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BAYESIAN ANALYSIS OF CHANGE-POINTS IN POISSON 
PROCESSES 

 
K.D. Moloi and P.C.N. Groenewald 

 
1. INTRODUCTION 
 
Change-point analysis deals with the situation where an abrupt change has 
possibly taken place in the underlying mechanism that generates random 
variables. In a parametric setting, this means a change in the parameters of the 
underlying distribution. The interest is in whether such a change has actually taken 
place, and if it has, at which point in time. Also, there may have been more than 
one change during the period of interest. Application of change-point analysis is 
wide, but is particularly relevant in finance, the environment and medicine. The 
violability of markets may change abruptly, the rate and intensity of natural 
phenomena may change, or the effect of treatments in clinical trails may be 
studied. 
 
The literature on change-point problems is, by now, enormous. In this study we 
consider only the so-called non-sequential or fixed sample size version, although 
an informal sequential procedure, which follows from Smith (1975), is a routine 
consequence. Still, literature is substantial and our focus is on a fully Bayesian 
parametric approach. Use of the Bayesian framework for inference with regard to 
the change-point dates to work by Chernoff and Zacks (1964). Smith (1975) 
presents the Bayesian formulation for a finite sequence of independent 
observations. See also Zacks (1983). In our study we will consider only Poisson 
sequences and will address four situations:  
 
1) When it is assumed that there is exactly one change-point, and proper priors are 
used. This can be generalised to more than one change-point. If the number of 
change-points is fixed and known, improper priors are also valid as will be 
explained later. 
 
2) When there is a fixed number of change-points, the Markov Chain Monte Carlo 
method of Chib (1998) is useful, especially for large samples and multiple change-
points This approach will be described and applied. 
 
3) When the number of change-points is unknown, and we want posterior 
probability distributions of the number of change-points, only proper priors are valid 
for calculating Bayes factors. In the case when no prior information is available, 
improper priors will cause the Bayes factor to have an indeterminate constant. In 
this case we apply the Fractional Bayes factor method of O’Hagan (1995). 
 
4) When the data consists of multiple sequences, it is called multi-path change-
point analysis, and the distribution from which the change-points are drawn is of 
interest. Here the posterior distributions of parameters are estimated by MCMC 
methods. All the techniques are illustrated using simulated and real data sets.  
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1.1 Bayes factors. 
 
The Bayesian approach to hypothesis testing was developed by Jeffreys (1935, 
1961) as major part of his program for scientific inference. The centrepiece was a 
number, now called the Bayes factor, which is the posterior odds of the null 
hypothesis when the prior probability on the null is one-half. Jeffreys was 
concerned with the comparison of predictions made by two competing scientific 
theories. In his approach, statistical models are introduced to represent the 
probability of the data according to each of the two theories and Bayes’ theorem is 
used to compute the posterior probability that one of the theories is correct. 
 
According to Kass and Raftery (1993), often lost from the controversy however, are 
the practical aspects of the Bayesian methods: how conclusions may be drawn 
from them, and how they can provide answers when non-Bayesian methods are 
hard to construct, what their strength and limitation are. 
 
Kass and Raftery (1993) begin with data D, assumed to have arisen under one of 
the two hypotheses H1 and H2 according to a probability density pr(D|H 1 ) or 
pr(D|H 2 ). Given a priori probabilities pr(H 1 ) and pr(H 2 )=1-pr(H 1 ), the data produce 
a posteriori  probabilities pr(H 1 |D) and pr(H 2 |D) = 1-pr(H 1 |D). From Bayes’ 
theorem, we obtain 
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and the transformation is simply multiplication of the prior odds by 

             B12= )|(
)|(
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,         which is the Bayes factor.                                         

 (1.2) 

Thus, in words, posterior∝Bayes factor×prior odds, and the Bayes factor is the 
ratio of the value of the posterior odds, regardless of the value of the prior odds. In 
the simple case, when the two hypotheses are single distributions with no free 
parameters (the case of “simple versus simple” testing), B12 is the likelihood ratio. 
In other cases, when there are unknown parameters under either or both of the 
hypotheses, the densities pr(D|H k ),  k = 1,2, are obtained by integrating over the 
parameter space, so that in equation (1.2), 
 
                     pr(D|H k ) = kkkkk dHHDpr θθθ )|(),|( π∫ ,                                        

 (1.3) 
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where kθ is the parameter under Hk, )|( kk Hθπ  is its prior density, 
),|( kk HDpr θ  is the density of D given the value of  kθ , or the likelihood function 

of  kθ  ( kθ  may be a vector with dimension dk). The prior distributions )|( kk Hθπ , 
k = 1,2, are necessary to find posterior probabilities.   
 
The quantity pr(D|H k ) given by equation (1.3) is the marginal probability of the 
data , because it is obtained by integrating the joint density of (D, kθ )  over kθ . It is 
also the predictive probability of the data; that is , the probability of seeing the data 
that actually were observed, calculated before any data became available. It is also 
sometimes called a marginal likelihood, or an integrated likelihood. Note that, as in 
computing the likelihood ratio statistics but unlike in some other applications of 
likelihood, all constants appearing in the definition of the likelihood  pr(D|H kk θ, ) 
must be retained when computing B12. In fact, B12 is closely related to the 
likelihood ratio statistics, in which the parameters kθ  are eliminated by 
maximization rather than by integration. 
 
Bayes factor calculations 
 

The Bayesian framework is particularly attractive in the context of change-point 
analysis because these models are non-nested. In such settings, the marginal 
likelihood of the respective models, and Bayes factor are the preferred means for 
comparing models.(Kass and Raftery (1995),  Berger and Perrichi,(1996)). 
 
The computation of the marginal likelihood using the posterior simulation output 
has been an area of much current activity. A method developed by Chib (1995) is 
quite simple to implement. The key point is that the marginal likelihood of model 
Mr, 
             m(y | Mr) = θθθy dMMf rr )|(),|( π∫ , 

may be expressed as  
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where θ * is any point in the parameter space. Given estimates of the marginal 
likelihood for two models Mr and Ms, the Bayes factor of r versus s is defined as  
            Brs = 

)|(
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s

r
Mm
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y
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Large values of Brs indicate that the data support Mr over Ms (Jeffrey, 1961). 

 
1.2 The Change-point Model. 
 
In general, when there is uncertainty about the existence of a change-point, the 
parametric models is described as follows: 
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Let x = {x1, x2,…,xn} be a sequence of observations from a distribution with pdf  
f(.|.). Under model Mo (no change-point), 
            )|(~ θii xfx  ,    i = 1,2,…,n. 

Under model Mk (a change after the kth observation), 
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This is the parametric model and the assumption is that only the parameters, and 
not the distribution, can change at k. The dimension of the parameter space under 
Mo is d and under Mk it is 2d, and the parameters under model Mk are only 
estimable for dnkd −≤≤ . There are n – 2d + 2 possible models, and the Bayes 
factor in favour of Mo, when compared with Mk, is 
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 where },...,,{ 211 kxxx=x   and  },...,{ 12 nk xx +=x . The following relations also 
hold for the Bayes factor: 
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The posterior probability of model Mk is then given by 
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 (1.7) where pj is the prior probability for model Mj. 

The prior distributions )|( oMθπ  and )|,( 21 kMθθπ  should, in general, be proper, but 
in the next section some proposed methods for dealing with improper priors will be 
discussed. 
 
2. THE POISSON MODEL 
 
Raftery and Akman (1996) developed a Bayesian approach to estimate and test for 
a Poisson process with a change-point, assuming the change-point to be 
continuous. Carlin, Gelfand and Smith (1992) presented a general approach to 
hierarchical Bayes change-point models. In particular, desired marginal posterior 
densities are obtained utilising the Gibbs sampler. They included an application to 
changing Poisson processes, applied to the coal-mining disaster data of Jarrett 
(1979). Raftery and Akman (1996) also analysed the coal-mining disaster data. 
 There have been indications that the number of cases of diarrhoea-associated 
haemolytic uraemic syndrome increased abruptly, during the early part of the 
1980’s in England. Henderson and Matthews (1993) investigate this hypothesis 
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and applied change-point models for Poisson variables to two series of data from 
regional referral units in Newcastle-upon-Tyne and Birmingham. Using a direct re-
sampling process, Broemeling and Gregurich (1996) developed a Bayesian 
approach for the analysis of the change-point problem. They illustrated this 
technique with examples involving one shift for the Poisson process.   
 
First, let us consider a sequence of observations, x1, x2, . . . , xn, from a Poisson 
model with exactly one discrete change at an unknown point k: 
           x i  ~ Poisson( 1λ ),      i =1,…,k 

           x i  ~ Poisson( 2λ ),     i=k+1,…,n. 

The likelihood function is 
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Assuming that 21,λλ and k are independent a priori and that the prior densities have the 

conjugate form 
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and we have a discrete uniform prior on k so that 
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If we let →α 0 and →β 0 to represent non-informative priors, it follows that                

21 )()()()|( 21
yy knkyyyk −− −ΓΓ∝π                                                                                  

(2.5)  

Alternatively, if we let 2
1→α  and →β 0, we have the Jeffreys prior. 
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Furthermore, 
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 (2.6) 

and, unconditionally, 
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where    v1 = 2( )1y+α  ,  v2 = 2( )2y+α .                                                             

The posterior of τ, unconditional of k, is then given by 
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In the above analysis we assumed exactly one change-point. Considering the 
possibility of no change, let 
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where k = 0 means no change in the sequence, and Mk denotes the model with a 
change-point at k, k = 0,1,2,…,n-1. This means a prior probability of q for the 
model of no change, while the rest of the probability is uniformly distributed over all 
possible change-point positions. In general we will divide the prior probabilities 
uniformly between the number of possible change-points, so that q = 0.5 if there is 
only one possible change-point. Then 
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 (2.15)                   

is the Bayes factor in favour of model Mk when compared with the model Mo. 

2.1 Fractional Bayes Factors 

As can be seen from the above equation, we cannot let βα , 0→ (using vague 
priors) since we will get an indeterminate result. In this case we will use partial 
Bayes factors. 
 
O’Hagan (1995) advocated the fractional Bayes factor (FBF), a new variant of a 
partial Bayes factor, which uses the device of dividing the data into two parts, x = 
(y,z) .The first set y is be used as a training sample to provide “prior” information 
about the parameters. The second part, z, is then used for model comparison. 
To avoid the arbitrariness of choosing a particular y or having to consider all 
possible subsets of a given size, O’Hagan uses a fraction of the likelihood function, 
instead of a fraction of the sample, to provide information about the parameters 
and thereby turning improper priors into proper ones. He defines a simplified form 
of the partial Bayes factor as 
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If )( ii θπ =c )( iii h θ , hi a function whose integral over the iθ -space converges, the 

indeterminate constant c i  cancel out, leaving 
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So O’Hagan (1995) proposes using a fractional part of the entire 
likelihood,[ ]bf )|( θx , instead of a training sample. This tends to produce a more 
stable answer than the use of a particular training sample, but will fail the 

asymptotic criterion, unless b 
n
1

∝  as the sample size n increase. The behaviour of 

the fractional Bayes factor for such a b is well worth study, although it appears to 

be quite difficult to decide on a specific choice of b. O’Hagan suggested b = 
n
m , 

where m is the minimal sample size (when it is unique). Other suggestions are 
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possible change-point, for the fractional BF it follows that the marginal likelihood 
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and 
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The fractional Bayes factor in favour of no change against a change after the kth 

observation is then given by 
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If we use the prior 1)( −∝ ii λλπ , and b = 
n
2 , since m = 2 is the minimal sample size to 

estimate the parameters under model Mk, it follows that 
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Posterior probabilities follow from equations (2.21) and (1.7) where .1−= okko BB  

2.3 Sensitivity of the Fractional Bayes Factor. 

To examine the sensitivity of the Fractional Bayes factor to the sample size and the 
value of the fraction b, consider a data set that supports the model with no change-
point perfectly, that is, all observations are equal. The posterior probability for no 
change, as opposed to one change-point, is calculated when the prior probabilities 
are uniformly distributed as in (2.13) with q = 0.5.  

Let 2
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∝ λπ(λ)   under Mo, and 2
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2
2
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121
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∝ λλ),λπ(λ  under model Mk be the Jeffreys 
priors. The sample size is n and let y be the common value of the observations. 
Then the Fractional Bayes factor in favour of Mo is given by 
 

           
2
1

11
2
1

2
1

2
1

1
2
1

2
1

2
1

((

((

bk)(n)kk)y(n)Γky)ΓΓ(bny

)nk)yb(n)Γbky)ΓΓ(ny
B

k)yb)(n(b)ky(

b)ny(
F
ok

−−−−−

−−

−+−++

+−++
= .              

(2.23) 

The posterior probability for no change is then given by 
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Figure 1.1 shows the posterior probability of no change as a function of sample 
size and for three values of the fraction b when the data supports the null model 
perfectly. The probability increases with sample size, but there remains a high 
degree of uncertainty for small and moderate samples.   
Also, the Fractional Bayes factor discriminate better between models when the 
fraction b gets smaller, leaving more likelihood information free for model 
comparison. The actual value of the observation has very little effect on the  
posterior probabilities in Figure 1.1. 
 
Figure 1.1: Posterior Probability for Model Mo when all observations are equal. 
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In summary, you can never achieve 100% certainty of no change, even when the 

data supports it perfectly and the sample size gets large, but if a change-point 

exists, it quickly becomes apparent when sample size and parameter value 

increase. 

Also, the probabilities are sensitive to the value of b, as can be seen in Figure 1.2. 

There posterior probabilities are plotted as a function of b when n = 50 with a 

change at k = 2
n , and the actual change in the data is an increase of 2 in the 

common value of the observations. 

Figure 1.2: Probability of no change as a function of b when n=50, k= 2
n , y2= y1+ 2 
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As b approaches one, the probability approaches its prior value, 0.5, since there is 
no likelihood left for model comparison. As the observed values increase, it is 
naturally more difficult to discriminate when the difference is only 2. As the 
probability is always a convex function of b, it may be useful to report the lower 
bound, which does not seem to be overly biased against the probability of no 
change. However, the value of b remains a contentious issue when using the 
Fractional Bayes factor. 

 
3. MULTIPLE CHANGE-POINTS 
 
For a fixed known number of change-points, say r, we have a generalisation of 
equations (2.2) to (2.7). Let k = {k1, k2,…,kr} be the positions of the change-points 
where k1 < k2 < …< kr, and assume that ),(~ βαλ Gammai ,  i = 1, 2,…,r+1, 
independently. We also assume that k is uniformly distributed over all possible 
partitions, so that 
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The Bayes factor when comparing models Mk and Ms is just 
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Notice that (3.3) only holds for partitions for which yi > 0 for all i. With the Jeffreys 
prior (α = ½) all partitions are valid. 
Furthermore, 
           βαλ ,,,| kyii  ~ ),( 1 βα +−+Γ −iii kky   ,   i = 1, 2,…,r+1 ,                                  (3.4) 

and the unconditional distribution of λi follows as in (2.7). 

In the case of an unknown number of change-points maximum, but with a 
maximum of R, let hr be the number of possible partitions given r change-points.  
Let 
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oBk as the Bayes factor in favour of model rM k , the model with r change-

points, partitioned according to k, when compared with the model Mo with no 
change-point. Then 
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With the Jeffreys prior the Fractional Bayes factor is given by       

           ∏
+

=

+

−− +Γ

+Γ

+Γ

+Γ
=

1

1 2
1

2
1

2
1

)1(
2
1

2
2
1

)(

)(

)(

)( r

i i

iy
ii

by

r

rF
o

by

ky

ny

bby
Bk ,                                                     (3.6) 

where   b=
n

r 1+ ,    k ={k 1 ,…, k 1+r }. 

 The posterior distribution of the number of change-points r is given by 
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Also, 
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3.2 Alternative approach to multiple Change-points. 
 
Chib (1998) proposed a new Bayesian approach for models with multiple change-
points. The change-point model is formulated in terms of a latent discrete state 
variable that indicates the regime from with a particular observation has been 
drawn. This state variable is specified to evolve according to a discrete-time 
discrete-state Markov process with the transition probabilities constrained so that 
the state variable can either stay at the current value or jump to the next higher 
value. The model is estimated by Markov chain Monte Carlo methods using an 
approach that is based on Chib (1996). This approach is for a known number of 
change-points, but is useful since the computational effort does not increase 
exponentially with the sample size and the number of change-points, as is the case 
with the exact evaluation from the previous section. Also, proper priors are 
required but since there is a fixed number of change-points, vague proper priors 
ensure that the influence of the priors is minimal. In this section we will give a 
description of Chib’s method as applicable to the Poisson model. 
Assuming r change-points, the formulation is based on the introduction of the 
discrete variable st in each time period, the state of the system at time t, that takes 
the values of the integers {1, 2,…,r+1} and indicates the regime from which a 
particular observation xt has been drawn. Specifically, st = k indicates that xt is 
drawn from ),|( 1 ktt Xxf λ− , where },...,,{ 1211 −− = tt xxxX . The variable st is a 

Markov process with transition matrix 
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where )|( 1 issprp tjtij == −= . The chain begins in state 1 at time t = 1 and 
terminates in state r + 1. So st can either stay in the current state or move to the 
next higher one. The transitions of the state identify the change-points 

},...,,{ 21 rr kkk=Κ . 
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Chernoff and Zacks (1964) propose a special case of this general model in which 
there is a constant probability of change at each time point. Yao (1984) specified 
the same model for the change points but assumed that the joint distribution of the 
parameters { }kθ  is exchangeable and independent of the change-points. Similar 
exchangeable models for the parameters have been studied by Carlin et al. (1992) 
in the context of a single change point, and by Inclán and Tiao (1994) in the 
context of multiple change-points. 
 
Suppose prior density ),( PΛπ , where Λ = {λ1, λ2,…, λr+1}, and data Xn, then the 
Monte Carlo sampling scheme is applied to obtain the posterior density 

)|,,( nn XPS Λπ , Sn = {s1, s2,…,sn}. The sampling method works recursively. First 
the states Sn are simulated conditional on the data and the other parameters, and 
second, the parameters are simulated conditional on the data and Sn. The MCMC 
algorithm is implemented by simulating as follows. 
 
Simulation of {st} 

Let },...,{ 1
1

nt
t ssS +
+ = ,then the simulation consists of sampling, in turn, 

• sn-1  from  f(sn-1|Xn, sn = r+1,Λ, P), 

• sn-2  from  f(sn-2|Xn, Sn-1, Λ, P), 

• ………… 

• s2  from  f(s2|Xn, S3,Λ, P), 

where s1 = 1. Chib (1996) showed that 
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where st can take on only one of two possible values, conditional on st+1. The last 
term is just the probabilities from the transition matrix P, i.e.  
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To obtain the mass function ),|( PXsf nt , t = 1, 2,…,n, a recursive calculation is required. 

Starting with t = 1, where 1),|1( 1 =Λ= oXsf , the update is given by 
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 for j = 1, 2,…,r+1 and plj is the Markov transition probabilities. With these mass 

functions at hand, the states are simulated from time n and working backwards 

according to the scheme described in (3.10). 

Simulation of P 

The full conditional distribution of P is independent of (Xn, Λ) given Sn, and the 

elements pii of P may be simulated from f(P|Sn). We shall assume that pii ~ Beta(a, 

b), independently, i = 1, 2,…,r, where a >> b. The joint prior density of P is then 
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The parameters a and b can be chosen so that n
r

ba
a

iipE 1)( +
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≈= , with large 

variance. This means that apriori the mean lengths of all regimes are the same. Let 

nii denote the number of  periods the process stays in state i, then the conditional 

distribution of pii is 

           )1,(~ ++ bnaBetap iiii ,    i = 1, 2,…,r,                                                          (3.15) 

since ni,i+1 = 1. The pii’s can be simulated by letting 
21

1
xx

x
iip += , where 

 x1 ~ Gamma(a+nii, 1) and x2 ~ Gamma(b+1, 1). 

Simulation of λj, j = 1, 2,…,r+1. 

 Let λj ~ Gamma(c, d), i = 1, 2,…r+1, independently, then the conditional distribution, 

PXS nn ,,|Λ , factors into independent terms, 

           ),(~,,| jjnnj NdUcGammaPSX ++λ ,     j = 1, 2,…,r+1,                         (3.16) 

where ∑ = == n
t ttj xjsIU 1 )( and ∑ = == n

t tj jsIN 1 ).( )( jsI t =  is the indicator 

function that is equal to 1 if st = j and zero otherwise. So Nj is simply the number of 

time periods the process spends in regime j, while Uj is the sum of the observations 

recorded while in regime j. 

The sample output of the states Sn can be used to determine the posterior 
distribution of the change-points. Alternatively, the Monte Carlo estimate of 

)|( nt Xsπ cab be found by taking an average of ),,|( 1 PXjsf tt Λ= − , from (3.12), 
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over the MCMC iterations of Λ and P. This is called Rao-Blackwellization, and is 
more efficient than taking the empirical distribution of the simulated states. 
 
Chib (1998) also gives a MCMC approach to the calculation of marginal 
likelihoods, used for Bayes factor calculations when comparing models with 
different number of change-points. 

 
4.     APPPLICATIONS 1. 

Example 4.1   
As an example of the Poisson model with one change-point, we will use the 
diarrhoea-associated haemolytic uraemic syndrome (HUS) data used by 
Henderson and Matthews (1992). Haemolytic uraemic syndrome is a severe, life 
threatening illness, which predominantly affects infants and young children (Levin 
and Barrett, (1984)). The aetiology of HUS is unknown but various bacterial and 
viral agents have been implicated, with particular speculation of a link with the level 
in the environment of E. coli. There has been concern that the incidence of HUS 
has apparently increased sharply during the 1980’s (Tarr et al. (1989), Coad et al. 
(1991)). As an example, we consider the frequency of cases of HUS treated in two 
specialist centres in Newcastle upon Tyne and Birmingham from 1970 to 1989. 
The data is given in Table 4.1. 
 
            Table 4.1: Annual number of cases of HUS at each referral centre. 

Year Newcastle Birmingham Year Newcastle Birmingham 

 1970 

 1971 

 1972 

 1973 

 1974 

 1975 

 1976 

 1977 

 1978 

 1979 

        6 

        1 

        0 

        0 

        2 

        0 

        1 

        8 

       4 

       1 

         1 

         5 

         3 

         2 

         2 

         1 

         0 

         0 

        2 

        1 

 1980 

 1981 

 1982 

 1983 

 1984 

 1985 

 1986 

 1987 

 1988 

 1989 

       4 

       0 

       4 

       3 

       3 

     13 

     14 

       8 

       9 

     19 

        1 

        7 

       11 

        4 

        7 

       10 

       16 

       16 

         9 

       15 

 

Assuming one change-point and using equation (2.5), the change at Newcastle 
occurred at k=15 (1984), and for Birmingham at k=11 (1980). Assuming at most 
one change-point and using the Fractional Bayes factor from (2.21) with (1.7) and 

nb 2= , we see that the probability for no change is virtually zero. The maximum 

probabilities and the probabilities for no change are given in Table 4.2 . 
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Table 4.2 Posterior probabilities assuming at most one change-point. 

 

 

 
 

Figure 4.1 shows the posterior distributions of λ1 and λ2 for both cities, clearly 
showing the increase in cases. 
 
Figure 4.1: Posterior distribution of rate of incidences before and after change-
point. 
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Assuming two change-points, Figure 4.2 shows the distribution of the change-
points for Newcastle, and figure 4.3 shows the distribution of the change-points for 
Birmingham. 
For Newcastle the maximum probability for 2 change-points is 0.2712 at k = (7, 
15), and for Birmingham it is 0.2507 at k = (11, 16).  
 
 
 
 
 
 
 
 
 
 
 
 

 Pr[No change|x] Pr[k = 15|x] 

Newcastle     1.680e-011     0.9834 
 Pr[No change|x] Pr[k = 11|x] 
Birmingham     1.816e-013     0.9515 
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Figure 4.2: Posterior probability distribution: 2 Change-point for Newcastle 

 

Figure 4.3: Posterior probability distribution: 2 Change-point for Birmingham 

 

Assuming one change-point, Figure 4.4 shows the magnitude of the change 

1
2
λ
λ (from equation (2.8)) for Birmingham and Newcastle. Clearly the change 

occurred later in Newcastle than in Birmingham and the magnitude of change is 
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greater in Birmingham with a mean increase of over 6 times compared to an 
increase of about 5 times in Newcastle.  
 
Figure 4.4: Posterior distribution of the ratio 
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Considering models with up to four change-points, by using equations (3.6) to 
(3.8), the data seems to support a single change-point as seen in Table 4.3. 
 
Table 4.3: Posterior probabilities for multiple change-points, using the FBF. 

  No change     1 cp    2 cp’s    3 cp’s    4 cp’s 

 Birmingham       0   0.4017   0.3825   0.1687   0.0471 

 Newcastle       0   0.3814   0.1921   0.2687   0.1577 

 

Henderson and Matthews (1992) compared the models from 0 to 3 possible 
change-points pairwise and concluded that there are 2 change-points for 
Birmingham at 11 and 16 (1980, 1985) and 3 change-points for Newcastle at 2, 7 
and 15 (1970, 1976 and 1984). Our results from Table 4.3, however, do not 
strongly support this. 
 
Example 2.2 
 
As a second example of the Poisson model we will use the much analysed data 
set of yearly numbers of British coal-mining disasters during the 112-year period 
1851-1962, gathered by Maquire, et al.(1952), extended and corrected by Jarrett 
(1979). Frequentist change-point investigations appear in Worsley (1986) and in 
Siegmund (1988), while Raftery and Akman (1986) apply their Bayesian model to 
investigate a continuous single change-point. Broemeling and Grequrich (1996) 
investigated a discrete single change-point, while Carlin, Gelfand and Smith (1992) 
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used Gibbs sampling in examining for a single change-point. Green (1995) 
considered multiple change-points with the reversible jump algorithm. 
 
Figure 4.5: Number of British coal-mining disasters during 1851 – 1962. 
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Assuming one change-point, Carlin, Gelfand and Smith (1992) found a maximum 
probability of 0.2750 at 1891 (k = 41) with 2

1=α  and 0=β . The same result is 

obtained from equation (2.4). Equation (2.5) gives a maximum probability of 0.2421 
(see Figure 4.6), while the fractional Bayes factor from (2.21) gives a probability of 
0.2372 at 1891 with the probability for no change virtually zero. Allowing for at 
most 3 change-points, the posterior probabilities from equations (3.6) to (3.8) are 
given in Table 4.4, together with the results of Green (1995) who used the 
reversible jump algorithm with a Poisson prior on k with mean 3. 
 
Figure 4.6: Posterior probability for position of a single of change-point: Coalmine data 
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 Table 4.4: Posterior probabilities for the number of change-points: Coal-mine data 

 
The evidence points to 2 change-points with maximum probability at k = (41, 97) 
which are 1891 and 1947. Worsley (1986) and Raftery and Akman (1986) give 
some possible historic reasons for the possible change-points. According to 
Worsley changes in the coal-mining regulations during 1896 may have reduced the 
probability of accidents. According to Raftery and Akman a fairly abrupt decrease 
around 1887-1895 may be associated with changes in the coal industry around 
that time, namely a severe decline in labour productivity starting at the end of the 
1980’s, an the emergence of the Miner’s federation at the end of 1889. The change 
in 1947 may be due to changes in labour practice just after the war. 
 
Under model M2, the joint posterior of k 1  and k 2  is shown in Figure 4.7. The 
posterior mass is clearly concentrated around k given above. The posterior 
distributions of 1λ   , 2λ  and 3λ  are virtually the same as shown in Figure 4.9 below, 
and so the number of disasters has been significantly reduced each time.  
 

Fig 4.7: Joint distribution of k 1  and k 2  given 2 change-points for Example 2.2.  

 
 

No. of change-points    r = 0     r = 1      r = 2        r = 3   r ≥ 4 

 Change-point(s)   ---     k=41  k = (41,97)  k = (41,79,97)  --- 

 Posterior probability  3.9e-014    0.1763     0.4716       0.3521  --- 

 Green (1995)       0    0.157      0.348        0.266   0.229 



 144

Chib’s approach 

Chib’s approach (1998) will be illustrated using the coal mining-disaster data 
from Britain used above. Let the count x t  in the year t be modelled via a 
hierarchical Poisson model, and consider determining the change-points for each 
of the two models M1 and M2. Under M1 the data is subject to a single break with 

          




≤≤+
≤

=
1121

,

12

11
tfor

tfor
t τλ

τλ
λ  

where )1,2(~, 21 Gammaλλ , as assumed by Chib.  
 
First S = {s1, s2,…,sn} is simulated according to equations (3.10) to (3.13) with a 
starting value of  0.99 for p11, after which p11  is simulated from (3.15) with a = 10 
and b = 0.1. Finally λj , j = 1,2,  follows from (3.16) with c = 2 and d = 1. This cycle 
was run 10 000 times, and the results are represented in the following figure. 
Figure 4.8(a) shows a different way of representing the position of the change-
point, which follows naturally from Chib’s approach. It shows the probability of 
being in the 1st regime (before the change), or being in the second regime (after 
the change), as a function of the time. The point  were the lines cross is where the 
probability of being in the 2nd regime exceeds 0.5. The result corresponds with that 
obtained earlier, namely a change around 1891. 
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Figure 4.8: Posterior results:1 change-point for mining accidents, Chib’s  method.  
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Figure 4.8(b) shows the posterior distributions of λ1 and λ2, clearly a significant 
decrease in the number of accidents, with the posterior mean of λ1 equal to 3.099 
and that of  λ2 equal to 0.938. 
 
Under model M2, tλ  is subject to two breaks with priors, 321 ,, λλλ ~ Gamma (3,1). 
Results are shown in Figure 4.9, where the posterior means are:  

.506.0]|[,297.1]|[,118.3]|[ 321 === xxx λλλ EEE  
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Figure 4.9: Posterior results: 2 change-points for mining accidents,Chib’s method.  
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When three change-points are assumed there is much more uncertainty as to the 
positions of the change-points, and the two change-point model seems the best, as 
confirmed in Table 4.4. 
 
Example 2.3 
 
Prussian military personnel killed by horse-kicks (1875-1894). 
The “Horse-kicks” data of Bortkewitsch are amongst the most well-known 
collections of Poisson data. They summarise the number of Prussian military 
personnel killed by kicks of a horse for each of 14 corps in each of 20 successive 
years 1875-1894. The full data-table can be found in Hand et al. (1994) and is 
analysed by Preece et al. (1988).  
 
The total number of deaths over all corps for all 280 years was 196. If each of the 
280 years could reasonably be thought to be independent of all others, and the 
number of cavalry officers and their susceptibility to death from horse-kicks could 
be reasonably thought to be the same for each of the 280 units of observations, 
then a simple Poisson model for the observed frequencies would be reasonable. 
The expected frequencies for a Poisson distribution with mean 700.0280

196 =  were 

given by Bortkewitsch and show a good agreement with the observed frequencies. 
Table 4.5 shows the posterior probability for no change for each of the 14 corps as 
well as the position and probability of the change-point with maximum probability. 
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Table 4.5: Probability of no change and position of change-point for the horse-kicks data.  

Corps Pr[k = 0|x] Position of cp t Pr[k = t|x] 

    G    0.6773           13    0.3130 

    I    0.5990            3    0.1035 

   II    0.6510            3    0.1034 

   III    0.6085          17    0.0586 

   IV    0.6669           7    0.0382 

   V    0.5908           4    0.0895 

   VI    0.5831       2 and 8    0.0487 

   VII    0.6787          12    0.0256 

   VIII    0.6892          16    0.0301 

   IX    0.4381           5    0.2112 

   X    0.6127         14    0.0534 

   XI    0.2002          4    0.5050 

   XIV    0.5732         18    0.0929 

   XV    0.6242         16    0.0518 

        

It seems that there is little evidence of a change in the number of deaths caused by 
horse-kicks for many corps for the twenty years, with an exception of corps IX and 
XI, where there seems to be an abrupt change in the number of deaths at k = 5 
(1879) and k = 4 (1878) respectively.  
 
Analysing the totals over the 20 years and assuming the possibility of up to 5 
change-points, using the fractional Bayes factor from  equation (2.21) and b=4/n, 
we see that the highest probability is for 3 change-points from Table 4.6. However, 
any number from 1 to 5 has a reasonable probability, only the probability for no 
change is negligible. 

 
             Table 4.6: Probabilities for the number of change-points in horse-kicks data 

No. of Change-point    0    1    2    3    4    5 

Probability 0.030 0.143 0.212 0.227 0.209 0.179 

 

The probability of no change-point for the totals is 0.173 when compared with the 
model with a single change-point, so, while it is unclear as to how many change-
points there are, it seems that some changes did occur. This data set will be 
examined further in section 6. 
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5.  MULTI-PATH CHANGE -POINT ANALYSIS. 
 
Suppose we are given M sequences of random variables, each of length N, and 
we want to make inferences about a change-point iτ , i = 1, 2,…,M, in each 
sequence. There are two main subdivisions of the multi-path change-point 
problem. If the change-point occurs at the same position in each sequence, 
(i.e. ττττ ==== M...21 ) or if the si 'τ  occur at random positions in each sequence, 
1 1−≤≤ Niτ . 
The multi-path analysis was described by Bélisle et al. (1998) as follows: 
Assume that there are data in the form of an M x N array 

         X =


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ττ

                                                (5.1)                            

Each sequence, X 1i ,…,X iN , represents observations over time from the i-th 
subject, i=1,…,M. A change-point is said to have occurred at iτ  in sequence or row 
i,  1 1−≤≤ Niτ , if  X 1i ,…, X

iiτ are identically distributed with common distribution 

F 1i , which is different from the common distribution , F 2i  of X
1+iiτ ,…,X iN . If Ni =τ , 

then no change has occurred in row i. The distribution of the point of change, iτ , 
an unknown parameters of the distributions F ik ; i = 1, …, M, k = 1,2 is to be 
estimated from the data matrix (5.1). 
We assume that the times of change, τ i , in each sequence are themselves 
independent and identically distributed from a given population, following a 
distribution  g(t) = pr(τ i = t),    i = 1,…,M;  t=1,…N  which is to be estimated. If g(N) 
> 0, then it is possible that there is no change in some rows. Here g(.) represent 
the probability for the location of the change point for a randomly selected 
individual in the population. 
It has been shown by Hinkley (1970) that the single-path maximum likelihood 
estimator of the change-point is not consistent, but the non-parametric estimator of 
g(.) has been shown in Joseph and Wolfson (1992) and Joseph,Vandal and 
Wolfson (1996) to be consistent under certain conditions in the multi-path case. In 
Joseph and Wolfson (1992) both bootstrap and empirical Bayes methods have 
been utilised in the multi-path context, and in Joseph et al. (1997) Bayesian 
analysis was employed. 

 
5.1 Estimation of the parameters via the Gibbs sampler. 
 
The likelihood for the model described in equation (5.1) is given by   
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where x ij  follows a Poisson distribution with parameter λij and ),...,( 1 Nππ=π , 
where )( kpr ik == τπ , i = 1,…,M;  k = 1, 2,..., N. The parameters in the model are; 
1) ),...,( 1111 Mλλ=λ  and ),...,( 2122 Mλλ=λ , vectors of the means of the Poisson 
distributions before and after the change-point in each row. 
2)  ),...,( 1 Nππ=π , the multinomial probabilities that a change occurs at position k 
in each row, k = 1,…,N. 
3)  ),,...,( 1 Mττ=τ  the unobserved latent data representing the change-points in 
each row. 
4)  In addition we have the parameters, θ1 and θ2, of the exchangeable priors of λ1 
and λ2.  

Prior distributions 
Let ),...,( 11 −Nππ  ~ Dirichlet ),...,( 11 −Nαα  so that the joint distribution of 11 ,..., −Nππ  is 
given by  
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Next, let 

            1iλ ~ exp ( )1θ  and 2iλ ~ exp ( )2θ ,                                                                         (5.4) 

where the hyperparameters 1θ  and  2θ  have independent vague Jeffreys priors,    

2
1

22
1

121 ),( −−∝ θθθθπ . 
We are mainly interested in the posterior distributions of θ1, θ2 and π. 
Implementation of the Gibbs sampler to find the marginal posterior distributions 
requires the specification of the full conditional distribution of all the parameters, 
i.e. the conditional distribution of each parameter given the values of all of the 
other parameters. These are derived as follows: 
 
Conditional distributions. 

The likelihood is 
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, so that with prior (5.4), 

          1,,| θτλ iijij x  ~  Gamma ),1( ijijy τθ ++ ,   i = 1, 2,…, M,    j = 1,2.                  (5.6) 

For the hyperparameters we have  
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           ∑+ ),2/1(~| ijjj MGamma λθ λ  ,     j = 1,2.                                                     (5.7) 

For τ  we have 

           ])Pr[],Pr[ 12121 kτ|,...,τ,τ,λf(λ,,λλk|τ iMi =∝= xxπ  

                                             kM
i ii

ikNikkiy
i

kiy
i

kyky

ee
π

λλ λλ

∏ =

−−−

+Γ+Γ
∝

1 21

2)(1)2(
2

)1(
1

)1)(()1)((
,                             (5.8) 

where  ∑
=

=
k

j
iji xky

1
1)(  and  ∑

+=
=

N

kj
iji xky

1
2)( . 

Lastly, the conditional distribution of the elements of π  follow a Dirichlet 

distribution, 

            τ|,..., 11 −Nππ ~ Dirichlet (β) ,                                                                               (5.9) 

where ),...,,( 121 −= Nββββ , and ∑
=

=+=
M

i
ijj kI

1
)(ταβ . The indicator function I is one if 

τi  = k and zero otherwise. 

The Gibbs sampler algorithm proceeds by drawing a random sample from each full 
conditional distribution (5.5) to (5.9) in turn. The parameters sampled from the 
immediately preceding random draw are used in the conditional distribution for 
subsequent draws. A large number of iterations are run, and after discarding 
iterates from an initial burn-in period to allow for the convergence of the algorithm, 
the remaining random vectors can be regarded as samples from the joint posterior 
distribution of the parameters, from which inference can be made. Marginal 
posterior density estimates can be obtained by what has become known as the 
Rao-Blackwell method (Gelfand and Smith (1990)). For example, the marginal 
posterior distribution of λi1 can be obtained as  
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where L is the total number of cycles and  ( )(
1

)( , ll
i θτ ) are the generated values 

during the l-th cycle. So we are averaging the conditional distribution of λi1 over the 
simulated values of the conditioning parameters. 
 
6. APPLICATIONS 2  
 
Example 6.1: Neuron spike train analysis. 
 
As an example of the Poisson model with multi-path change-points, we will use 
data from Bélisle et al. (1998), consisting of counts of electrical discharges in 20 
milliseconds (ms) intervals, approximately one-half second before and after a 
stimulus was applied to the neuron at t = 500 ms. The counts of electrical 
discharges were observed on M = 35 data sequences. Each time the neuron was 
allowed to the resting state before the experiment was resumed.  
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All sequences had 25 observations before the stimulus was applied, but the 
number of observations after the stimulus varied between 11 and 24. The variation 
should not cause substantial bias in estimating π unless there is evidence that the 
change point occurred after approximately 220 ms post-stimulus, which was not 
the case in this data set. 
Figure 6.1  Data from the experiment with M=35 trials. A stimulus was applied at 500ms.   

Each line represents a spike train at the indicated time.  
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The output produced by the Gibbs sampler for π (from (5.9)) is a sample from a 
Dirichlet distribution in N = 49 dimensions. Summary statistics marginal Dirichlet 
posterior distributions can be calculated, and posterior marginal densities for 
selected change-point probabilities may be plotted. within each iteration, each 
sequence may have iτ  < N or iτ  = N, i = 1,...,M. A useful statistics is then 
{ }Ntimes i <τ# /number of iterations. This approximates the sequence or trial-
specific probability of a change-point. 
To obtain relatively flat prior densities, so that the data themselves would 
contribute most of the information in the posterior densities, a Dirichlet prior density 
(from (5.3)) with      αi = 0.05 for all i was used. Bélisle et al. (1998) used 

2421 ... ααα === = 0  and 04.0... 492625 ==== ααα . The sample size equivalent of 
this prior density is two and a half observations (∑ = 5.2iα ), so that 35/37.5 = 93% 
of the information in the marginal posterior density on π would come from the data. 
Bélisle et al. (1998) used Gamma(4, 0.03) and Gamma(8, 0.03) prior  distributions 
for the before and after Poisson parameters, where we use Exponential priors with 
vague hyperpriors on its parameters, as given in equation (5.4).  
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Using the MATLAB software, 25000 sets of parameter values were generated. The 
mean marginal posterior change-point probability at 34τ  was 0.855, indicating that 
there is indeed a change in electrical activity following the application of the 
stimulus, occurring roughly 180 ms after the stimulus. None of the other change-
point mean marginal probabilities was greater than 0.025, and in particular, there 
was a negligible estimated probability of no change. The estimated posterior mean 
of π is depicted in Figure 6.2, and shows the high probability of 0.78 for a change 
after the 34th interval. 
 
        Figure 6.2: Posterior means of probabilities π = (π1, π2,…,πN), neuron data.  

 
 
The marginal posterior distribution for 34π  is given in figure 6.3. This figure 
indicates a 95% Highest Posterior Density interval of (0.60 – 0.99). 
 
                Figure 6.3: Histogram of posterior probability distribution of 

π34  
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Figure 6.4 shows the posterior distributions of θ1 and θ2, derived by averaging over 
the conditional Gamma distributions given in (5.7). It shows clearly the difference 
between the mean rates before and after the change-point. 
 
                Figure 6.4: Posterior distributions of θ1  and θ2 for neuron spike train data 
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Example 6.2: Horse-kicks 
 
The “horse-kicks” data is described in section 4, and here we will analyse it as 
multi-path data with 14 sequences, each of length 20. Assuming one change-point 
in each sequence, we want to derive the posterior distribution of π =(π1, π2,…, π19), 
the probabilities for the position of the change-point. This is depicted in Figure 6.5. 
 
          Figure 6.5: Posterior means of probabilities π = (π1, π2,…,πN), horse-kick data 
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It is clear that if there is a change, it is most likely to be early in the sequence, with 
a probability of 0.364 for 1877 and a probability of 0.805 that it is during the first 
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four years from 1875 to 1878. The marginal posteriors of θ1 and θ2 is given in 
Figure 6.6 and show the wide range of possible values, especially for θ1. This is 
because of the uncertainty about the change-points in the sequences. From the 
analysis in section 4 it appears that most sequences exhibit more than one 
change-point. 

 
           Figure 6.6: Marginal posterior distributions of θ1 and θ2, horse-kicks 

data.
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The years do not show an obvious trend except for the first 6 years, when there 
was a consistent increase in deaths. Corps G, I, VI and XI, which were noted as 
having a numerical composition particularly far from the average, have four of the 
five highest counts of deaths, the other corps with a high count being XIV. 
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