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Abstract 
 
A synthesis procedure for allocating tolerances and clearances in rapid prototyping 
(RP) processes has been developed, using a unified method based on stochastic 
approach, as developed by the authors, to study the mechanical error in RP 
processes.  The tolerances and clearances that cause mechanical error have 
been assumed to be random variables, and are optimally allocated so as to restrict 
the mechanical error within the specified limits. Using the synthesis procedure, the 
allocation is done for the Fused Deposition Modeling (FDM) and the 
Stereolithography (SL) processes. 
 
1. INTRODUCTION 
 
Rapid Prototyping (RP) is emerging as a key technology with its ability to produce 
complicated parts within hours. RP systems use a solid model of a part as an 
input and make a physical model or prototype layer by layer without using tools or 
fixtures. This technology has also been referred to as layered manufacturing 
technology, free-form fabrication, model making, desktop manufacturing, 3D 
Printing, etc. 
 
There are several accuracy issues pertaining to the layer manufacturing 
technologies, such as limitations in CAD to RP translation which generally take 
place in the CAD system itself, e.g., tolerance for tessellation, convex boundary 
error, flipped normal, mid-line node etc. (Fadel et al, 1996; Kai et al, 1997). RP parts 
usually exhibit a staircase effect on slanted and curved surfaces because of the 
layering process (Dolenc et al, 1994). Orientation of the build is to be determined 
considering several factors, such as, surface finish, build time, distortion, etc (Cheng 
et al, 1995). 

 
The tool of an RP system traces the contour of the slice of a part on a platform. 
There are several mechanisms, comprising of links and hinges, responsible for the 
motion of tool and platform (Fig. 1). The error at a point on the contour depends 
upon the error in the elements of these mechanisms. RP systems consist of 
mechanisms to move optics, build head, elevator platform, Z-stage platen, etc. The 
links of a mechanism are manufactured with some tolerances on the link lengths and 
clearances at the joints. The tolerances and clearances cause mechanical error in 
the desired position of the tool or the platform, and is a significant accuracy issue in 
RP processes. The stochastic model developed by Agrawal is the first attempt to 
analyze the mechanical error in RP processes through a unified approach 
(Agrawal, 2001).  
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Figure 1: An RP process 

 
While designing a mechanism it is necessary to take into account both the structural 
and the mechanical errors. Mechanical error in mechanisms has been dealt with 
considerably in the past literature. Several attempts have been made to analyze 
path and function generating mechanisms. There are two distinct approaches — 
deterministic and stochastic. The deterministic approaches are based upon worst-
case analysis of individual tolerances and give highly conservative estimates, not 
reflecting the overall behaviour of the mechanisms. Besides in most of these 
studies, either tolerances or clearances are considered. In contrast stochastic 
approaches have been found to be more suitable for both analysis and synthesis of 
mechanical error. 
 
Dhande et al (1973) and Chakraborty (1975) used a stochastic model for 
mechanical error analysis of function-generators. Mallik et al (1987) used a 
stochastic approach for mechanical error analysis of path-generating mechanisms. 
Agrawal (2001) has extended the concept of stochastic modeling of tolerances and 
clearances to RP processes, such as FDM and SL. 
 
A significant development in the treatment of tolerances and clearances is their 
optimal allocation so as to restrict the mechanical error within specified limits. 
Dhande et al (1973) and Chakraborty (1975) used a stochastic model and an 
equivalent linkage model to allocate tolerances and clearances in four-bar function-
generators. Sutherland (1975) has given a method for synthesis of mechanisms, 
taking into account structural and mechanical error due to tolerances. The 
dimensions and tolerances of a mechanism can be obtained for a given maximum 
allowable function generating error while minimizing the manufacturing cost. 
Bakthavachalam et al (1975) have considered synthesis of four-bar path-
generating mechanisms as an optimization problem under inequality constraints. 
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Equality constraints are modified by introducing tolerances and clearances and 
thereby the difficulty in satisfying the equality constraints exactly is eliminated. 
Through this modification, the objective function is also changed. The penalty 
function approach is used. 
 
Rao (1978) has suggested an iterative method for the synthesis of mechanisms, 
taking into account the effect of link deformations, tolerances and joint clearances. 
However, tolerances and joint clearances were specified prior to the synthesis of 
mechanisms. Choubey et al (1982) have suggested a method for minimizing the 
structural error together with the mechanical error due to manufacturing tolerances 
on the link dimensions. Nominal link lengths are obtained prior to tolerance 
allocation. The mechanical error is treated as a deviation of structural errors. 
Tolerances are then allocated with reference to the position of maximum error to 
limit the mechanical error below a specified value. Sharfi et al (1983) proposed a 
method for tolerance and clearance allocation in multi-loop planar mechanisms 
based on the output sensitivity with respect to the link lengths. Tolerances and 
clearances are allocated as a result of the synthesis of mechanical error. 
 
Mall k et al (1987) developed a stochastic model for the synthesis of mechanical 
error in four-bar path-generating linkages. They analyzed the mechanical error in 
the path of a coupler point for the three-sigma band of confidence level and 
developed a synthesis procedure to allocate tolerances and clearances so as to 
restrict the output error in the path of coupler point within specified limits. They found 
that the mechanical error of the coupler-point path is dependent on whether one 
considers the original mechanism or its cognate mechanisms. Rhyu et al (1988) 
have presented a procedure for optimal stochastic design of mechanisms 
considering tolerances and clearances. A weighted sum of the mechanical error and 
the manufacturing cost is minimized for the optimal allocation of tolerances and 
clearances. Fenton et al (1989) and Cleghorn et al (1993) have presented a 
method for error analysis and tolerance synthesis of multi-loop planar mechanisms. 

 
In the present paper, a synthesis procedure for allocating tolerances and clearances 
in RP processes has been developed. Tolerances and clearances are assigned 
such that the maximum error on the work surface is within the specified limits. This 
method was used to allocate tolerances and clearances in the FDM and SL 
processes. 

 
2. PROBLEM FORMULATION 
 
Agrawal (2001) has expressed the coordinates of a point on the work surface 
traced by the laser beam (SL) or the tip of the extruder head  (FDM) as a function 
of random variables involved in the process. If there are n random variables V1, 
V2,…,Vn involved in the RP process under consideration, then the coordinates of 
the point are given by x(V1, V2,…,Vn), y(V1, V2,…,Vn) and z(V1, V2,…,Vn) 
 
Since the dependent variables x, y and z are functions of random variables, any 
given range of a dependent variable may be associated with the corresponding 
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probability if the probability densities or at least certain numerical characteristics, 
such as means m[Vi] and variances D[Vi] of the random variables Vi are known. The 
means and the variances of the dependent variables are given by 
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It is known that if the functions x, y and z are linear and if the number of random 
variables n > 5, then the dependent variables x, y and z may as well be taken as 
normal (Ventsel, 1964). 

 
To evaluate the variances D[x], D[y] and D[z], the partial derivatives of x, y and z, 
respectively, must be evaluated with respect to Vi. Once the variance of a dependent 
variable has been found for the RP process to trace a particular point on the work 
surface, the range of dependent variable is evaluated for the three-sigma band of 
confidence level (with probability 0.9973). 
 
Agrawal (2001) performed analyses of mechanical error on FDM and SL processes 
and tabulated the variances D[x], D[y] and D[z] at the mean values of random 
variables at several points on the work surface. The three-sigma bands of 
mechanical errors in tracing several curves on the work surface for given 
tolerances and clearances were plotted. This forms the analysis part of the 
problem. The synthesis part is the inverse of the above problem. In synthesis, the 
designer has to decide about the levels of tolerances on Vi's for certain allowable 
tolerance limits on x, y and z. One solution is to keep very strict tolerances on Vi's 
so that the output errors on x, y and z will be less than the specified limits. However, 
such a solution is impractical since it is very expensive to manufacture any 
component or assembly with allowances close to zero. It is desirable to give as 
much of tolerance as poss ble to keep the manufacturing costs low. 

 
Consider an RP process with n random variables Vi involved in its stochastic 
model. The random variables Vi have variances D[Vi]. The production cost C is 



 5 

assumed to be inversely proportional to the variances D[Vi]. 
 
The problem of optimal allocation of tolerances and clearances can be stated as 
follows: 
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The minimization problem is stated at that point P(x,y,z) on the work surface 
where the errors in x, y and z have been observed to be critical while conducting 
error analysis. In other words, some study in analyzing mechanical errors should 
be made prior to undertaking the synthesis. On the basis of this study values of 
variances D[x], D[y] and D[z] should be specified at a particular point P(x,y,z) on 
the work surface. 

 
3. OPTIMATIZATION USING LAGRANGE MULTIPLIER TECHNIQUE 
 
The coefficients (∂x/∂Vi)m

2  in the above minimization problem are evaluated at the 
mean value of Vi. The expressions for the mean values of the random variables m[Vi] 
discussed earlier do not depend upon the tolerances, εi or the clearances, cij and 
hence on ρi.So ρi and ai are independent. Hence the constraints are linear functions 
of design variables for the optimization of ρi's. The derivatives can be taken easily. 
Hence the optimization problem is solved using Lagrange multiplier technique. 
 
Using Lagrange multiplier technique, the modified cost function can be written as 
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and λ1, λ2 and λ3  are Lagrange multipliers (Rao, 1984; Reklaitis, 1983). The 
optimality conditions for minimum M are 
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Then σ1 and σ2 can be obtained by solving the following two equations: 
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For σ1 and σ2 to be real, it is necessary that 

 

                                                  021 >++ iii cba σσ ,            i = 1, 2,…, n            (10) 

 

 
The region given by the expression (10) is plotted in Fig. 2 for ai < 0 and aj > 
0. Feasible region of σ1 and σ2 is where the expression (10) is satisfied for all 
i. 
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Figure 2: The region ai + σ1 bi + σ2 ci =  0 

 

The feasible region is bounded by two convex hulls (Fig. 3). One convex hull is 
formed by the straight lines ai + σ1bi + σ2ci = 0, for those values of i where ai > 0. 
The other convex hull is formed by ai < 0. 

 

 

Figure 3: Feasible region of σ1 and σ2 

 

The function f(σ1,σ2) and g(σ1,σ2) can be plotted in the feasible region of (σ1,σ2). 
This will give allowable ranges for K1 and K2. For given values of K1 and K2 in this 
range, σ1 and σ2 can be found by solving Eqs. (8) and (9). 
 
There is a feasible region of σ1 and σ2. Arbitrary choice of K1 and K2 is not 
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allowed because a real solution of (λ1, λ2, λ3) cannot be obtained for K1 and K2 
chosen in the infeasible region. But if a real solution is obtained then the 
expression (10) is satisfied. The solution satisfies the first of equations (7). This 
gives 
 

                                                   2
121 1 iiii cba ρλσσ =++ ,          i = 1, 2, ..., n              (11) 

 
Expression (10) is satisfied if λ1 obtained in the solution is positive. The 
verification that λ1 is positive avoids plotting f(σ1,σ2) and g(σ1,σ2) to find the 
allowable range of K1 and K2. The first of equations (7) can be rewritten as 
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Substituting the above expression for ρi  in the last three equations of (7) gives 
three non-linear equations in three unknowns λ1, λ2 and λ3 as follows: 
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The above set of non-linear equations can be solved by Newton-Raphson 
method. The elements of the Jacobian [J] can be derived as follows 
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Similarly the expressions for ∂h2/∂λi, i = 1,2,3 and ∂h3/∂λi, i = 1,2,3 can be 
obtained. Then the Jacobian [J] can be written as follows: 
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The analytical expression for Jacobian [J] is available and it is not needed to find the 
numerical derivatives of hi, i = 1,2,3. On solving Eq. (13) by Newton-Raphson 
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method the values of λ1,  λ2 and λ3 can be obtained. The ρi's are obtained from 
expression (12). 
 
4.    OPTIMATIZATION USING GENETIC ALGORITHMS  
 
Genetic algorithms (GAs) are computerized search and optimization algorithms 
based on the mechanics of natural genetics and natural selection. GAs mimic the 
survival-of-the-fittest principle of nature to do a search process (Deb, 1995a). The 
variables in GA are coded in some string structures, where mostly binary coded 
strings are used. The length of the string is usually determined according to the 
desired solution accuracy. 

 
In general, a fitness function F(x) is first derived from the objective function and used 
in successive genetic operation. For maximization problems, the fitness function 
can be considered to be the same as the objective function or F(x) = f(x). For 
minimization problems the following function is often used. 
 

                                                   ))(1(1)( xfxF +=  

The fitness function value of a string is known as the string's fitness. 
 
The operation of GAs starts with a population of random strings representing design 
or decision variables. Thereafter, each string is evaluated to find the fitness value. 
The population is then operated by three main operators — reproduction, 
crossover and mutation — to create a new population of points. The new 
population is further tested for termination. If the termination criterion is not met, 
the population is iteratively operated by the above three operators, and evaluated. 
This procedure is continued until the termination criterion is met. One cycle of these 
operations and the subsequent evaluation procedure is known as a generation in 
GA's terminology. Because there are more than one strings being processed 
simultaneously, it is l kely that the solution obtained may be a global optimum. GAs 
are used to find global optimum for complex engineering optimization problems. 

 
As GAs use a coding of variables, they work with a discrete search space. Even 
though the underlying objective function is a continuous function, GAs convert the 
search space into a discrete set of points. GAs have also been developed to work 
directly with continuous variables (instead of discrete variables). In those GAs binary 
strings are not used. Instead, the variables are directly used. These are called real-
coded GA (Deb, 1995a; Deb et al, 1995b). A code developed by Deb et al 
(1995b) for real-coded GA is used in the present work. 

 
5. OPTIMUM TOLERANCES AND CLEARANCES IN FDM 
 
Agrawal (2001) finds the coordinates of a point on the contour of a slice traced 
by the nozzle tip Q. The geometric model of the FDM process is given in Fig. 
4. There are fifteen random variables V1, V2,…,V15 involved in the stochastic 
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model of the FDM process. He gives the expressions for the influence 
coefficients a i ,  bi and ci and the partial derivatives needed for them. The 
variances of the dependent variable x, y and z and their sum at several 
points on the work surface is tabulated. The plots of three-sigma bands of 
error in tracing several curves by the nozzle tip are also given. From the error 
analysis it is found that the maximum value of the sum of variances DSUM 
occurs at l1 = 0.25 m and l3 = 0.25 m. 
 

 

Figure 4: Geometric model of the FDM process 

 
The optimal allocation of tolerances and clearances is done at the mean 
values of variables and other input values mentioned below: 

 

a1         =    −0.15 m        b1        =    −0.10 m      c1    =    0.22 m 
l1fixed    =       0.09 m       l1max    =       0.25 m      l2     =    0.07 m 
l3fixed    =       0.12 m       l3max    =       0.25 m      l4     =    0.01 m      l5     =      0.15 m 
α1         =       1.0°            β1       =       0.0°           α2    =    0.0°          β2    =    −1.0° 

 
The optimal allocation is based on the location of nozzle tip where DSUM is 
maximum, that is, at l1 = 0.25m and l3 = 0.25 m. Assuming D[x] = 6.5 x 10−8m2, 
D[y] = 3.0 x 10−7m2 and D[z] = 19.5 x 10−8m2, the optimal values of variances 
of variables Vi are obtained using Lagrange multiplier technique. Since a real 
solution for the Lagrange multipliers (λ1, λ2, λ3) is obtained with positive λ1, 
therefore, the ratio of variances, K1 and K2 are in the allowable range and the 
solution for  (λ1, λ2, λ3) exists. The solutions obtained for the Lagrange 
multipliers are as follows: 

 
λ1    =    1.0396 x 1015    λ2    =    1.2301 x 1018    λ3    =    9.6734 x 1014 

 
The optimal values of variances ρi of variables Vi obtained from the Lagrange 
multiplier technique are listed in Table 1. The derivatives ∂[q2]/∂Vi, ∂[TA]/∂Vi 
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and ∂[TB]/∂Vi, and hence ∂[q]/∂Vi are identical for (i = 2,7). They are also 
identical for the indices i in each of the sets (i = 3,6), (i = 4,8) and (i = 
5,9,10,11). Therefore, from Eq. (7) the optimum variances ρi are identical for 
the indices i in each of these sets as obtained by Lagrange multiplier 
technique in Table 1. 
 
The optimum values of variances are also obtained using real-coded genetic 
algorithm optimization method. The input values taken for GA runs are as follows: 
 
Population size  =   150, Number of variables     = 15,  Bounds on variables  = rigid, 
 
Crossover probability   =   0 90, Muta ion probability    =   0 05,  Random seed number  =   0.15. 
 
Optimization is done by varying the number of generation and the number of runs. 
The optimum values of variances ρi on variables Vi, obtained for 600 generations 
and a single run, are listed in Table 1 along with those obtained from Lagrange 
multiplier technique. 
 
 

Table 1: Optimum Values of Variances ρi in FDM from Lagrange Multiplier Technique 
and from Real-Coded GA 

 

Optimum Variances 
from Lagrange 

Optimum Variances 
from Real GA 

i Variance ρi i Variance ρi 
1 9.018e−10 1 8 533e−10 
2 3.215e−08 2 2 953e−08 
3 3.101e−08 3 3.078e−08 
4 9.018e−10 4 7 374e−10 
5 2.730e−08 5 2.873e−08 
6 3.101e−08 6 3 123e−08 
7 3.215e−08 7 2 912e−08 
8 9.018e−10 8 7.405e−10 
9 2.730e−08 9 2 920e−08 

10 2.730e−08 10 2.809e−08 
11 2.730e−08 11 2.799e−08 
12 6.531e−09 12 1.445e−08 
13 8.058e−08 13 7 328e−08 
14 6.005e−09 14 1 545e−08 
15 6.940e−08 15 7.611e−08 

Production Cost, C 
from Lagrange 

Production Cost, C 
from Real GA 

3.946+09 4.312+09 

 

Real GA give a near global optimum solution. The solution can be improved by 
using Cauchy's steepest descent method. The optimum values obtained by real GA 
compare quite closely with those obtained by the Lagrange method. The minimum 
production cost, C obtained from real GA is larger than that obtained using 
Lagrange as real GA give a solution in the vicinity of the global solution. So, the 
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Lagrange method which gives a closed form solution has given the global optimum. 
The optimum values of ρ12 and ρ14 obtained by real GA differ from those obtained 
by the Lagrange method. This needs to be investigated further. It has been 
observed that when the optimum values differ by several orders, then some of the 
optimum variances obtained by GA differ from those obtained by the Lagrange 
method. 
 
The tolerances and clearances are computed from the optimal values of variances 
ρi of variables Vi obtained from the Lagrange method. Both ρ6 and ρ7 give the 
clearance c12 in pair 12. The smaller of the two values is chosen for the clearance 
c12 because narrower clearance will ensure that the variances on the dependent 
variables do not exceed the specified limit. Similarly, the smaller of the two values of 
clearances obtained from the variances ρ8 and ρ9 is chosen for the clearances c34 in 
pair 34. The optimal values of tolerances and clearances are listed in Table 2. 

Table 2: Optimal Allocation of Tolerances in FDM 
 

Optimal Allocation of Tolerances    

  Tolerance Units 

Absolute tolerance in positioning member 2 along link 1 ε1  = 9.009e−05 m 

Tolerance per unit length on link 2 ε2 = 7.685e−03 m/m 

Absolute tolerance in positioning member 4 along link 3 ε3 = 5.283e−04 m 

Tolerance per unit length on link 4 ε4 = 9.009e−03 m/m 

Tolerance per unit length on link 5 ε5 = 3.305e−03 m/m 

Radial Clearance in pair 12 c12 = 3.522e−04 m 

Radial Clearance in pair 34 c34 = 6.006e−05 m 

Absolute tolerance in Z2 direction at the head attachment ε10 = 4.957e−04 m 

Absolute tolerance in Z2 direction at the nozzle tip attachment ε11 = 4.957e−04 m 

Absolute tolerance on angle α1 ε12 = 2.424e−04 rad 

Absolute tolerance on angle β1 ε13 = 8.516e−04 rad 

Absolute tolerance on angle α2 ε14 = 2.325e−04 rad 

Absolute tolerance on angle β2 ε15 = 7.903e−04 rad 

 
Converting the tolerance coefficients into absolute tolerances on the respective 
links and comparing the tolerances on links we find that stricter tolerances are 
demanded on links 1 and 4. It may be noted that these two links are the only links 
in Y0-direction. Stricter clearance is demanded in pair 34. Stricter tolerances are 
demanded on angles α1 and α2, i.e., the angles about X0-direction. Therefore, the 
error is most sensitive to V1, V4, V8, V9, V12 and V14. 
 
6.    OPTIMUM TOLERANCES IN SL  
 
Agrawal (2001) finds the position vector q(u, w) = [ x y z 1 ] of the point 
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Q on the contour of a slice in SL. The laser beam in SL draws the contour 
on the resin surface. The geometric model of the FDM process is given in 
Fig. 5. There are eleven random variables V1, V2,…,V11 involved in the 
stochastic model of the process. Agrawal gives the expressions for the 
influence coefficients ai, bi and ci and the partial derivatives needed for them. 
The variances of the dependent variable x, y and z and their sum are 
tabulated. The plots of three-sigma bands of error in tracing several curves 
on the resin surface are also given. The maximum value of the sum of 
variances DSUM occurs at (qx = 0, qy = .3). 

 

 

Figure 5: Geometric model of the SL process 

 

The optimal allocation of tolerances is done at the mean values of variables 
and the other input values mentioned below: 
 

a1    =     0 0 m      b1    =   0 15 m     c1   =      1 0 m      θ    =    90 0°       φ    =    0 0° 

a2    =    0 25 m      b2    =    0 05 m      c2    =    1 02 m 

a3    =      0 0 m      b3    =      0 0 m      c3    =      0 5 m 

 
The optimal allocation is based on the point at which the sum of variances 
DSUM is maximum, that is, at (qx = 0, qy = .3) on the resin surface. Assuming 
D[x] = 8.0 x 10−8m2, D[y] = 12.0 x 10−8m2 and D[z] = 5.0 x 10−8m2, the optimal 
values of variances of the variables Vi are obtained using Lagrange multiplier 
technique as discussed in Section 3. Since a real solution for the Lagrange 
multipliers (λ1, λ2, λ3) is obtained with positive λ1, therefore, the ratio of 
variances, K1 and K2 are in the allowable range and the solution for λ1, λ2 and 
λ3 exists. No real solution was found when K2 ≈ 5.0. The solution obtained for 
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the Lagrange multipliers are as follows: 
 

λ1    =    7.740 x 1015    λ2    =    3.164 x 1014    λ3    =    −2.034 x 1015 
 
The optimal values of variances ρi are listed in Table 3. 
 
The optimum values of variances are also obtained using real-coded genetic 
algorithm optimization method as discussed in Section 3. Since the error at 
the point Q does not depend upon the variable V1, therefore, only the other 
ten variables are considered for optimization using GA. The influence 
coefficients with respect to the variable V1 are smaller by many orders 
compared to those for other variables. From Eq. (7) it can be seen that the 
terms corresponding to V1 contribute negligibly to the constraints. The input 
values taken for GA runs are as follows: 
 
Population size  =   100 ,  Number of variables    =    10 ,    Bounds on variables    =   rigid, 
 
Crossover probability   =  0.85 ,  Mutation probability  =   0.05 , Random seed number  =  0.51. 

 
Optimization is done by varying number of generation and number of runs. The 
optimum values of variances ρi on variables Vi, obtained for 600 generations and 
single run, are listed in Table 3 along with those obtained from Lagrange multiplier 
techniques. 

 
Table 3: Optimum Values of Variances ρi in SL from Lagrange Multiplier 
Technique and from Real Coded GA 
 

Optimum Variances 
from Lagrange 

Optimum Variances 
from Real GA 

I Variance ρi i 
 

Variance ρi 
1 6 730e+00   
2 4 279e−08 2 4.463e−08 
3 1.003e−08 3 1 147e−08 
4 1.152e−08 4 1 300e−08 
5 4 915e−08 5 4.807e−08 
6 1.137e−08 6 1 300e−08 
7 6 596e−08 7 7.647e−08 
8 1.979e−08 8 2 280e−08 
9 3 153e−08 9 3 253e−08 
10 8 341e−09 10 9 546e−09 
11 5.000e−08 11 2 239e−08 
Production Cost, C 

from Lagrange 
Production Cost, C 

from Real GA 
5.555+08 5 214+08 

 

Real GA gives a near global optimum solution. The optimum values of variances 
obtained by real GA compare very closely to those obtained by Lagrange multiplier 
techniques. This verifies that the optimum values obtained are global optima. The 
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minimum production cost, C obtained from real GA is smaller than that obtained 
with Lagrange methods, which gives a closed-form solution. In the vicinity of the 
closed-form solution the objective function should always be larger. This small 
difference is due to the machine accuracy of the system. Since the order of 
influence coefficient and optimum values are very small and eleven variables were 
used in the Lagrange method compared to ten in real GA, therefore, this much 
difference is introduced. 

 
The tolerances on coordinates and angles, obtained from the optimal values of 
variances ρi, are listed in Table 4. The tolerance allocated on the variable V1 is 
many orders higher compared to those on other variables. This means that the 
error at the point Q is not depended on the variable V1. It can be easily seen 
that changing the x-coordinate of the laser beam does not affect the coordinates of 
the point Q. The absolute tolerances on other variables are of the same order for 
this set of input values. Among them, stricter tolerance is demanded on the z-
coordinate of the source E and the x-coordinate of mirror. Stricter tolerance is 
demanded on the angle β. Therefore the error is most sensitive to V3, V6 and V10. 

Table 4: Optimal Allocation of Tolerances in SL 
 

Optimal Allocation of Tolerances 

 Tolerance Units 

Absolute tolerance on coordinate a1 ε1  = 7.782e+00 m 

Absolute tolerance on coordinate b1 ε2  = 6.205e−04 m 

Absolute tolerance on coordinate c1 ε3  = 3.004e−04 m 

Absolute tolerance on angle α1 ε4  = 3.220e−04 rad 

Absolute tolerance on angle β1 ε5  = 6.651e−04 rad 

Absolute tolerance on coordinate a2 ε6  = 3.198e−04 m 

Absolute tolerance on coordinate b2 ε7  = 7.705e−04 m 

Absolute tolerance on coordinate c2 ε8  = 4.220e−04 m 

Absolute tolerance on angle α2 ε9  = 5.327e−04 rad 

Absolute tolerance on angle β2 ε10  = 2.740e−04 rad 

Absolute tolerance on coordinate c3 ε11  = 6.708e−04 m 

 
The synthesis procedure in the present work enables the designer to allocate 
tolerances and clearances optimally. The synthesis procedure clearly shows that 
the allowances on different variables are different depending upon the influence of a 
particular variable. 
 
7.    CONCLUSION  
 
A methodology for optimal allocation of tolerances and clearances in RP 
processes is presented. For optimal allocation of tolerances and clearances in RP 
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processes, the constraints are linear functions of design variables, and hence, the 
optimization is done using the Lagrange multiplier technique. The optimal allocation 
is done at that point on the work surface where the sum of variances DSUM is 
found to be maximum while conducting error analysis. The optimization is also done 
using real-coded Genetic Algorithms (real-coded GA). Using the synthesis 
procedure, the allocation is done for the FDM and SL processes. 

 
The synthesis procedure in the present work enables the designer to allocate 
tolerances and clearances optimally. The synthesis procedure clearly shows that 
the allowances on different variables are different, depending upon the influence of 
that variable. In FDM, stricter tolerances are demanded on links 1 and 4, i.e., the 
links in Y0-direction and on angles α1 and α2, i.e., the angles about X0-direction. In 
SL, stricter tolerances are demanded on the z-coordinate of the source of the laser 
beam, the x-coordinate of the mirror and the angle β of the mirror. It has been 
found that the error in SL is not sensitive to the location of the source of the laser 
beam along the direction of the laser beam. 
 
8. REFERENCES  
 
Agrawal, S.  
2001. Analysis and Synthesis of Mechanical Error in Rapid Prototyping Processes 
Using Stochastic Approach. PhD thesis. Indian Institute of Technology. Kanpur. 
India. 
 
Bakthavachalam, N. & Kimbrell, J. T.  
1975. Optimum Synthesis of Path-Generating Four-Bar Mechanisms. ASME J. 
Engg. Ind. 97(1): 314-321. 
 
Chakraborty, J.  
1975. Synthesis of Mechanical Error in Linkages. Mech. Mach. Theory. 10(2): 155-
165. 
 
Cheng, W., Fuh, J.Y.H., Nee, A.Y.C., Wong, Y.S., Loh, H.T. & Miyazawa, T.  
1995. Multi-objective Optimization of Part-Building Orientation in Stereo-
lithography. Rapid Prototyping Journal . 1(4): 12-23. 
 
Choubey, M. & Rao, A. C.  
1982. Synthesizing Linkage with Minimal Structural and Mechanical Error 
Based upon Tolerance Allocation, Mech. Mach. Theory. 17(2): 91-97. 
 
Cleghorn, W. L., Fenton, R. G. & Fu, Jingfan  
1993. Optimum Tolerancing of Planar Mechanisms Based on Error Sensitivity 
Analysis. ASME J. Mech. Design. 115(2): 306-313. 
 
Deb, K.  
1995a. Optimization for Engineering Design. Prentice-Hall of India Private 



 18 

Limited. New Delhi. 
 
Deb, K. & Agrawal, R. B.  
1995b. Simulated Binary Crossover for Continuous Search Space. Complex 
Systems, Ch9: 115-148. 
 
Dhande, S. G. & Chakraborty, S. J.  
1973. Analysis and Synthesis of Mechanical Error in Linkages — A stochastic 
Approach. ASME J. Engg. In. 95(3): 672-676. 
 
Dolenc, A. & M¨akel¨a, I.  
1994. Slicing Procedures for Layered Manufacturing Techniques. Computer-Aided 
Design 26(2): 119-126. 
 
Fadel, Georges M. & Kirschman, C.  
1996. Accuracy Issues in CAD to RP Translations. Rapid Prototyping Journal. 2(2): 
4-17. 
 
Fenton, R. G., Cleghorn, W. L. & Fu, Jing-Fan  
1989. Allocation of Dimensional Tolerances for Multiple Loop Planar 
Mechanisms. ASME Journal of Mechanisms, Transmission and Automation 
in Design. 111(4): 465-470. 
 
Kai, Chua Chee & Fai, Leong Kah  
1997. Rapid Prototyping: Principles & Applications in Manufacturing.  John Wiley & 
Sons. N Y. USA. 
 
Mall k, A. K. & Dhande, S. G.  
1987. Analysis and Synthesis of Path-Generating Linkages Using a Stochastic 
Approach. ASME J. Engg. Ind. 22(2): 115-123. 
 
Rao, A. C.  
1978. Improved Method for the Design of Link Mechanisms. Indian Journal of 
Technology, 16: 145-147. 
 
Rao, S. S.  
1984. Optimization: Theory and Application, Wiley Eastern Limited. New 
Delhi. 
 
Reklaitis, G.V., Ravindran, A. & Ragsdell, K. M.  
1983. Engineering Optimization — Methods and Applications, Wiley. New 
York. 
 
Rhyu, Je Ha & Kwak, Byung Man  
1988. Optimal Stochastic Design of Four-Bar Mechanisms for Tolerance and 
Clearance. ASME Journal of Mechanisms, Transmission and Automation in 



 19 

Design 110(3): 255-262. 
 
Sharfi, O. M. A. & Smith, M. R.  
1983. A Simple Method for the Allocation of Approximate Tolerance in 
Linkage Mechanisms. Mech. Mach. Theory 18(2): 123-129. 
 
Sutherland, G. H. & Roth, B.  
1975. Mechanism Design: Accounting for Manufacturing Tolerances and Costs in 
Function Generating Problems. ASME J. Engg. Ind., 97(1): 283-286. 
 
Ventsel, E.S.  
1964. Theory of Probability. Nauka. Moscow (In Russian). 
 




