model pictureboxes

_ This PictureBox displays EdgeGraphs generated
picBatchGraphs _
during Batch Image Mode.

_ . This PictureBox displays the results of the
picCapturePreview o
currently processed frame in Video/Camera Mode.

_ _ This PictureBox displays the video file or camera
picCamVideo _
(device) feed.

_ This PictureBox displays the EdgeGraph
picCurrentEdges ,)
generated during Single Image Mode.

. . This PictureBox displays the results of the
picPicturePreview _ o
currently processed image in Single Image Mode.

These PictureBoxes display the image currently
picQueuel — picQueued | being processed in the specific queue in Batch

Image Mode.

_ This PictureBox displays the image currently
picStudy) .
being processed in Single Image Mode.

Bertram Haskins 2006 120

Appendix A

A.6.4 Buttons
Table A - 10 Update Model buttons

This Button accepts the measurements generated in
cmdAccept _
Single Image Mode.
This Button accepts the measurements generated in
cmdAcceptBatch
Batch Image Mode.
. This Button accepts the measurements generated in
cmdAcceptCamVideo | .
Single Frame Video/Camera Mode.
This Button activates Single Frame Video/Camera
cmdActivate Mode or starts and stops Continuous Frame
Video/Camera Mode.
cmdBatchActivate | This Button activates Batch Image Mode.
cmdPictureProcess | This Button activates Single Image Mode.

A.6.5 RadioButtons
Table A - 11 Update Model radiobuttons

optArea This RadioButton selects the Area Single Image Mode.

This RadioButton selects the Whole Image Single Image

optWhole
Mode.

A.6.6 Timer tmCamVideoCapture

This Timer captures a frame from the video file or camera (device) feed and

processed it every 500 ticks (milliseconds).

A.6.7 Labels

There are a variety of Labels on the form which are used to display the

information generated during processing.

Bertram Haskins 2006 121

Appendix A

A.6.8 Procedural flow diagram

....... e
Losd hodel
daasurament
I
¥ ¥ ¥ ¥
Single Image Batch Imags
Mode tlode “Widen Moda Carnera Mode
| — L] ¥ —
Load Imaga | Load Images Load Video Salect Device
SR I T
i]
: Adjust | | ¥ +*
| Erightness Cugua 1 Single Frame Conlinuous
! Muode tode
Adjust || |]
w| Costrest " Ouews?2 J
|7 seeatode a—] [0| Ouewed [T
“Whoke Frag e
e M Ouewss [
!
[] [[] [] [}
Edpa Irwert Colours To Binary Farmater | Edige Graph
Dietection Agent Agant Ageri | Agent
Ageri | |
[| | | |
1
Mo | res
Civerlay Accept
()
Tes : Mo | fes
‘ |
Femove
Background Dang

Figure A - 6 Update Model procedural flow diagram

Bertram Haskins

2006

122

Appendix A

A.7 View Model

This form allows the user to view measurements of a Model chosen on the Load
Model form. All of the EdgeGraphs, generated during the Update Model process,

are also displayed.

The most important components of the form are as follows:

A.7.1 PictureBox picModellmages

This PictureBox displays the EdgeGraphs one at a time.

A.7.2 Buttons
Table A - 12 View Model buttons

cmdNext These Buttons are used to navigate the various

cmdPrevious | EdgeGraphs.

A.7.3 Labels

Various Labels are used to display the measurements of the current Model.

Bertram Haskins 2006 123

Appendix A

A.7.4 Procedural flow diagram

Load Model
Measurement

¥
Laad
EdgeGraph
List
¥

Display Info

Figure A - 7 View Model procedural flow diagram

A.8 Set Conveyor Measurements

This form allows the user to set up some settings regarding the conveyer belt
using the feed from the imaging device (camera), which is stationed over the

conveyer belt. In particular:

The length in millimeter of the X-axis.
The length in millimeter of the Y-axis.

The speed of the conveyer belt in meters per second.

0N PE

The direction, in relation to the on-screen image, that the conveyer belt is

moving in.

These fields can be updated one at a time and need to be as accurate as
possible in order for the Perform Recognition phase to report accurate results.

The most important components of the form are as follows:

Bertram Haskins 2006 124

Appendix A

A.8.1 Panel pnlCam

This Panel is used to display the camera (device) feed.

A.8.2 Labels

Various Labels are used to display the current saved conveyer settings.

A.8.3 TextBoxes

Table A - 13 Set Conveyor Measurements textboxes

_ This TextBox allows the wuser to enter the X-axis
txtXDistance
measurement.

. This TextBox allows the wuser to enter the Y-axis
txtYDistance
measurement.

This TextBox allows the user to enter the conveyer speed
txtSpeed
measurement.

A.8.4 RadioButtons

Table A - 14 Set Conveyor Measurements radiobuttons

optUpwards These RadioButtons allow the user to select the direction in

optDownwards | which the conveyer is moving in relation to the on-screen

optLeft image.
optRight

A.8.5 Button cmdUpdate

This Button allows the user to update the conveyer settings.

Bertram Haskins 2006 125

Appendix A

A.8.6 Procedural flow diagram

Select Device

v
Update
settings

Figure A - 8 Set Conveyor Measurements procedural flow diagram
A.9 Perform Recognition

This form takes object measurements from a single image, a video file or a
camera (device) feed and compares them to those of a chosen Model(s) to
determine a match. These values are obtained by running the various agents on
a single image, frames of a video file or frames of a camera (device) feed. Any
matching fields are indicated with a picture next to the field. The time taken to
perform the recognition is also indicated. In Single Image Mode and Single
Frame Video/Camera Mode the results remain visible until the process is run
again, but during Continuous Video/Camera Mode the results are refreshed
every time that a frame is processed, thus the user may not always have time to
study the results. To get around this, options are provided to the user to have
the system pause whenever any object is found, when an object is matched or

when an object isn’t matched.

The most important components of the form are as follows:

Bertram Haskins 2006 126

Appendix A

A.9.1 ToolBars

Table A - 15 Perform Recognition toolbars

_ This ToolBar allows the user to select which
tbStilllmage))
Mode processing should be performed in.

This ToolBar allows the user to select the
tbRecognitionPicAdjustments | Adjust Brightness and Adjust Contrast options

in Single Image Mode.

This ToolBar allows the user to choose
tboCamVideoType between Single Frame and Continuous Mode in

Video or Camera Mode.

A.9.2 TabPages

Table A - 16 Perform Recognition tabpages

tabPicture This TabPage displays the Single Image Mode components.

tabCamVideo | This TabPage displays the Video and Camera Modes.

A.9.3 PictureBoxes

Table A - 17 Perform Recognition pictureboxes

_ This PictureBox displays the video file or camera
picCam _
(device) feed.

_ _ This PictureBox displays the results of the currently
picCapturePreview o
processed frame in Video or Camera Mode.

o _ This PictureBox displays the results of the currently
picPicturePreview) o
processed image in Single Image Mode.

_ This PictureBox displays the image currently being
picStudy o
processed in Single Image Mode.

Bertram Haskins 2006 127

Appendix A

. Each of these PictureBoxes displays an image if the
Match PictureBoxes

field next to which it is situated is a match.

A.9.4 Buttons

Table A - 18 Perform Recognition buttons

This Button activates Single Frame Video/Camera Mode
cmdActivate or starts and stops Continuous Frame Video/Camera
Mode.

cmdPictureProcess | This Button activates Single Image Mode.

A.9.5 RadioButtons

Table A - 19 Perform Recognition radiobuttons

optArea This RadioButton selects the Area Single Image Mode.

optWhole | This RadioButton selects the Whole Image Single Image Mode.

optNever | This RadioButton selects the Never Pause option.

optObject | This RadioButton selects the Pause on Object Found option.

optNoMatch | This RadioButton selects the Pause on No Object Match option.

optMatch | This RadioButton selects the Pause on Object Match option.

A.9.6 Timer tmContinuousMode

This Timer captures a frame from the video file or camera (device) feed and
processed it every 500 ticks.

A.9.7 Labels

There are a variety of Labels on the form which are used to display the

information generated during processing.

Bertram Haskins 2006 128

Appendix A

A.9.8 Procedural flow diagram

1
'

i [i
]]
! Load Model |
! :
L mmmmgm el
¥
Load Model
Measurement
v
Load
Conveyer
Settings
I
h] ¥ ¥
Single Image
Maode Yideo Mode Camera Mode
v ¥ v
Load Image Load Yideo Select Device
_______ []
I
Adjust ——— x
Erightness [~ Area Mode Single Frame Continuous
hode Wade
Adjust YWhole Image | I J
Contrast [~ hode
A]
¥ ¥ ¥ ¥ ¥
Edge Invert Calours Tao Binary Perimeter Edge Graph
Detection Agent Agent Agent Agent
Agent
| I . I I Mo Yos
Wait for

Figure A - 9 Perform Recognition procedural flow diagram

Resources

Compare to
Wadel

Done

Bertram Haskins

2006

129

Appendix A

A.10. Capture Still Images

This form allows the user to capture still images from either a video file or a

camera (device) feed.

The most important components of the form are as follows:

A.10.1 ToolBar thType

This ToolBar allows the user to select which Mode processing should be

performed in.

A.10.2 TabPage tabCamVideo
This TabPage displays the Video and Camera Modes.

A.10.3 PictureBoxes

Fifteen PictureBoxes display the images captured from the video file or the
camera (device) feed.

A.10.4 Panel pnlICamVideo

This Panel displays the video file or camera (device) feed.

Bertram Haskins 2006 130

Appendix A

A.10.5 Buttons

Table A - 20 Capture Still Images buttons

This Button takes image captures until all of the
cmdBurst _)
PictureBoxes are filled.

cmdCapture This Button takes a single image capture.

cmdRemoveAll | This Button clears all of the PictureBoxes.

This Button saves all the images in the PictureBoxes to
cmdSaveAll

permanent storage.

A.10.6 Menultems

Table A - 21 Capture Still Images menu items

_ This Menultem removes the currently selected PictureBox’s
miRemoveO |
image.

. This Menultem saves the currently selected PictureBox’s image
miSaveAsO _)
to permanent storage and removes it from the PictureBox.

A.10.7 Procedural flow diagram

Iain Interface

v

v v

Yideo Mode Camera Mode

[] []

Select Wideo Select Device

[I
[]

Capture

[
L] v

Save Remove

Figure A - 10 Capture Still Images procedural flow diagram

Bertram Haskins 2006 131

Appendix A

A.11 Capture Video

This form allows the user to capture a video from a camera (device) feed.

The form depends on an external .dll file. The code in this .dll file is public
domain [66], but was somewhat altered by myself before compilation, so that it
fits in with the rest of the project. Because the form being displayed does not
appear in the project by itself, the components on it do not fall within the limits of

this study.

A.11.1 Procedural flow diagram

S P

Select Device

v

Capture

Acceptsble

Save

Figure A - 11 Create Video procedural flow diagram

Bertram Haskins 2006 132

Appendix A

A.12 Adjust Brightness

This form allows the user to adjust the brightness levels of the image to be

processed in Single Image Mode.

The most important components of the form are as follows:
A.12.1 PictureBoxes

A.12.1.1 picOriginal

This PictureBox displays the image before adjustment.

A.12.1.2 picPreview

This PictureBox displays the image after adjustment.

A.12.2 TrackBar scrollBrightness

This TrackBar allows the user to change the brightness levels.

A.12.3 Label Iblvalue

This Label displays the value of the TrackBar position.

A.12.4 Buttons
Table A - 22 Adjust Brightness buttons

This Button carries the brightness level changes over to the
cmdApply . .
Single Image Mode image.

cmdCancel | This Button cancels any brightness level changes.

Bertram Haskins 2006 133

Appendix A

A.12.5 Procedural flow diagram

i i i Perfarm i
—H: Lpdate Model i i Recognition :'
[]
L]
Adjust
Brightness
Lewvel
I
v L4
Apply Cancel
| I

Figure A - 12 Adjust Brightness procedural flow diagram

Bertram Haskins 2006 134

Appendix A

A.13 Adjust Contrast

This form allows the user to adjust the contrast levels of the image to be

processed in Single Image Mode.

The most important components of the form are as follows:
A.13 PictureBoxes

A.13.1.1 picOriginal

This PictureBox displays the image before adjustment.

A.13.1.2 picPreview
This PictureBox displays the image after adjustment.

A.13.2 TrackBar scrollContrast

This TrackBar allows the user to change the contrast levels.

A.13.3 Label Iblvalue

This Label displays the value of the TrackBar position.

A.13.4 Buttons

Table A - 23 Adjust Contrast buttons

This Button carries the contrast level changes over to the
cmdApply) _
Single Image Mode image.

cmdCancel | This Button cancels any contrast level changes.

Bertram Haskins 2006 135

Appendix A

A.13.5 Procedural flow diagram

i Perfarm i
' Hecognition :'
i

i i

i I

™
R R
"""" []
v
Adjust
Contrast Level
I
v v
Apply Cancel
]]

Figure A - 13 Adjust Contrast procedural flow diagram

Bertram Haskins

2006

136

Appendix A

A.14 Edge Detection Agent

This agent is responsible for finding the edges on the image being processed.

A.14.1 Procedural flow diagram

P e

P e

Resource
Available

¢ Yes

Load 3x3 Pixel

hlatrix

I

i Perform i
' Recognition |
i J
_______ e
¥
Wy'sit For
~ Resources
Find pixel
s median value
¥
Compare
median to
threshold
¥
Apply changes
_______ L S
i Perform !
' Recognition |
i i
i i
i i

Figure A - 14 Edge Detection Agent procedural flow diagram

Bertram Haskins

2006

137

Appendix A

A.15 Invert Colours Agent

The image returned from the Edge Detection Agent consists of a dark-coloured

background and the edges indicated in their original bright colours. This agent

makes the background light and the edges dark.

A.15.1 Procedural flow diagram

I I i I
! ! ! Perfarm !
' Lpdate Model | ' Hecognition |
1 i i i
i I i I
I | i I

Wy'ait For
Fesources

v

Fesource

Available Load byte

¥
Find byte
inverse

v

Apply changes

! ! i |
! ! ! Ferfarm !
! Update Maodel | ' Recognition |
| ! i i
| | i i
[| | i

e e e o e e e e e e e e e e

Figure A - 15 Invert Colours Agent procedural flow diagram

Bertram Haskins 2006

138

Appendix A

A.16 To Binary Agent

The image returned from the Invert Colours Agent consists of a light background

and the edges indicated in darker colours. This agent makes the light colours of

the background white and the darker colours of the edges black.

A.16.1 Procedural flow diagram

i Ferform i
' Recognition |
i i
I i
i i

Wait for
Resources

Fesource

Awailable Load Byte

v

Add byte RGE
values and
divide by 3

v

Compare
value to
threshold

v

Apply changes

i Ferfarm i
i Recognition |
i i
I |
i i

Figure A - 16 To Binary Agent procedural flow diagram

Bertram Haskins 2006

139

Appendix A

A.17 Perimeter Agent

The image returned from the To Binary Agent consists of a white background

and the edges indicated in black. This agent finds a single pixel on the outside

edge of an object and then traces the outline of the object until the original pixel

is found again.

A.17.1 Procedural flow diagram

Fesource
Available

Find first pixel

i i i Ferform i
! Update Model | ! Hecognition |
| | | !
_______ i— i R
¥
YWeait For
Fesources
Trace and
| draw outline
(perimeter)
¥
Yes
Calculate area
¥
Calculate
bounding box
I
_______ S— I S
i ! i Perform !
! Update Model | ! Hecognition |
i i i i
i i i i
i i i i

e e e e e e e

e e e e

Figure A - 17 Perimeter Agent procedural flow diagram

Bertram Haskins

2006

140

Appendix A

A.18 Edge

Graph Agent

The image returned from the To Binary Agent consists of a white background

and the edges indicated in black. This agent runs through the middle of the

object, counting the number of edges.

A.18.1 Proced

ural flow diagram

Fesource
Available

i Wes

i Perform i
! Hecognition |
1
¥
Wait For
Resources
Create
GraphString
v
Draw
EdyeGraph
with it
I
_______ \ S I S
i i Ferform i
' ' Recognition |
i i i
i i i
i i i

Figure A - 18 Edge Graph Agent procedural flow diagram

Bertram Haskins

2006

141

Appendix A

A.19 Remove Background Class

This class sets any pixels outside the bounding box to white.

A.19.1 Procedural flow diagram

Figure A - 19 Remove Background Class procedural flow diagram

white

S P

Bertram Haskins

2006

142

Appendix A

A.20 Overlay Class

This class overlays the perimeter and the edges unto the original image.

A.20.1 Procedural flow diagram

Figure A - 20 Overlay Class procedural flow diagram

Greyscale
Image

¥

Overlay edges

¥

Cverlay
autline
(perimeter)

Bertram Haskins

2006

143

Appendix C

Appendix C
C. RECMASTER ACCURACY TESTS

This appendix consists of preliminary tests performed using the RecMaster
programme on different shaped objects. These tests were conducted to serve as
a frame of reference as to prove the accuracy of the programme in performing

recognition, by first building up a model and then testing images against it.

C.1 Test purpose

The test performed in this section was done by creating models of four different
shaped objects and then testing the model against these shapes. The only
purpose of this test is to determine the accuracy of the RecMaster programme’s
recognition process. By proving that the programme delivers constant results no
matter what the sample size, it enables the sample sizes used in Chapter 4 to be

of a smaller size.

C.2 Test Description

In order to perform this test, four shapes were selected to be used in the
recognition process. These shapes, along with the Figures in which their
examples appear, are listed in Table C — 1.

Table C - 1 Test shapes

1 Cross Figure C -1
2 Triangular Figure C - 2
3 Rectangular Figure C - 3
4 Circular Figure C - 4

Bertram Haskins 2006 144

Appendix C

A model built up for each of these shapes using 20 representative images of
each. The test was then performed by using the four models to perform

recognition on the following batch of images:

10 images containing cross shapes.

20 images containing triangular shapes.
50 images containing rectangular shapes.
100 images containing circular shapes.

a kr 0N e

20 empty images to act as a control.

C.3 Test results

The results of performing recognition on the batch of images are shown in Table
c-2

Table C - 2 Recognition results

Cross 10 8 0 80 %
Triangle 20 17 0 85 %
Rectangle 50 43 0 86 %
Circle 100 77 0 77 %

The results, in Table C — 2, clearly indicate that the RecMaster programme
consistently has a a higher than 75 % accuracy rate no matter what the sample
size. The empty images, which were used as a control, did not trigger any
object’s to be found. It is worth noting that many of the images on which positive
matches were not found, were not the result of no object being found, but rather
the result of the model not being well-enough trained. Table C — 3 gives a listing
of the images on which objects were found, but on which no matches were

made. Included in Table C — 3 is the amount of objects in which the programme

Bertram Haskins 2006 145

Appendix C

actually extracted the right shape, but the model was not robust enough to

recognize the object’s features.

Table C - 3 Model deficiencies

Cross 2 0 80%
Triangle 3 0 85%
Rectangle 7 4 94%
Circle 23 17 94%

As the results of Table C — 3 indicate, with a well-trained model, the accuracy of

the RecMaster programme never dips below 80%.

The results of these tests prove that the RecMaster programme accurately
performs recognition, no matter how large or small the sample size. In a
controlled environment, the main factor influencing recognition is the robustness
of the model that is being used. The development of the model is entirely up to
the user and rests on his or her decision to make use of quality images and to
use them in sufficient quantity so as to have a broad enough range of values to
meet the model criteria. The quantity of images used will vary from model type to

model type.

Bertram Haskins 2006 146

AAENAUIM B ...ttt aaaees 8

1.1 Splash Screen/ Startup Form (frmSplash)..................ccooiiiiiiinnn, 9
1.1.1 System References..............ccooooieiiieiiiece e 9
1.1.2 Form Items and Global Variables....................cccccoooiiiiiiii, 9
1.1.3 Form Initialization......................cccoooi i, 10
1.1.4 Program Start Point ..., 10
1.1.5 Form Designer Generated Code.................cccovevievivieniiienieeee, 10
1.1.6 Splash Screen Display Timer.................cccoooiiiiiiviiicceeeee, 11

1.2 Main Program Interface (frmMain)cccooviiiiiiiiiii 12
1.2.1 System References.............ccooovveieiiiiccieee e 12
1.2.2 Form Items and Global Variables.....................ccccccoovviiiiiic 12
1.2.3 Form Initialization......................cccoooi i 13
1.2.4 FOrm ClOSINGcoiiiiiiiiieiiceeee ettt 13
1.2.5 Form Designer Generated Code.................cccoovevieviiiieiiiecieeee, 14
1.26 Main toolbar...............c.oooiii 14
1.2.7 Start the Create New Model process.............cccoevviviiiiiciiccieenn, 15
1.2.8 Start the View Model processccccccooeeveeiieceieiecieeeeeee, 16
1.2.9 Start the Delete Model processcccooeeveviiiicicciceeee 17
1.2.10 Start the Update Model process...............c.cooeevieiiviecicieceeee 18
1.2.12 Start the Create Still Image process.............cccccevveiienieieennne. 20
1.2.13 Start the Create Video pProcesscccceevvveveieiiiceccecee, 20
1.2.14 Start the Set Conveyer Dimensions processccc.......... 21
1.2.15 Show the About BOX.............ccoooiiiiiiiieeee e 21
1.2.16 Exit the Program...............cccoooooiiiiiiieee e 21

1.3 Create a New Model (frmNewModel)cooooeiiiiiiii 22
1.3.1 System References................ccooveiiiiiiiiice 22
1.3.2 Form Items and Global Variables...................ccccooviniiriiiinicce. 22
1.3.3 Form Initialization.....................ccccooiiiinii e 23
1.3.4 Form Designer Generated Code...................cccoieiiiieiiciccecee 24
1.3.5Create BUutton ... 24
1.3.6 Cancel Button................coooiiiiii e 25

1.4 Delete an Existing Model (frmDeleteModel)ccooooviiena. 26
1.4.1 System References................cccooveioiiiiicicee 26
1.4.2 Form Items and Global Variables....................cccooviviiiiiiinicee. 26
1.4.3 Form Initialization.....................ccocooiiiinii e 27
1.4.4 Form Designer Generated Code...................cccoieiiiiciiciccecee 27
1.4.5Delete BUttON.............c.oooiiiiie e 28
1.4.6 Cancel Button ..o 29

1.5 Load an Existing Model (frmLoadModel)..................cccooiiiiiiiin 30
1.5.1 System References................cccoooveiiioiiiicee 30
1.5.2 Form Items and Global Variables....................cccoovniieiiiiiicie. 30
1.5.3 Form Initialization.....................c.ocooiiiiniii e, 31
1.5.4 Form Designer Generated Code...................cccoieiiiiciciccice 33
1.5.5L0ad BUtton ..o 33
1.5.6 Cancel Button................ccoooiiiiie e 34

1.5.7 Clicked on Available Models List bOX...........c.cccoovveioiooeieiiieeee 34

1.5.8 Clicked on Selected Models List bOX............coooovviiioiiiieeeee 35

1.5.9 Add BUtON ... 36
1.5.10 Clear Button.................ccooiiiiiiie e 36
1.6 Update a Model (frmUpdateModel)ccooieieiiiiiiie 37
1.6.1 System References.................cccooveiiiiiioicee 37
1.6.2 Form Items and Global Variables....................cccooiiiieiiiinie. 37
1.6.3 Form Initialization.....................ccocooiiiiiii e, 45
1.6.4 Form Designer Generated Code....................cccoveiivieciciccece 49
1.6.5 Mouse Down on Single File Mode Image...........c..c.cccoevvevernennnnne. 50
1.6.6 Mouse Up on Single File Mode Imagec.cccooveriiinieieennne. 51
1.6.7 Mouse Move on Single File Mode Imagecc.coeeieinnnn. 53
1.6.8 Draw Rectangle on Single File Mode Imagecco....... 53
1.6.9 Override Mouse FUnctionsccccccooeiiieieiccic e, 54
1.6.10 Update toolbarccoooiiiiiceeeee e 54
1.6 1T RESEt PAQe ... 55
1.6.12 Select Image for Still Image Mode.................cccoovivieiiiiieee, 57
1.6.13 Select Image for Batch Image Modeccoooveiiiiienennnn. 58
1.6.14 Single Image AreaModeoocooiiiiiiiiiiceeee 62
1.6.15 Single Image Whole Image Mode...................ccoooovivieiiiiiici. 65
1.6.16 BatchImage Modeccoooiiiiiiiiiee e 68
1.6.17 Batch QUEUE ... 75
1.6.18 Batch QUEUE 2...............c.ooviiieeee e 79
1.6.19 Batch QUEUE 3.............co e 82
1.6.20 Batch QUEUE 4..............c.ooeeee s 86
1.6.21 Update the Model (Single Image Mode) ... 90
1.6.22 Adjust Brightness ... 91
1.6.23 Adjust Contrast.................coooiiiiii e 92
1.6.24 Select Camera............ccooveiiiiiieceee s 92
1.6.25 Camera Play/Pause Button......................ccooeiiiiiiicic, 96
1.6.26 Select Cam/Video Modec.oocooieiiiiiiieceeeee e 96
1.6.27 Activate BUutton ... 97
1.6.28 Cam/Video Single Frame Modeccccoooeiiiieiiiccicee 99
1.6.29 Cam/VideoCapture timer.................c.ccoooieiiiiiiieeeee 101
1.6.30 SeleCt VIdeo..........ccoovioiiieicee e 103
1.6.31 Video Mute checkboX...............cccocieiiiiiiiiieeee 104
1.6.32 Video Position scrollbar......................cccoooiiiiiiiiii, 105
1.6.33 Video Volume scrollbar..................ccooviiiiiiiieeee 105
1.6.34 Video Stop Button...................ccooooiiiiiiie e 105
1.6.35 Video Play/Pause Buttoncccooooiiiiiiiii 106
1.6.36 VideOo timer.............oooiii e 106
1.6.37 PictureAdjustment toolbarccooooeiiiiiiiii 107
1.6.38 PictureProcess Buttoncccooooiiiiiiiic 108
1.6.39 FullResults Button......................ccooiiiii e, 108
1.6.40 Minimal Results Buttoncccoooiiiii 109
1.6.41 BatchActivate Button.....................coooooiiiiii 109

1.6.42 Accept Buttoncoooiii 109

1.6.43 AcceptBatch Button ..., 110

1.6.44 AcceptCamVideo Button.....................ccoooiiiiiiiii 110
1.6.45 Next BUtON ... 111
1.6.46 Previous Button...................cooiiiiiii 112
1.6.47 Queue List Manipulators...................ccccooeivviiiiciiiineiecee 112
1.6.48 Context Menu OptioNsccoeeiiiiiiiiieeecee e 116
1.7 View a Model’s Measurements (frmViewModel).................c..cccoo..... 123
1.7.1 System References..............c.coooveieiciiciece e 123
1.7.2 Form Items and Global Variables...................c.cccooiiviniiniiiis 123
1.7.3 Form Initialization.....................c.ooooiiiiiiii e 124
1.7.4 Form Designer Generated Code....................cccooveviiviiiiciicicce 127
175 NexXt BUttOn ... 127
1.7.6 Previous BUutton ... 128
177 OKBULON ... 129
1.8 Set Conveyer Dimensions (frmDimensions).....................c.cccooe. 130
1.8.1 System References.............ccoooovieiieiicice e 130
1.8.2 Form Items and Global Variables...................cccccooinviniinini 130
1.8.3 Form Initialization.....................ccooooiii 131
1.8.4 Form Designer Generated Code....................cccooovevieiiiiiccicicce 133
1.8.5Select Cameraocoooiiiiiie e 134
1.8.6 Update Button ... 137
1.8.7 X-Axis text changed.....................oooi i, 140
1.8.8 Y-Axis text changed.................c..ccooririiiiiiiee e 140
1.9 Perform Recognition (frmRecognition)c..ccoooiiiiiiii 141
1.9.1 System References................cccooveiieioiiieeeece e 141
1.9.2 Form Items and Global Variables....................cccocooinininininrnnnen, 141
1.9.3 Form Initialization.....................c.ooooiiiiiiie 146
1.9.4 FOrm ClOSINGcccooiiiiiiiiiiee e 151
1.9.5 Mouse Down on Single File Mode image...................ccccceovein. 151
1.9.6 Mouse Up on Single File Mode Imageccccooevvvieviniinnennnn 151
1.9.7 Mouse Move on Single File Mode Imageccccoeoiviinnnnns 154
1.9.8 Draw Rectangle on Single File Mode image 154
1.9.9 Override Mouse FUNCLIONSccoocoiiiiiiiiie, 155
1.9.10 Form Designer Generated Codec..cccovvevieviiniieiicieceee 155
1.9.11 Stilllmage toolbar..................coo o 156
1912 ReSet PaQge........ooeoie s 157
1.9.13 Select Image for Single Image Modecocoovvieiniinnennnn 158
1.9.14 Select Video for Video Mode.................ccoeoiiiiiiiiiiicecee 159
1.9.15 Single Image Whole Image Mode....................ccoeoviiiiiiiiiiiien, 161
1.9.16 Single Image AreaModeoooooiiiiiiiiieeceeeeee 166
1.9.17 Match Models to Measurements..................cccocevieviivieiicieceens 172
1.9.18 Adjust Contrast..............cooiiiiii 177
1.9.19 Adjust Contrast.................ocooooiiiiii 177
1.9.20 Video Play/Pause Buttoncccooooeiiiiiiiiiieee 177
1.9.21 Video Stop Button...................ccooooiiiiiiie e 178

1.9.22 VIA@O MO ... 178

1.9.23 Video Position SCrollDar...............eeeeeeeeeeeeeeeeeee e 179

1.9.24 Video Volume scrollbarc...ccooooiiiiiiiiiieeecceee 180
1.9.25 Mute checCkboOX...............coooioiiiiiiiee e 180
1.9.26 Select Camera................coooviiiiiiceeeeeee e 181
1.9.27 Camera PlayPause Button.......................cccooiiiiiiiec 184
1.9.28 RecognitionPicAdjustments toolbar.....................ccooeiininnn 185
1.9.29 PictureProcess Button ... 185
1.9.30 CamVideoType toolbarcccocoviiiiiiiiiieccecee 186
1.9.31 Activate Button ... 186
1.9.32 Perform Recogniton on Framec.ccocooviviiiiiniencciceee 189
1.9.33 ContinuousMode timercoooiiiiiiiic 196
1.9.34 Context Menu Options ..o 197
1.9.35 External Classes.............c.ooovviiiiiiiiciiecceceeee e 197
1.9.36 SIrUCKUIeS ... 198
1.10 Capture Still Images (frmCreateStills)cccooooeviiiii, 199
1.10.1 System References...............ccooovevieieiiiicceee e 199
1.10.2 Form Items and Global Variablescc..ccocooviiviiiiienn. 199
1.10.3 Form Initializationc.ooooiiiiii 202
1.10.4 Form Designer Generated Codecc.occoeviiiiiiiiiiicceen, 203
1.10.5 Type toolbar clicked..................ccoocooiiiiiiiiee e 203
1.10.6 RESEE PAQe ... 204
1.10.7 Video Selection.................ooooiiiiiiiieece e 205
1.10.8 Camera Selectioncc.oooovieiiiiiiiiie e 206
1.10.9 Camera Play/Pause Button....................cccccoooiiiiiiiiinceeee 210
1.10.10 Video Play/Pause Buttonc.coocoooiiiiiiiiiccce 210
1.10.11 Video Stop Button ... 211
1.10.12 Video Mute checkboXc.oooviiiiiiiiie 211
1.10.13 Video Position scrollbar........................cccoooieiiiiiiii 212
1.10.14 Video Volume scrollbar....................cccoooiiiiiiiie e, 212
1.10. A5 VIideO TIimMEI ... 212
1.10.16 Capture Buttonccoooiiiiiece e 214
11047 Burst Button ... 216
1.10.18 Save ANl Button................cooiiii e 218
1.10.19 Remove Al BUutton................c.ooooiiiiiie e 219
1.10.20 Save As Context Menu option..................c.ccooiiiiieiiiiiciec, 220
1.10.21 Remove Context Menu option...................ccocoeviiiiiiciiciicee 221
1.10.22 Show in Own Window Context Menu option........................... 227
1.10.23 Context Menu Itemscccoooiiiiiiiiieeeeeeee e 229
1.10.24 External ClasSescccooviiiiiiiieiiceeeeeeeeeeee e 237
1.11 Create Video from CameraFeedcooooiiiiiiiiic, 238
1.12 Change Brightness Levels (frmBrightness)...............ccccccocoevenn 239
1.12.1 System References...............cccooovoiieieiiieceee e 239
1.12.2 Form Items and Global Variablesc..ccooeviiinn. 239
1.12.3 Form Initializationoooooiiiie 240
1.12.4 Form Designer Generated Codec.ccccoovevieviinieiiciecee 240

1125 Apply Button ... 241

1.12.6 CancCel BULONo, 241

1.12.7 Change the Brightness Levelcccccooviniiiiiinic 241
1.12.8 Brightness Scrollbarccoocoooiiiiiee 243
1.13 Changing Contrast Levels (frmContrast)...................ccccooveiinnnn. 244
1.13.1 System References...............cc.ocoooieieiiiecicecee e 244
1.13.2 Form Items and Global Variablesccocooviniiiiiinnn 244
1.13.3 Form Initializationc...ccooiiiiiiiie 245
1.13.4 Form Designer Generated Codecc.ocoeviiiiiiciiciccee, 245
TA3S APPly BUtton ... 246
1.13.6 Cancel BUttoNccoooiiiee e 246
1.13.7 Change the Contrast Levelccooiiiiiieiiic 246
1.13.8 Contrast Scrollbar...................oooooiiii 249
1.14 Picture Display (frmPicDisplay)...........c.cccoviviiiiniieieeeecee, 251
1.14.1 System References...............ccooovoiieieiiieceeeee e 251
1.14.2 Form Items and Global Variablesc.ccocooviiiiin. 251
1.14.3 Form Initializationccooeiiiiii e 251
1.14.4 Form Designer Generated Codec.ccccovveviivienienicieceee 252
1145 Click ONIMAQeoooooniiie e 252
1.14.6 SAVE IMAQGE..........ooiieieee e 253
2. C0dE PAGES ... e 254
2.1 Main Edge Detector (MainEdgeDetectionAgent)...............c.ccccene. 254
2.1.1 System References...............cccooooeviiiiiiicicececeeeee e 254
2.1.2 Global Variablescccocoiiiiiiiiecce e 254
2.1.3 CONSLIUCEONooiiiie e 254
2.1.5 Edge Detection Subroutinecccooiiiiii 255
2.2 Invert Colours (InvertColoursAgent)..............cccccoooieiiiiiicicieceeee, 259
2.2.1 System References. ... 259
2.2.2 Global Variablescccocoviiiiiiieee e 259
2.2.3 CONStIUCEON..........c.oiiiii e 259
2.2.4 Wait fOr RESOUICEScoooiiiiieiiciecieeeeee et 260
2.2.5 Invert Colours Subroutinecccocoviiiiiiiiieceee 260
2.3 Convert Image to Binary (ToBinaryAgent)ccccooevveeieinennn. 262
2.3.1 System References...............cccooooevieiiiicicceeeee e 262
2.3.2 Global Variablesc.oooviiiiiiiee e 262
2.3.3 CONSLIUCEONcoiiiiiic s 262
2.3.4 Wait fOr RESOUICEScoooviiiiiiiciceeeeeee e 263
2.3.3 To Binary Subroutinec.ocooiiiiiiiee e 263
2.4 Find Perimeter (PerimeterAgent).............ccccooooviiieiiiieniceceeeee 265
2.4.1 System References...............cccocoeviiiiiiciicieceeee e 265
2.4.2 Global Variablesc.ccooiiiiiiceee e 265
2.4.3 CoNSLIUCEONooiiiiiicce e 266
2.4.5Thread FUNCLIONSccooiiiiiicce e 284
246 Return piclnUSEeccoiiiii e 286
247 Return Perimeter ... 286
248 RetUrN Area..........cc.ooviieieieeeeeeee e 286

2,49 Return XDiStancCe ... 287

2410 Return YDIStanCe ..o 287

2411 Return LOWEeStXoooviiiiiieeeeee s 287
2412 Return LOWESLEYc.ooiiiiiiieceeeee s 287
2413 Return HighestX ... 287
2414 Return HighestY ..o 288
2.5 Create EdgeGraph (EdgeGraphAgent)cccoooovvivieiicienieieee, 289
2.5.1 System References............c.ccccovveiiiiiieiicceee 289
2.5.2 Global Variablesc.ccooieiiiiieee e 289
2.5.3 CONSLIUCEONcoiiiiieiece s 289
2.5.4 Wait fOr RESOUICEScooiiiiieiiciieeeeeeee e 290
2.5.5 Create Edge Graph Subroutineccooooiiiiiiii 290
256 Return Graphs ..o 292
257 ReturN Graph ..o 292
2.5.8 Return EdgeCount.................ccooiiiiiiieee e 292
2.6 Remove Background (RemoveOutsideBackground)....................... 293
2.6.1 System References............c.ccccovveieiiiiiiice e 293
2.6.2 Global Variablescccccooiiiiiiiec e 293
2.6.3 CONSLIUCEON.............oiiiie e 293
2.6.4 Return piclnUSecoooiiii e 294
2.7 Trace Perimeter of Image (Overlay)............ccccocovveiiieniciecieeeee 295
2.7.1 System References. ... 295
2.7.2 Global Variablesc.cccooiiiiiiieeeee e 295
2.7.3 CONSLIUCEONcoiiiiiiiece e 295
274 Return bmpEdgesScoooviiiiiei 298
2. 7.5 Return bmpOutline..................coooooiiiiiii 298
2.7.6 ReturnbmpBoth ... 298
2.7.7 Return bmpBothWHhite ..., 298
2.8 Agent Communication Blackboard (Whiteboard).............................. 299
2.8.1 System References...............cccooooeioiiiiiiiciccecece e 299
2.8.2 Global Variablescccocoovieiiiiice e 299
2.8.3 CONSLIUCEONcoiiiiiiee e 299
2.8.4 Increment Subroutineccooiiii 300
2.8.5 Restart Subroutine.....................coooooiiiiiiii 300

2.8.6 ReleaseBitmapData Subroutinec..ocoooiiiiiiiie, 300

Addendum B

Source Code

This section contains all of the code generated for the RecMaster project. It is

split up into 2 sections:

e Forms

e Code Pages

The Forms section contains all of the source code for the forms in the project.
The Form Component Initialization section has however been left out. The
reason for this is that this section of code is mostly compiler generated with
minimal changes to accommodate some of my own function calls. Because of
this, it does not justify adding this code to the Addendum as it would almost

double the size of it.

The Code Section consists of the Agents and other classes, written to

accommodate the image acquisition process.

1. Forms

1.1 Splash Screen/ Startup Form (frmSplash)

This form is displayed at program startup. It functions as a means of telling the
user which program is being executed as well as who the author of the program
is. The screen will be displayed for about 2 seconds before loading the

program’s main interface screen.

1.1.1 System References

/I Declaration of References
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;

1.1.2 Form Items and Global Variables

namespace AntsNest

{

/Il <summary>

/Il Summary description for frmSplash.

/Il </[summary>

public class frmSplash : System.Windows.Forms.Form

{
private System.Windows.Forms.Timer tmSplash;
private System.ComponentModel.IContainer components;
private System.Windows.Forms.GroupBox groupBox1;
private System.Windows.Forms.Label label2;
private System.Windows.Forms.PictureBox pictureBox1;
private System.Windows.Forms.Label label1;
/I Integer variable used to keep track of how long
/I the form has been displayed.
private int counter;

1.1.3 Form Initialization

/I Startup subroutine for frmSplash.
public frmSplash()

{
InitializeComponent();
/I Initializes the counter and starts the timer.
counter = 0;
tmSplash.Enabled = true;
}

1.1.4 Program Start Point

/Il <summary>

/Il The main entry point for the application.
/Il </[summary>

[STAThread]

static void Main()

/l Application start point
Application.Run(new frmSplash());

}

1.1.5 Form Designer Generated Code

/Il <summary>

/Il Clean up any resources being used.

/Il </[summary>

protected override void Dispose(bool disposing)

{
if(disposing)

{
if(components != null)
{
components.Dispose();
}
}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

/Il <summary>

/Il Required method for Designer support - do not modify
/Il the contents of this method with the code editor.

/Il </[summary>

private void InitializeComponent()

{
}

#endregion

// Component code omitted.

1.1.6 Splash Screen Display Timer

/I This subroutine is called by the timer whenever its time interval
/I has been reached (100)
private void tmSplash_Tick(object sender, System.EventArgs e)
{
/I Increments the counter and tests whether it has reached 20.
/I When 20 is reached frmMain is loaded and frmSplash is hidden.
counter++;
if (counter == 20)
{
tmSplash.Enabled = false;
frmMain MainForm = new frmMain();
MainForm.Show();
this.Hide();

[N)

1.2 Main Program Interface (frmMain)

This form functions as the program’s main interface. All of the available features
of the program are available for selection through this form. It consists of a main
menu as well as a toolbar, which will present the user with all available options.
All program features, except for dialog boxes, will be loaded as MDI children to

this form.

1.2.1 System References

/I Declaration of References
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

using System.IO;

using System.Diagnostics;

1.2.2 Form Items and Global Variables

namespace AntsNest

{

/Il <summary>

/Il Summary description for frmMain.

/Il </[summary>

public class frmMain : System.Windows.Forms.Form

{
private System.Windows.Forms.Menultem mnuFile;
private System.Windows.Forms.Menultem mnuTraining;
private System.Windows.Forms.Menultem mnuUpdateModel;
private System.Windows.Forms.Menultem mnulmageRecognition;
private System.Windows.Forms.Menultem mnuNewModel;
private System.Windows.Forms.Menultem mnuExit;
private System.ComponentModel.IContainer components;
public System.Windows.Forms.ProgressBar pbProgress;
private System.Windows.Forms.Panel pniMain;
private System.Windows.Forms.Menultem mnuViewModel;
public System.Windows.Forms.ImageList ilButtons;
private System.Windows.Forms.ToolBarButton tbbNewModel;
private System.Windows.Forms.ToolBarButton tbbUpdateModel,;
private System.Windows.Forms.ToolBarButton tbbRecognition;
private System.Windows.Forms.ToolBar tbMain;

private System.Windows.Forms.ToolBarButton tbbViewModel;

private System.Windows.Forms.ToolBarButton tbbDeleteModel;

private System.Windows.Forms.MainMenu MainMenu;

private System.Windows.Forms.Menultem mnuDeleteModel;

private System.Windows.Forms.Menultem menultem1;

private System.Windows.Forms.Menultem mnuCreateStill;

private System.Windows.Forms.Menultem mnuCreateVideo;

private System.Windows.Forms.ToolBarButton Separator;

private System.Windows.Forms.ToolBarButton tbbCreateSitills;

private System.Windows.Forms.ToolBarButton tbbCreateVideo;

private System.Windows.Forms.Menultem menultem2;

private System.Windows.Forms.Menultem menultem3;

private System.Windows.Forms.Menultem miAbout;

private System.Windows.Forms.Menultem menultem5;

private System.Windows.Forms.ToolBarButton Separator2;

private System.Windows.Forms.ToolBarButton
tobConveyerMeasurments;

private System.Windows.Forms.Menultem mnuDimensions;

/I String variable used to pass the location of the Models
/I directory to the rest of the program
private string RootDirectory;

1.2.3 Form Initialization

/| Startup subroutine for frmMain.
public frmMain()
{
InitializeComponent();
/I Makes the progress bar invisible.
pbProgress.Visible = false;
/I Sets the value of RootDirectory to the path of the Models
/I directory in the directory where the executable file of
/I the application resides.
RootDirectory = Application.StartupPath + "\\Models";

}
1.2.4 Form Closing

/I This subroutine is called when the user clicks on the "X" button in the

/I control box in the upper right-hand corner of the form.

private void frmMain_Closing(object sender,
System.ComponentModel.CancelEventArgs e)

{

/I EXxit the program.
Application.Exit();

}

1.2.5 Form Designer Generated Code

/Il <summary>

/Il Clean up any resources being used.

/Il </[summary>

protected override void Dispose(bool disposing)

{
if(disposing)
{
if (components != null)
{
components.Dispose();
}
}
base.Dispose(disposing);
}

#region Windows Form Designer generated code

/Il <summary>

/Il Required method for Designer support - do not modify
/Il the contents of this method with the code editor.

/Il </[summary>

private void InitializeComponent()

{

/l Component code omitted.
}
#endregion

1.2.6 Main toolbar

/I This subroutine functions as a switchboard to decide which button was

/I pressed on the main toolbar (tbMain).

private void tbMain_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)

{
switch (tbMain.Buttons.IndexOf(e.Button))
{
/I Called when the 'New Model button is clicked on the main
/| toolbar.
case 0: mnuNewModel_Click(sender,e);
break;

/| Called when the 'View Model’ button is clicked on the main
/| toolbar.

case 1: mnuViewModel_Click(sender,e);
break;
/I Called when the ’Delete Model’ button is clicked on the main
/I toolbar.
case 2: mnuDeleteModel_Click(sender,e);
break;
/| Called when the 'Update Model’ button is clicked on the main
/I toolbar.
case 3: mnuUpdateModel_Click(sender, e);
break;
/I Called when the 'Perform Recognition’ button is clicked on the
/I main toolbar.
case 4: mnulmageRecognition_Click(sender, e);

break;
/I Called when the 'Create Still Image’ button is clicked on the main
/I toolbar.
case 6: mnuCreateStill_Click(sender, e);
break;
/I Called when the ‘Create Video’ button is clicked on the main
/I toolbar.
case 7: mnuCreateVideo_Click(sender, e);
break;

/I Called when the 'Adjust conveyer belt dimensions’ button is
/I clicked on the main toolbar.
case 9: mnuDimensions_Click(sender, e);

break;

}

1.2.7 Start the Create New Model process

/I This subroutine is called when ’File -> New Model’ is

/I selected on the main menu (tbMain)or the 'New Model’

/I button is clicked on the main toolbar. It is used when the user

/I wants to create a new Recognition Model.

private void mnuNewModel_Click(object sender, System.EventArgs e)

/I Calls frmNewModel to start the New Model Creation process.
frmNewModel NewModel = new frmNewModel(this,pbProgress);
NewModel.ShowDialog();

1.2.8 Start the View Model process

/I This subroutine is called when °File -> View Model’ is

/I selected on the main menu (tbMain) or the View Model’

/I button is clicked on the main toolbar. It is used when the user

/I wants to see information about a specific model.

private void mnuViewModel_Click(object sender, System.EventArgs e)

{

// String array used to store the list of directories in the
// Models folder. Each Folder signifies a specific model.
string[] directorylist;

/I Checks whether the Models directory exists.

if (Directory.Exists(RootDirectory))

{

else

/I The Models directory exists.

/I Assigns the list of directories to the directorylist string array
directorylist = Directory.GetDirectories(RootDirectory);

/I Checks whether there are any existing models/directories in the
/I Models folder.

if (directorylist.Length == 0)

{
/I If there are no models/directories in the Models folder,
/I display this message.
MessageBox.Show("No Model files found", "Message",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
else
{
/I If there are models/directories in the Models folder,
/I call frmLoadModel.
frmLoadModel LoadModel = new
frmLoadModel(3,this,pbProgress);
LoadModel.ShowDialog();
}

/I The Models directory does not exist.

/I Creates the Models directory and displays a message that tells

/I the user that there are no models/directories currently in the

/I Models folder.

Directory.CreateDirectory(RootDirectory);

MessageBox.Show("No Model files found", "Message",
MessageBoxButtons.OK, MessageBoxIcon.Error);

1.2.9 Start the Delete Model process

/I This subroutine is called when °File -> Delete Model’ is

/I selected on the main menu (tbMain) or the View Model’

/I button is clicked on the main toolbar. It is used when the user

/I wants to delete a specific model.

private void mnuDeleteModel_Click(object sender, System.EventArgs e)

{

// String array used to store the list of directories in the
// Models folder. Each Folder signifies a specific model.
string[] directorylist;

/I Checks whether the Models directory exists.

if (Directory.Exists(RootDirectory))

{

else

/I The Models directory exists.
/I Assigns the list of directories to the directorylist string array
directorylist = Directory.GetDirectories(RootDirectory);

/I Checks whether there are any existing models/directories in the
/I Models folder.
if (directorylist.Length == 0)

{
/I If there are no models/directories in the Models folder,
/I display this message.
MessageBox.Show("No Model files found", "Message",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
else
{
/I If there are models/directories in the Models folder,
/I call frmDeleteModel.
frmDeleteModel DeleteModel = new frmDeleteModel();
DeleteModel.ShowDialog();
}

/I The Models directory does not exist.

/I Creates the Models directory and displays a message that tells

/I the user that there are no models/directories currently in the

/I Models folder.

Directory.CreateDirectory(RootDirectory);

MessageBox.Show("No Model files found", "Message",
MessageBoxButtons.OK, MessageBoxIcon.Error);

1.2.10 Start the Update Model process

/I This subroutine is called when "Training -> Update Model’ is

/I selected on the main menu (tbMain) or the 'Update Model’

/I button is clicked on the main toolbar. It is used when the user

/I wants to update an existing model with new information.

private void mnuUpdateModel_Click(object sender, System.EventArgs e)

{

// String array used to store the list of directories in the
// Models folder. Each Folder signifies a specific model.
string[] directorylist;

/I Checks whether the Models directory exists.

if (Directory.Exists(RootDirectory))

{
/I The Models directory exists.
/I Assigns the list of directories to the directorylist string array.
directorylist = Directory.GetDirectories(RootDirectory);
/I Checks whether there are any existing models/directories in the
/I Models folder.
if (directorylist.Length == 0)
{
/I If there are no models/directories in the Models folder, display
/I this message.
MessageBox.Show("No Model files found", "Message",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
else
{
/I If there are models/directories in the Models folder,
/I call frmLoadModel.
frmLoadModel LoadModel = new frmLoadModel(1,this,pbProgress);
LoadModel.ShowDialog();
}
}
else
{
/I The Models directory does not exist.
/I Creates the Models directory and displays a message that tells
/I the user that there are no models/directories currently in the
/I Models folder.
Directory.CreateDirectory(RootDirectory);
MessageBox.Show("No Model files found", "Message",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}

1.2.11 Start the Perform Recognition process

/I This subroutine is called when 'Perform Recognition’ is

/I selected on the main menu (tbMain) or the 'Perform Recognition’

/I button is clicked on the main toolbar. It is used when the user wants to

/I perform recognition, using one of the previously created models.

private void mnulmageRecognition_Click(object sender, System.EventArgs e)

{

// String array used to store the list of directories in the
// Models folder. Each Folder signifies a specific model.
string[] directorylist;

/I Checks whether the Models directory exists.

if (Directory.Exists(RootDirectory))

{

else

/I The Models directory exists.

/I Assigns the list of directories to the directorylist string array
directorylist = Directory.GetDirectories(RootDirectory);

/I Checks whether there are any existing models/directories in the
/I Models folder.

if (directorylist.Length == 0)

{
/I If there are no models/directories in the Models folder,
/I display this message.
MessageBox.Show("No Model files found", "Message",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
else
{
/I If there are models/directories in the Models folder,
/I call frmLoadModel.
frmLoadModel LoadModel = new
frmLoadModel(2,this,pbProgress);
LoadModel.ShowDialog();
}

/I The Models directory does not exist.

/I Creates the Models directory and displays a message that tells

/I the user that there are no models/directories currently in the

/I Models folder.

Directory.CreateDirectory(RootDirectory);

MessageBox.Show("No Model files found", "Message",
MessageBoxButtons.OK, MessageBoxIcon.Error);

1.2.12 Start the Create Still Image process

/I This subroutine is called when "Training -> Create Still Image’ is
/I selected on the main menu (tbMain) or the Create Still Image’
/I button is clicked on the main toolbar. It is used when the user
/I wants to capture still images from a video file or camera feed.
private void mnuCreateStill_Click(object sender, System.EventArgs e)
{
/I Calls frmCreateStills.
frmCreateStills CreateStills = new frmCreateStills();
CreateStills.MdiParent = this;
CreateStills.Show();

}
1.2.13 Start the Create Video process

/I This subroutine is called when "Training -> Create Video’ is

/I selected on the main menu (tbMain) or the 'Create Video from Camera Feed’

/I button is clicked on the main toolbar. It is used when the user

/I wants to record a video from the camera feed.

private void mnuCreateVideo_Click(object sender, System.EventArgs e)

{
/I Changes the cursor to an hourglass; to indicate processing.
Cursor.Current = Cursors.WaitCursor;
/I Loads the CaptureNET .dll file’s MainForm. The program sometimes
/I has issues with connected devices. Catching the exception ensures
/I that the program doesn’t bomb out unexpectedly, but rather displays an
/I appropriate message.

try
{

CaptureNET.MainForm MainForm = new CaptureNET.MainForm();

MainForm.MdiParent = this;

MainForm.Show();

}
catch(Exception exception)
{

MessageBox.Show("An error was encountered while trying to load
one of the capture devices.","Message",
MessageBoxButtons.OK,MessageBoxIcon.Information);

}

/I Changes the cursor back to the normal arrow cursor. This indicates
/I that processing is completed.
Cursor.Current = Cursors.Arrow;

1.2.14 Start the Set Conveyer Dimensions process

/I This subroutine is called when ’File -> Set Dimensions’ is
/I selected on the main menu (tbMain) or the 'Set Conveyer Dimensions’
/I button is clicked on the main toolbar. It is used when the user
/I wants to map the real-world conveyer specifications to the camera view.
private void mnuDimensions_Click(object sender, System.EventArgs e)
{
/I Calls frmDimensions
frmDimensions Dimensions = new frmDimensions();
Dimensions.MdiParent = this;
Dimensions.Show();

}
1.2.15 Show the About Box

/I This subroutine is called when 'File -> About’ is
/I selected on the main menu (tbMain). It is used to convey information
/I about the program and the author, to the user.
private void miAbout_Click(object sender, System.EventArgs €)
{
MessageBox.Show("This Program was written by Bertram Haskins\n" +
"as part of a Master’s Degree in Information Technology.\n" +
"It was completed in March of 2006. This is version 1.0",
"About RecMaster",MessageBoxButtons.OK,
MessageBoxIcon.Information);

}
1.2.16 Exit the Program

/I This subroutine is called when 'File -> Exit’ is
/I selected on the main menu (tbMain). It is used when the user
/I wants to exit the program.
private void mnuExit_Click(object sender, System.EventArgs e)
{

/I Exit the program.

Application.Exit();

1.3 Create a New Model (frmNewModel)

This form is called whenever the user needs to create a new Model. Basically all
this form does is provide the user with a list of already existing models and allows

the user to enter the name of the new Model which needs to be created.

1.3.1 System References

/I Declaration of References
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;
using System.|O;

1.3.2 Form Items and Global Variables

namespace AntsNest

{

/Il <summary>

/Il Summary description for frmNewModel.

/Il </[summary>

public class frmNewModel : System.Windows.Forms.Form

{
private System.Windows.Forms.TextBox txtModel;
private System.Windows.Forms.Button cmdCreate;
private System.Windows.Forms.Button cmdCancel;
/Il <summary>
/Il Required designer variable.
/Il </[summary>
private System.ComponentModel.Container components = null;
/I String variable used to pass the location of the Models
/I directory to the rest of the program
private string RootDirectory;
/I Form Variable used to store a reference to the Main / Startup
/[form.
private System.Windows.Forms.Form Main;
/I Progress Bar variable used to store a reference to the
/I progress bar on the Main / Startup form.
private System.Windows.Forms.ProgressBar pbProgress;
private System.Windows.Forms.GroupBox groupBox1;
private System.Windows.Forms.GroupBox groupBox2;
private System.Windows.Forms.ListBox IbModels;

1.3.3 Form Initialization

/I Startup Subroutine for frmNewModel.
/I Takes 2 arguments: - A reference to frmMain

/1

- A reference to the progress bar on frmMain

public frmNewModel(System.Windows.Forms.Form a,

System.Windows.Forms.ProgressBar pb,
System.Windows.Forms.Label IblFile, Label IbIModel)

InitializeComponent();

/I Assign passed variables to their local counterparts.

Main = a;

pbProgress = pb;

IbICurrentFile = IblFile;

IbICurrentModel = IbIModel;

/I Sets the value of RootDirectory to the path of the Models

/I directory in the directory where the executable file of

/I the application resides.

RootDirectory = Application.StartupPath + "\\Models";

// String array used to store the list of directories in the

/l Models folder. Each Folder signifies a specific model.

string[] directorylist;

/I String value used as a temporary storage variable for

/I values read off the directorylist array.

string listvalue;

/I Assigns the list of directories to the directorylist string array

directorylist = Directory.GetDirectories(RootDirectory);

/I Runs through all of the items in the directorylist array and

/I adds the entries (Model names) to the listbox named IbModels.

foreach(string ModelName in directorylist)

{
listvalue = ModelName.Substring(RootDirectory.Length + 1);
IbModels.ltems.Add(listvalue);

}

/I Sets the focus to the textbox, so the user can start typing a new

/I model name.

txtModel.Focus();

1.3.4 Form Designer Generated Code

/Il <summary>

/Il Clean up any resources being used.

/Il </[summary>

protected override void Dispose(bool disposing)

{
if(disposing)
{
if(components != null)
{
components.Dispose();
}
}
base.Dispose(disposing);
}

#region Windows Form Designer generated code

/Il <summary>

I/l Required method for Designer support - do not modify
/Il the contents of this method with the code editor.

/Il </[summary>

private void InitializeComponent()

{

/[Component code omitted.
Y
#endregion

1.3.5 Create Button

/I This subroutine is called when the 'Create’ button is clicked.
/I It closes frmNewModel, creates a new model and calls the next
/I form.
private void cmdCreate_Click(object sender, System.EventArgs e)
{
/I Makes sure that no model / directory exists with the
/I name the user entered into the txtModel textbox.
if (IDirectory.Exists(RootDirectory + "\\" + txtModel.Text))
{
/I Creates a directory in the Models directory, with the name of the
/I new model.
Directory.CreateDirectory(RootDirectory + "\\" + txtModel.Text);
/I Creates the new model file in the newly created model directory.
File.Create(RootDirectory + "\\" + txtModel. Text + "\" +
txtModel.Text + ".mdl");
/I Creates the model configuration file to be used by the

/I recognition process. It sets all of the options, except

/I the first one, to false;

TextWriter tw;

tw = new StreamWriter(RootDirectory + "\\" + txtModel. Text + "\\" +

txtModel.Text + ".mcf");
tw.WriteLine("True");
for (inti=0;i<8;i++)
tw.WriteLine("False");

tw.Close();

/I Calls frmUpdateModel and closes frmNewModel.

frmUpdateModel UpdateModel = new
frmUpdateModel(RootDirectory + "\\" + txtModel. Text, "New
Model",txtModel.Text,1,pbProgress,
IbICurrentFile,lblCurrentModel);

UpdateModel.MdiParent = Main;

UpdateModel.Show();

this.Close();

else
/I Displays this message when the new model name, typed into the
/I txtModel textbox, already exists.
MessageBox.Show("A model with this name already exists",
"Message", MessageBoxButtons.OK,
MessageBoxIcon.Information);

}
1.3.6 Cancel Button

/I This subroutine is called when the ‘Cancel’ button is clicked.
/I It closes frmNewModel, without creating a new model.
private void cmdCancel_Click(object sender, System.EventArgs e)

/I Closes the form.
this.Close();

1.4 Delete an Existing Model (frmDeleteModel)

This form is called whenever the user needs to delete an existing Model.
Basically all this form does is provide the user with a list of existing models and

allows the user to select the name of the Model which needs to be deleted.

1.4.1 System References

/I Declaration of References
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;
using System.|O;

1.4.2 Form Items and Global Variables

namespace AntsNest

{

/Il <summary>

/Il Summary description for frmDeleteModel.

/Il </[summary>

public class frmDeleteModel : System.Windows.Forms.Form

{
private System.Windows.Forms.GroupBox groupBox2;
private System.Windows.Forms.ListBox IbModels;
private System.Windows.Forms.GroupBox groupBox1;
private System.Windows.Forms.TextBox txtModel;
private System.Windows.Forms.Button cmdCancel;
private System.Windows.Forms.Button cmdDelete;
private System.Windows.Forms.TextBox txtLastModified;
private System.Windows.Forms.Label label3;
/Il <summary>
/Il Required designer variable.
/Il </[summary>
private System.ComponentModel.Container components = null;

/I String variable used to pass the location of the Models
/I directory to the rest of the program
private string RootDirectory;

1.4.3 Form Initialization

/[Startup Subroutine for frmDeleteModel.
public frmDeleteModel()

{

}

InitializeComponent();

/I Sets the value of RootDirectory to the path of the Models

/I directory in the directory where the executable file of

/I the application resides.

RootDirectory = Application.StartupPath + "\\Models";

if (!Directory.Exists(RootDirectory))

Directory.CreateDirectory(RootDirectory);

// String array used to store the list of directories in the

/I Models folder. Each Folder signifies a specific model.

string[] directorylist;

/I String value used as a temporary storage variable for

/I values read off the directorylist array.

string listvalue;

/I Assigns the list of directories to the directorylist string array

directorylist = Directory.GetDirectories(RootDirectory);

/I Runs through all of the items in the directorylist array and

/I adds the entries (Model names) to the listbox named IbModels.

foreach(string ModelName in directorylist)

{
listvalue = ModelName.Substring(RootDirectory.Length + 1);
IbModels.ltems.Add(listvalue);

}

cmdDelete.Enabled = false;

Il Sets the focus to the textbox, so the user can start typing a new

/I model name.

txtModel.Focus();

1.4.4 Form Designer Generated Code

/Il <summary>

/Il Clean up any resources being used.

/Il </[summary>

protected override void Dispose(bool disposing)

{

if(disposing)
{

if(components != null)

{
}

components.Dispose();

}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

/Il <summary>

/Il Required method for Designer support - do not modify
/Il the contents of this method with the code editor.

/Il </[summary>

private void InitializeComponent()

{

/l Component code omitted.
}
#endregion

1.4.5 Delete Button
/I This subroutine is called whenever the Delete button is clicked.

private void cmdDelete_Click(object sender, System.EventArgs e)
{

/I Ensures that the user really wants to delete the model. If the user

/I confirms; the Model is deleted.

if (MessageBox.Show("Are you sure you want to delete " + txtModel.Text

+"?", "Message", MessageBoxButtons.YesNo,
MessageBoxIcon.Question) == DialogResult.Yes)

{
Directory.Delete(RootDirectory + "\\" + txtModel.Text + "\\",true);
string[] directorylist;
/I String value used as a temporary storage variable for
/I values read off the directorylist array.
string listvalue;
/I Assigns the list of directories to the directorylist string array
directorylist = Directory.GetDirectories(RootDirectory);
/I Runs through all of the items in the directorylist array and
/I adds the entries (Model names) to the listbox named IbModels.
IbModels.ltems.Clear();
foreach(string ModelName in directorylist)
{

listvalue = ModelName.Substring(RootDirectory.Length + 1);
IbModels.ltems.Add(listvalue);

}
/I Sets the focus to the textbox, so the user can start typing a new
/I model name.
IbModels.Invalidate();
txtModel.Focus();

/I Clears all of the textboxes and disables the Delete button.
txtModel. Text = null;

txtLastModified.Text = null;

cmdDelete.Enabled = false;

/I Displays an informative message and closes the form if all
/I Models have been deleted.

if (IbModels.ltems.Count == 0)

{

MessageBox.Show("All models have been deleted",
"Message", MessageBoxButtons.OK,
MessageBoxIcon.Information);

this.Close();

}

}
}
1.4.6 Cancel Button

/I This subroutine is called when the Cancel button is clicked.
private void cmdCancel_Click(object sender, System.EventArgs e)

/I Closes the form.
this.Close();

[S N)

1.5 Load an Existing Model (frmLoadModel)

This form is called when a Model needs to be chosen to update, perform
recognition on or view. It acts as a multi-purpose middle ground between the
program’s main interface and a form that needs to have a Model's

measurements loaded.

1.5.1 System References

/I Declaration of References
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;
using System.|O;

1.5.2 Form Items and Global Variables

namespace AntsNest

{

/Il <summary>

/Il Summary description for frmLoadModel.

/Il </[summary>

public class frmLoadModel : System.Windows.Forms.Form

{
private System.Windows.Forms.Button cmdLoad;
private System.Windows.Forms.Button cmdCancel;
private System.Windows.Forms.TextBox txtModel;
private System.Windows.Forms.Label label1;
private System.Windows.Forms.Label label3;
private System.Windows.Forms.TextBox txtLastModified;
private System.Windows.Forms.GroupBox groupBox1;
private System.Windows.Forms.ListBox IbModels;
private System.Windows.Forms.ListBox IbSelected;
private System.Windows.Forms.Button cmdAdd;
private System.Windows.Forms.Button cmdClear;
/Il <summary>
/Il Required designer variable.
/Il </[summary>
private System.ComponentModel.Container components = null;
/I String variable used to pass the location of the Models
/I directory to the rest of the program
private string RootDirectory;

/I Integer variable used by this form to store a value

/I that identifies which subroutine called this form.

private int CalledBy;

/' Form Variable used to store a reference to the Main / Startup
/I form.

private System.Windows.Forms.Form Main;

/I Progress Bar variable used to store a reference to the

/I progress bar on the Main / Startup form.

private System.Windows.Forms.ProgressBar pbProgress;
/I Integer variable used to keep track of whether IbSelected
/I was clicked or not.

private int ItemSelected;

1.5.3 Form Initialization

/| Startup Subroutine for frmLoadModel.
/I Takes 3 arguments: - A reference to which subroutine called this form

/l (1: Update Model, 2: Start Recognition,

/1 3: View Model)

/1l - A reference to frmMain

Il - A reference to the progress bar on frmMain

public frmLoadModel(int caller, System.Windows.Forms.Form a,
System.Windows.Forms.ProgressBar pb)
{

InitializeComponent();

/I Assign passed variables to their local counterparts.
CalledBy = caller;

Main = a;

pbProgress = pb;

/I Initialize variable.

ltemSelected = 0;

/I If called by the Update Model subroutine on the Main Form
if (CalledBy == 1)

{

this.Icon = new Icon(Application.StartupPath + "\lcons\\Update
Model.ico");
this.Text = "Select a model to update";

/I If called by the Start Recognition subroutine on the Main Form
if (CalledBy == 2)
{
this.Icon = new Icon(Application.StartupPath + "\lcons\\Perform
Recognition.ico");
this.Text = "Select a model to perform recognition on";
IbModels.Width = 144;
IbSelected.Visible = true;

cmdAdd.Visible = true;

cmdClear.Visible = true;

cmdAdd.Enabled = true;

cmdClear.Enabled = false;
}
/I If called by the View Model subroutine on the Main Form
if (CalledBy == 3)

this.Icon = new Icon(Application.StartupPath + "\lcons\\View
Model.ico");
this.Text = "Select a model to view";
}
/I Sets the value of RootDirectory to the path of the Models
/I directory in the directory where the executable file of
/I the application resides.
RootDirectory = Application.StartupPath + "\\Models";
// String array used to store the list of directories in the
// Models folder. Each Folder signifies a specific model.
string[] directorylist;
/I String value used as a temporary storage variable for
/I values read off the directorylist array.
string listvalue;
/I Assigns the list of directories to the directorylist string array
directorylist = Directory.GetDirectories(RootDirectory);
/I Runs through all of the items in the directorylist array and
/I adds the entries (Model names) to the listbox named IbModels.
foreach(string ModelName in directorylist)
{
listvalue = ModelName.Substring(RootDirectory.Length + 1);
IbModels.ltems.Add(listvalue);

/I Disable the 'Load’ button until a model has been selected.
cmdLoad.Enabled = false;

/I Sets the focus to the textbox, so the user can start typing a new
/[model name.

txtModel.Focus();

1.5.4 Form Designer Generated Code

/Il <summary>

/Il Clean up any resources being used.

/Il </[summary>

protected override void Dispose(bool disposing)

{
if(disposing)
{
if(components != null)
{
components.Dispose();
}
}
base.Dispose(disposing);
}

#region Windows Form Designer generated code

/Il <summary>

I/l Required method for Designer support - do not modify
/Il the contents of this method with the code editor.

/Il </[summary>

private void InitializeComponent()

{

/[Component code omitted.
Y
#endregion

1.5.5 Load Button

/I This subroutine is called when the ‘Load’ button is clicked.
/I It closes frmLoadModel and calls the next form.
private void cmdLoad_Click(object sender, System.EventArgs e)
{
/I If called by the Update Model subroutine on the Main Form
if (CalledBy == 1)

/I Calls frmUpdateModel.

frmUpdateModel UpdateModel = new
frmUpdateModel(RootDirectory + "\\" + txtModel.Text, "Update
Model", txtModel.Text, 2, pbProgress);

UpdateModel.MdiParent = Main;

UpdateModel.Show();

/I Closes frmLoadModel.

this.Close();

/I If called by the Start Recognition subroutine on the Main Form
if (CalledBy == 2)

/I Assigns the items in IbSelected to a string array.
string[] ModelList = new string[IbSelected.ltems.Count];
for(inti=0; i < IbSelected.ltems.Count; i++)
ModelList[i] = IbSelected.ltems][i]. ToString();
/I Calls frmRecognition.
frmRecognition Recognition = new
frmRecognition(RootDirectory,txtModel. Text, ModelList);
Recognition.MdiParent = Main;
Recognition.Show();
/I Closes frmLoadModel.
this.Close();
}
/I If called by the View Model subroutine on the Main Form
if (CalledBy == 3)
{
/I Calls frmViewModel.
frmViewModel ViewModel = new frmViewModel(txtModel. Text);
this.Hide();
ViewModel.ShowDialog();
/I Closes frmLoadModel.
this.Close();

}

1.5.6 Cancel Button

/I This subroutine is called when the ‘Cancel’ button is clicked.
/I It closes frmLoadModel, without loading a model.
private void cmdCancel_Click(object sender, System.EventArgs e)
{
/I Closes frmLoadModel.
this.Close();

}

1.5.7 Clicked on Available Models List box

/I This subroutine is called when the user clicks on one of the items /
/I models listed in listbox IbModels.
private void IbModels_SelectedindexChanged

(object sender, System.EventArgs e)

/I If not used by Recognition, enable the Load button.
if (CalledBy != 2)

cmdLoad.Enabled = true;
/I Ensures the system knows whether the listbox has been clicked or not.
ltemSelected = 1;
/I Sets the text of textbox txtModel to match the name of the selected
/I model.
txtModel.Text = IbModels.Selectedltem.ToString();
/I Makes sure that the .mdl(model)-file exists.
if (File.Exists(RootDirectory + "\\" + txtModel.Text + "\\" + txtModel. Text +

".mdI"))
{
/l The .mdl file exists.
/I Displays when the file was last accessed, enables the 'Load’
/I button and sets focus to it.
txtLastModified.Text = File.GetLastWriteTime(RootDirectory + "\\" +
txtModel. Text + "\" + txtModel.Text + ".mdI").ToString();
cmdLoad.Focus();
}
else
{
/I The .mdl file does not exist.
/I Display an appropriate message and makes sure that the 'Load’
/I is disabled.
txtLastModified.Text = "Model descriptor not found";
cmdLoad.Enabled = false;
}

}
1.5.8 Clicked on Selected Models List box

/I This subroutine is called when the user clicks on one of the items /

/I models listed in listbox IbSelected.

private void IbSelected_SelectedindexChanged(object sender,
System.EventArgs e)

{

/I Makes sure the Clear button is enabled, so that any selected Models
/I can be removed again.
cmdClear.Enabled = true;

1.5.9 Add Button

/I This subroutine is used to add the selected item from IbModels to
/I IbSelected.
private void cmdAdd_Click(object sender, System.EventArgs e)

{
if (ItemSelected == 1)

{
/I Makes sure the Load button is enabled when at least one
/I Model has been selected
cmdLoad.Enabled = true;
/I Add the selected item to IbSelected.
IbSelected.ltems.Add(IbModels.Selectedltem.ToString());
/I Makes sure that no more than 4 Models can be selected.
if (IbSelected.ltems.Count == 4)
cmdAdd.Enabled = false;
}
else

MessageBox.Show("Please select one of the Models","Message",
MessageBoxButtons.OK,
MessageBoxlcon.Information);

}
1.5.10 Clear Button

/I This subroutine is used to clear the selected item from IbSelected.
private void cmdClear_Click(object sender, System.EventArgs e)
{
/I Remove the selected item from IbSelected.
IbSelected.ltems.RemoveAt(IbSelected.SelectedIindex);
/I Makes sure that at least one model is selected.
if (IbSelected.ltems.Count == 0)

{
}

/I Makes sure that the Clear button cannot be clicked if
/I no Model is selected in IbSelected.
cmdClear.Enabled = false;

cmdLoad.Enabled = false;

1.6 Update a Model (frmUpdateModel)

This form is called whenever the user needs to update a Model. It is operated
either in Single Image, Batch Image, Video or Camera Mode. The
measurements made on this form are saved and later used to match objects
found in recognition mode.

1.6.1 System References

/I Declaration of References

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.IO;

using System.Drawing.Imaging;

using System.Runtime.InteropServices;
using System.Threading;

using WIALib;

using WIAVIDEOLIb;

using Microsoft.DirectX.AudioVideoPlayback;

1.6.2 Form Items and Global Variables

namespace AntsNest

{

/Il <summary>

/Il Summary description for frmUpdateModel.

/Il </[summary>

public class frmUpdateModel : System.Windows.Forms.Form

{
private System.Windows.Forms.ToolBar tbUpdateModel;
private System.Windows.Forms.OpenFileDialog ofdPicture;
private System.ComponentModel.IContainer components;
private System.Windows.Forms.ImageList ilButtons;
private System.Windows.Forms.TabPage tabNormal,
private System.Windows.Forms.TabPage tabRoughEdges;
private System.Windows.Forms.PictureBox picStudy;
private System.Windows.Forms.TabControl tabPictures;
private System.Windows.Forms.SaveFileDialog sfdCurrentGraph;
private System.Windows.Forms.ContextMenu picCurrentEdgesMenu;
private System.Windows.Forms.ContextMenu picRoughEdgesMenu;
private System.Windows.Forms.Menultem mnuRoughEdges_SaveAs;
private System.Windows.Forms.Menultem mnuRoughEdges_Window;

private System.Windows.Forms.SaveFileDialog sfdRoughEdges;

private System.Windows.Forms.ContextMenu OriginalAndEdgesMenu;

private System.Windows.Forms.Menultem
mnuOriginalAndEdges_SaveAs;

private System.Windows.Forms.Menultem
mnuOrginalAndEdges_Window;

private System.Windows.Forms.SaveFileDialog sfdOriginalAndEdges;

private System.Windows.Forms.Menultem mnuCurrentEdges_Window;

private System.Windows.Forms.SaveFileDialog sfdOutline;

private System.Windows.Forms.SaveFileDialog sfdBoth;

private System.Windows.Forms.SaveFileDialog sfdOriginalAndOutline;

private System.Windows.Forms.SaveFileDialog sfdOriginalAndBoth;

private System.Windows.Forms.ContextMenu OutlineMenu;

private System.Windows.Forms.ContextMenu BothMenu;

private System.Windows.Forms.ContextMenu OriginalAndOutlineMenu;

private System.Windows.Forms.ContextMenu OriginalAndBothMenu;

private System.Windows.Forms.Menultem mnuOutline_SaveAs;

private System.Windows.Forms.Menultem mnuOutline_Window;

private System.Windows.Forms.Menultem mnuBoth_SaveAs;

private System.Windows.Forms.Menultem mnuBoth_Window;

private System.Windows.Forms.Menultem
mnuOriginalAndOutline_SaveAs;

private System.Windows.Forms.Menultem
mnuOriginalAndOutline_Window;

private System.Windows.Forms.Menultem mnuOriginalAndBoth_SaveAs;

private System.Windows.Forms.Menultem mnuQOriginalAndBoth_Window;

private System.Windows.Forms.ToolBarButton tbbBatchMode;

private System.Windows.Forms.TabPage tabBatch;

private System.Windows.Forms.GroupBox gbQueue2;

private System.Windows.Forms.GroupBox gbQueue1;

private System.Windows.Forms.GroupBox gbQueue4;

private System.Windows.Forms.PictureBox picQueue1;

private System.Windows.Forms.ListBox IbBatchQueue1;

private System.Windows.Forms.ProgressBar pbQueue1;

private System.Windows.Forms.Button cmdNextQueue1;

private System.Windows.Forms.Button cmdPrevQueue1;

private System.Windows.Forms.Button cmdPrevQueue?2;

private System.Windows.Forms.Button cmdNextQueue2;

private System.Windows.Forms.ProgressBar pbQueue2;

private System.Windows.Forms.ListBox IbBatchQueue2;

private System.Windows.Forms.PictureBox picQueue2;

private System.Windows.Forms.Button cmdPrevQueue4;

private System.Windows.Forms.Button cmdNextQueue4;

private System.Windows.Forms.ProgressBar pbQueue4;

private System.Windows.Forms.ListBox IbBatchQueue4;

private System.Windows.Forms.PictureBox picQueue4;

private System.Windows.Forms.ContextMenu picModelEdgesMenu;
private System.Windows.Forms.ToolBarButton tbbCameraMode;
private System.Windows.Forms.TabPage tabCamVideo;

private System.Windows.Forms.PictureBox picCamVideo;

private System.Windows.Forms.ToolBar tbVideoOptions;

private System.Windows.Forms.Button cmdActivate;

private System.Windows.Forms.PictureBox picCapturePreview;
private System.Windows.Forms.Label label13;

private System.Windows.Forms.Label label14;

private System.Windows.Forms.Label label16;

private System.Windows.Forms.Label label21;

private System.Windows.Forms.Label Iblinfo;

private System.Windows.Forms.Label IbiIiCamVideoYDistance;
private System.Windows.Forms.Label IbICamVideoXDistance;
private System.Windows.Forms.Label IbICamVideoArea;

private System.Windows.Forms.Label IbICamVideoPerimeter;
private System.Windows.Forms.GroupBox gbCamVideoMeasurements;
private System.Windows.Forms.Timer tmCamVideoCapture;
private System.Windows.Forms.ToolBarButton tbbSingleCapture;
private System.Windows.Forms.ToolBarButton tbbContinuousCapture;
private System.Windows.Forms.Timer tmVideo;

private System.Windows.Forms.GroupBox gbControls;

private System.Windows.Forms.Button cmdStop;

private System.Windows.Forms.Button cmdPlayPause;

private System.Windows.Forms.CheckBox chkLoop;

private System.Windows.Forms.TrackBar tbVidVolume;

private System.Windows.Forms.CheckBox chkMute;

private System.Windows.Forms.GroupBox gbVidTimes;

private System.Windows.Forms.Label IbICurrentVidTimelLabel,
private System.Windows.Forms.Label IblVidCurrent;

private System.Windows.Forms.Label IbITotalVidTimeLabel;
private System.Windows.Forms.Label IblVidTotal;

private System.Windows.Forms.TrackBar tbVideo;

private System.Windows.Forms.ToolBarButton tbbPictureBrightness;
private System.Windows.Forms.ToolBarButton tbbPictureContrast;
private System.Windows.Forms.RadioButton optWhole;

private System.Windows.Forms.RadioButton optArea;

private System.Windows.Forms.Label IbIPictureYDistance;

private System.Windows.Forms.Label IbIPictureXDistance;

private System.Windows.Forms.Label label15;

private System.Windows.Forms.Label label19;

private System.Windows.Forms.Label IbIPictureArea;

private System.Windows.Forms.Label label24;

private System.Windows.Forms.Label IbIPicturePerimeter;

private System.Windows.Forms.Label label26;

private System.Windows.Forms.PictureBox picPicturePreview;

private System.Windows.Forms.ToolBar tbPictureAdjustment;
private System.Windows.Forms.Button cmdPictureProcess;
private System.Windows.Forms.Label IbIPicturelnfo;

private System.Windows.Forms.GroupBox gbPictureMeasurements;
private System.Windows.Forms.GroupBox gbProcessType;
private System.Windows.Forms.Button cmdFull;

private System.Windows.Forms.Button cmdMinimal,

private System.Windows.Forms.GroupBox groupBox3;
private System.Windows.Forms.Label label7;

private System.Windows.Forms.Label label5;

private System.Windows.Forms.PictureBox picOutline;
private System.Windows.Forms.PictureBox picOriginalAndOutline;
private System.Windows.Forms.Label label4;

private System.Windows.Forms.Label label3;

private System.Windows.Forms.PictureBox picOriginalAndEdges;
private System.Windows.Forms.PictureBox picRoughEdges;
private System.Windows.Forms.GroupBox groupBox4;
private System.Windows.Forms.Label label1;

private System.Windows.Forms.PictureBox picCurrentEdges;
private System.Windows.Forms.Label label12;

private System.Windows.Forms.Label label11;

private System.Windows.Forms.Label IbICurrentArea;

private System.Windows.Forms.Label label10;

private System.Windows.Forms.Label IblICurrentPerimeter;
private System.Windows.Forms.Label label9;

private System.Windows.Forms.Label IblICurrentXDistance;
private System.Windows.Forms.Label IblICurrentYDistance;
private System.Windows.Forms.GroupBox gbQueue3;

private System.Windows.Forms.Button cmdPrevQueues3;
private System.Windows.Forms.Button cmdNextQueue3;
private System.Windows.Forms.ProgressBar pbQueue3;
private System.Windows.Forms.ListBox IbBatchQueue3;
private System.Windows.Forms.PictureBox picQueue3;
private System.Windows.Forms.GroupBox gbBatchMeasurements;
private System.Windows.Forms.Label label17;

private System.Windows.Forms.Label label18;

private System.Windows.Forms.Label label20;

private System.Windows.Forms.Label label22;

private System.Windows.Forms.Button cmdPrevious;

private System.Windows.Forms.Button cmdNext;

private System.Windows.Forms.GroupBox groupBox1;
private System.Windows.Forms.Button cmdBatchActivate;
private System.Windows.Forms.Label IbIBatchinfo;

private System.Windows.Forms.Label label25;

private System.Windows.Forms.Label label27;

private System.Windows.Forms.Label label28;

private System.Windows.Forms.Label label29;

private System.Windows.Forms.Label label30;

private System.Windows.Forms.Label label31;

private System.Windows.Forms.Label IbIBatchYDistancelLow;

private System.Windows.Forms.Label IbIBatchXDistancelLow,;

private System.Windows.Forms.Label IbIBatchArealLow;

private System.Windows.Forms.Label IbIBatchPerimeterLow;

private System.Windows.Forms.Label IbIBatchYDistanceHigh;

private System.Windows.Forms.Label IbIBatchXDistanceHigh;

private System.Windows.Forms.Label IbIBatchAreaHigh;

private System.Windows.Forms.Label IbIBatchPerimeterHigh;

private System.Windows.Forms.PictureBox picBatchGraphs;

private System.Windows.Forms.Label IbIBatchEdgesNumber;

private System.Windows.Forms.ContextMenu cmPicturePreview;

private System.Windows.Forms.Menultem miPictureShow;

private System.Windows.Forms.ToolBarButton tbbVideoMode;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Label IbIPictureEdges;

private System.Windows.Forms.Label label8;

private System.Windows.Forms.Label label23;

private System.Windows.Forms.Label IbIBatchEdgesHigh;

private System.Windows.Forms.Label IbIBatchEdgesLow;

private System.Windows.Forms.Label label32;

private System.Windows.Forms.Label IbICurrentEdges;

private System.Windows.Forms.Label IbICamVideoEdges;

private System.Windows.Forms.Label label33;

private System.Windows.Forms.ToolBarButton toolBarButton1;

private System.Windows.Forms.ToolBarButton tbbimageMode;

private System.Windows.Forms.Button cmdAccept;

private System.Windows.Forms.Button cmdAcceptCamVideo;

private System.Windows.Forms.ImageList iIBrightnessContrast;

private System.Windows.Forms.Button cmdAcceptBatch;

private System.Windows.Forms.Menultem
mnuPicModelEdgesOwnWindow;

private System.Windows.Forms.GroupBox gbCamControls;

private System.Windows.Forms.Button cmdCamPlayPause;

private System.Windows.Forms.GroupBox gbPerimeter;

private System.Windows.Forms.Label label6;

private System.Windows.Forms.Label label36;

private System.Windows.Forms.Label label37;

private System.Windows.Forms.Label label38;

private System.Windows.Forms.NumericUpDown numMin;

private System.Windows.Forms.NumericUpDown numMax;

private System.Windows.Forms.ImageList ilControls;

/I Integer variables used in Batch processing to keep track of the
/I variablesin the first queue.
private int PerimeterLowQueue1,PerimeterHighQueue1,
AreaLowQueue1,AreaHighQueue1,
ShortestLowQueue1,ShortestHighQueue1,
LongestLowQueue1,LongestHighQueue1,
EdgesLowQueue1, EdgesHighQueue1;
/I Integer variables used in Batch processing to keep track of the
/I variables in the second queue.
private int PerimeterLowQueue2,PerimeterHighQueue2,
ArealLowQueue2,AreaHighQueue2,
ShortestLowQueue2,ShortestHighQueue2,
LongestLowQueue2,l ongestHighQueue2,
EdgesLowQueue2, EdgesHighQueue2;
/I Integer variables used in Batch processing to keep track of the
/| variables in the third queue
private int PerimeterLowQueue3,PerimeterHighQueue3,
ArealLowQueue3,AreaHighQueue3,
ShortestLowQueue3,ShortestHighQueue3,
LongestLowQueue3,LongestHighQueue3,
EdgesLowQueue3, EdgesHighQueue3;
/I Integer variables used in Batch processing to keep track of the
/I variables in the fourth queue
private int PerimeterLowQueue4,PerimeterHighQueue4,
AreaLowQueue4,AreaHighQueue4,
ShortestLowQueue4,ShortestHighQueue4,
LongestLowQueue4,LongestHighQueue4,
EdgesLowQueue4, EdgesHighQueue4;
/I The Total integer variables are used to keep track of the total number of
/I images in each queue, the Found variables are used to keep track of
/I the number of items found on images in each queue.
private int TotalQueue1, FoundQueue1, TotalQueue2, FoundQueue2,
TotalQueue3, FoundQueue3,
TotalQueue4, FoundQueue4;
/I Integer variable used to keep track of the number of times the user has
/I clicked on picStudy, after he or she has selected Single File Mode.
private int clickcounter;
/I Integer variable used to keep track of the points of the rectangle drawn
/I on picStudy during the Single File Mode image selection process.
private int TopLeftX, TopLeftY;
private int BottomLeftX, BottomLeftY;
private int BottomRightX, BottomRightY;
private int TopRightX, TopRightY;
private int CentreX, CentreY;
/I Integer variable used, as index, to keep track of the graph
/Il currently displayed in picturebox picModellmages.

private int filelistindex;

/I Integer variable used, as index, to keep track of the graph

/I currently displayed in picturebox picCurrentEdges.

private int Currentlistindex;

Il Integer Variables used to store the individual values

/I values read off of the model’s .mdl file.

private int PerimeterLow, PerimeterHigh;

private int AreaLow, AreaHigh;

private int ShortestLow, ShortestHigh;

private int LongestLow, LongestHigh;

private int EdgesLow, EdgesHigh;

/I Integer variable used to keep track of which File Processing mode

/I is currently in use. 1: Single File, 2: Batch File

private int Mode;

/I Integer variable used, as index, to keep track of the image file

/I currently displayed in each of the Batch File Processing

/I Queue pictureboxes.

private int Queue1Current, Queue2Current, Queue3Current,

Queue4Current;

/I Integer variable used as a flag value to activate the

/I Batch File Processing Mode startup tab page.

private int BatchModeFileSelect;

/I Integer variable used to store the amount with which the

/I progress bar on frmMain must be incremented.

private int Progressincrementer,;

/I Bitmap variables used as temporary storage for the bitmaps

/I displayed as results during the Single and Batch File

/I Processing modes.

private Bitmap picRoughOutlineBitmap;

private Bitmap bmpOriginalAndOutline, bmpOutline, bmpOriginalAndBoth,
bmpBoth;

private Bitmap bitmap, bmpCurrentEdges, bmpOriginalAndEdges;

/I Boolean variable used to keep track of whether the Mouse is down

/I (true) or up (false).

private Boolean bHaveMouse;

/I Point variables used to keep track of where on picStudy the user

/I started drawing a rectangle.

private Point ptOriginal = new Point();

private Point Corner1 = new Point();

/I Point variables used to keep track of where on picStudy the user

/I stopped drawing a rectangle.

private Point ptLast = new Point();

private Point Corner2 = new Point();

/I String array used to store the paths of all the files chosen

/I to be processed in Batch File Processing Mode.

private string[] filenames;

/I String variable used to store the name of the current

/I model.

private string ModelName;

// String array used to store the list of graph files in the

Il specific model’s folder.

private string[] filelist;

/I String array used to store the paths of all of the graphs

/I created during Batch File Processing mode.

private ArrayList BatchGraphs = new ArrayList();

/I String variable used to pass the location of the Models

/I directory to the rest of the program

private string RootDirectory;

/I Arraylist variable used to store all of the Edge graph strings
/I read off of the model’'s .mdl-file.

private ArrayList PreviousGraphs = new ArrayList();

/I Arraylist variable used to store all of the Edge graph strings
/I created by the EdgeGraphAgent during Single File Processing.
private ArrayList CurrentGraphs = new ArrayList();

/I Arraylist variables used to store all of the Edge graph strings
/I created by the EdgeGraphAgent during Batch File Processing.
/I There is one for each of the Queues

private ArrayList CurrentGraphsQueue1 = new ArrayList();
private ArrayList CurrentGraphsQueue2 = new ArrayList();
private ArrayList CurrentGraphsQueue3 = new ArrayList();
private ArrayList CurrentGraphsQueue4 = new ArrayList();

/I Progress Bar variable used to store a reference to the

/I progress bar on the Main / Startup form.

private System.Windows.Forms.ProgressBar pbProgress;

/I Windows Image Aquisition Device variable used

/I to store the currently loaded Capture Device.

private WIA.Device CurrentCam,;

/I WIA manager COM object used to store the current system WIA
/I information.

private WiaClass wiaManager;

I WIA ItemClass object used to store the currently selected capture
/I device.

private ItemClass wiaCamera;

/ WIAVideoClass object used to store the current video stream.
private WiaVideoClass wiaVideo;

/I Video variable used to store the current video object.

private Video CurrentVideo;

/I Integer variable used to store the current state of the

/I video stream.

private int PlayPause;

Il Integer variables used to store the currently recorded

/I object measurements in order to save it.

private int SinglePerimeter, SingleArea, SingleXDistance,
SingleYDistance, SingleEdgeCount;

/I Variables Used to maintain and activate the system’s agents.

private Whiteboard whiteboard, whiteboard2, whiteboard3, whiteboard4;

private MainEdgeDetectionAgent MEDagent, MEDagent,2 MEDagent3,

MEDagent4;

private Thread MEDthread, MEDthread2, MEDthread3, MEDthread4;

private InvertColoursAgent ICagent, ICagent2, ICagent3, ICagent4;

private Thread ICthread, ICthread2, ICthread3, ICthread4;

private ToBinaryAgent TBagent, TBagent2, TBagent3, TBagent4;

private Thread TBthread, TBthread2, TBthread3, TBthread4;

private PerimeterAgent Pagent, Pagent2, Pagent3, Pagent4;

private Thread Pthread1, Pthread2, Pthread3, Pthread4;

private EdgeGraphAgent EGagent, EGagent2, EGagent3, EGagent4;

private Thread EGthread, EGthread2, EGthread3, EGthread4;

1.6.3 Form Initialization

/I Startup subroutine for frmUpdateModel.
/I Takes 5 arguments: - A reference to the current model's directory

I
/1
I
/1
I
/1

- A reference to the string to be displayed
in the form's header.

- A reference to the current model's name

- A reference to which subroutine called this form
(1: New Model, 2: Update Model)

- A reference to the progress bar on frmMain

public frmUpdateModel(string root, string header, string modelname, int caller,

{

System.Windows.Forms.ProgressBar pb)

InitializeComponent();

/I Assign passed variables to their local counterparts.
RootDirectory = root;

ModelName = modelname;

this.Text = "Update the " + ModelName + " model";
pbProgress = pb;

Currentlistindex = 0;

/I Initialize variables

filelistindex = 0;

Currentlistindex = 0;

Mode = 0;

BatchModeFileSelect = 0;

clickcounter = 2;

bitmap = null;

Queue1Current = 0;

Queue2Current = 0;

Queue3Current = 0;

Queue4dCurrent = 0;

Progressincrementer = 0;

/I Sets up the startup arrangement for frmUpdateModel’s
/I toolbar buttons.
tbUpdateModel.Buttons[0].Enabled = true;
toUpdateModel.Buttons[1].Enabled = true;
tbUpdateModel.Buttons[2].Enabled = true;
toUpdateModel.Buttons[3].Enabled = true;

/I Hides the Progressbar on frmMain.
pbProgress.Visible = false;

/I Sets the label’s value to indicate the current Model’s
/I name.

cmdNext.Enabled = false;
cmdPrevious.Enabled = false;

/I Disables picStudy.

picStudy.Enabled = false;

/I Hides the following buttons.
cmdNextQueue1.Visible = false;
cmdPrevQueue1.Visible = false;
cmdNextQueue2.Visible = false;
cmdPrevQueue?2.Visible = false;
cmdNextQueue3.Visible = false;
cmdPrevQueue3.Visible = false;
cmdNextQueue4.Visible = false;
cmdPrevQueue4.Visible = false;
cmdActivate.Visible = false;

cmdAccept.Visible = false;
cmdAcceptCamVideo.Visible = false;

/I Hides the following picture box.
picCapturePreview.Visible = false;

/I Make sure no tab pages are currently loaded.
tabPictures.TabPages.Remove(tabNormal);
tabPictures. TabPages.Remove(tabRoughEdges);
tabPictures.TabPages.Remove(tabBatch);
tabPictures.TabPages.Remove(tabCamVideo);
/I Hides the following groupboxes.
gbQueue1.Visible = false;

gbQueue2.Visible = false;

gbQueue3.Visible = false;

gbQueue4.Visible = false;
gbCamVideoMeasurements.Visible = false;
gbControls.Visible = false;

/I Hides the following picturebox.
picCamVideo.Visible = true;

/I Create a new TextReader object, to be used for reading
/I the values stored in the model’s .mdl-file.

TextReader tr;
/I String variable used to temporarily store the value
/I read off the .mdl-file.
string compare = "";
/I Make sure no capture device is currently loaded.
CurrentCam = null;
PerimeterLow = PerimeterHigh = AreaLow = AreaHigh = 0;
ShortestLow = ShortestHigh = LongestLow = LongestHigh = 0;
EdgesLow = EdgesHigh = 0;
/I Checks whether the form was called by the Update Model function.
if (caller == 2)
{
/I It was called by the Update Model function.
/I Checks whether the specific model’s Directory exists
if (Directory.Exists(RootDirectory))
{
/I The model’s directory exists.
/I Checks whether the specific model’s .mdl-file exists.
if (File.Exists(RootDirectory + "\" + ModelName + ".mdl"))
{
/I The .mdl-file exists.
/I Read the .mdl file and store the values in the
/I temporary variables.
tr = new StreamReader(RootDirectory + "\" +
ModelName + ".mdl");
for (inti=0;i<10; i++)
{
compare = tr.ReadLine();
if (i==0)
if (compare == null)
PerimeterLow = 0;
else
PerimeterLow =
Int32.Parse(compare);
if i==1)
if (compare == null)
PerimeterHigh = 0;
else
PerimeterHigh =
Int32.Parse(compare);
if (i==2)
if (compare == null)
ArealLow = 0;
else
Arealow =
Int32.Parse(compare);

if (i==3)
if (compare == null)
AreaHigh = 0;
else
AreaHigh =
Int32.Parse(compare);
if (i==4)
if (compare == null)
ShortestLow = 0;
else
ShortestLow =
Int32.Parse(compare);
if (i==5)
if (compare == null)
ShortestHigh = 0;
else
ShortestHigh =
Int32.Parse(compare);
if (i ==6)
if (compare == null)
LongestLow = 0;
else
LongestLow =
Int32.Parse(compare);
if i==7)
if (compare == null)
LongestHigh = 0;
else
LongestHigh =
Int32.Parse(compare);
if (i ==8)
if (compare == null)
EdgesLow = 0;
else
EdgesLow =
Int32.Parse(compare);
if (i==9)
if (compare == null)
EdgesHigh = 0;
else
EdgesHigh =
Int32.Parse(compare);

/I All of the model’s variables have been read,
/I now the Edge graph strings must be read.
/I This is done until the end of the file is

}

/I reached
while ((compare = tr.ReadLine()) != null)

/I Store the Edge Graph string read off the
/I .mdl-file in the PreviousGraphs ArrayList
PreviousGraphs.Add(compare);

}
/I Closes the .mdl-file.

tr.Close();
}
else
{
/I The .mdl file does not exist, so it is created.
File.Create(RootDirectory + "\\" + ModelName +
Il-mdlll);
}
}
else
{
/I The directory doesn't exist, so it and the .mdI-file
/I is created.
Directory.CreateDirectory(RootDirectory);
File.Create(RootDirectory + "\\" + ModelName + ".mdl");
}

1.6.4 Form Designer Generated Code

/Il <summary>

/Il Clean up any resources being used.

/Il </[summary>

protected override void Dispose(bool disposing)

{

if(disposing)

{

/l DisposePicure();

if(wiaVideo !'= null)
Il release any COM instances
Marshal.ReleaseComObiject(wiaVideo);

wiaVideo = null;

if(wiaCamera != null)
Marshal.ReleaseComObject(wiaCamera);
wiaCamera = null;

if(wiaManager != null)
Marshal.ReleaseComObiject(wiaManager);

wiaManager = null;
if (components != null)

{

}
}

base.Dispose(disposing);

components.Dispose();

}

#region Windows Form Designer generated code

/Il <summary>

I/l Required method for Designer support - do not modify
/Il the contents of this method with the code editor.

/Il </[summary>

private void InitializeComponent()

{

/[Component code omitted.

}

#endregion
1.6.5 Mouse Down on Single File Mode Image

/I This subroutine is called when the left mouse button is pressed.
public void MyMouseDown(Object sender, MouseEventArgs e)

/I Checks whether Single File Mode has been selected.
if (clickcounter < 1)
{
/I Assigns the current position to a point.
Point A = new Point(e.X,e.Y);
Corner1 = A;
// Mark the mouse as being down.
bHaveMouse = true;
/I Store the starting point for drawing the rectangle.
ptOriginal. X = e.X;
ptOriginal.Y = e.Y;
/I Initialize the end points of the rectangle.
ptLast.X = -1;
ptLast.Y = -1;
/I Increment the clickcounter.
clickcounter++;

1.6.6 Mouse Up on Single File Mode Image

/I This subroutine is called when the left mouse button is released.
public void MyMouseUp(Object sender, MouseEventArgs e)
{

/I Assigns the current position to a point.

Point A = new Point(e.X,e.Y);

Corner2 = A;

/I Mark the mouse as being up.

bHaveMouse = false;

/I Draw the final dragging rectangle

if(ptLast.X 1=-1)

{
/I Assigns the current position to a point and
/I calls the subroutine to erase the previous
/I rectangle
Point ptCurrent = new Point(e.X, e.Y);
MyDrawReversibleRectangle(ptOriginal, ptLast);
}
/I Re-initialize the end and start points of the rectangle.
ptLast.X = -1;
ptLast.Y = -1,
ptOriginal X = -1;
ptOriginal.Y = -1;

/I Make sure which point is top left and which is
/I bottom right.
if (Corner2.Y > Corner1.Y)

{
TopLeftY = Corner1.Y;
BottomRightY = Corner2.Y;
}
else
{
TopLeftY = Corner2.Y;
BottomRightY = Corner1.Y;
}
if (Corner2.X > Corner1.X)
{
TopLeftX = Corner1.X;
BottomRightX = Corner2.X;
}
else

TopLeftX = Corner2.X;
BottomRightX = Corner1.X;

/I Create a temporary bitmap value and assign it a reference

/I to the bitmap currently displayed in picturebox

/I picStudy.

Bitmap Main;

Main = (Bitmap) bitmap.Clone();

/I Set the cloned bitmap up as a Graphics object, so that it

/I can be drawn on.

Graphics g = Graphics.Fromlmage(Main);

/I Create a new pen, with which to draw.

Pen myPen = new Pen(Color.Red);

myPen.Width = 3;

/I Temporary storage value used in calculating

/I relative corner values for the drawing

/I rectangle.

double newvalue = 0;

/I Calculate the relative values, so that the

/I rectangle will be correctly aligned on

/I picturebox pixStudy.

newvalue = TopLeftX * (double)(Main.Width /640.0);

BottomLeftX = TopLeftX = (int) newvalue;

newvalue = 0;

newvalue = BottomRightY * (double)(Main.Height /480.0);

BottomLeftY = BottomRightY = (int) newvalue;

newvalue = 0;

newvalue = BottomRightX * (double)(Main.Width /640.0);

TopRightX = BottomRightX = (int) newvalue;

newvalue = 0;

newvalue = TopLeftY * (double)(Main.Height /480.0);

TopRightY = TopLeftY = (int) newvalue;

newvalue = 0;

CentreX = TopLeftX + ((TopRightX - TopLeftX) / 2);

CentreY = TopLeftY + ((BottomLeftY - TopLeftY)/ 2);

/I Draw the rectangle

g.DrawRectangle(myPen, TopLeftX, TopLeftY,TopRightX —
TopLeftX,BottomLeftY - TopLeftY);

/I Set the picturebox picStudy's image to the newly

/I drawn on bitmap and size it appropriately.

picStudy.Image = Main;

picStudy.SizeMode = PictureBoxSizeMode.Stretchimage;

/I Sets up the arrangement for frmUpdateModel's

/I toolbar buttons.

toUpdateModel.Buttons[0].Enabled = true;

tbUpdateModel.Buttons[1].Enabled = true;

toUpdateModel.Buttons[2].Enabled = true;

tbUpdateModel.Buttons[3].Enabled = true;

/I Calls the Area Processing subroutine.

}

SingleFileArea();

1.6.7 Mouse Move on Single File Mode Image

// This subroutine is called when the mouse is moved.
public void MyMouseMove(Object sender, MouseEventArgs e)

{

}

/I Assigns the current position to a point.
Point ptCurrent = new Point(e.X, e.Y);
/I Checks whether the mouse is down.
if(bHaveMouse)
{
/I The mouse is down
/I Checks whether this is the first time this
/I subroutine has run.
if(ptLast.X !=-1)
{
/I Not the first time
/I Calls the subroutine to erase the previous
/I rectangle.
MyDrawReversibleRectangle(ptOriginal, ptLast);
}
// Update the last point.
ptLast = ptCurrent;
// Draw the new rectangle.
MyDrawReversibleRectangle(ptOriginal, ptLast);

1.6.8 Draw Rectangle on Single File Mode Image

/I This subroutine draws the dragging rectangle.
private void MyDrawReversibleRectangle(Point p1, Point p2)

{

/I Create a new rectangle, to be used for drawing a

/I rectangle on screen.

Rectangle rc = new Rectangle();

/I Convert the picStudy coordinates to screen coordinates.
p1 = picStudy.PointToScreen(p1);

p2 = picStudy.PointToScreen(p2);

/I Make sure which point is top left and which is

/I bottom right. Then calculate the height and

/I width of the rectangle.

if(p1.X < p2.X)

rc.X =p1.X;
rc.Width = p2.X - p1.X;

else

rc.X = p2.X;
rc.Width = p1.X - p2.X;

}
if(p1.Y < p2.Y)
{

rc.Y = p1.Y;

rc.Height = p2.Y - p1.Y;
}
else
{

rc.Y = p2.Y,

rc.Height = p1.Y - p2.Y;
}

/I Draw/Erase the temporary rectangle.
ControlPaint.DrawReversibleFrame(rc,Color.Red, FrameStyle.Dashed);

}

1.6.9 Override Mouse Functions

/I This subroutine defines the overloads for the mouse events.
protected override void OnLoad(System.EventArgs e)

{
picStudy.MouseDown += new MouseEventHandler(MyMouseDown);
picStudy.MouseUp += new MouseEventHandler(MyMouseUp);
picStudy.MouseMove += new MouseEventHandler(MyMouseMove);
bHaveMouse = false;

}

1.6.10 Update toolbar

/I This subroutine functions as a switchboard to decide which button was

/I pressed on frmUpdateModel’s toolbar (tbUpdateModel).

private void tbUpdateModel_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)

{

switch (tbUpdateModel.Buttons.IndexOf(e.Button))
{
/I Called when the 'Single File Mode’ button is clicked on the main
/| toolbar.
case 0: Selectimage();
break;

}

/I Called when the 'Batch File Mode’ button is clicked on the
/l main toolbar.
case 1: BatchMode();
break;
/I Called when the ’‘Camera Mode’ button is clicked on the main
/I toolbar.
case 2: VideoMode();
break;
case 3: CameraMode();
break;

1.6.11 Reset Page

/I This subroutine is called when the page needs to be reset and all the
/I variables re-initialized.
private void ResetPage()

{

/I Initialize variables

clickcounter = 2;

Mode = 0;

BatchModeFileSelect = 0;

Progressincrementer = 0;

/I Sets up the startup arrangement for frmUpdateModel’s
/I toolbar buttons.
tbUpdateModel.Buttons[0].Enabled = true;
toUpdateModel.Buttons[1].Enabled = true;
tbUpdateModel.Buttons[2].Enabled = true;
toUpdateModel.Buttons[3].Enabled = true;

/I Enables the following components
cmdPictureProcess.Enabled = true;
gbProcessType.Enabled = true;
tbPictureAdjustment.Enabled = true;

/I Disables the following components
picStudy.Enabled = false;

cmdNext.Enabled = false;
cmdPrevious.Enabled = false;
cmdNext.Enabled = false;
cmdPrevious.Enabled = false;

/I Remove all the tab pages

tabPictures. TabPages.Remove(tabNormal);
tabPictures. TabPages.Remove(tabRoughEdges);
tabPictures.TabPages.Remove(tabBatch);
tabPictures.TabPages.Remove(tabCamVideo);
/I Clears all of the pictureboxes of their images.

picStudy.Image = null;

picRoughEdges.Image = null;

picCurrentEdges.Image = null;

picOriginalAndEdges.Image = null;
picOriginalAndOutline.Image = null;

picOutline.Image = null;

picQueue1.Image = null;

picQueue2.Image = null;

picQueue3d.Image = null;

picQueue4.Image = null;

picCapturePreview.Image = null;
picCapturePreview.BackColor = Color.FromName("Control");
picPicturePreview.Image = null;
picPicturePreview.BackColor = Color.FromName("Control");
picCurrentEdges.Image = null;

picBatchGraphs.Image = null;

/I Hide all of the following buttons.

cmdNextQueue1.Visible = false;

cmdPrevQueue1.Visible = false;

cmdNextQueue2.Visible = false;

cmdPrevQueue?2.Visible = false;

cmdNextQueue3.Visible = false;

cmdPrevQueue3.Visible = false;

cmdNextQueue4.Visible = false;

cmdPrevQueue4.Visible = false;

cmdFull.Visible = false;

cmdAccept.Visible = false;

cmdAcceptBatch.Visible = true;
cmdAcceptCamVideo.Visible = false;

/I Clear the text of the following labels.
IbICurrentPerimeter.Text = "";
IbICurrentArea.Text = "";
IbICurrentXDistance.Text = "";
IbICurrentYDistance.Text = "";
Iblinfo.Text ="";

IbIPicturelnfo.Text = "";

/I Clear all items in the following listboxes.
IbBatchQueue1.ltems.Clear();
IbBatchQueue2.ltems.Clear();
IbBatchQueue3.ltems.Clear();
IbBatchQueue4.ltems.Clear();

/I Hides the following groupboxes.
gbQueue1.Visible = false;
gbQueue2.Visible = false;
gbQueue3.Visible = false;
gbQueue4.Visible = false;

gbCamVideoMeasurements.Visible = false;
gbPictureMeasurements.Visible = false;
gbControls.Visible = false;
gbCamControls.Visible = false;
gbBatchMeasurements.Visible = false;
gbPerimeter.Visible = false;

/I Initializes all the queue item counters.
Queue1Current = 0;

Queue2Current = 0;

Queue3Current = 0;

Queue4Current = 0;

/I Reset the video components.

if (CurrentVideo != null)

{
}

CurrentVideo = null;

tmVideo.Enabled = false;
tbVidVolume.Value = -1;
optWhole.Checked = true;

I/l Reset the tabpage components
tmCamVideoCapture.Enabled = false;
tbVideoOptions.Buttons[0].Pushed = true;
tbVideoOptions.Buttons[1].Pushed = false;
cmdActivate.Text = "Capture";
cmdActivate.Visible = true;
picCapturePreview.Visible = true;
tbVideoOptions.Buttons[0].Enabled = true;
tbVideoOptions.Buttons[1].Enabled = true;
BatchGraphs = new ArrayList();
Currentlistindex = 0;
cmdBatchActivate.Enabled = true;

CurrentVideo.Stop();

}
1.6.12 Select Image for Still Image Mode

/I This subroutine is called when the 'Single File’ button is
/I clicked on frmUpdateModel’s toolbar.
private void Selectimage()
{
/I Sets the variable to declare Single File Mode
Mode = 1;
/I Sets up the filter and specifications for the
/I open file dialog ofdPicture.
ofdPicture.Filter = "All Image Files (*.bmp, *.jpg)|*.bmp; *.jpg|Bitmap Files
(*.bmp)|*.omp|JPEG Files (*.jpg)|*.ipg";

ofdPicture.RestoreDirectory = true ;
/I Open the open file dialog ofdPicture
if(ofdPicture.ShowDialog() == DialogResult.OK)
{
ResetPage();
/I Adds the tab page that acts as start page for Single File mode
tabPictures.TabPages.Add(tabNormal);
tabNormal.Text = "Single Image Mode: " + ofdPicture.FileName;
IbIPicturelnfo.Text = "Image Loaded";
/I Assigns the selected image to the variable bitmap.
bitmap = (Bitmap)Bitmap.FromFile(ofdPicture.FileName,false);
/I Update the form.
this.Invalidate();
/I Sets the picturebox picStudy’s image to that of bitmap
/I and sizes it accordingly.
picStudy.Image = bitmap;
picStudy.SizeMode = PictureBoxSizeMode.Stretchimage;
/I Hides the following items on tabNormal.
picPicturePreview.Visible = false;
gbPictureMeasurements.Visible = false;
cmdFull.Visible = false;
/I Sets up the arrangement for frmUpdateModel’s
/I toolbar buttons.
toUpdateModel.Buttons[0].Enabled = true;
tbUpdateModel.Buttons[1].Enabled = true;
toUpdateModel.Buttons[2].Enabled = true;
tbUpdateModel.Buttons[3].Enabled = true;
/I Creates the agent communication directory.
if (Directory.Exists(Application.StartupPath + "\\Recognition")
== true)
Directory.Delete(Application.StartupPath + "\\Recognition",true);
Directory.CreateDirectory(Application.StartupPath +
"\\Recognition");

}
1.6.13 Select Image for Batch Image Mode

/I This subroutine is called when the 'Batch File’ button is
/I clicked on frmUpdateModel’s toolbar.
private void BatchMode()
{
/I Sets the variable to declare Batch File Mode
Mode = 2;
/I This variable keeps track of the number of files
/I to be processed during Batch File processing.

int count = 0O;

/I Sets up the filter and specifications for the

/I open file dialog ofdPicture.

ofdPicture.Filter = "All Image Files (*.bmp, *.jpg)|*.bmp; *.jpg|Bitmap Files
(*.bmp)|*.bomp|JPEG Files (*.jpg)|*.jpg";

ofdPicture.RestoreDirectory = true ;

ofdPicture.Multiselect = true;

/I Open the open file dialog ofdPicture

if(ofdPicture.ShowDialog() == DialogResult.OK)

{
if (ofdPicture.FileNames.Length > 1)

{
ResetPage();
IbIBatchInfo.Text = "Images loaded";
/I Creates the agent communication directory.
if (Directory.Exists(Application.StartupPath + "\\Recognition")
== true)
Directory.Delete(Application.StartupPath +
"\\Recognition",true);
Directory.CreateDirectory(Application.StartupPath +
"\\Recognition");
/I Adds the tab page that acts as start page for Batch File
/I mode
tabPictures. TabPages.Add(tabBatch);
tabBatch.Text = "Batch File Mode";
/I Hides the following item on tabBatch
gbBatchMeasurements.Visible = false;
/I Assigns the selected array of selected filename paths
/I to the string array filenames.
filenames = new string[ofdPicture.FileNames.Length];
filenames = ofdPicture.FileNames;
/I Divide the list of filenames between the 4 Batch queues
for (inti = 0; i <filenames.Length; i++)
{
count++;
if (count-1==0)
IbBatchQueue1.ltems.Add(filenamesi]);
if (count -2 ==0)
IbBatchQueue2.ltems.Add(filenamesi]);
if (count -3 ==0)
IbBatchQueue3.ltems.Add(filenamesi]);
if (count -4 ==0)

IbBatchQueue4.ltems.Add(filenamesli]);
count = 0;

}

/I Sets the amount by which each finished, processed image
/I increments the progress bar on frmMain.
Progressincrementer = 100 / (IbBatchQueue1.ltems.Count +
IbBatchQueue2.ltems.Count +

IbBatchQueue3.ltems.Count + IbBatchQueue4.ltems.Count);
/I Checks whether there are images in the first queue.
if (IbBatchQueue1.ltems.Count > 0)
{

/l There are images.

/I Checks whether there is more than one image in

/I the queue.

if (IbBatchQueue1.ltems.Count > 1)

/Il There is, so show the navigation buttons.
cmdNextQueue1.Visible = true;
cmdPrevQueue1.Visible = true;
}
/I Displays the first image in the queue and
/I sizes it appropriately.
picQueue1.Image = (Bitmap)Bitmap.FromFile
(IbBatchQueue1.ltems[0]. ToString());
picQueue1.SizeMode =
PictureBoxSizeMode.Stretchimage;
picQueue1.Refresh();
/I Makes the queue’s display area visible.
gbQueue1.Visible = true;
¥
/I Checks whether there are images in the second queue.
if (IbBatchQueue2.ltems.Count > 0)
{
/l There are images.
/I Checks whether there is more than one image in
/I the queue.
if (IbBatchQueue2.ltems.Count > 1)

{
/Il There is, so show the navigation buttons.
cmdNextQueue2.Visible = true;
cmdPrevQueue?2.Visible = true;

}

/I Displays the first image in the queue and

/I sizes it appropriately.

picQueue2.Image = (Bitmap)Bitmap.FromFile
(IbBatchQueue2.ltems[0].ToString());

picQueue2.SizeMode =
PictureBoxSizeMode.Stretchimage;

}

picQueue2.Refresh();
/I Makes the queue’s display area visible.
gbQueue2.Visible = true;

/I Checks whether there are images in the third queue.
if (IbBatchQueue3.ltems.Count > 0)

{

/l There are images.

/I Checks whether there is more than one image in
/I the queue.

if (IbBatchQueue3.ltems.Count > 1)

{
/Il There is, so show the navigation buttons.
cmdNextQueue3.Visible = true;
cmdPrevQueue3.Visible = true;

}

/I Displays the first image in the queue and

/I sizes it appropriately.

picQueued.Image = (Bitmap)Bitmap.FromFile
(IbBatchQueue3.ltems[0]. ToString());

picQueueld.SizeMode =

PictureBoxSizeMode.Stretchimage;

picQueued.Refresh();

/I Makes the queue’s display area visible.

gbQueue3.Visible = true;

/I Checks whether there are images in the fourth queue.
if (IbBatchQueue4.ltems.Count > 0)

{

/l There are images.

/I Checks whether there is more than one image in

/I the queue.

if (IbBatchQueue4.ltems.Count > 1)

{
/Il There is, so show the navigation buttons.
cmdNextQueue4.Visible = true;
cmdPrevQueue4.Visible = true;

/I Displays the first image in the queue and

/I sizes it appropriately.

picQueue4.Image = (Bitmap)Bitmap.FromFile
(IbBatchQueue4.ltems[0]. ToString());

picQueue4.SizeMode =
PictureBoxSizeMode.Stretchimage;

picQueue4.Refresh();

/I Makes the queue’s display area visible.

}

gbQueue4.Visible = true;

}

/l Update the form.

this.Invalidate();

/I Sets up the arrangement for frmUpdateModel’s
/I toolbar buttons.
tbUpdateModel.Buttons[0].Enabled = true;
toUpdateModel.Buttons[1].Enabled = true;
tbUpdateModel.Buttons[2].Enabled = true;
toUpdateModel.Buttons[3].Enabled = true;

/I Initializes the progress bar on frmMain.
pbProgress.Value = 0;

/I Increments the variable, this ensures that the
/I Batch Mode tab page only gets loaded once.
BatchModeFileSelect++;

else
MessageBox.Show("Batch Mode requires more than one
image to be selected at a time.","Message”,
MessageBoxButtons.OK,MessageBoxIcon.Information);

1.6.14 Single Image Area Mode

/I This subroutine is called when "learning" needs to happen in Single File Mode
/I for a selected area.
private void SingleFileArea()

{

/I Disable picStudy, so no further object selection is possible.
picStudy.Enabled = false;

/I ArrayList variable used to store the EdgeGraph ArrayList returned
/I by the EdgeGraphAgent.

ArrayList NewGraphs;

/I Creates the shared Whiteboard object. Then initializes all of the agents
/I and loads them onto individual threads.

whiteboard = new Whiteboard((Bitmap) bitmap.Clone());

MEDagent = new MainEdgeDetectionAgent(640,480,whiteboard);
MEDthread = new Thread(new ThreadStart(MEDagent.StartWait));
MEDthread.Start();

ICagent = new InvertColoursAgent(640,480,whiteboard);

ICthread = new Thread(new ThreadStart(ICagent.StartWait));
ICthread.Start();

TBagent = new ToBinaryAgent(640,480,whiteboard);

TBthread = new Thread(new ThreadStart(TBagent.StartWait));
TBthread.Start();

Pagent = new PerimeterAgent(whiteboard,
TopLeftX, TopLeftY,BottomRightX,BottomRightY,1);
Pthread = new Thread(new ThreadStart(Pagent.StartWait));
Pthread.Start();
EGagent = new EdgeGraphAgent(whiteboard,
TopLeftX, TopLeftY,BottomRightX,BottomRightY);
EGthread = new Thread(new ThreadStart(EGagent.StartWait));
EGthread.Start();
/I Show the user that the program is processing.
System.Windows.Forms.Cursor.Current =
System.Windows.Forms.Cursors.WaitCursor;
/I Increment the counter to let the agents know that they may start
/I processing.
whiteboard.Increment();
/I Halts all of the threads when they have finished processing.
while (whiteboard.RunStartWait == 0)
{

if (whiteboard.Counter > 6)

{

if (Pagent.getPerimeter() != 0)
{
/I An object was found.
cmdAccept.Visible = true;
picPicturePreview.Image = whiteboard.piclnUseDone;
picPicturePreview.SizeMode = PictureBoxSizeMode.Stretchimage;
picPicturePreview.BackColor = Color.White;
IbIPicturelnfo.Text = "Object Found";
gbPictureMeasurements.Visible = true;
/I Calls the OverlayAgent, to superimpose the rough edges on the
/I image that recognition was performed on.
Overlay OO = new

Overlay(bitmap,TBagent.getpiclnUse(), Pagent.getpicinUse());
picStudy.Image = OO.getbmpOutline();
/I Set the image to be displayed in the picturebox picRougheEdges
/I and sizes it appropriately. This displays only the rough edges
// in black on a white background.
picRoughOutlineBitmap = TBagent.getpicinUse();
picRoughEdges.Image = TBagent.getpiclnUse();
picRoughEdges.SizeMode = PictureBoxSizeMode.Stretchimage;
/I Set the image to be displayed in the picturebox
/I picOriginalAndEdges
/I and sizes it appropriately. This displays a greyscale version of
/I the original image with the rough edges superimposed in red.
bmpOriginalAndEdges = O0O.getbmpEdges();
picOriginalAndEdges.Image = bmpOriginalAndEdges;
picOriginalAndEdges.SizeMode =

PictureBoxSizeMode.Stretchlmage;
/I Set the image to be displayed in the picturebox
/I picOriginalAndOutline
/I and sizes it appropriately. This displays a greyscale version of
/I the original image with the object’s outline superimposed in red.
bmpOriginalAndOutline = O0O.getbmpOutline();
picOriginalAndOutline.Image = bmpOriginalAndOutline;
picOriginalAndOutline.SizeMode =
PictureBoxSizeMode.Stretchlmage;
/I Set the image to be displayed in the picturebox picOutline
/I and sizes it appropriately. This displays only the object’s
/I outline in black on a white background.
/I Calls the RemoveOutsideBackgroundAgent, to set any pixel
/I around the object’s selected area to white.
bmpOutline = Pagent.getpiclnUse();
picOutline.Image = bmpOQOutline;
picOutline.SizeMode = PictureBoxSizeMode.Stretchimage;
/I Sets the picturebox picCurrentEdges image and the temporay
/I bitmap to that of the Edge Graph generated for the object on the
/I current image.
picCurrentEdges.Image = EGagent.getGraph();
bmpCurrentEdges = EGagent.getGraph();
picCurrentEdges.SizeMode = PictureBoxSizeMode.Stretchimage;
/I Assigns all of the Graph Edge strings, generated by the
/I EdgeGraphAgent to the ArrayList NewGraphs.
NewGraphs = EGagent.getGraphs();
/I Adds all of the items in the NewGraphs ArrayList to the
/I CurrentGraphs ArrayList.
foreach(string i in NewGraphs)
CurrentGraphs.Add(i);
/I Assigns the newly generated statistics, for the found object,
/I to the following labels.
IbIPicturePerimeter.Text = IbICurrentPerimeter.Text =
Pagent.getPerimeter(). ToString();
IbIPictureArea.Text = IblICurrentArea.Text =
Pagent.getArea(). ToString();
IbIPictureXDistance.Text = IblICurrentXDistance.Text =
Pagent.getXDistance().ToString();
IbIPictureYDistance.Text = IblICurrentYDistance.Text =
Pagent.getYDistance().ToString();
IbIPictureEdges.Text = IblICurrentEdges.Text =
EGagent.getEdgeCount(). ToString();
/I Assigns the current measurements to global variables.
SinglePerimeter = Pagent.getPerimeter();
SingleArea = Pagent.getArea();
SingleXDistance = Pagent.getXDistance();

SingleYDistance = Pagent.getYDistance();
SingleEdgeCount = EGagent.getEdgeCount();

/I Gets a list of all the previously created Graph images.
filelist = Directory.GetFiles(RootDirectory,"*.jpg");
tbUpdateModel.Buttons[0].Enabled = true;
toUpdateModel.Buttons[1].Enabled = true;
tbUpdateModel.Buttons[2].Enabled = true;
toUpdateModel.Buttons[3].Enabled = true;

/I Makes the following items on tabNormal visible.
picPicturePreview.Visible = true;
gbPictureMeasurements.Visible = true;
cmdFull.Visible = true;

}

else

{
/I Displays an appropriate message when no object is
/I found.
IbIPicturelnfo.Text = "Object couldn’t be found";
/I Sets up the arrangement for frmUpdateModel’s
/I toolbar buttons.
tbUpdateModel.Buttons[0].Enabled = true;
toUpdateModel.Buttons[1].Enabled = true;
tbUpdateModel.Buttons[2].Enabled = true;
toUpdateModel.Buttons[3].Enabled = true;

}

}
1.6.15 Single Image Whole Image Mode

/I This subroutine is called when "learning" needs to happen in Single File Mode
/I for the whole image.
private void SingleFileWhole()
{
/I Disable picStudy, so no further object selection is possible.
picStudy.Enabled = false;
/I ArrayList variable used to store the EdgeGraph ArrayList returned
/I by the EdgeGraphAgent.
ArrayList NewGraphs;
/I Creates the shared Whiteboard object. Then initializes all of the agents
/I and loads them onto individual threads.
whiteboard = new Whiteboard((Bitmap) bitmap.Clone());
MEDagent = new MainEdgeDetectionAgent(640,480,whiteboard);
MEDthread = new Thread(new ThreadStart(MEDagent.StartWait));
MEDthread.Start();

ICagent = new InvertColoursAgent(640,480,whiteboard);
ICthread = new Thread(new ThreadStart(ICagent.StartWait));
ICthread.Start();
TBagent = new ToBinaryAgent(640,480,whiteboard);
TBthread = new Thread(new ThreadStart(TBagent.StartWait));
TBthread.Start();
Pagent = new PerimeterAgent(whiteboard,5,5,635,475,1);
Pthread = new Thread(new ThreadStart(Pagent.StartWait));
Pthread.Start();
EGagent = new EdgeGraphAgent(whiteboard,5,435,5,635);
EGthread = new Thread(new ThreadStart(EGagent.StartWait));
EGthread.Start();
/I Show the user that the program is processing.
System.Windows.Forms.Cursor.Current =
System.Windows.Forms.Cursors.WaitCursor;

/I Increment the counter to let the agents know that they may start

/I processing.

whiteboard.Increment();

while (whiteboard.RunStartWait == 0)

{
if (whiteboard.Counter > 6)

{

if (Pagent.getPerimeter() != 0)
{
/' An object was found.
cmdAccept.Visible = true;
picPicturePreview.Image = whiteboard.piclnUseDone;
picPicturePreview.SizeMode = PictureBoxSizeMode.Stretchimage;
picPicturePreview.BackColor = Color.White;
IbIPicturelnfo.Text = "Object Found";
gbPictureMeasurements.Visible = true;
/I Calls the OverlayAgent, to superimpose the rough edges on the
/I image that recognition was performed on.
Overlay OO = new

Overlay(bitmap,TBagent.getpiclnUse(), Pagent.getpicinUse());
picStudy.Image = O0.getbmpOutline();
/I Set the image to be displayed in the picturebox picRougheEdges
/I and sizes it appropriately. This displays only the rough edges
/I in black on a white background.
picRoughOutlineBitmap = TBagent.getpicinUse();
picRoughEdges.Image = TBagent.getpiclnUse();
picRoughEdges.SizeMode = PictureBoxSizeMode.Stretchimage;
/I Set the image to be displayed in the picturebox
/I picOriginalAndEdges
/I and sizes it appropriately. This displays a greyscale version of
/I the original image with the rough edges superimposed in red.

bmpOriginalAndEdges = OO.getbmpEdges();

picOriginalAndEdges.Image = bmpOriginalAndEdges;

picOriginalAndEdges.SizeMode =
PictureBoxSizeMode.Stretchlmage;

/I Set the image to be displayed in the picturebox

/I picOriginalAndOutline

/I and sizes it appropriately. This displays a greyscale version of

/I the original image with the object’s outline superimposed in red.

bmpOriginalAndOutline = O0O.getbmpOutline();

picOriginalAndOutline.Image = bmpOriginalAndOutline;

picOriginalAndOutline.SizeMode =

PictureBoxSizeMode.Stretchlmage;

/I Set the image to be displayed in the picturebox picOutline

/I and sizes it appropriately. This displays only the object’s

/I outline in black on a white background.

/I Calls the RemoveOutsideBackgroundAgent, to set any pixel

/I around the object’s selected area to white.

bmpOutline = Pagent.getpiclnUse();

picOutline.Image = bmpOutline;

picOutline.SizeMode = PictureBoxSizeMode.Stretchimage;

/I Sets the picturebox picCurrentEdges image and the temporay

/I bitmap to that of the Edge Graph generated for the object on the

/I current image.

picCurrentEdges.Image = EGagent.getGraph();

bmpCurrentEdges = EGagent.getGraph();

picCurrentEdges.SizeMode = PictureBoxSizeMode.Stretchimage;

/I Assigns all of the Graph Edge strings, generated by the

/I EdgeGraphAgent to the ArrayList NewGraphs.

NewGraphs = EGagent.getGraphs();

/I Adds all of the items in the NewGraphs ArrayList to the

/I CurrentGraphs ArrayList.

foreach(string i in NewGraphs)

CurrentGraphs.Add(i);

/I Assigns the newly generated statistics, for the found obiject,

/I to the following labels.

IbIPicturePerimeter.Text = IblICurrentPerimeter. Text =
Pagent.getPerimeter(). ToString();

IbIPictureArea.Text = IbICurrentArea.Text =
Pagent.getArea(). ToString();

IbIPictureXDistance.Text = IbICurrentXDistance.Text =
Pagent.getXDistance(). ToString();

IbIPictureYDistance.Text = IbICurrentYDistance.Text =
Pagent.getYDistance(). ToString();

IbIPictureEdges.Text = IbICurrentEdges.Text =
EGagent.getEdgeCount(). ToString();

/I Assigns the current measurements to global variables.

}

SinglePerimeter = Pagent.getPerimeter();
SingleArea = Pagent.getArea();

SingleXDistance = Pagent.getXDistance();
SingleYDistance = Pagent.getYDistance();
SingleEdgeCount = EGagent.getEdgeCount();

/I Gets a list of all the previously created Graph images.
filelist = Directory.GetFiles(RootDirectory,"*.jpg");
toUpdateModel.Buttons[0].Enabled = true;
tbUpdateModel.Buttons[1].Enabled = true;
toUpdateModel.Buttons[2].Enabled = true;
tbUpdateModel.Buttons[3].Enabled = true;

/I Makes the following items on tabNormal visible.
picPicturePreview.Visible = true;
gbPictureMeasurements.Visible = true;
cmdFull.Visible = true;

}

else

{
/I Displays an appropriate message when no object is
/l found.
IbIPicturelnfo.Text = "Object couldn’t be found";
/I Sets up the arrangement for frmUpdateModel’s
/I toolbar buttons.
toUpdateModel.Buttons[0].Enabled = true;
tbUpdateModel.Buttons[1].Enabled = true;
toUpdateModel.Buttons[2].Enabled = true;
tbUpdateModel.Buttons[3].Enabled = true;

}

1.6.16 Batch Image Mode

/I This subroutine is called when "learning" needs to happen in Batch File Mode.
private void BatchFile()

{

/I Integer variables used to store the total number of

/I images processed and the total number of objects found.
int total, found;

/I Checks whether the "Batch" directory exists.
if(Directory.Exists(RootDirectory + "\\Batch"))

/I It exists, so delete it and then create it
/I again. This ensures that there are no items
/I in the batch directory before processing begins.

Directory.Delete(RootDirectory + "\\Batch",true);
Directory.CreateDirectory(RootDirectory + "\\Batch");
}
else

/I The directory doesn't exist, so create it.

Directory.CreateDirectory(RootDirectory + "\\Batch");

/I Makes the progress bar on frmMain visible and

/I initializes it.

pbProgress.Visible = true;

pbProgress.Value = 0;

/I Create 4 new processing threads. One for each queue.

Thread Queue1 = new Thread(new
ThreadStart(BatchFileQueue1));

Thread Queue2 = new Thread(new
ThreadStart(BatchFileQueue?2));

Thread Queued = new Thread(new
ThreadStart(BatchFileQueue3));

Thread Queue4 = new Thread(new
ThreadStart(BatchFileQueue4));

/I Assign each queue thread a name.

Queue1.Name = "Queue1";

Queue2.Name = "Queue2";

Queue3.Name = "Queue3";

Queue4.Name = "Queued";

/[Start all of the queue threads.

Queue1.Start();

Queue2.Start();

Queued.Start();

Queue4.Start();

/I Ensures that all of the queue threads complete processing

/I before the program continues.

Queue1.Join();

Queue2.Join();

Queue3d.Join();

Queue4.Join();

/I Sets the Batch File process’ progress bar to 100%,

/I indicating that processing is complete.

/I The progress bar is then hidden.

pbProgress.Value = 100;

pbProgress.Refresh();

pbProgress.Visible = false;

/I Gets a list of all the Graph images created during Batch

/I File processing.

/I BatchGraphs = Directory.GetFiles(RootDirectory + "\\Batch");

/I Assigns the picturebox picCurrentEdges the first image

/I in the BatchGraphs ArrayList.

picCurrentEdges.Image = (Bitmap)BatchGraphs[Currentlistindex];
picCurrentEdges.SizeMode = PictureBoxSizeMode.Stretchimage;
/I 1If the BatchGraphs ArrayList consists of more than one Graph,
/I enable the 'CurrentNext’ button to navigate through the images.
if (BatchGraphs.Count > 1)

{
}

/I If the following variables don’t have assigned values, they
/| are assigned default values.
if(PerimeterLow == 0)
PerimeterLow = Int32.MaxValue;
if(PerimeterHigh == 0)
PerimeterHigh = 0;
if(AreaLow == 0)
AreaLow = Int32.MaxValue;
if(AreaHigh == 0)
AreaHigh = 0;
if(ShortestLow == 0)
ShortestLow = Int32.MaxValue;
if(ShortestHigh == 0)
ShortestHigh = 0;
if(LongestLow == 0)
LongestLow = Int32.MaxValue;
if(LongestHigh == 0)
LongestHigh = 0;
if(EdgesLow == 0)
EdgesLow = Int32.MaxValue;
if(EdgesHigh == 0)
EdgesHigh = 0;
/I Runs through the values generated for the first queue, to see
/I if they will replace the current values.
if ((PerimeterLowQueue1 < PerimeterLow) &&
(PerimeterLowQueue1 > 0))
PerimeterLow = PerimeterLowQueue1;
if (PerimeterHighQueue1 > PerimeterHigh)
PerimeterHigh = PerimeterHighQueue1;
if ((AreaLowQueue1 < ArealLow) && (AreaLowQueue1 > 0))
ArealLow = AreaLowQueue1;
if (AreaHighQueue1 > AreaHigh)
AreaHigh = AreaHighQueue1,
if ((ShortestLowQueue1 < ShortestLow) && (ShortestLowQueue1 >
0))
ShortestLow = ShortestLowQueue1;
if (ShortestHighQueue1 > ShortestHigh)

cmdNext.Enabled = true;

ShortestHigh = ShortestHighQueue1;
if ((LongestLowQueue1 < LongestLow) && (LongestLowQueue1 >
0))
LongestLow = LongestLowQueue1;
if (LongestHighQueue1 > LongestHigh)
LongestHigh = LongestHighQueue1;
if (EdgesLowQueue1 < EdgesLow) && (EdgesLowQueue1 > 0))
EdgesLow = EdgesLowQueue1;
if (EdgesHighQueue1 > EdgesHigh)
EdgesHigh = EdgesHighQueue1;
IbIBatchPerimeterLow.Text = PerimeterLowQueue1.ToString();
IbIBatchPerimeterHigh.Text = PerimeterHighQueue1.ToString();
IbIBatchAreaLow.Text = AreaLowQueue1.ToString();
IbIBatchAreaHigh.Text = AreaHighQueue1.ToString();
IbIBatchXDistanceLow.Text = ShortestLowQueue1.ToString();
IbIBatchXDistanceHigh.Text = ShortestHighQueue1.ToString();
IbIBatchYDistanceLow.Text = LongestLowQueue1.ToString();
IbIBatchYDistanceHigh.Text = LongestHighQueue1.ToString();
IbIBatchEdgesLow.Text = EdgesLowQueue1.ToString();
IbIBatchEdgesHigh.Text = EdgesHighQueue1.ToString();
/I Runs through the values generated for the second queue, to see
/I if they will replace the current values.
if ((PerimeterLowQueue2 < PerimeterLow) &&
(PerimeterLowQueue2 > 0))
PerimeterLow = PerimeterLowQueue?2;
if (PerimeterHighQueue2 > PerimeterHigh)
PerimeterHigh = PerimeterHighQueue2;
if ((AreaLowQueue2 < AreaLow) && (AreaLowQueue2 > 0))
ArealLow = AreaLowQueueZ2;
if (AreaHighQueue2 > AreaHigh)
AreaHigh = AreaHighQueue2;
if ((ShortestLowQueue?2 < ShortestLow) && (ShortestLowQueue2 >
0))
ShortestLow = ShortestLowQueue2;
if (ShortestHighQueue2 > ShortestHigh)
ShortestHigh = ShortestHighQueue2;
if ((LongestLowQueue?2 < LongestLow) && (LongestLowQueue2 >
0))
LongestLow = LongestLowQueue2;
if (LongestHighQueue2 > LongestHigh)
LongestHigh = LongestHighQueue2;
if (EdgesLowQueue2 < EdgesLow) && (EdgesLowQueue?2 > 0))
EdgesLow = EdgesLowQueue?;
if (EdgesHighQueue2 > EdgesHigh)
EdgesHigh = EdgesHighQueue?2;
if (PerimeterLowQueue2 <

Int32.Parse(IbiBatchPerimeterLow.Text))
IbIBatchPerimeterLow.Text =
PerimeterLowQueue2.ToString();
if (PerimeterHighQueue?2 >
Int32.Parse(IbiIBatchPerimeterHigh.Text))
IbIBatchPerimeterHigh.Text =
PerimeterHighQueue2.ToString();
if (AreaLowQueue? < Int32.Parse(IbIBatchAreaLow.Text))
IbIBatchAreaLow.Text = AreaLowQueue2.ToString();
if (AreaHighQueue2 > Int32.Parse(IblBatchAreaHigh.Text))
IbIBatchAreaHigh.Text = AreaHighQueue2.ToString();
if (ShortestLowQueue?2 < Int32.Parse(IbIBatchXDistanceLow.Text))
IbIBatchXDistanceLow.Text =
ShortestLowQueue2.ToString();
if (ShortestHighQueue2 >
Int32.Parse(IblBatchXDistanceHigh.Text))
IbIBatchXDistanceHigh.Text =
ShortestHighQueue2.ToString();
if (LongestLowQueue?2 < Int32.Parse(lbIBatchYDistanceLow.Text))
IbIBatchYDistanceLow.Text =
LongestHighQueue2.ToString();
if (LongestHighQueue2 > Int32.Parse(lbIBatchYDistanceHigh.Text))
IbIBatchYDistanceHigh.Text =
ShortestHighQueue2.ToString();
if (EdgesLowQueue?2 < Int32.Parse(IbiIBatchEdgesLow.Text))
IbIBatchEdgesLow.Text = EdgesLowQueue2.ToString()
if (EdgesHighQueue2 > Int32.Parse(IbiBatchEdgesHigh.Text))
IbIBatchEdgesHigh.Text = EdgesHighQueue2.ToString();
/I Runs through the values generated for the third queue, to see
/I if they will replace the current values.
if ((PerimeterLowQueue3 < PerimeterLow) &&
(PerimeterLowQueue3 > 0))
PerimeterLow = PerimeterLowQueue3;
if (PerimeterHighQueue3 > PerimeterHigh)
PerimeterHigh = PerimeterHighQueue3;
if ((AreaLowQueue3 < AreaLow) && (AreaLowQueue3 > 0))
Arealow = AreaLowQueue3;
if (AreaHighQueue3 > AreaHigh)
AreaHigh = AreaHighQueue3;
if ((ShortestLowQueue3 < ShortestLow) && (ShortestLowQueue3 >
0))
ShortestLow = ShortestLowQueue3;
if (ShortestHighQueue3 > ShortestHigh)
ShortestHigh = ShortestHighQueue3;
if ((LongestLowQueue3 < LongestLow) && (LongestLowQueue3 >
0))

LongestLow = LongestLowQueue3;
if (LongestHighQueue3 > LongestHigh)
LongestHigh = LongestHighQueue3;
if (EdgesLowQueue3d < EdgesLow) && (EdgesLowQueue3 > 0))
EdgesLow = EdgesLowQueue3;
if (EdgesHighQueue3 > EdgesHigh)
EdgesHigh = EdgesHighQueue3;
if (PerimeterLowQueue3 <
Int32.Parse(IbiBatchPerimeterLow.Text))
IbIBatchPerimeterLow.Text =
PerimeterLowQueue3.ToString();
if (PerimeterHighQueue3 >
Int32.Parse(IblIBatchPerimeterHigh.Text))
IbIBatchPerimeterHigh. Text =
PerimeterHighQueue3.ToString();
if (AreaLowQueue3 < Int32.Parse(IbIBatchAreaLow.Text))
IbIBatchAreaLow.Text = AreaLowQueue3.ToString();
if (AreaHighQueue3 > Int32.Parse(IblBatchAreaHigh.Text))
IbIBatchAreaHigh.Text = AreaHighQueue3.ToString();
if (ShortestLowQueue3 < Int32.Parse(IbIBatchXDistanceLow.Text))
IbIBatchXDistanceLow.Text =
ShortestLowQueue3.ToString();
if (ShortestHighQueue3 >
Int32.Parse(IbiBatchXDistanceHigh.Text))
IbIBatchXDistanceHigh.Text =
ShortestHighQueue3.ToString();
if (LongestLowQueue3 < Int32.Parse(lbIBatchYDistanceLow.Text))
IbIBatchYDistanceLow.Text =
LongestHighQueue3.ToString();
if (LongestHighQueue3 > Int32.Parse(IbIBatchYDistanceHigh.Text))
IbIBatchYDistanceHigh.Text =
ShortestHighQueue3.ToString();
if (EdgesLowQueued < Int32.Parse(IbiIBatchEdgesLow.Text))
IbIBatchEdgesLow.Text = EdgesLowQueue3.ToString();
if (EdgesHighQueue3 > Int32.Parse(IbiBatchEdgesHigh.Text))
IbIBatchEdgesHigh.Text = EdgesHighQueue3.ToString();
/I Runs through the values generated for the fourth queue, to see
/I if they will replace the current values.
if ((PerimeterLowQueue4 < PerimeterLow) &&
(PerimeterLowQueue4 > 0))
PerimeterLow = PerimeterLowQueue4;
if (PerimeterHighQueue4 > PerimeterHigh)
PerimeterHigh = PerimeterHighQueue4;
if ((AreaLowQueue4 < AreaLow) && (AreaLowQueue4 > 0))
ArealLow = AreaLowQueue4;
if (AreaHighQueue4 > AreaHigh)

AreaHigh = AreaHighQueue4;

if ((ShortestLowQueue4 < ShortestLow) && (ShortestLowQueue4 >
0))
ShortestLow = ShortestLowQueue4;

if (ShortestHighQueue4 > ShortestHigh)
ShortestHigh = ShortestHighQueue4;

if ((LongestLowQueue4 < LongestLow) && (LongestLowQueue4 >
0))
LongestLow = LongestLowQueue4;

if (LongestHighQueue4 > LongestHigh)
LongestHigh = LongestHighQueue4;

if (EdgesLowQueue4 < EdgesLow) && (EdgesLowQueue4 > 0))
EdgesLow = EdgesLowQueue4;

if (EdgesHighQueue4 > EdgesHigh)
EdgesHigh = EdgesHighQueue4;

if (PerimeterLowQueue4 <
Int32.Parse(IbiIBatchPerimeterLow.Text))
IbIBatchPerimeterLow.Text =
PerimeterLowQueue4.ToString();

if (PerimeterHighQueue4 >
Int32.Parse(IbIBatchPerimeterHigh.Text))
IbIBatchPerimeterHigh.Text =
PerimeterHighQueue4.ToString();

if (AreaLowQueue4 < Int32.Parse(IbIBatchAreaLow.Text))
IbIBatchAreaLow.Text = AreaLowQueue4.ToString();

if (AreaHighQueue4 > Int32.Parse(IblBatchAreaHigh.Text))
IbIBatchAreaHigh.Text = AreaHighQueue4.ToString();

if (ShortestLowQueue4 < Int32.Parse(IbIBatchXDistanceLow.Text))
IbIBatchXDistanceLow.Text =
ShortestLowQueue4.ToString();

if (ShortestHighQueue4 >
Int32.Parse(IbiBatchXDistanceHigh.Text))
IbIBatchXDistanceHigh.Text =
ShortestHighQueue4.ToString();

if (LongestLowQueue4 < Int32.Parse(lbIBatchYDistanceLow.Text))
IbIBatchYDistanceLow.Text =
LongestHighQueue4.ToString();

if (LongestHighQueue4 > Int32.Parse(IbIBatchYDistanceHigh.Text))
IbIBatchYDistanceHigh.Text =
ShortestHighQueue4.ToString();

if (EdgesLowQueue4 < Int32.Parse(IbiIBatchEdgesLow.Text))
IbIBatchEdgesLow.Text = EdgesLowQueue4.ToString();

if (EdgesHighQueue4 > Int32.Parse(IbiBatchEdgesHigh.Text))
IbIBatchEdgesHigh.Text = EdgesHighQueue4.ToString();

/I Sets up the arrangement for frmUpdateModel’s

/I toolbar buttons.

}

tbUpdateModel.Buttons[0].Enabled = true;

toUpdateModel.Buttons[1].Enabled = true;

tbUpdateModel.Buttons[2].Enabled = true;

toUpdateModel.Buttons[3].Enabled = true;

/I Gets the total number of images processed.

total = TotalQueue1 + TotalQueue?2 + TotalQueue3 + TotalQueue4;

/I Gets the total number of images on which objects were found.

found = FoundQueue1 + FoundQueue2 + FoundQueue3 +

FoundQueue4;

/I Makes the following items on tabBatch visible

gbBatchMeasurements.Visible = true;

/I Displays a message to the user, showing how many objects

/I were found.

IbIBatchInfo.Text = "Processing Done. " + found.ToString() + "
objects found in " + total. ToString() + " images.";

1.6.17 Batch Queue 1

/I This subroutine is responsible for processing queue number 1 during
/I Batch File processing.
private void BatchFileQueue1()

{

/I Integer Variables used to store the highest and lowest x and y
/I values returned by the PerimeterAgent.
int topx,topy,bottomx,bottomy;
topx = topy = bottomx = bottomy = 0;
/I Bitmap variable used to temporarily store the EdgeGraph generated
/I by the Batch File process.
Bitmap Current;
/I Sets the image of picturebox picQueue1 to the current item in
/I listbox IbBatchQueue1.
picQueue1.Image = (Bitmap)
Bitmap.FromFile(IbBatchQueue1.ltems[0]. ToString());
/I Creates a temporary bitmap variable and set it to the current item
/' in listbox IbBatchQueue1.
Bitmap temp = (Bitmap)
Bitmap.FromFile(IbBatchQueue1.ltems[0]. ToString());
/" Initializes the total image and object found counters
TotalQueue1 = FoundQueue1 = 0;
/I Initializes the low values to their highest possible value and sets the
/I high values to zero. This is done to enable the system, to later on, find
/I the respective lowest and highest values for each variable.
PerimeterLowQueue1 = AreaLowQueue1 = ShortestLowQueue1 =
LongestLowQueue1 = EdgesLowQueue1= Int32.MaxValue;
PerimeterHighQueue1 = AreaHighQueue1 = ShortestHighQueue1 =

LongestHighQueue1 = EdgesHighQueue1 = 0;
/I Makes the queue’s progress bar visible and initializes it.
pbQueue1.Visible = true;
pbQueue1.Value = 0;
/I Bitmap variable used as temporary storage for the bitmap returned by
/I the ToBinaryAgent
Bitmap Intermediate;
/I ArrayList variable used to store the EdgeGraph ArrayList returned
/I by the EdgeGraphAgent.
ArrayList NewGraphs;
/I Creates the shared Whiteboard object. Then initializes all of the agents
/I and loads them onto individual threads.
whiteboard = new Whiteboard((Bitmap) temp.Clone());
MEDagent = new MainEdgeDetectionAgent(640,480,whiteboard);
MEDthread = new Thread(new ThreadStart(MEDagent.StartWait));
MEDthread.Start();
ICagent = new InvertColoursAgent(640,480,whiteboard);
ICthread = new Thread(new ThreadStart(ICagent.StartWait));
ICthread.Start();
TBagent = new ToBinaryAgent(640,480,whiteboard);
TBthread = new Thread(new ThreadStart(TBagent.StartWait));
TBthread.Start();
Pagent = new PerimeterAgent(whiteboard,5,5,635,475,1);
Pthread = new Thread(new ThreadStart(Pagent.StartWait));
Pthread.Start();
EGagent = new EdgeGraphAgent(whiteboard,5,435,5,635);
EGthread = new Thread(new ThreadStart(EGagent.StartWait));
EGthread.Start();
Whiteboard.Increment();
/I Process every image int the queue.
for(inti = 0; i < IbBatchQueue1.ltems.Count; i++)

/I Increments the total number of images processed in the queue.
TotalQueue1++;
/I Update the form.
this.Refresh();
/I Sets the image of picturebox picQueue1 to the current item in
/I listbox IbBatchQueue1.
picQueue1.Image = (Bitmap)
Bitmap.FromFile(IbBatchQueue1.ltems][i]. ToString());
/I Creates a temporary bitmap variable and set it to the current item
/I in listbox IbBatchQueue1.
Bitmap temp = (Bitmap)
Bitmap.FromFile(IbBatchQueue1.ltems[i]. ToString());
/I Show the user that the program is processing.
System.Windows.Forms.Cursor.Current =

System.Windows.Forms.Cursors.WaitCursor;
/| Start the Detection process.
while (whiteboard.RunStartWait == 0)
{
if (whiteboard.Counter > 6)

{
if (Pagent.getPerimeter() != 0)

/I Sets the values for the bounding box.

topx = Pagent.getLowestX();

topy = Pagent.getLowestY();

bottomx = Pagent.getHighestX();

bottomy = Pagent.getHighestY();

/I Gets the lowest and highest values from the

/I PerimeterAgent.

if (Pagent.getPerimeter() < PerimeterLowQueue1)
PerimeterLowQueue1 = Pagent.getPerimeter();

if (Pagent.getPerimeter() > PerimeterHighQueue1)
PerimeterHighQueue1 = Pagent.getPerimeter();

if (Pagent.getArea() < AreaLowQueue1)
ArealLowQueue1 = Pagent.getArea();

if (Pagent.getArea() > AreaHighQueue1)
AreaHighQueue1 = Pagent.getArea();

if (Pagent.getXDistance() < ShortestLowQueue1)
ShortestLowQueue1 = Pagent.getXDistance();

if (Pagent.getXDistance() > ShortestHighQueue1)
ShortestHighQueue1 = Pagent.getXDistance();

if (Pagent.getYDistance() < LongestLowQueue1)
LongestLowQueue1 = Pagent.getYDistance();

if (Pagent.getYDistance() > LongestHighQueue1)
LongestHighQueue1 = Pagent.getYDistance();

if (EGagent.getEdgeCount() < EdgesLowQueue1)
EdgesLowQueue1 = EGagent.getEdgeCount();

if (EGagent.getEdgeCount() > EdgesHighQueue1)
EdgesHighQueue1 = EGagent.getEdgeCount();

/I An object was found.

/I Increment the number of objects found.

FoundQueue1++;

/I Checks to see whether this is the first image processed.

if ((i == 0) && (picCurrentEdges.Image == null))

{
/I ltis, so set the image of picCurrentEdges to the
/I current image’s Edge graph and sizes it
/I appropriately.
picCurrentEdges.Image = EGagent.getGraph();
picCurrentEdges.SizeMode =

}

PictureBoxSizeMode.Stretchimage;

/I Assigns all of the Graph Edge strings, generated by the

/l EdgeGraphAgent to the ArrayList NewGraphs.

NewGraphs = EGagent.getGraphs();

/I Adds all of the items in the NewGraphs ArrayList to the

/I CurrentGraphsQueue1 ArrayList.

foreach(string a in NewGraphs)

CurrentGraphsQueue1.Add(a);

/I Assigns the newly created Graph image to the temporary

/I bitmap variable Current. The file is then saved to the

/I model’s "Batch" directory.

BatchGraphs.Add(EGagent.getGraph());

Current = EGagent.getGraph();

Current.Save(RootDirectory + "\Batch\\" +
System.DateTime.Now.Day.ToString() +
System.DateTime.Now.Month.ToString() +
System.DateTime.Now.Year.ToString() +
System.DateTime.Now.Minute.ToString() +
System.DateTime.Now.Second.ToString() +
Thread.CurrentThread.Name.ToString() +
".jpg",System.Drawing.Imaging.ImageFormat.Jpeg);

/I Increment the queue’s progress bar, to show that another image
/I has been processed.

pbQueue1.Increment(100 / IbBatchQueue1.ltems.Count);
pbQueue1.Refresh();

/I Increment frmMain’s progress bar, to show that another image
/I has been processed.

pbProgress.Value = pbProgress.Value + Progressincrementer;
pbProgress.Refresh();

whiteboard.Restart();

}

/I Sets the queue’s progress bar to 100%, indicating that processing
/I is complete. The progress bar is then hidden.

pbQueue1.Value = 100;

pbQueue1.Refresh();

pbQueue1.Visible = false;

}
}

/I Ends the agents’ waiting process and stops the agents.
whiteboard.RunStartWait = 1;
MEDthread.Join();

ICthread.Join();
TBthread.Join();
Pthread.Join();

EGthread.Join();
}

1.6.18 Batch Queue 2

/I This subroutine is responsible for processing queue number 2 during
/I Batch File processing.
private void BatchFileQueue2()
{
/I Integer Variables used to store the highest and lowest x and y
/I values returned by the PerimeterAgent.
int topx,topy,bottomx,bottomy;
topx = topy = bottomx = bottomy = 0;
/I Bitmap variable used to temporarily store the EdgeGraph generated
/I by the Batch File process.
Bitmap Current;
/I Sets the image of picturebox picQueue?2 to the current item in
/I listbox IbBatchQueue2.
picQueue2.Image = (Bitmap)
Bitmap.FromFile(IbBatchQueue2.ltems[0]. ToString());
/I Creates a temporary bitmap variable and set it to the current item
/' in listbox IbBatchQueue2.
Bitmap temp = (Bitmap)
Bitmap.FromFile(IbBatchQueue2.ltems[0]. ToString());
/" Initializes the total image and object found counters
TotalQueue2 = FoundQueue2 = 0;
/I Initializes the low values to their highest possible value and sets the
/I high values to zero. This is done to enable the system, to later on, find
/I the respective lowest and highest values for each variable.
PerimeterLowQueue2 = AreaLowQueue?2 = ShortestLowQueue?2 =
LongestLowQueue2 = EdgesLowQueue2= Int32.MaxValue;
PerimeterHighQueue2 = AreaHighQueue2 = ShortestHighQueue2 =
LongestHighQueue2 = EdgesHighQueue2 = 0;
/I Makes the queue’s progress bar visible and initializes it.
pbQueue2.Visible = true;
pbQueue2.Value = 0;
/I Bitmap variable used as temporary storage for the bitmap returned by
/I the ToBinaryAgent
Bitmap Intermediate;
/I ArrayList variable used to store the EdgeGraph ArrayList returned
/I by the EdgeGraphAgent.
ArrayList NewGraphs;
/I Creates the shared Whiteboard object. Then initializes all of the agents
/I and loads them onto individual threads.
Whiteboard2 = new Whiteboard((Bitmap) temp.Clone());
MEDagent2 = new MainEdgeDetectionAgent(640,480,whiteboard);

MEDthread2 = new Thread(new ThreadStart(MEDagent.StartWait));
MEDthread2.Start();
ICagent2 = new InvertColoursAgent(640,480,whiteboard);
ICthread2 = new Thread(new ThreadStart(ICagent.StartWait));
ICthread2.Start();
TBagent2 = new ToBinaryAgent(640,480,whiteboard);
TBthread2 = new Thread(new ThreadStart(TBagent.StartWait));
TBthread2.Start();
Pagent2 = new PerimeterAgent(whiteboard,5,5,635,475,1);
Pthread2 = new Thread(new ThreadStart(Pagent.StartWait));
Pthread2.Start();
EGagent2 = new EdgeGraphAgent(whiteboard,5,435,5,635);
EGthread2 = new Thread(new ThreadStart(EGagent.StartWait));
EGthread2.Start();
Whiteboard2.Increment();
/I Process every image int the queue.
for(int i = 0; i < IbBatchQueue2.ltems.Count; i++)
{
/I Increments the total number of images processed in the queue.
TotalQueue2++;
/I Update the form.
this.Refresh();
/I Sets the image of picturebox picQueue?2 to the current item in
/I listbox IbBatchQueue2.
picQueue2.Image = (Bitmap)
Bitmap.FromFile(IbBatchQueue2.ltems][i]. ToString());
/I Creates a temporary bitmap variable and set it to the current item
/I in listbox IbBatchQueue?2.
Bitmap temp = (Bitmap)
Bitmap.FromFile(IbBatchQueue2.ltems]i]. ToString());
/I Show the user that the program is processing.
System.Windows.Forms.Cursor.Current =
System.Windows.Forms.Cursors.WaitCursor;
/| Start the Detection process.
while (whiteboard.RunStartWait == 0)
{

if (whiteboard.Counter > 6)

{
if (Pagent.getPerimeter() != 0)

/I Sets the values for the bounding box.

topx = Pagent.getLowestX();

topy = Pagent.getLowestY();

bottomx = Pagent.getHighestX();

bottomy = Pagent.getHighestY();

/I Gets the lowest and highest values from the

/I PerimeterAgent.

if (Pagent.getPerimeter() < PerimeterLowQueue2)
PerimeterLowQueue2 = Pagent.getPerimeter();

if (Pagent.getPerimeter() > PerimeterHighQueue2)
PerimeterHighQueue2 = Pagent.getPerimeter();

if (Pagent.getArea() < AreaLowQueue?2)
AreaLowQueue2 = Pagent.getArea();

if (Pagent.getArea() > AreaHighQueue?2)
AreaHighQueue2 = Pagent.getArea();

if (Pagent.getXDistance() < ShortestLowQueue?2)
ShortestLowQueue2 = Pagent.getXDistance();

if (Pagent.getXDistance() > ShortestHighQueue2)
ShortestHighQueue2 = Pagent.getXDistance();

if (Pagent.getYDistance() < LongestLowQueue?2)
LongestLowQueue2 = Pagent.getYDistance();

if (Pagent.getYDistance() > LongestHighQueue2)
LongestHighQueue2 = Pagent.getYDistance();

if (EGagent.getEdgeCount() < EdgesLowQueue2)
EdgesLowQueue2 = EGagent.getEdgeCount();

if (EGagent.getEdgeCount() > EdgesHighQueue?2)
EdgesHighQueue2 = EGagent.getEdgeCount();

/I An object was found.

/I Increment the number of objects found.

FoundQueue2++;

/I Checks to see whether this is the first image processed.

if ((i == 0) && (picCurrentEdges.Image == null))

{

I It is, so set the image of picCurrentEdges to the
/I current image’s Edge graph and sizes it
/I appropriately.
picCurrentEdges.Image = EGagent.getGraph();
picCurrentEdges.SizeMode =
PictureBoxSizeMode.Stretchimage;
}
/I Assigns all of the Graph Edge strings, generated by the
/I EdgeGraphAgent to the ArrayList NewGraphs.
NewGraphs = EGagent.getGraphs();
/I Adds all of the items in the NewGraphs ArrayList to the
/I CurrentGraphsQueue2 ArrayList.
foreach(string a in NewGraphs)
CurrentGraphsQueue2.Add(a);
/I Assigns the newly created Graph image to the temporary
/I bitmap variable Current. The file is then saved to the
/I model’'s "Batch" directory.
BatchGraphs.Add(EGagent.getGraph());
Current = EGagent.getGraph();

Current.Save(RootDirectory + "\Batch\\" +
System.DateTime.Now.Day.ToString() +
System.DateTime.Now.Month.ToString() +
System.DateTime.Now.Year.ToString() +
System.DateTime.Now.Minute.ToString() +
System.DateTime.Now.Second.ToString() +
Thread.CurrentThread.Name.ToString() +
".jpg",System.Drawing.Imaging.ImageFormat.Jpeg);

}
/I Increment the queue’s progress bar, to show that another image
/I has been processed.
pbQueue2.Increment(100 / IbBatchQueue2.ltems.Count);
pbQueue2.Refresh();
/I Increment frmMain’s progress bar, to show that another image
/I has been processed.
pbProgress.Value = pbProgress.Value + Progressincrementer;
pbProgress.Refresh();
whiteboard2.Restart();

}

/I Sets the queue’s progress bar to 100%, indicating that processing

/I is complete. The progress bar is then hidden.

pbQueue2.Value = 100;

pbQueue2.Refresh();

pbQueue2.Visible = false;

}

/I Ends the agents’ waiting process and stops the agents.
Whiteboard2.RunStartWait = 1;

MEDthread2.Join();

ICthread2.Join();

TBthread2.Join();

Pthread2.Join();

EGthread2.Join();

}
1.6.19 Batch Queue 3

/I This subroutine is responsible for processing queue number 3 during
/I Batch File processing.
private void BatchFileQueue3()
{
/I Integer Variables used to store the highest and lowest x and y
/I values returned by the PerimeterAgent.
int topx,topy,bottomx,bottomy;
topx = topy = bottomx = bottomy = 0;
/I Bitmap va