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1. INTRODUCTION

Change-point analysis deals with the situation where an abrupt change has
possibly taken place in the underlying mechanism that generates random
variables. In a parametric setting, this means a change in the parameters of the
underlying distribution. The interest is in whether such a change has actually taken
place, and if it has, at which point in time. Also, there may have been more than
one change during the period of interest. Application of change-point analysis is
wide, but is particularly relevant in finance, the environment and medicine. The
violability of markets may change abruptly, the rate and intensity of natural
phenomena may change, or the effect of treatments in clinical trails may be
studied.

The literature on change-point problems is, by now, enormous. In this study we
consider only the so-called non-sequential or fixed sample size version, although
an informal sequential procedure, which follows from Smith (1975), is a routine
consequence. Still, literature is substantial and our focus is on a fully Bayesian
parametric approach. Use of the Bayesian framework for inference with regard to
the change-point dates to work by Chernoff and Zacks (1964). Smith (1975)
presents the Bayesian formulation for a finite sequence of independent
observations. See also Zacks (1983). In our study we will consider only Poisson
sequences and will address four situations:

1) When it is assumed that there is exactly one change-point, and proper priors are
used. This can be generalised to more than one change-point. If the number of
change-points is fixed and known, improper priors are also valid as will be
explained later.

2) When there is a fixed number of change-points, the Markov Chain Monte Carlo
method of Chib (1998) is useful, especially for large samples and multiple change-
points This approach will be described and applied.

3) When the number of change-points is unknown, and we want posterior
probability distributions of the number of change-points, only proper priors are valid
for calculating Bayes factors. In the case when no prior information is available,
improper priors will cause the Bayes factor to have an indeterminate constant. In
this case we apply the Fractional Bayes factor method of O’Hagan (1995).

4) When the data consists of multiple sequences, it is called multi-path change-
point analysis, and the distribution from which the change-points are drawn is of
interest. Here the posterior distributions of parameters are estimated by MCMC
methods. All the techniques are illustrated using simulated and real data sets.
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1.1 Bayes factors.

The Bayesian approach to hypothesis testing was developed by Jeffreys (1935,
1961) as major part of his program for scientific inference. The centrepiece was a
number, now called the Bayes factor, which is the posterior odds of the null
hypothesis when the prior probability on the null is one-half. Jeffreys was
concerned with the comparison of predictions made by two competing scientific
theories. In his approach, statistical models are introduced to represent the
probability of the data according to each of the two theories and Bayes’ theorem is
used to compute the posterior probability that one of the theories is correct.

According to Kass and Raftery (1993), often lost from the controversy however, are
the practical aspects of the Bayesian methods: how conclusions may be drawn
from them, and how they can provide answers when non-Bayesian methods are
hard to construct, what their strength and limitation are.

Kass and Raftery (1993) begin with data D, assumed to have arisen under one of
the two hypotheses H; and H, according to a probability density pr(D|H,) or
pr(D|H , ). Given a priori probabilities pr(H,) and pr(H, )=1-pr(H,), the data produce
a posteriori  probabilities pr(H,|D) and pr(H,|D) = 1-pr(H,|D). From Bayes’
theorem, we obtain

pr(D|H,)pr(H,)

pr(Hk |D): s k:1727
pr(D|H)pr(H)+ pr(D | H,)pr(H,)

so that

pr(Hd,|D) _pr(D|H,)pr(H,)
pr(H,|D) pr(D|H,)pr(H,)

(1.1)
and the transformation is simply multiplication of the prior odds by
_pr(D|H,))

2 , which is the Bayes factor.
pr(D|H,)

(1.2)

Thus, in words, posterioro« Bayes factorxprior odds, and the Bayes factor is the
ratio of the value of the posterior odds, regardless of the value of the prior odds. In
the simple case, when the two hypotheses are single distributions with no free
parameters (the case of “simple versus simple” testing), By, is the likelihood ratio.
In other cases, when there are unknown parameters under either or both of the
hypotheses, the densities pr(D|H ), k = 1,2, are obtained by integrating over the

parameter space, so that in equation (1.2),
pV(D|Hk) = jpr(D|0k,Hk)7Z(0k |Hk)d0k’
(1.3)
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where@,is the parameter under H,, 7x(0,|H,) is its prior density,
pr(D|0,,H}) is the density of D given the value of @, or the likelihood function

of 0, ( @, may be a vector with dimension d). The prior distributions 7 (8, | ),
k = 1,2, are necessary to find posterior probabilities.

The quantity pr(D|H, ) given by equation (1.3) is the marginal probability of the
data , because it is obtained by integrating the joint density of (D, 8, ) over 0, . Itis

also the predictive probability of the data; that is , the probability of seeing the data
that actually were observed, calculated before any data became available. It is also
sometimes called a marginal likelihood, or an integrated likelihood. Note that, as in
computing the likelihood ratio statistics but unlike in some other applications of

likelihood, all constants appearing in the definition of the likelihood pr(D|H, .0, )
must be retained when computing By, In fact, By, is closely related to the
likelihood ratio statistics, in which the parameters 6, are eliminated by
maximization rather than by integration.

Bayes factor calculations

The Bayesian framework is particularly attractive in the context of change-point
analysis because these models are non-nested. In such settings, the marginal
likelihood of the respective models, and Bayes factor are the preferred means for
comparing models.(Kass and Raftery (1995), Berger and Perrichi,(1996)).

The computation of the marginal likelihood using the posterior simulation output
has been an area of much current activity. A method developed by Chib (1995) is
quite simple to implement. The key point is that the marginal likelihood of model
Mf!

my | M)= [ f(y|M,,0)7(0|M,)d0
may be expressed as

miy| My = S W1M,.0)7©O" | M,)
(0 |y.M,)

(1.4)

where 6 is any point in the parameter space. Given estimates of the marginal
likelihood for two models M, and Ms, the Bayes factor of r versus s is defined as

Brs: m(yer) .
m(y| M)

Large values of B,, indicate that the data support M, over M, (Jeffrey, 1961).

1.2 The Change-point Model.

In general, when there is uncertainty about the existence of a change-point, the
parametric models is described as follows:
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Let x = {x4, x2,...,Xs} be a sequence of observations from a distribution with pdf
f(.|.). Under model M, (no change-point),

Under model M; (a change after the Kt observation),

{f(x,- 10,), i=12,..k

, k=dd+1,...,n-d.
f(x;10,), i=k+1,..,n

This is the parametric model and the assumption is that only the parameters, and
not the distribution, can change at k. The dimension of the parameter space under
M, is d and under My it is 2d, and the parameters under model M are only
estimable for d <k <n —d . There are n — 2d + 2 possible models, and the Bayes
factor in favour of M,, when compared with My, is
_ J.f(x]0)7(0|M,)d0

[1f(x,x,10,,0,)7(0,,0, | M, )d6,do,

m(x|M,)
m(xy,x, | M) ’

ok

(1.5)

where x; ={x;,X,,...,x;} and Xx, ={x;,(,....,X,}. The following relations also

hold for the Bayes factor:
1 B;

10

y

(1.6)
The posterior probability of model M; is then given by

-1
pr(Mk ‘x):|:zzliBjk:| ’ k=09d7d+19"'7n-d9
J

(1.7) where p;is the prior probability for model M,.

The prior distributions @ |a,) and z(9,,0, | M) should, in general, be proper, but

in the next section some proposed methods for dealing with improper priors will be
discussed.

2. THE POISSON MODEL

Raftery and Akman (1996) developed a Bayesian approach to estimate and test for
a Poisson process with a change-point, assuming the change-point to be
continuous. Carlin, Gelfand and Smith (1992) presented a general approach to
hierarchical Bayes change-point models. In particular, desired marginal posterior
densities are obtained utilising the Gibbs sampler. They included an application to
changing Poisson processes, applied to the coal-mining disaster data of Jarrett
(1979). Raftery and Akman (1996) also analysed the coal-mining disaster data.

There have been indications that the number of cases of diarrhoea-associated
haemolytic uraemic syndrome increased abruptly, during the early part of the
1980’s in England. Henderson and Matthews (1993) investigate this hypothesis
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and applied change-point models for Poisson variables to two series of data from
regional referral units in Newcastle-upon-Tyne and Birmingham. Using a direct re-
sampling process, Broemeling and Gregurich (1996) developed a Bayesian
approach for the analysis of the change-point problem. They illustrated this
technique with examples involving one shift for the Poisson process.

First, let us consider a sequence of observations, x4, x2, . . ., X5, from a Poisson
model with exactly one discrete change at an unknown point k:
x; ~Poisson(4,), i=1, ...k

x, ~Poisson(A,), i=k+1,...,n.

The likelihood function is

Vi Qys Ak —(n=k)A
L( A, Ak | X) = A Ay e e 2

x.!

i
i=l1

2.1)

where yIZixi and y2=ixi.

i=1 i=k+1
Assuming that A;,1, and k are independent a priori and that the prior densities have the

conjugate form

_ ﬁza a-1ra-1_-p(4+4,
(4,4, |a>ﬁ)_r2(a) A lﬂ“z LAt

(2.2)

and we have a discrete uniform prior on £ so that

Sk a, B) = Ha+yla+y,)
(k+ B (—k+ )2

(2.3)

and

I P ACRS CRLLIV)

Zf(ylayz |kaa718)

n
k=1

(2.4)

If we let «—>0 and B —>0 to represent non-informative priors, it follows that

w(k|y)c DT (k™" (n—k)™"
(2.5)

Alternatively, if we let @ — % and S — 0, we have the Jeffreys prior.
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Furthermore,

Ailyisk,a, f~T(a+y; ki +f) , ky=n-k,
(2.6)
and, unconditionally,

ﬂ-(ﬁ‘l |yaa718) = Zﬂ-(ﬁ‘l |yiakaa7/8)ﬂ.(k | yaaaﬂ)a i:132-
k
2.7)

) A .
For the ratio 7 = —- it follows that
2

i ~(2a+y)
n(z |y k,a,f) < {H } A

_
n—k+p
(2.8)
so that
2a+y,)k le,k~sz
2Aa+y)n—k+p) ’
(2.9)

where v, =2(a+y,), v,=2(a+y,).
The posterior of 7, unconditional of £, is then given by

(7| y)= ;;;(T | .k, )k |y, e, B).

(2.10)

In the above analysis we assumed exactly one change-point. Considering the
possibility of no change, let

q , k=0
70 =11-q k=1..,n-1"
]/l—l, 9000y

2.11)

where k = 0 means no change in the sequence, and M denotes the model with a
change-point at k, kK = 0,1,2,...,n-1. This means a prior probability of q for the
model of no change, while the rest of the probability is uniformly distributed over all
possible change-point positions. In general we will divide the prior probabilities
uniformly between the number of possible change-points, so that g = 0.5 if there is
only one possible change-point. Then

01 k=0,0, )= — P T@+Y)

L) [x!(n+ )

(2.12)
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where y = Z x, , and the posterior probability of no change follows as

2k =0]y)= — af |k =n)
Zﬁf(y|k)+Qf(y\k=n)

-1

(2.13)
and
-1
ﬂ(kly)=Bk{q§”__ql)+jZ=iB,,,} . k=12..n1,
(2.14)
.where

By, = SOy, Lk a,p) _ BT(a+y)l(a+y,)n+
JOlk=0,a,p) T(a)k+p) " (n—k+p)*" " T(a+y)

(2.15)

is the Bayes factor in favour of model My when compared with the model M,.

2.1 Fractional Bayes Factors

As can be seen from the above equation, we cannot let «,f — 0(using vague

priors) since we will get an indeterminate result. In this case we will use partial
Bayes factors.

O’Hagan (1995) advocated the fractional Bayes factor (FBF), a new variant of a
partial Bayes factor, which uses the device of dividing the data into two parts, x =
(y,z) .The first set y is be used as a training sample to provide “prior” information
about the parameters. The second part, z, is then used for model comparison.

To avoid the arbitrariness of choosing a particular y or having to consider all
possible subsets of a given size, O’Hagan uses a fraction of the likelihood function,
instead of a fraction of the sample, to provide information about the parameters
and thereby turning improper priors into proper ones. He defines a simplified form
of the partial Bayes factor as
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mb(x) = ) [fi(x10,)7,(0,)do,
mb;(x) ([ f,(x10)]"7,(8,)d0,

(2.17)
If z,0,)=Cc;h,(8,), h: a function whose integral over the Hi-space converges, the

indeterminate constant ¢, cancel out, leaving

mb(x) = _[h(0)f,(x10,)d0,
[hi (0] fi(x |0i)]bd0"

(2.18)

So O’Hagan (1995) proposes using a fractional part of the entire
likelihood,[ /(x| 6)]’, instead of a training sample. This tends to produce a more
stable answer than the use of a particular training sample, but will fail the

. o 1 . . .
asymptotic criterion, unless b «« — as the sample size n increase. The behaviour of
n

the fractional Bayes factor for such a b is well worth study, although it appears to

be quite difficult to decide on a specific choice of b. O’'Hagan suggested b = ﬂ,
n

where m is the minimal sample size (when it is unique). Other suggestions are 1

Jn
and 108(1)
n

_1
With vague priors, 7z(4;) o A, 2.i=0,1 or 2, for the Poisson model with one

possible change-point, for the fractional BF it follows that the marginal likelihood
with the vague prior is
L(y+3)
m,(y) = ——=+,

Y+
[x;!n" 2

while the fractional marginal likelihood is

by +7)
mbo(y): b 1 >
L1
(nb) 2 (Tx;1y"
so that
1 by+l 1-b by+l
; T(y+1)b 2, ¥(1=0)p 2
m,(y) = 0 =s) ;
L(by + )(Ix;!)
(2.19)
and
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b—1 b-1
Ty + D0y + Dp? k1D - 207D phrd

m(y,9,) =
o T(byy + )T (byy +)(amen 0"

(2.20)
The fractional Bayes factor in favour of no change against a change after the A"
observation is then given by

Fo_ mo(y)
ok
m,(y,,¥,)

1 1 1 _ _
=F(y+E)F(by1 +E)F(by2 +5) (Ejyl(l b)(n_kjm(l by _1

b 2.
by + DTy + DTy +3) \n

n

(2.21)

If we use the prior 7(4;) o /1,-_1 ,and b = 2 , since m = 2 is the minimal sample size to
n

estimate the parameters under model M, it follows that
-2
- 2y1 2
noon B(ﬂ’ﬂ)
Fo_ n n _
TN 20 By )

(2.22)

Posterior probabilities follow from equations (2.21) and (1.7) where B,, = B,].

2.3 Sensitivity of the Fractional Bayes Factor.

To examine the sensitivity of the Fractional Bayes factor to the sample size and the
value of the fraction b, consider a data set that supports the model with no change-
point perfectly, that is, all observations are equal. The posterior probability for no
change, as opposed to one change-point, is calculated when the prior probabilities
are uniformly distributed as in (2.13) with g = 0.5.

1

1 _Ln
Let z4) « 2 2 under Mo, and z(1,,4, )« 4, 22, 2 under model My be the Jeffreys

priors. The sample size is n and let y be the common value of the observations.
Then the Fractional Bayes factor in favour of M, is given by

- Iny + L )r@ky + 3 )r b - by + 1 n=(1=0
Bok =

1
Iony + 1)1 (ky + 1 )r(n = Ry + L )k =70 g — =100 =0y 2
(2.23)

The posterior probability for no change is then given by
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(2.24)

Figure 1.1 shows the posterior probability of no change as a function of sample
size and for three values of the fraction b when the data supports the null model
perfectly. The probability increases with sample size, but there remains a high
degree of uncertainty for small and moderate samples.

Also, the Fractional Bayes factor discriminate better between models when the
fraction b gets smaller, leaving more likelihood information free for model
comparison. The actual value of the observation has very little effect on the
posterior probabilities in Figure 1.1.

Figure 1.1: Posterior Probability for Model M, when all observations are equal.

Probability of no change

4/n

[IRTIT]
N
=
B

T
|
|
|
|
|

200

no. of observations

In summary, you can never achieve 100% certainty of no change, even when the
data supports it perfectly and the sample size gets large, but if a change-point
exists, it quickly becomes apparent when sample size and parameter value

increase.

Also, the probabilities are sensitive to the value of b, as can be seen in Figure 1.2.
There posterior probabilities are plotted as a function of b when n = 50 with a

change at k = % and the actual change in the data is an increase of 2 in the
common value of the observations.

Figure 1.2: Probability of no change as a function of b when n=50, k=§, Vv=y;t+ 2
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As b approaches one, the probability approaches its prior value, 0.5, since there is
no likelihood left for model comparison. As the observed values increase, it is
naturally more difficult to discriminate when the difference is only 2. As the
probability is always a convex function of b, it may be useful to report the lower
bound, which does not seem to be overly biased against the probability of no
change. However, the value of b remains a contentious issue when using the
Fractional Bayes factor.

3. MULTIPLE CHANGE-POINTS

For a fixed known number of change-points, say r, we have a generalisation of
equations (2.2) to (2.7). Let k = {ky4, k>, ...,k;} be the positions of the change-points

where ks < k; < ...< k, and assume that A, ~ Gamma(a,), i =1, 2,...,r+1,

independently. We also assume that k is uniformly distributed over all possible
partitions, so that

o

ki
Let y; = kZ lx o where k, = 0 and k,+; = n. The marginal likelihood under a particular
J=ki—1+

partition k, model My, is then

Stk e, B) = T]—@+2) 3.1)
im1(k; + )i
and
nkly,a,p)= SV 1k-a.f) (3.2)
%f(ylk,a,ﬂ)
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The Bayes factor when comparing models M} and M is just

_ folka.p)
“ 7 fls.a,B)

If « >0and B — 0 it follows that
r+1 .
z(k|y) o TID(y; )k - (3.3)
i=1

Notice that (3.3) only holds for partitions for which y; > 0 for all i. With the Jeffreys
prior (o = V2) all partitions are valid.
Furthermore,

Ak, B ~Ta+y,k—k +p) ., i=1,2,...r+1, (3.4)
and the unconditional distribution of 4; follows as in (2.7).

In the case of an unknown number of change-points maximum, but with a
maximum of R, let h, be the number of possible partitions given r change-points.
Let

zklr)=h' and 7(t)=_1_ ,r=01...,R.
R +1

Define By, as the Bayes factor in favour of model M , the model with r change-

points, partitioned according to k, when compared with the model M, with no
change-point. Then

g - JOlkap) _FUarpE Tary)
O IIr=0a.8)  TT(@(a+y) -tk —ki_y + B

(3.5)

With the Jeffreys prior the Fractional Bayes factor is given by

e 1 yits
Ly +)b2  raT(y; +)k; 2

Bif = I : (3.6)
T+ e S Ty )

where b="L k=fk k).
n

The posterior distribution of the number of change-points ris given by
Jlr=0)pr(r=0)

R
2. 2 folr = jkpr(r = jk)
=0 k

pr(r=0y)=

J
f(y|r=0)

R

Y Y f(ylr=j.k)

j=0 "k

-1
{ka;lzB,{o} : (3.7)
j=1 7k
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Also,

o _
2 hy 2 f(ylkr=))

Jj=0 "k
WS f(plkor=1)
k

pr(r=tly)=

-1 t R -1 j B
=hy Z:Bko 2 hj 2 BI{O
k =0 "k

=h'S.BL pr(r=0ly), t=12..R (3.8)
k

3.2 Alternative approach to multiple Change-points.

Chib (1998) proposed a new Bayesian approach for models with multiple change-
points. The change-point model is formulated in terms of a latent discrete state
variable that indicates the regime from with a particular observation has been
drawn. This state variable is specified to evolve according to a discrete-time
discrete-state Markov process with the transition probabilities constrained so that
the state variable can either stay at the current value or jump to the next higher
value. The model is estimated by Markov chain Monte Carlo methods using an
approach that is based on Chib (1996). This approach is for a known number of
change-points, but is useful since the computational effort does not increase
exponentially with the sample size and the number of change-points, as is the case
with the exact evaluation from the previous section. Also, proper priors are
required but since there is a fixed number of change-points, vague proper priors
ensure that the influence of the priors is minimal. In this section we will give a
description of Chib’s method as applicable to the Poisson model.

Assuming r change-points, the formulation is based on the introduction of the
discrete variable s;in each time period, the state of the system at time ¢, that takes
the values of the integers {71, 2,...,r+7} and indicates the regime from which a
particular observation x; has been drawn. Specifically, s; = k indicates that x; is
drawn from f(x;|X,_;,4;), where X;_y={x,x5,...,x;_1}. The variable s; is a

Markov process with transition matrix

pin p2 0 0
0 pyn px3 - 0
P=| .. , (3.9)
0 0 Py Prr+l
0 0 .. 0 1

where p;; = pr(s;—;|s;_1 =i). The chz;in begins in state 1 at time t = 1 and

terminates in state r + 1. So s; can either stay in the current state or move to the
next higher one. The transitions of the state identify the change-points
K, ={ki, ko, k) } .
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Chernoff and Zacks (1964) propose a special case of this general model in which
there is a constant probability of change at each time point. Yao (1984) specified
the same model for the change points but assumed that the joint distribution of the
parameters {0, } is exchangeable and independent of the change-points. Similar
exchangeable models for the parameters have been studied by Carlin et al. (1992)
in the context of a single change point, and by Inclan and Tiao (1994) in the
context of multiple change-points.

Suppose prior density z(A,P), where A = {A1, Aa,..., A1}, and data X, then the
Monte Carlo sampling scheme is applied to obtain the posterior density
7(S,,A,P|1X,), Sh={S1, Sa...,Sn}. The sampling method works recursively. First

the states S, are simulated conditional on the data and the other parameters, and
second, the parameters are simulated conditional on the data and S,. The MCMC
algorithm is implemented by simulating as follows.

Simulation of {s;}

Let S'*! = {S¢415---»S, } ,then the simulation consists of sampling, in turn,

. Sp.; from f(s, ;| X,, s, =r+1,4, P),
o Spo from f(s,.|X,, S™ A P),

[ J

. s, from f(s;|X,, S°. A, P),

where s; = 1. Chib (1996) showed that

FCsy 1 X, SN PY o f(5 | Xy PV f (5141 1505 P) (3.10)
where s; can take on only one of two possible values, conditional on s:.1. The last
term is just the probabilities from the transition matrix P, i.e.

. i with probability p;;
S(sia1 |8y ZZ,P):{ ii

i+1 with probability 1 - p;;
To obtain the mass function f(s, | X,,P),t =1, 2,...,n, a recursive calculation is required.
Starting with # = 1, where f(s; =1|X,,A) =1, the update is given by

SO =1 X1, AP (x| X1, 45)
S S =X AP | X1, )

Sl =Jj1 XA P)= (3.11)

where

J
Sl =jl X1, AP) = X pyx f(s—1 =1 X1, A P) (3.12)
I=j-1

and
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fO | XA =—1—— (3.13)
x;!

forj =1, 2,...,r+1 and pj is the Markov transition probabilities. With these mass
functions at hand, the states are simulated from time n and working backwards
according to the scheme described in (3.10).

Simulation of P

The full conditional distribution of P is independent of (X, A) given S,, and the
elements p;; of P may be simulated from f(P|S,). We shall assume that p; ~ Beta(a,

b), independently, i = 1, 2,...,r, where a >> b. The joint prior density of P is then

#(P) = Hp M- pi)t. (3.14)

B" (a,b

~ =L with large

The parameters a and b can be chosen so that E(pi,-):ﬁ .

variance. This means that apriori the mean lengths of all regimes are the same. Let
n; denote the number of periods the process stays in state /, then the conditional
distribution of p;i is

Dii ~ Beta(a+nl-l~,b+1) , 1= 1, 2,...,7", (315)

since n;;+;= 1. The p;;’s can be simulated by letting p;; —%xz, where

~ Gamma(a+n;;, 1) and x; ~ Gamma(b+1, 1).

Simulation of 4;, j =1, 2,...,r+1.
Let A; ~ Gamma(c, d), i = 1, 2,...r+1, independently, then the conditional distribution,

AlS,,X,, P, factors into independent terms,

Aj| Xy, Sy, P~Gamma(c+U;,d+Nj), j=1 2..rtl, (3.16)

where U; =%/ ,I(s,=j)x,and N;=%7 I(s;=j). I(s; =j) is the indicator

function that is equal to 1 if s; =j and zero otherwise. So N; is simply the number of
time periods the process spends in regime j, while U;is the sum of the observations
recorded while in regime j.

The sample output of the states S, can be used to determine the posterior
distribution of the change-points. Alternatively, the Monte Carlo estimate of
7(s; | X,)cab be found by taking an average of f(s; =j|X;_1,A,P), from (3.12),
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over the MCMC iterations of A and P. This is called Rao-Blackwellization, and is
more efficient than taking the empirical distribution of the simulated states.

Chib (1998) also gives a MCMC approach to the calculation of marginal
likelihoods, used for Bayes factor calculations when comparing models with
different number of change-points.

4. APPPLICATIONS 1.

Example 4.1

As an example of the Poisson model with one change-point, we will use the
diarrhoea-associated haemolytic uraemic syndrome (HUS) data used by
Henderson and Matthews (1992). Haemolytic uraemic syndrome is a severe, life
threatening illness, which predominantly affects infants and young children (Levin
and Barrett, (1984)). The aetiology of HUS is unknown but various bacterial and
viral agents have been implicated, with particular speculation of a link with the level
in the environment of E. coli. There has been concern that the incidence of HUS
has apparently increased sharply during the 1980’s (Tarr et al. (1989), Coad et al.
(1991)). As an example, we consider the frequency of cases of HUS treated in two
specialist centres in Newcastle upon Tyne and Birmingham from 1970 to 1989.
The data is given in Table 4.1.

Table 4.1: Annual number of cases of HUS at each referral centre.

Year | Newcastle | Birmingham | Year | Newcastle | Birmingham
1970 6 1 1980 4 1
1971 1 5 1981 0 7
1972 0 3 1982 4 11
1973 0 2 1983 3 4
1974 2 2 1984 3 7
1975 0 1 1985 13 10
1976 1 0 1986 14 16
1977 8 0 1987 8 16
1978 4 2 1988 9 9
1979 1 1 1989 19 15

Assuming one change-point and using equation (2.5), the change at Newcastle
occurred at k=15 (1984), and for Birmingham at k=11 (1980). Assuming at most

one change-point and using the Fractional Bayes factor from (2.21) with (1.7) and
b =%, we see that the probability for no change is virtually zero. The maximum

probabilities and the probabilities for no change are given in Table 4.2 .
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Table 4.2 Posterior probabilities assuming at most one change-point.

Pr[No change|x] Prlk = 15|x]
Newcastle 1.680e-011 0.9834

Pr[No change|x] Prik = 11|x]
Birmingham 1.816e-013 0.9515

Figure 4.1 shows the posterior distributions of 1; and A, for both cities, clearly

showing the increase in cases.

Figure 4.1: Posterior distribution of rate of incidences before and after change-

point.
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Assuming two change-points, Figure 4.2 shows the distribution of the change-
points for Newcastle, and figure 4.3 shows the distribution of the change-points for

Birmingham.

For Newcastle the maximum probability for 2 change-points is 0.2712 at k = (7,
15), and for Birmingham it is 0.2507 at k = (11, 16).
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Figure 4.2: Posterior probability distribution: 2 Change-point for Newcastle
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Figure 4.3: Posterior probability distribution: 2 Change-point for Birmingham
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Assuming one change-point, Figure 4.4 shows the magnitude of the change

’1—2(fr0m equation (2.8)) for Birmingham and Newcastle. Clearly the change
4

occurred later in Newcastle than in Birmingham and the magnitude of change is
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greater in Birmingham with a mean increase of over 6 times compared to an
increase of about 5 times in Newcastle.

Figure 4.4: Posterior distribution of the ratio v = —=.
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Considering models with up to four change-points, by using equations (3.6) to
(3.8), the data seems to support a single change-point as seen in Table 4.3.

Table 4.3: Posterior probabilities for multiple change-points, using the FBF.

No change 1cp 2cp’s 3cp’s 4 cp’s
Birmingham 0 0.4017 0.3825 0.1687 0.0471
Newcastle 0 0.3814 | 0.1921 0.2687 0.1577

Henderson and Matthews (1992) compared the models from 0 to 3 possible
change-points pairwise and concluded that there are 2 change-points for
Birmingham at 11 and 16 (1980, 1985) and 3 change-points for Newcastle at 2, 7
and 15 (1970, 1976 and 1984). Our results from Table 4.3, however, do not
strongly support this.

Example 2.2

As a second example of the Poisson model we will use the much analysed data
set of yearly numbers of British coal-mining disasters during the 112-year period
1851-1962, gathered by Maquire, et al.(1952), extended and corrected by Jarrett
(1979). Frequentist change-point investigations appear in Worsley (1986) and in
Siegmund (1988), while Raftery and Akman (1986) apply their Bayesian model to
investigate a continuous single change-point. Broemeling and Grequrich (1996)
investigated a discrete single change-point, while Carlin, Gelfand and Smith (1992)
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used Gibbs sampling in examining for a single change-point. Green (1995)
considered multiple change-points with the reversible jump algorithm.

Figure 4.5: Number of British coal-mining disasters during 1851 — 1962.
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Assuming one change-point, Carlin, Gelfand and Smith (1992) found a maximum

probability of 0.2750 at 1891 (k = 41) with « :% and g =0. The same result is

obtained from equation (2.4). Equation (2.5) gives a maximum probability of 0.2421
(see Figure 4.6), while the fractional Bayes factor from (2.21) gives a probability of
0.2372 at 1891 with the probability for no change virtually zero. Allowing for at
most 3 change-points, the posterior probabilities from equations (3.6) to (3.8) are
given in Table 4.4, together with the results of Green (1995) who used the
reversible jump algorithm with a Poisson prior on k with mean 3.

Figure 4.6: Posterior probability for position of a single of change-point: Coalmine data
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Table 4.4: Posterior probabilities for the number of change-points: Coal-mine data

No. of change-points r=0 r=1 r=2 r=3 r>4
Change-point(s) - k=41 k=(4197)| k=(41,79,97) | ---
Posterior probability | 3.9e-014 | 0.1763 0.4716 0.3521 -
Green (1995) 0 0.157 0.348 0.266 0.229

The evidence points to 2 change-points with maximum probability at k = (41, 97)
which are 1891 and 1947. Worsley (1986) and Raftery and Akman (1986) give
some possible historic reasons for the possible change-points. According to
Worsley changes in the coal-mining regulations during 1896 may have reduced the
probability of accidents. According to Raftery and Akman a fairly abrupt decrease
around 1887-1895 may be associated with changes in the coal industry around
that time, namely a severe decline in labour productivity starting at the end of the
1980’s, an the emergence of the Miner’s federation at the end of 1889. The change
in 1947 may be due to changes in labour practice just after the war.

Under model M, the joint posterior of k, and k, is shown in Figure 4.7. The
posterior mass is clearly concentrated around k given above. The posterior
distributions of 4, , 4, and A, are virtually the same as shown in Figure 4.9 below,

and so the number of disasters has been significantly reduced each time.

Fig 4.7: Joint distribution of k, and k, given 2 change-points for Example 2.2.

1st Change-point 1900 i 1900 2nd Change-point
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Chib’s approach

Chib’s approach (1998) will be illustrated using the coal mining-disaster data
from Britain used above. Let the count x, in the year t be modelled via a

hierarchical Poisson model, and consider determining the change-points for each
of the two models M; and M,. Under M, the data is subject to a single break with

P A for t<ty,
A, form+1<<112

where A;,4, ~ Gamma (2,1), as assumed by Chib.

First S = {sy, s5,...,8n} is simulated according to equations (3.10) to (3.13) with a
starting value of 0.99 for ps4, after which ps; is simulated from (3.15) with a = 10
and b =0.1. Finally 4;, j = 1,2, follows from (3.16) with ¢ =2 and d = 1. This cycle
was run 10 000 times, and the results are represented in the following figure.
Figure 4.8(a) shows a different way of representing the position of the change-
point, which follows naturally from Chib’s approach. It shows the probability of
being in the 1% regime (before the change), or being in the second regime (after
the change), as a function of the time. The point were the lines cross is where the
probability of being in the 2 regime exceeds 0.5. The result corresponds with that
obtained earlier, namely a change around 1891.
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Figure 4.8: Posterior results: 1 change-point for mining accidents, Chib’s method.
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Figure 4.8(b) shows the posterior distributions of A, and A,, clearly a significant
decrease in the number of accidents, with the posterior mean of 1, equal to 3.099
and that of A, equal to 0.938.

Under model M2, 4, is subject to two breaks with priors, A4,,4,,4, ~ Gamma (3,1).

Results are shown in Figure 4.9, where the posterior means are:
E[A4 | x]1=3.118, E[A, | x]=1.297, E[A3|x]=0.506.
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Figure 4.9: Posterior results: 2 change-points for mining accidents, Chib’s method
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When three change-points are assumed there is much more uncertainty as to the
positions of the change-points, and the two change-point model seems the best, as
confirmed in Table 4.4.

Example 2.3

Prussian military personnel killed by horse-kicks (1875-1894).

The “Horse-kicks” data of Bortkewitsch are amongst the most well-known
collections of Poisson data. They summarise the number of Prussian military
personnel killed by kicks of a horse for each of 14 corps in each of 20 successive
years 1875-1894. The full data-table can be found in Hand et al. (1994) and is
analysed by Preece et al. (1988).

The total number of deaths over all corps for all 280 years was 196. If each of the
280 years could reasonably be thought to be independent of all others, and the
number of cavalry officers and their susceptibility to death from horse-kicks could
be reasonably thought to be the same for each of the 280 units of observations,
then a simple Poisson model for the observed frequencies would be reasonable.

The expected frequencies for a Poisson distribution with mean % =0.700 were

given by Bortkewitsch and show a good agreement with the observed frequencies.
Table 4.5 shows the posterior probability for no change for each of the 14 corps as
well as the position and probability of the change-point with maximum probability.
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Table 4.5: Probability of no change and position of change-point for the horse-kicks data.

Corps | Pr[k=0|x] | Position of cpt | Pr[k = t|x]
G 0.6773 13 0.3130
I 0.5990 3 0.1035

II 0.6510 3 0.1034
I 0.6085 17 0.0586
v 0.6669 7 0.0382
\Y 0.5908 4 0.0895
VI 0.5831 2 and 8 0.0487
VII 0.6787 12 0.0256
Vil 0.6892 16 0.0301
IX 0.4381 5 0.2112
X 0.6127 14 0.0534
XI 0.2002 4 0.5050
XIv 0.5732 18 0.0929
XV 0.6242 16 0.0518

It seems that there is little evidence of a change in the number of deaths caused by
horse-kicks for many corps for the twenty years, with an exception of corps IX and
XI, where there seems to be an abrupt change in the number of deaths at k = 5
(1879) and k = 4 (1878) respectively.

Analysing the totals over the 20 years and assuming the possibility of up to 5
change-points, using the fractional Bayes factor from equation (2.21) and b=4/n,
we see that the highest probability is for 3 change-points from Table 4.6. However,
any number from 1 to 5 has a reasonable probability, only the probability for no
change is negligible.

Table 4.6: Probabilities for the number of change-points in horse-kicks data
No. of Change-point 0 1 2 3 4 5
Probability 0.030| 0.143| 0.212 0.227] 0.209 | 0.179

The probability of no change-point for the totals is 0.173 when compared with the
model with a single change-point, so, while it is unclear as to how many change-
points there are, it seems that some changes did occur. This data set will be
examined further in section 6.
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5. MULTI-PATH CHANGE -POINT ANALYSIS.

Suppose we are given M sequences of random variables, each of length N, and
we want to make inferences about a change-point z,, i = 1, 2,...,M, in each

sequence. There are two main subdivisions of the multi-path change-point
problem. If the change-point occurs at the same position in each sequence,
(.e.7,=7,=..=1, =7)orif ther;'s occur at random positions in each sequence,

1STI‘SN—1.

The multi-path analysis was described by Bélisle et al. (1998) as follows:
Assume that there are data in the form of an M x N array

X1 X2 e X M4l e YN

X1 X022 v X2zp XD zp 41 XN

X={ (5.1)

XML XM2 - XM,zpp *M,rpp+1 - XMN

Each sequence, X, ,...,.X,,, represents observations over time from the i-th
subject, i=1,...,M. A change-point is said to have occurred at 7, in sequence or row
i, 1<z, <N-1,if X,,..., X,_are identically distributed with common distribution

F .., which is different from the common distribution , F, of X, ... .X,,. If 7, =N

then no change has occurred in row i. The distribution of the pomt of change, 7,
an unknown parameters of the distributions F,; i =1, ..., M, k = 1,2 is to be

estimated from the data matrix (5.1).
We assume that the times of change, t,, in each sequence are themselves

independent and identically distributed from a given population, following a
distribution g(t) = pr(z,=t), i=1,...,M; t=1,...N which is to be estimated. If g(N)
> 0, then it is possible that there is no change in some rows. Here g(.) represent
the probability for the location of the change point for a randomly selected
individual in the population.

It has been shown by Hinkley (1970) that the single-path maximum likelihood
estimator of the change-point is not consistent, but the non-parametric estimator of
g(.) has been shown in Joseph and Wolfson (1992) and Joseph,Vandal and
Wolfson (1996) to be consistent under certain conditions in the multi-path case. In
Joseph and Wolfson (1992) both bootstrap and empirical Bayes methods have
been utilised in the multi-path context, and in Joseph et al. (1997) Bayesian
analysis was employed.

5.1 Estimation of the parameters via the Gibbs sampler.

The likelihood for the model described in equation (5.1) is given by

f(XI%izﬂp---:TM):ﬁ{ﬁf(x Iﬂ,l)}{l_[fz(x | 4iz) } (52)

i=1 | j=1 .
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where x, follows a Poisson distribution with parameter 1; and z = (7y,...,7y),
where 7, = pr(r; =k),i=1,...M; k=1,2,..., N. The parameters in the model are;
1) 41 =Y, Apy1) @and 4y =(Ao,....4372), vectors of the means of the Poisson
distributions before and after the change-point in each row.

2) m=(m,.,7y), the multinomial probabilities that a change occurs at position k
in each row, k=1,...,N.

3) r=(r,..,7,), the unobserved latent data representing the change-points in
each row.

4) In addition we have the parameters, & and &, of the exchangeable priors of A4
and A;.

Prior distributions
Let (z,,...,7_) ~ Dirichlet(e,,...,a,_,) so that the joint distribution of =,,....7,_, is
given by

N-1
1_‘(f=1 aj) L a1
Axyynmyy) = — 7 (5.3)
[(a)) J=l
j=1 '
Next, let
A,~exp (6,) and 4, ~exp (6,), (5:4)

where the hyperparameters 6, and &, have independent vague Jeffreys priors,

1 1
7(6,,0,) <6, 20, 2.
We are mainly interested in the posterior distributions of &, & and =
Implementation of the Gibbs sampler to find the marginal posterior distributions
requires the specification of the full conditional distribution of all the parameters,
i.e. the conditional distribution of each parameter given the values of all of the
other parameters. These are derived as follows:

Conditional distributions.
The likelihood is
M T ) X;: N ) X
S, 2,T Ty | X) o ] e "] [le ™4
i=l | j=I j=r;+1

M
A —(N=T)Ar 1V 2V
o He it o (N-1;) ’2/11)'1’]/11)'; , (55)
i=1

7; N
where y, => x, and y, = » x, ,so that with prior (5.4),
j=1

j=r;+1
Aij | %35,7;,6 ~ Gamma (y; +1,0; +7;), i=1,2,...,.M, j=12. (5.6)

For the hyperparameters we have
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9j|ij~Gamma(M+l/2,le~j) , Jj=12. (5.7)
For 7 we have

Prlz; = k| 41,20, 7, x] o f(A1,A0,71,..., T |X)Pr[7; = k]

il o
o 7. (5.8)

1M, T (i (k) + DI (i (k) +1)

A (k1) po (k2) ;=kAj1 ,=(N=k)Zi2
l l

k N
where y;(kj)= X x; and y;(ky)= X x;.
j=1 J=k+1

Lastly, the conditional distribution of the elements of ~ follow a Dirichlet
distribution,

iy Ty | T~ Dirichlet (B) (5.9)
M

where f=(B,,0,....0y,),and f;=a; + > I(z; =k). The indicator function 7 is one if
i=l

% = k and zero otherwise.

The Gibbs sampler algorithm proceeds by drawing a random sample from each full
conditional distribution (5.5) to (5.9) in turn. The parameters sampled from the
immediately preceding random draw are used in the conditional distribution for
subsequent draws. A large number of iterations are run, and after discarding
iterates from an initial burn-in period to allow for the convergence of the algorithm,
the remaining random vectors can be regarded as samples from the joint posterior
distribution of the parameters, from which inference can be made. Marginal
posterior density estimates can be obtained by what has become known as the
Rao-Blackwell method (Gelfand and Smith (1990)). For example, the marginal
posterior distribution of 4;; can be obtained as

L
7 | 0) =LY £ |27, 000). (5.10)
/=1

where L is the total number of cycles and (rl-(l),é’l(l)) are the generated values

during the /-th cycle. So we are averaging the conditional distribution of 4;; over the
simulated values of the conditioning parameters.

6. APPLICATIONS 2
Example 6.1: Neuron spike train analysis.

As an example of the Poisson model with multi-path change-points, we will use
data from Bélisle et al. (1998), consisting of counts of electrical discharges in 20
milliseconds (ms) intervals, approximately one-half second before and after a
stimulus was applied to the neuron at t = 500 ms. The counts of electrical
discharges were observed on M = 35 data sequences. Each time the neuron was
allowed to the resting state before the experiment was resumed.
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All sequences had 25 observations before the stimulus was applied, but the
number of observations after the stimulus varied between 11 and 24. The variation
should not cause substantial bias in estimating 7 unless there is evidence that the
change point occurred after approximately 220 ms post-stimulus, which was not
the case in this data set.

Figure 6.1 Data from the experiment with M=35 trials. A stimulus was applied at 500ms.

Each line represents a spike train at the indicated time.
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The output produced by the Gibbs sampler for z (from (5.9)) is a sample from a
Dirichlet distribution in N = 49 dimensions. Summary statistics marginal Dirichlet
posterior distributions can be calculated, and posterior marginal densities for
selected change-point probabilities may be plotted. within each iteration, each
sequence may have r, < Nor 7, = N, i = 1,..,M. A useful statistics is then

{#timesr[ <N}/number of iterations. This approximates the sequence or trial-

specific probability of a change-point.

To obtain relatively flat prior densities, so that the data themselves would
contribute most of the information in the posterior densities, a Dirichlet prior density
(from (5.3)) with a; = 0.05 for all i was used. Bélisle et al. (1998) used
o =a,=..=a,=0 and a,, =a, =...=a, =0.04. The sample size equivalent of

this prior density is two and a half observations (3 ¢; = 2.5), so that 35/37.5 = 93%

of the information in the marginal posterior density on 7 would come from the data.
Bélisle et al. (1998) used Gamma(4, 0.03) and Gamma(8, 0.03) prior distributions
for the before and after Poisson parameters, where we use Exponential priors with
vague hyperpriors on its parameters, as given in equation (5.4).
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Using the MATLAB software, 25000 sets of parameter values were generated. The
mean marginal posterior change-point probability at r,, was 0.855, indicating that
there is indeed a change in electrical activity following the application of the
stimulus, occurring roughly 180 ms after the stimulus. None of the other change-
point mean marginal probabilities was greater than 0.025, and in particular, there
was a negligible estimated probability of no change. The estimated posterior mean
of zis depicted in Figure 6.2, and shows the high probability of 0.78 for a change
after the 34" interval.

Figure 6.2: Posterior means of probabilities & = (n;, 7, ..., 7Iy), neuron data.
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The marginal posterior distribution for 734 is given in figure 6.3. This figure
indicates a 95% Highest Posterior Density interval of (0.60 — 0.99).

Figure 6.3: Histogram of posterior probability  distribution  of
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Figure 6.4 shows the posterior distributions of & and &, derived by averaging over
the conditional Gamma distributions given in (5.7). It shows clearly the difference
between the mean rates before and after the change-point.

Example 6.2: Horse-kicks

Figure 6.4: Posterior distributions of 6; and 6, for neuron spike train data
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The “horse-kicks” data is described in section 4, and here we will analyse it as
multi-path data with 14 sequences, each of length 20. Assuming one change-point
in each sequence, we want to derive the posterior distribution of 7 =(7, m,..., m19),
the probabilities for the position of the change-point. This is depicted in Figure 6.5.

Figure 6.5: Posterior means of probabilities &= (7, m, ..., 7ty), horse-kick data
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It is clear that if there is a change, it is most likely to be early in the sequence, with
a probability of 0.364 for 1877 and a probability of 0.805 that it is during the first
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four years from 1875 to 1878. The marginal posteriors of 6y and & is given in
Figure 6.6 and show the wide range of possible values, especially for 64. This is
because of the uncertainty about the change-points in the sequences. From the
analysis in section 4 it appears that most sequences exhibit more than one
change-point.

Figure 6.6: Marginal posterior distributions of 6, and 6, horse-kicks

data.
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The years do not show an obvious trend except for the first 6 years, when there
was a consistent increase in deaths. Corps G, |, VI and Xl, which were noted as
having a numerical composition particularly far from the average, have four of the
five highest counts of deaths, the other corps with a high count being XIV.
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