
MACHINE LEARNING THROUGH SELF GENERATING PROGRAMS

H. G. LUBBE AND B. J. KOTZE
ABSTRACT

People have tried different ways to make machines intelligent. One option is to use a
simulated neural net as a platform for Genetic Algorithms. Neural nets are a combination of
neurons in a certain pattern. Neurons in a neural net system are a simulation of neurons in an
organism’s brain. Genetic Algorithms represent an emulation of evolution in nature. The
question arose as to why write a program to simulate neurons if a program can execute the
functions a combination of neurons would generate. For this reason a virtual robot indicated
in Figure 1 was made “intelligent” by developing a process where the robot creates a program
for itself. Although Genetic Algorithms might have been used in the past to generate a
program, a new method called Single-Chromosome-Evolution-Algorithms (SCEA) was
introduced and compared to Genetic Algorithms operation. Instructions in the program were
changed by using either Genetic Algorithms or alternatively with SCEA where only one
simulation was needed per generation to be tested by the fitness of the system.

Key words: Genetic Algorithms, intelligent programs

1. INTRODUCTION

For thousands of years, humans have dreamt of intelligent machines [1, p. 2][2, p. 10]. Quite
a few artificial intelligent methods have been developed, almost all showing the ability to learn
minor things. As soon as the problem increase in difficulty, these processes prove
themselves not to be adequate and intelligent enough to resolve the problem at hand [3, p.
9][4][5, p. 1].

Figure 1 Robot that was build to evaluate the generated programs.

 1

2. GLOBAL LAYOUT OF RESEARCH PROJECT

In Genetic Algorithms as well as SCEA the program was broken up in two parts which
interacts with one another [7, pp.1-9]. The first part determines the fitness of a program
through simulating the robot movements, its sensors, its controller and its surroundings. The
second part generates the new generation of programs to be executed. These two parts
were alternated in generating the results. Using a personal computer, the simulation took up
to a few minutes to execute while creating a new generation happened without been noticed.
To compare Genetic Algorithms with SCEA, only the amount of simulations executed were
counted.

3. SINGLE-CHROMOSOME-EVALUATION-ALGORITHMS

To make SCEA possible, two identical generated programs are saved. An instruction in the
one program is changed randomly and then this changed program is evaluated by simulating
the robot in a maze. The better of the two “new” programs were duplicated so that at the end
there are two exact copies in both memory spaces before the process is started again.

Both these methods use a generated variable to indicate how well the evaluated program has
performed [6]. The value of this variable is called the fitness of the generated program.

It could be seen as a disadvantage for evaluation purposes that only the distance between
the final evaluated position of the robot and the robots destination is given as reference to
determine the fitness. The route could be any length, because there are obstacles between
the origin and the destination as can be seen in Figure 2. Irrespective of this lack of
evaluation the robot had to show the ability to avoid these obstacles.

Starting point

Destination

Figure 2 Simulated Robot’s movement while executing a Generated Program that had one of
the best fitness’.

 2

4. RESULTS

Because the random functionality is used so much in the generation of programs, the results
are also stogastic in nature. For this reason a large amount of simulations were executed for
evaluation purposes and the average for some results were calculated. Beacons were set up
at some fitness positions and the amount of how many simulations it took to get to these
predetermined fitness points. These results and the final fitness’ for each situation are shown
in Table 1. Two genetic algorithms methods were incorporated. In one instance only
mutation is used to generate a new chromosome and in the second instance both mutation
and crossover are incorporated.
As can be seen, SCEA took on average 400 simulation before the robot started moving while
with the Genetic Algorithms it took an average of 8 300 simulations for a similar response.
Over the whole spectrum, with only a few exceptions, the SCEA has proved to be faster than
Genetic Algorithms.

It seems that small changes in the situations, for example, introducing noise representing
erroneous distance readings to the sensor readings did little to the results. Genetic
Algorithms performed better than SCEA when the obstacles in the maze were changed
before every simulation.

Table 1 The average amount of simulations to get to some fitness point and the final fitness
values.

Option Start 42 96 290 Fin. Fitness.

SCEA 4 9 14 >52 571

Crossover and Mutation 83 96 109 >199 410

Mutation 46 78 93 >202 453

These amounts of simulation values have to be multiplied by a hundred to get the actual
results.

In an additional experiment with the option of two destinations, a single bit input to the robot
was used to indicate to which one of the two destinations the robot would use as destination.
SCEA was unable to adapt to this situation until fitness values was introduced for each
destination-input combination.

 3

Figure 3 is an example of a Generated Program for the robot that showed the ability to avoid
obstacles. As can be seen the code generated for this virtual controller is similar to the
assembler language normally used for the PIC® range of microcontrollers. The instructions
shown in black were not executed during the execution of the program. The blue instruction
was executed only once. Although the instruction at address 30 was executed, it had no
effect on the program as the instruction at address 31 changed the value in the W-register no
matter what the circumstance was. Thus many instructions could be changed without
influencing the program and later a change to a single instruction could “activate” some of
these instructions. The programs that were generated did not seem to have a logical
sequence, although with further investigation showed that it will and does work.

 Address OPCODE Operand Address OPCODE Operand

Figure 3 A generated program created by a program procedure.

5. CONCLUSION

SCEA can adapt to small changes but are unable to adapt to large changes unless a fitness
value is given for each situation. With the programs generated that differs from the
conventional way a human would write a program, it is still possible that programs could be
generated that will function as if it was written conventionally and ideally above a human’s
ability. It also opens a door to a new way of writing and developing programs by
programmers. SCEA is in some cases much faster than Genetic Algorithms and possibly
opens a new field in Artificial Intelligence with hopefully better results.

 4

6. REFERENCES

1 McKerrow, P.J. Introduction to Robotics. Singapore. 1991.

2 Scott, P.B. The Robotic Revolution. The Complete Guide. UK. 1984.

3 Wise, E. Applied Robotics. United States of America. 1999.

4 Ross, A. Dynamic Factory Automation. Creating Flexible Systems for Competitive

Manufacturing. England. 1992.

5 Andeen G.B. Introduction. Robot Design Handbook.1988.

6 Connell, J.H. & Mahadevan, S. Introduction to Robot Learning. Robot Learning. 1993.

pp. 5-6.

7 Man, K.F., Tang, K.S., Kwong, S. and Halang, W.A. Genetic Algorithms for Control and

Signal Processing. Great Britain. 1997.

 5

