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ABSTRACT 

The Fourth Industrial Revolution places different rapidly advancing technologies 

like the Internet of Things (IoT), Internet of Services (IoS), Internet of Everything (IoE) and 

Cyber Physical Systems (CPS) at the centre of developing autonomous manufacturing 

systems.  The development of these systems within the environment of Industry 4.0 expects 

significant changes in tasks and demands on the human in the manufacturing process and 

recognises that humans and machines are homogeneous parts of a larger diverse body 

consisting of collaborative and autonomous components. 

According to the Industry 4.0 concepts, all objects in the manufacturing world have 

assimilated processing and communication capabilities which highly affect machine-to-

machine communication. However, a considerable consequence is that of the effect it will 

have on human-to-machine interaction.  It is occasional that automated systems are solely 

autonomous; a level of human interaction is usually present although this challenge is not 

always considered. In mixed environments, automated systems and humans need to 

collaborate for the completion of a process. Currently, there exists very little research on how 

a collaborative decision-making process can be developed such that the worker’s acceptance 

and adaptation to the process is taken into cognizance.  

This research identifies the lack of collaborative decision-making processes as a research gap 

and introduces the problem with an extensive literature review that focuses on the research 

done in this field, followed by a review of potential models for human technology interaction. 

A case study of an automated water bottling plant to advance the study in collaborative 

decision-making is introduced for the execution of several experiments to compare a fully 

automated approach versus a collaboration between the human operator and the system.  

A single group experimental approach is used to prove the theory while also identifying where 

the human will best fit into the automated procedure resulting in an optimized production 

process.  The hypothesis is that the completion time for customer orders will be optimal when 

the human and the machine collaborate for the completion of the production process.
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CHAPTER 1: Introduction to the study environment 
 

 

1.1 Background Information 
 

The Fourth Industrial Revolution places different rapidly advancing technologies 

like the Internet of Things (IoT), Internet of Services (IoS), Internet of Everything (IoE) and 

Cyber Physical Systems (CPS) at the centre of developing autonomous manufacturing 

systems [1].  The development of these systems within the environment of Industry 4.0 

demands significant changes in tasks undertaken by humans in the manufacturing process 

and recognises that humans and machines are homogeneous parts of a larger diverse body 

consisting of collaborative and autonomous components [2].  

 

According to the Industry 4.0 concepts, all objects in the manufacturing world have 

assimilated processing and communication capabilities, which highly affect machine-to-

machine communication [2]. However, a considerable consequence is the effect it will have 

on human-to-machine interaction. Although Industry 4.0 focusses mainly on the linking of 

machines and digital systems [3], the human operator retains skillsets that automated 

machines cannot match and, as such, the integration and collaboration of humans with 

technology and systems is an emerging field of Industry 4.0 research [3]. Humans possess 

skills such as their unique capability for problem-solving and decision-making, dexterity and 

sensory skills that is not present in a machine or automated system [3].  Automated systems 

are solely autonomous, and as mentioned, a level of human interaction is usually present 

although the challenge of including humans in the autonomous systems are not always 

considered.  In mixed environments, automated systems and humans need to collaborate for 

the completion of a process. Currently, there exists very little research on how a collaborative 

decision-making process can be developed such that the worker’s acceptance and adaptation 

to the process is taken into cognizance.  
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This research identifies the lack of collaborative decision-making processes as a research gap 

and introduces the problem with an extensive literature review that focusses on the research 

done in this field, followed by a review of potential models for human technology 

interaction. A case study of an automated water bottling plant to advance the study in 

collaborative decision-making is introduced for the execution of several experiments to  

evaluate a fully automated approach versus a collaboration between the human operator and 

the system.  

 

A single group experimental approach will be used to prove the theory that collaborative 

decision-making between the human and machine will lead to optimal production time of an 

automated system in a Smart manufacturing environment.  Analysing and validating the  

collected data, using the single group experiment, will be realized by implementing a 

software namely Statistical Analysis System (SAS), which is a programming language used 

for statistical analysis affording results that is able to accurately predict the process times of 

the automated approach versus the collaborative approach.   

 

The single group experiment also aims to identify where the human will best fit into the 

automated procedure resulting in an optimized production process.  The hypothesis is that the 

completion time for customer orders will be optimal when the human and the machine 

collaborate for the completion of the production process in the automated system.  

 

1.2 Problem Statement 
 

The successful operation of an automated system is highly dependent on Human-Technology 

Interaction (HTI) as well as efficient collaboration between the workforce and the automated 

system. The absence of collaborative decision-making processes is identified as a challenge 

that results in a greater Total Time to Manufacture (TTM) a product, hence affecting the 

optimum performance of automated systems and thus seen as a research gap.   

This problem is elevated within the Industry 4.0 environment that include not only automated 

systems but also integrated HTI and Internet of Everything (IoE) technologies. 
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1.3 Research Hypothesis and Objectives 
 

1.3.1 Hypothesis 
 

Collaborative decision-making will assist in reducing the TTM, hence it will have a positive 

impact on optimizing the production process within a Smart manufacturing plant. 

 

1.3.2   Research Aim 
 

The aim of this research is to investigate and establish the importance of human intervention 

in a collaborative decision-making process for the optimum completion of tasks performed 

by an Information and Communication Technologies (ICT) enabled Smart automated 

manufacturing system and propose a protocol to determine the tasks/actions best performed 

by machine, by a human and a collaboration of human and machine. 

 

1.3.3  Research Objectives 
 

 Testing, analysing and validation of the production time for a machine only and the 

collaboration of a human and machine system. 

 Determine the effects of human-machine collaboration on an automated production 

system from the testing process. 

 Developing of a protocol with guidelines on tasks/actions best performed by a machine, 

by a human and a collaboration of human and machine. 

 

1.4 Research Methodology 
 

The fact that collaborative decision-making is lacking in modern Smart factories has been 

identified as a problem [4] and subsequently, the research that is being conducted aims to 

provide a solution to assist in solving the challenge. The aim of this research is to investigate 

and establish the importance of human intervention in a collaborative decision-making 

process for the optimum completion of tasks performed by an ICT enabled Smart automated 

manufacturing system. 
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In order to meet this challenge, the study will involve the development of a case specific 

application for the Human-Machine Interface (HMI) to enable collaborative decision-making 

between the machine and the human operator. This will be done by using an existing, fully 

automated water bottling plant in a Smart manufacturing environment as a case study.  

 

The water bottling plant is split into three sections which is run using three Smart 

Manufacturing Units (SMU’s). The first SMU is tasked with filling water bottles in 330ml 

and/or 500ml bottles, the second SMU caps the filled water bottles while the third SMU 

packs the completed orders.  

 

In achieving the specified objectives, a single case experimental study will be executed.  A 

single test case will be employed to prove the theory, which is that the completion time for 

orders received, will be optimal when the human and the machine collaborate for the 

completion of the production process.  For this purpose, two different scenarios will be used 

to determine the impact of collaborative decision-making in the automated system namely 

the machine only and secondly a collaboration between the machine and the human operator.   

 

The scenario of machine only will be the control case, as the system will complete the 

production process without any human intervention, whereas the human-machine 

collaboration will be used as the test case.   

 

The testing of the water bottling plant is intended to be executed  in real-time for determining 

the average time for filling one bottle using the automated approach and the same test will be 

run whereby the human will be introduced into the control loop to determine the average time 

for filling a bottle with introducing human intervention.  Several scenarios are going to be 

presented for the collection of data during the execution of the experiments.  Analysing and 

validating of the data gathered will be attained by implementing a software, called Statistical 

Analysis System (SAS), which can accurately predict the process times of the automated 

approach as opposed to the collaborative approach. 
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The single-case experiment will be used to compare the two scenarios by utilizing the outputs 

from the SAS program to prove that collaborative decision-making contributes to optimum 

production in a Smart automated environment.   

In conclusion, the research aims to develop a protocol with some guidelines on tasks/actions 

best performed by a machine and tasks/actions best performed by a collaboration between the 

human operator and  the automated system.  

 

1.5 Layout of the Thesis 
 

Chapter 1: Chapter 1 serves as an introduction, providing background information, current 

operation of manufacturing plants and expounding the intended contributions and merit of 

the study using an appropriate research methodology. 

Chapter 2: The most relevant contributions of the content that was reviewed were discussed 

in Chapter 2 through a review of literature relating to the study.  This chapter initially gives 

an overview of Industry 4.0 and identifies the fast advancing technologies which is set to 

modernize the way manufacturing has been done up to now.  Smart manufacturing and the 

role it plays in Industry 4.0 is highlighted, followed by a discussion of Human-Computer 

Interaction, Human-Machine Interaction and Human-Technology Interaction, which are three 

terms related to the interaction with the rapidly developing technologies of the Industry 4.0 

era.  Collaborative decision-making is defined and discussed as this is where the research gap 

was identified – a lack of collaboration between humans and machines in the Industry 4.0 

environment. Potential models of Human-Technology Interaction are discussed namely a 

machine only approach and a combination between the human and machine.  Finally, the 

limitations of existing research are emphasised.  

Chapter 3: The aim of Chapter 3 is to focus on the research methodology employed by the 

researcher and provide an overview of the methodology for the study. The steps for 

developing a generic protocol is provided as this is the main aim of this research study.  A 

detailed description of the case study selected for the study is provided as well as how the 

chosen experimental data collection methods were used whilst conducting the research.  
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For purposes of determining the effectiveness of the automated machine, the Overall 

Equipment Effectiveness (OEE) is discussed as the OEE score determines where the best fit 

for the human will be in the production process.  SAS is introduced as the software 

application for programming the code with the intention to provide accurate results on the 

experiments conducted for the case study. 

 

Chapter 4: The aim of this chapter is to showcase the results obtained from the experiments 

conducted. The chapter shares the results for each scenario that was tested in fully automated 

mode and secondly the experimental setup and results of the human-machine collaborative 

approach will be revealed.  An analysis of the two sets of results will be compared to 

determine which process contributes to the optimization of the production process and where 

the best fit will be for the human to intervene in an automated production process. Outputs 

generated by SAS are going to be used to analyze and compare the results. 

 

Chapter 5: The aim of this chapter is to summarize the limitations of existing research 

followed by a review of the results for each scenario that was tested during the execution of 

the experiments.  Insights gained from the analysed data will be shared and based on the 

results, the research aims to show how some of these limitations were overcome. 

 

Chapter 6: This chapter looks back at the work done in the project and brings to the fore 

goals achieved during the project in terms of adding knowledge to the specific field of 

research, research contributions and the future scope of work. 
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2   

CHAPTER 2: Literature Review 
 

2.1  Introduction 

The aim of this chapter is to look at the literature review that was undertaken preceding and 

during this study.  The literature review was explored to support the direction of the study 

while assisting in establishing the research gap and familiarizing the researcher with current 

and former research relevant to the objectives of this study.   

2.2 Industry 4.0  

Since the dawn of the Industrial Revolution dramatic increases in industrial productivity have 

been driven by technological advances throughout the different revolutions as portrayed in 

Figure 2.1 [5]. The term ‘Industry 4.0’ refers to the Fourth Industrial Revolution which is the 

popular term to describe the current changes of the industry landscape [2], specifically in the 

production and manufacturing environments [6].  

Preceding Industry 4.0 were three other Industrial Revolutions: the First Industrial 

Revolution occurred between the late 1700’s and early 1800’s with the invention of the steam 

engine which introduced itself with the use of water or steam power using coal as energy 

source for new mechanical production facilities [7], [6].   

The Second Industrial Revolution began in the 1870’s with the invention of the internal 

combustion engine which led to the use of oil and electricity to power mass production in 

very fast growing industrial developments [7].   

The introduction of the digital era came with the Third Industrial Revolution which started in 

the 1960’s and was characterized by the automation of production with the use of electronics 

and information technology [7],[2].  
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Figure 2.1 The evolution of the Industrial Revolutions [7]. 

The Fourth Industrial Revolution is a new concept of manufacturing and is concerned with 

the analysis and use of information and communication technologies to notify and enhance 

all the processes associated with the manufacturing sector and connecting manufacturing 

processes from design up to the end of the product lifecycle [8].  

The digital technology from recent decades are engaged to a whole new level with fast 

advancing technologies in Industry 4.0 such as the Internet of Things (IoT), Internet of 

Everything (IoE), virtual reality (VR), augmented reality (AR), access to real-time data and 

the introduction of Cyber Physical Systems (CPS) with the help of interconnectivity between 

technologies [9], [10].   

Industry 4.0 involves industrial automation and integration of new production technologies 

for the enhancement of work environments while increasing quality and productivity [1].  

Industry 4.0 builds on the advances of the Third Industrial Revolution as production systems 

already have existing computer technology which is now extended by network connections 

allowing communication with other systems and facilities in an automated manufacturing 

environment [2].  
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Industry 4.0 is set to modernize the way manufacturing has been done up to now [11]. By 

utilizing the abovementioned technologies, production diversity can be implemented and 

factories can employ a make-to-order approach as assembly lines for Smart manufacturing in 

the Fourth Industrial Revolution environment are designed to adapt and meet the demand for 

producing a variety of products as per customer orders [12],[13]. 

Industry 4.0 is geared towards progressively more individualised customer needs [14] where 

most industries now choose the make-to-order approach as opposed to the make-to-stock 

approach, which was the traditional approach employed by industries [12]. In the make-to-

stock approach raw materials are stocked up ahead of customer demand, production and 

shipping while the variety of products produced are restricted [12].  A problem that arises 

from the make-to-stock approach is that the demand for products are stochastic [15] which 

means that it cannot be predicted precisely what the demand will be and the factory has to 

depend on a random probability for manufacturing of their products.  By implementing the 

make-to-order business strategy, customers are able to request and order products based on 

their specific make-to-order specifications [11].  Exploiting this strategy, several problems 

are overcome such as minimizing unsold or unutilized stock, improved product variation and 

decreasing of financial risk to the manufacturer [12].   

This strategy centres around the progressions made into the research in technologies 

mentioned previously such as IoT’s, CPS and 5G technologies, which uses high speeds of 

data transfer. As such, Industry 4.0 technologies lead to automated production systems and 

subsequently Smart manufacturing in which people, machines, components and production 

systems communicate via a network for automated and collaborative production       

processes [9]. 
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2.2.1 Smart Manufacturing 

Smart manufacturing is a term which is widely used to describe the current and future trends 

in manufacturing and lies at the centre of the Industry 4.0 environment [9].  Smart 

manufacturing can be described, according to the National Institute of Standards and 

Technology (NIST) as fully assimilated, collaborative manufacturing systems that meet 

certain conditions and requirements in the factory responding in real-time, not only in the 

supply network but also in customer requirements.   

Smart manufacturing integrates production and manufacturing resources with computing 

platforms, sensor technology, control, simulation, communication technology, data control 

and measurement as well as prognostic engineering [16] resulting in substantial 

consequences within the manufacturing environment. According to Kumar, et.al [10], [17] 

with Cyber-Physical Production Systems (CPPSs) in Smart factories, it is anticipated that 

human operators will be more involved in intellectual work and less physical work.  Studies 

done by Sparrow, et. al [3] and Pacaux-Lemoine et. al [18], have stressed that human 

awareness is necessary in modern manufacturing systems, while keeping human decision-

making in the loop at different automation levels. 

As such, a significant effect of Industry 4.0 and Smart manufacturing is the change it brings 

forth in the workplace organization and job satisfaction among the workforce [2]. In respect 

of these changes a result is that the role of human operators in Smart manufacturing will be 

moved into activities of decision-making, interpreting information and observing real-time 

sensor data [10]. With the integrated processing and communication abilities of the above 

mentioned technologies, an important subject is that of the effect that it will have on human-

machine interaction [19].  Another important concern, which is not always considered, is the 

level of human interaction which is continuously present in automated systems and therefore 

should be taken into consideration as to how to incorporate human skillsets in the       

Industry 4.0 environment in order for the human to become part of the production control 

loop [20], [21].   
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The success of automated systems are highly dependent on the interaction between humans 

and machines as well as collaborative decision-making in the process [4].  Humans have a 

natural level of intelligence with unique, critical skillsets that can be beneficial to self-

adjusting, preventive and corrective actions [2] that can be employed in manufacturing 

systems for supervisory control, decision-making and corrective or adaptive actions which 

leads to improved levels of system performance [22]. 

 

As Industry 4.0 evolves, so does the way people interact with technology and this leads to 

more sophisticated interfaces for communicating and interacting with technology  [1] while 

also considering how the human element must be integrated in the Industry 4.0     

environment [2].  

 

With the rise of the digital era over the last few decades, bringing with it the development of 

technologies such as mobile devices, robotics, artificial intelligence, the Internet, sensors and 

Internet of Things (IoT’s), a paradigm shift was brought on to Human-Computer Interaction 

(HCI). Sensors allow for new possibilities of interacting with technology [23]. As the context 

of work and sub-tasks in the production process has significantly started to change within the 

environment of Industry 4.0 and Smart manufacturing, the concept of HMI’s changed 

considerably [10]. With the introduction of mobile devices, the way people interact with 

technology has changed extensively - the use of touch and gesture-based interaction has 

become the norm.[4].   

 

However, these recent advances in computing architecture, machine learning and sensor 

technology will have a much wider impact on how people interact with machines.  Three 

terms that are used in the field of computer science to refer to the interaction between 

humans and machines are Human-Computer Interaction (HCI), Human-Machine Interaction 

(HMI) and Human-Technology Interaction (HTI).   

 

It is noteworthy to discuss these three terms related to the interaction with technology due to 

the nature of the rapid development in the Industry 4.0 era and the impact it has on 

collaboration between humans and machines as well as on the field of Information and 

Communication Technologies.  
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2.2.2  Human-Computer Interaction (HCI) 
 

Since the 1960’s, the rapid advances of information systems and accompanying technologies 

led to the extensive development of research on human-computer interaction [24]. The goal 

of HCI is to connect people to communication systems and computers in a manner that are 

both useful and accessible in an efficient and effective way [25]. 

 

HCI is a multidisciplinary area of study that focusses on the design of computer technology 

and the interaction between humans and computers which includes cognitive science, 

computer science, robotics [26], graphic design, psychology, information and communication 

technology, sociology and human-factors engineering  as it intends to simplify the execution 

of computer and communication system tasks [25]. 

 

HCI refers to the study of the ways in which technology influences human work and 

activities [27].  Another definition is, that “HCI is the process of communication between 

users and computers (or interactive technologies in general)” [28]. The term “interactive”, in 

this context, refers to the creation of interactive technologies that support people in executing 

everyday tasks [29]. 

Interaction with these technologies takes place through a Human-Computer Interface which 

can be defined as the communication between a human and a computer system by using input 

and output devices to enable a user to use a computer system in an efficient, effective and 

satisfactory manner [30], [31].   

 

Previous research has indicated that computer manufacturers and software designers have 

identified the benefits of creating usable products and argue that creating usable interfaces 

may have a huge impact on the interaction, usability and effective use of applications and 

devices [32].  Product design should consequently be supported by the user experience to 

allow for the adaptation and acceptance of technology by the workforce in the Industry 4.0 

era.  The user experience (UX) refers to the expectation of users of having systems or 

applications to not only function well, but to be fun, satisfactory, efficient and enjoyable to 

use [4].   
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2.2.3   Human-Machine Interaction (HMI) 
 

Since the beginning of  the development and design of interactive technologies, almost every 

thinkable work environment; from office work, health care, computer design and 

engineering, to name a few, were involved in the advancement of technology [24].  However, 

according to Hoc [24], in these work situations the user mainly controlled the computer and 

the work was mainly passive. 

 

In comparison, in Industry 4.0, there are more complex, connected systems which are 

developed through automation. According to Bachman et al. [31] the term Human-Computer 

Interaction can be replaced by the term Human-Machine Interaction (HMI) as human-

machine interfaces vary widely, from the control panel of a vehicle manufacturing plant, 

touchscreens of mobile devices, to robots on the factory floor and automated systems that a 

user interacts with. Currently, during Industry 4.0, the demand of Human-Machine Interfaces 

was amplified significantly as HMI’s prove necessary for the control and supervision of 

systems and to observe and oversee the manufacturing process from a central location [33].  

 

In order for the human worker to effectively perform these tasks, systems should be available 

and implemented to provide the user with guidance and an overview of the system. Such a 

system is referred to as a Supervisory Control and Data Acquisition system (SCADA). The 

advantage of a SCADA system is the graphic appearance it presents of the factory floor 

which allows the human operator to monitor and view the system status at any time during 

production [33]. With regard to the advancement and development of automation, it is 

important to distinguish between a SCADA system and HMI. 

 

A SCADA system is an integrated system which is used for the control and monitoring of 

different aspects of industrial plants and manufacturing environments [34].  A SCADA 

system operates by working with signals that uses communication channels for providing the 

user with remote controlling of equipment for a specific system [35].   
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In comparison, HMI’s provide an efficient means for communicating with hardware and can 

thus be considered as a subsection of a SCADA system.  Researchers have defined HMI’s in 

various ways [33], [14] and can be described as an interface allowing for the interaction 

between humans, machines and systems.  Human-Machine Interaction (HMI) refers to the 

communication and interaction between a human and a machine by means of a user interface 

[36], [37] and intends to increase the interaction between the human and machine through 

various input devices [38].   

 

In autonomous environments robots and machines are becoming more complex with tasks 

and activities becoming less structured and, as a result interaction with humans to complete 

these tasks, become less and less [19].  Humans need a way of instructing the machine what 

to do via an input device such as a mouse, keyboard, touch screen and switches, to name a 

few.  Machines, on the other hand, should be able to update the human of progress and 

execution of commands by means of some output even if it is a status light or an alert that 

can be heard [39].  The designing of such interfaces is a challenge in the sense that the 

interface should be functional, logical, effective and satisfactory to use [9].   

 

The growing complexity of autonomous systems and robots has led to the study of how 

humans interact with robots and how to design systems capable of achieving tasks where the 

human still plays a pivotal role in the completion of tasks [19], [39]. Input and output 

components are needed for interaction between humans and machines and such interfaces 

should be usable to the user.   

 

Experts specializing in the design and development of Human-Machine interfaces have done  

extensive research in the designing of usable interfaces [29].  What works for an engineer 

does not necessarily work for the human that needs to interact with the machine.  This 

promulgates the importance of Human-Technology Interaction. 

 

 

 

 

© Central University of Technology, Free State



15 
 

 

2.2.4  Human-Technology Interaction (HTI) 
 

Taking a human-centred approach to the advancement of technology, it becomes evident that 

the development of technology takes place in a social setting and is formed by the operational 

objectives and processes of usage [40].  Hancock and Chignell [41] argues that human factors 

are not an isolated design issue but a point of view to technological innovation and 

development that has an enormous influence on the economic success of technology. 

 

Human-Technology Interaction (HTI) is an interdisciplinary research area that focuses on the 

development of products for human-environment interaction [31].  HTI refers to the 

interaction between humans and technology through hardware and software with any 

technology, such as computers, robots, machines, smart monitors and virtual and augmented 

reality [9].   

 

Although augmented and virtual reality is already used in manufacturing, the technological 

advancements will allow companies to make  more comprehensive use of this technology to 

provide workers with training, real-time information for improving of decision-making, work 

procedures and collaboration [5]. 

 

HTI encompasses the processes, actions and dialogues that a user engages in to interact with 

technology, whether it is a computer, machine or robot. It also implies the study of 

interaction between users and computers, deals with people, software applications, computer 

technology and the ways they influence each other and as such balance the human interface 

with information systems and other technologies [29].   

 

In the Industry 4.0 era we encounter a wide variety of HTI – any time a human uses 

technology, there is some type of hardware and/or software involved that enables and 

supports interaction. HTI concentrates on the aspects in which technologies facilitate the 

interaction between the human and the environment [40].   
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An important goal of HTI is to develop protocols, guidelines and/or tasks and algorithms for 

autonomous systems to enable safe, direct, effective and trustworthy interaction with humans 

[19].  Figure 2.2 depicts the comparison between HCI, HMI and HTI whereby the current 

new technologies and trends are assisting in more than just Human-Machine Interfaces but 

have moved towards interaction and interfacing technology between humans and 

autonomous systems. 

-  

Figure 2.2 Comparison between HCI, HMI and HTI 

 

As the demands and allocations of humans and technology are rapidly changing, the study of 

information communication and cooperation between humans and technology becomes 

extremely important.  This is referred to as collaborative decision-making.  
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2.3  Collaborative decision-making 
 

With the evolution of Industry 4.0, more and more autonomous devices are moving out of 

laboratories and into  the daily lives  of humans to provide  them with services and support  

the decision-making in different  sectors ranging from intelligent food manufacturing, marine 

engineering to old age care  [42].  

 

Collaborative decision-making is an approach being used to facilitate efficient science-based 

decision-making [43].  In the Industry 4.0 environment, designers, technical practitioners and 

users need to work together to articulate the wants, needs and limitations of the users of 

autonomous systems to enable the creation of systems that address these elements. 

 

Collaborative decision-making means to work together with someone on something to reach 

a common goal [44].  A team is formed when humans and machines work together on a 

mutual task where a team is defined as a small number of participants with similar skills who 

are dedicated to a shared goal for which they hold themselves responsible [45].   

 

In a collaborative environment, the team members should know the intentions of the other 

team members and what they are doing.  In HTI it will usually be the human who states the 

goal while the system must assist the human to take on the task and work toward reaching the 

common goal [45].    

 

A common fear that Industry 4.0 has brought about, is the fear of job losses. However,  

advocates of Industry 4.0 give some reassurance that workers will be trained and re-skilled to 

work alongside automated machinery [45]. In the collaborative decision-making 

environment, Industry 4.0 systems will be able to complement tasks and activities performed 

by humans and also perform many tasks that go beyond what humans can do [46].   

 

Realistically, some jobs will decrease, while others will grow and many occupations will 

change as requirements for more and new skills becomes necessary [46].   Re-skilling of 

workers will become a reality as they will have to adapt to systems that become progressively 

proficient in the workspace [24]. 
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An example of collaborative decision-making is based on work done by Klumpp et al. [4] 

where three methods were focussed on to determine the fundamental role of Human-Machine 

Interaction (HMI) in automated environments in production logistics and in the Industry 4.0 

environment [4].  

The research emphasized HMI in connection with effective cooperation between workers, 

automated robotics and transportation systems.  First using only the human in the decision-

making process, secondly, only the robot and thirdly a hybrid of the human and the robot 

were executed for testing of the hypothesis.   

The results yielded from this particular research [4] was that the acceptance level was the 

highest where humans and robots were equally cooperating during the decision-making 

processes rather than only robot- or human centred methods [4]. Designers and software 

engineers should aim for a collaborative design process for the design of interfaces that can 

be utilized in the controlling, monitoring and collection of data in an autonomous 

environment.   

2.4   Potential models of HTI  
 

This research uses the case study of an automated water bottling plant, as mentioned in 

Section 1.4, for the creation of a division between the set of jobs best executed by the 

autonomous system as well as the human related to the factory setting of the water bottling 

plant.  Two potential models for collaborative decision-making are proposed in HTI allowing 

several alternatives. The two categories are machine only and a combination of human and 

the machine (hybrid). 

 

2.4.1   Machine Only 

This is the state that the case study is in its present status. In this scenario, the system is in 

full control of the allocation and execution of tasks, thus the human will have to adapt to the 

actions of the system.  The automated water bottling plant will generate a flexible interactive 

mode for the improvement of system efficiency and operation safety.  
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In many cases, an autonomous system’s actions are characteristically defined and can be 

displayed using similar one directional communication channels [7].    

Planned system actions can be conveyed to humans via portable devices e.g. virtual or 

augmented reality glasses.  This will allow the human to pay attention to the activities that 

the autonomous system is executing and pay attention to any possible errors or safety issues 

that may happen.  The human will not be interfering with the activities performed by the 

autonomous system, unless intervention is required. 

 

2.4.2   Combination of human and machine  

The second option is to implement a combination where the human and autonomous system 

have equal responsibility with communication channels for planned actions in both directions 

– from the human to the system and from the system to the human.  This approach can be 

described as collaborative decision-making as defined in Section 2.3.  Humans need 

information on the intentions of the autonomous system and in turn, the autonomous system 

need information from the humans in the relevant environment for decisions to be made 

collaboratively.  A combined approach may assist humans and machines, systems and robots 

to work together, but there are still many research questions that need answering before such 

a conclusion can be reached. 

 

2.5 Limitations of Existing Research 
 

This specific study focusses on investigating and establishing the importance of human 

intervention in a collaborative decision-making process for the optimum completion of tasks 

performed by an ICT enabled Smart automated manufacturing system.  The aim of the 

research is to develop a protocol or guidelines and/or tasks that are best performed by a 

machine, by a human and a collaboration between the human and machine. 

 

As mentioned in Section 1.1, at the time of writing this thesis, it became apparent that there 

exists limited research on how a collaborative decision-making process can be established 

such that the worker’s acceptance and adjustment to the process is taken into consideration. 
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An important aspect that should receive some attention is how the interaction and 

communication of the human operator within the automated process can become part of the 

production process control loop [21]. According to Kruger, et al. [47] a close collaboration 

between the worker and automated system is required for the variability and adaptability of 

the assembly and production processes. The study done by Kruger, Lien and Verl [47] gives 

a survey about available technologies and different forms of Human-Machine cooperation in 

an assembly process and the support thereof.  Both sides, that is humans and machines, have 

strengths and weaknesses and it is argued that the collaborative approach should make use of 

both sides during the production process.  This study highlights the benefits of a close 

collaboration between the human and automated system, but lacks any usable guidelines or 

principles where the human is best suited and where the machine is best suited  in the 

process. 

 

Another relevant study done by Muller, et. al [48], identified that automation of processes are 

at the centre of the emerging Industry 4.0 environment although, as mentioned in Section 1.1, 

several assembly processes in manufacturing are nevertheless making use of mixed 

environments where human operators still manually carry out many of the assembly process 

tasks. Muller, Vette and Mailahn [48] suggest that, through innovative opportunities of using 

human-robot cooperation, a skills-based distribution of tasks can be implemented to address 

these challenges [48].  

The study presented task assignments to a human and a robot by employing a process-

dependant approach.  In order to bring a sense of balance between the skills of human and 

robots, a thorough skills analysis of both humans and robots were assessed to take into 

account the features of the needed process or product [48].   
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An example of an assembly process in the aircraft industry was used to validate the method 

applied in the study.  A comparison was done between the skills of the human and those of 

the robot in executing of tasks in the light of the conditions to be met in the production 

process.  During the study it was found that there existed a lack of the obtainability of 

human-robot cooperation equipment and guidelines [48] which concluded that skills 

comparison and basic guidelines on tasks and/or actions, pertaining to a human and a robot, 

is vital for task assignment. 

 

Garcia et. al [49] researched how to include a human-in-the-loop Cyber Physical System for 

collaborative assembly in Smart manufacturing by bringing the human decision-making 

capabilities into the control loop of a Smart manufacturing system.  In this study a Natural 

Human-Machine Interface (NHMI) was introduced allowing the human to control, direct and 

collaborate with an industrial robot during execution of tasks.  As discussed in Section 2.2.1, 

greater levels of complexity arises in Industry 4.0 which ultimately has an impact on the 

work that is done by human operators – occupations that require highly skilled workers will 

increase while low-skilled work will decrease [49].  Garcia, et.al suggests an approach of 

bringing the human-in-the-loop for allowing an explicit allocation or transferring of human 

skills to the control loops of a CPS.   

 

The aim of this specific research was to create a framework for testing and validating some 

examples of potential human-in-the-loop control and to synchronize and work together with 

CPS in a collaborative environment.  However, in this study there are no guidelines or 

principles provided for the human-in-the-loop or CPS allowing any decision-making 

capabilities [49], although the importance of bringing the human-in-the-loop was highlighted. 
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As mentioned previously in Section 2.2.3, Human-Machine Interfaces are without any 

reservation one of the most inherent components of an automated system [21], even though it 

comes with major concerns about aspects such as safety, maintenance and human operator 

awareness.  This is according to Ponsa et.al [21] that states that even though human manual 

control in automated systems are being replaced with automatic controllers, human beings 

are essentially still required for modification, supervision, maintenance and enhancement of 

such automated systems [21].   

 

System complexity  increases dramatically with automation which leaves the challenge of 

maintaining operational skills in an automated environment [21] when an abnormal situation 

should occur and human intervention becomes necessary.  The study done by Ponsa, et.al 

[21] identified a gap in the design for a huge number of HMIs, allowing for supervision, 

monitoring and communication of large scale systems by implementing the operational 

modes of the automation level into the interfacing system.  The researchers investigated how 

the human operator will be able to enter the control loop as both the human operator and the 

machine contributes to the completion of a process.   

A possible solution was to introduce the GEMMA guide approach [50], which is an approach 

for dealing with unravelling difficult tasks in automated problems, as a recommended 

taxonomy for the introduction of the human into the automated process in complicated 

industrial or academic fields [21].  A case study was used for the presenting of operational 

guidelines as well as the application of the design of interfaces in automation but there is no 

evidence to indicate as to which tasks should be allocated to human operators and/or to the 

automated system in the specific case study. 

 

The major shortcoming of these studies indicates that there is limited research on designating 

where the human operator is best suited in the automated process and where the machine 

should take full control.  It is also evident that there are no existing guidelines as to where in 

the production process a collaboration between the human and machine is the best suited 

scenario for a specific case.  This research aims to develop a protocol or guidelines and/or 

tasks that are best performed by a machine, by a human and a collaboration between the 

human and machine. 
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3 Chapter 3: Research Methodology 
 

3.1 Introduction 
 

This chapter focuses on the research methodology employed by the researcher, whilst also 

providing a justification for the selection for this particular methodology for the study by 

addressing the challenges described in the limitations to the existing research in Section 2.5.   

Furthermore, the ensuing sections will give an overview on the developing of a generic 

protocol for collaborative decision-making and also of the research methodology applied, a 

description of the case study selected for the study and how the chosen experimental data 

collection methods were utilized whilst conducting the research.   

 

3.2 Research Design and Methodology 
 

The aim of this research, as stated in Section 1.2.3, is to investigate and establish the 

importance of human intervention in a collaborative decision-making process for the 

optimum completion of tasks performed by an Information and Communication 

Technologies (ICT) enabled Smart automated manufacturing system and propose a protocol 

to determine the tasks/actions best performed by machine, by a human and a collaboration of 

human and machine. 

 

In achieving the objectives specified, the study will make use of a research design method 

known as a single-case experimental study.   

 

3.2.1  Description of a single-case experimental study 
 

A single-case experimental design, also denoted as single group pre- and post-test research 

design [51], indicates a set of experimental measures for the testing of a product, process or 

other intervention through implementation of a limited number of cases with the aim of 

testing for efficiency [52].   
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A single test experiment refers to a set of experimental methods that can be used to test the 

effectiveness of a product, process or other intervention [52] and comprises repetitive 

measurements, observations, specific data analysis and statistics [52]. Single test case 

research involves a carefully designed study prior to the start of the experiment and therefore 

are true “experimental” research designs with specific goals in mind [40],[52]. 

 

3.2.2   Motivation for using a single-case experimental study 
 

A single-case experimental study is performed with three specific goals. The first is to test if 

any new inferences can be made, secondly it is to ‘test’ a theory  and  thirdly to prove a 

theory [53].  Exploratory experiments are done to test the first case, and have little structure 

which involves exploring an idea to see what can be learned, whereas testing a theory 

involves conducting a limited experiment and investigating whether the theory holds for 

some specific cases [53].  The third type of experiment is to prove that the theory holds and 

that all potential doubts are removed. This study implements the third type of experiment 

namely to prove a specific theory that will be discussed in detail in the next section. 

 

3.2.3   Setup of the single-case experimental study 
 

A single test case will be employed to prove the theory, which is that the completion time for 

orders received, will be optimal when the human and the machine collaborate for the 

completion of the production process. 

 

For this purpose, two different scenarios will be introduced to determine the impact of 

collaborative decision-making in the automated system namely the machine only and 

secondly a collaboration between the machine and the human operator.  The  machine only 

scenario will be the control case, as the system will complete the production process in 

automated mode without any human intervention, whereas the Human-Machine collaboration 

will be used as the test case.   
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Based on the single-case experiment intended for this study, a case study needs to be 

introduced whereby the two types of experiments will be set out and used to compare the two 

scenarios mentioned.  The purpose of the experiments are to prove the theory that human 

intervention in a collaborative decision-making process contributes to the optimum 

completion of tasks performed in an ICT enabled automated Smart manufacturing 

environment and put forward a protocol to determine the tasks or actions best performed by a 

human, a machine or a collaboration between the human and the machine. 

 

3.3 Developing a generic protocol for collaborative decision-making 
 

The formation of evidence through collection and analysis of data is fundamental to any 

process, whether in production, pharmaceuticals, businesses and manufacturing to provide a 

high degree of reassurance that a process is capable of meeting pre-determined specifications 

and quality outputs [54].  This can be achieved by making use of specific protocols 

developed for a certain process. A protocol can be defined as the proper procedures used to 

implement a process [55] and for this study a protocol for collaborative decision-making in 

an automated environment will be developed.  

 

A key component in developing a protocol for an automated environment is defined by the 

Overall Equipment Effectiveness (OEE)  which is a Key Performance Indicator (KPI) used to 

measure equipment efficiency and performance [56].  The metric of OEE as a KPI were 

introduced in 1988 by Nakajima [56] for measuring the equipment productivity in a 

manufacturing system and has been extensively recognized by companies for implementing 

“lean manufacturing and maintenance programs for measuring the actual performance of 

equipment” [56], [57].  

 

3.3.1 The Overall Equipment Efficiency (OEE) 
 

OEE is the gold standard for determining manufacturing productivity and efficiency [58].  A 

lot of information is provided in one number for the OEE score to define efficiency [58].  

OEE is a benchmark to correlate production to industry standards, for specific apparatus or 

other processes using the same equipment [59].  
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By its definition and extent, OEE continues to be a tool in supporting decision-making for 

responsive control and pre-emptive intended improvement of equipment efficiency in the 

long-term [60]. 

 

According to Trout [58], standard benchmarks are as follows: 

 An OEE score of 100 percent is considered perfect production, meaning you're only 

manufacturing quality parts as quickly as possible with no downtime. 

  An OEE score of 85 percent is considered world class for discrete manufacturers and 

is a sought-after long-term goal. 

  An OEE score of 60 percent is typical for discrete manufacturers and shows there is 

considerable room for improvement. 

  An OEE score of 40 percent is considered low but not uncommon for manufacturers 

just starting to track and improve performance. In most cases, a low score can easily 

be improved through easy-to-apply measures [58]. 

 

Furthermore, “manufacturing operations with an OEE score above 85% are in the top level” 

[56].  Even the best machines eventually require maintenance or retooling, therefore it is 

almost impossible to sustain an OEE score of 100% [56] . 

 

There are a number of important terms to know when OEE is to be calculated, which are the 

following: 

  Fully Productive Time - Production time after all losses are subtracted 

  Planned Production Time - The total time your equipment or system is expected to 

produce 

  Ideal Cycle Time - The time it takes to manufacture one part 

  Run Time - The time your system is scheduled for production and is running 

  Total Count - The total of all parts produced including those with defects 

  Good Count - Parts produced that meet quality-control standards 

  Good Parts - Parts produced that meet standards and don't need to be redone  

 Availability – takes into account planned and unplanned stoppage time. 
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 Performance – takes into account the number of times there are slowdowns or brief 

delays in production. 

 Quality – refers to the manufactured product that does not meet the quality control 

standards.[58], [59]. 

  

In accordance with Trout [58], there are two main methods to calculate OEE: 

 

 Equation 1: The ratio of fully productive time to planned productive time is the way to 

calculate OEE. The formula looks as follows: 

 (Good Count x Ideal Cycle Time) / Planned Production Time = OEE 

 

 Equation 2 for OEE calculation is based on three factors namely Availability, 

Performance and Quality.  This calculation gives as result the OEE score indicating 

how well the production is doing while providing three numbers (availability, 

performance and quality) showing what caused any losses.  The formula to calculate 

the OEE score is: 

Availability x Performance x Quality = OEE 

 

Taking into account the case study for this research and the requirements to calculate the 

different parameters, Equation 1 is the more suitable method for calculating the OEE score 

for this case study.  

 

In accordance with a systematic literature review done by Carmen, et. al [56] it was found 

that over time, modifications have been done on OEE applications depending on industry 

needs; some authors have slightly altered the original formula, whereas other suggested new 

formulas [61].  Many industries have tailored OEE to fit to their specific requirements [56], 

[61].  The OEE structure has been used to build different models for domains like 

sustainability, line manufacturing, resources, assets, conveyances and ports [58].   
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The OEE that will be applied to this study is a model developed over time and slightly 

altered, as mentioned above, namely “Overall Equipment Effectiveness of a manufacturing 

line” which measures the performance of an automated line in the production system [56].  

The OEE for the manufacturing line identified for this study has the same characteristics and 

parameters as in the case study utilized in this research.  A list of models based on OEE can 

be seen in Appendix C, as identified by Carmen, et.al [56] during a systematic literature 

review performed on Overall Equipment Effectiveness and the different approaches utilized 

for equipment productivity and performance.  Section 3.3.2 looks at the different steps for 

developing a generic protocol. 

 

3.3.2 Steps for developing a generic protocol 
 

There are several steps involved in developing the generic protocol which includes the 

following:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Step 1: 
Determine the average production time for the completion of 

one production cycle for a specific product. 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Determine Overall Equipment Efficiency (OEE). 

Apply the values found to the Statistical Analysis Software 

(SAS) code used to calculate the results. 

Input the values for customer orders received into the SAS 

software program. 

Calculate the Total Time to Manufacture (TTM) one  batch of 

customer orders in fully automated mode. 

Calculate the Total Time to Manufacture (TTM) one  batch of 

customer orders in the human intervention mode. 

Apply the OEE score to the automated process and to the 

human-machine collaborative process. 

Assess results for TTM’s of both approaches to establish 

when the machine are in full control and when human-

intervention is needed in the production process. 
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3.4 The Experimental Setup 
 

The method that will be followed for the execution of the single case experiment, is 

illustrated in Figure 3.1 below as a flowchart.  The flowchart indicates the two approaches 

that will be carried out, with the fully automated approach used as the control case and the 

collaborative decision-making approach as the test case.  

 

In executing the single-case experiment, collaborative decision-making will be introduced by 

utilizing the case study of an existing, fully automated water bottling plant on which the steps 

listed in Section 3.3 are to be implemented.  

 

Sections 3.5 and 3.6 will give an outline of the water bottling plant as well as a brief 

overview of the operation of the existing plant that was utilized as the case study for this 

research. 
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Figure 3.1 Flowchart indicating the experimental research approach 
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3.5 An overview of the Water Bottling plant case study  

As alluded to previously, the study will employ the case study of an automated water bottling 

plant to conduct research on Human Technology Interaction for collaborative decision-

making. The water bottling plant was a concept that was put forward by the management of 

the Central University of Technology (CUT), Free State to produce their own bottled water 

for internal use. 

An economic feasibility study done in conjunction with the technical study determined that 

the water bottling plant, hence forward referred to as the plant, needs to produce bottled 

water in 330ml and 500ml sizes. A 3-dimensional printed model of the completed plant [13] 

is shown in Figure 3.3. As depicted in Figure 3.2, the plant has three major units being the 

source and tank unit (A), the bottle manufacturing and storage unit (B) and the water filling 

unit (C). 

 

Figure 3.2  A 3-D printed model of the completed plant [13]. 

The 3D model depicted in Figure 3.2 was successfully modelled in Simulink and optimized 

using MATLAB as part of the technical feasibility. The ordering of the bottles are made 

online and stored on a cloud server where the MATLAB program can access and process the 

data to start filling the bottles [62] . An interactive user interface has been developed to 

receive input to the model via an online web application [12] where customer orders are 

placed for the filling of 330ml or 500ml water bottles.   
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Customers are required to complete their personal details, the desired bottle size and the 

required date of delivery.  The information is captured on a cloud server from where the 

MATLAB program access and processes the data to initiate the water filling process [12].  

Figure 3.3 shows the user interface of the web application used for customer orders. 

 

Figure 3.3 The user interface of the customer order application [12]. 

Based on the requested date of completion and the status of constraints like amount of water 

available and number of bottles in the storage, the optimization model executes the order. 

The optimization model is practically executed using three Smart Manufacturing Units 

(SMU’s) driven by a combination of sensors and Programmable Logical Controllers (PLC’s) 

which is portrayed in Figure 3.3.  The proceeding section will take a closer look at the 

working of the water bottling plant highlighting a description of SMU’s, followed by a more 

detailed working of each SMU in the water bottling plant. 
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3.6 Operation of the Water bottling plant 
 

As stated in the background, the plant utilises three Smart Manufacturing Units (SMU’s) 

driven by Programmable Logical Controllers (PLC’s) with sensors and actuators as depicted 

in Figure 3.4.  

The water bottling plant is split into three sections which is run on the SMU’s which consist 

of a unit for the filling of 330ml or 500ml bottles, the capping unit where the bottles are 

capped and a third unit for the packaging of completed orders.   

Refer to Appendix E for pictures of the physical water bottling plant used in the case study 

for this research. 

 

 

Figure 3.4 The layout of the Smart Manufacturing Units in the plant [12]. 

 

The following sections will discuss the three SMU’s used in the plant as well as their 

operation in more detail. 
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3.6.1   Smart Manufacturing Units (SMU’s) 

Smart Manufacturing, as discussed in Section 2.2.1,  is one of the key pillars of Industry 4.0 

[63] which comprises the integration of production and manufacturing resources with 

computing platforms. Smart manufacturing make use of networked data, information and 

communications technologies (ICTs) for leading manufacturing operations [16].  This allows 

for the creation of production orders in single production line models that can be modified 

and customised in the case of rapid design changes [64] or complex specific customer orders. 

In order for the machines to adapt to complex and rapid changes in customer ordering 

scenarios, they need some form of intelligence to enable informative and smart decision- 

making during the production process.   

The technology that enables Smart manufacturing in the Industry 4.0 environment is Smart 

manufacturing Units (SMU’s) [63] where the units possess characteristics that are able to 

process decisions and allow for customised configuration and development in the automated 

production process [65].  The control units for the SMU’s used in the plant is the Siemens 

S7-1200 modules and the operational working of the three SMU’s in the plant will be 

discussed in the following sections. 

3.6.2  SMU1 
 

The task of filling the water bottles is allocated to SMU1, which receives customer orders via 

the online web application.  Customers are able to specify whether they require the filling of 

330ml or 500ml water bottles, the number of bottles required as well as the date of delivery 

preferred.  The water bottling process starts with SMU1 that initially detects the bottles lined 

up for filling.  Detection of the new bottles added to the production line is enabled by using 

an attached camera module for image processing for distinguishing between 330ml and 

500ml water bottles [63].   
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Once the bottle size to be filled is established, the correct bottle is selected by SMU1 from 

storage and filled as per order [63].  The detection protocol utilized in the production process 

allows for the unscheduled addition of bottles, allowing for Smart manufacturing intelligence 

to balance out any occurrences of irregular feeding to the production line [63]. Furthermore, 

the required filling percentage of each bottle can be verified by using this system, but the 

technical information regarding the communication protocols utilized, falls beyond the scope 

of this study. 

 

3.6.3  SMU2 
 

SMU2 is assigned the task of capping the water bottles.  Since there are two sizes of bottles 

that can be filled, the height at which the bottle caps are to be fastened can be communicated 

to SMU2 by the central server to the responsible machine.  SMU2 queries the central server 

on the bottle height while SMU1 determines the type of bottle to be filled and passes on the 

information to SMU2 [63].  It is important to note that both the 330ml and 500ml bottles use 

the same size of caps. 

 

As for SMU2, a similar situation to that of SMU1 was taken on for controlling of the 

machine, with the addition of a guided rail arm that can be programmed to move in a x-y 

axis. In this case it is used only in the y axis (moving downwards) and is attached to SMU2.  

The arm is fitted with a rotary motor which in turn is connected to the capper. 

Communication is sent from SMU1 to SMU2 as well as the guided rail arm, allowing for 

preprogrammed movements for the fitting and capping of the correct caps for the bottles in 

production.   

 

3.6.4  SMU3 
 

The task of SMU3 is to package the water bottles according to order and completion.  A 

unique radio-frequency identification (RFID) tag is attached to every bottle for the tracking 

of production information by each machine. This allows SMU1 to fill bottles by order and 

the tagging of the water bottles allows SMU3 to read the RFID and pile the bottles 

corresponding to orders received [63].  
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SMU3 will be able to set aside orders and package them as they are received if it may be the 

case that bottles are initially filled by type and not by customer order.  It is important to note 

that SMU3 does not form part of the study as it provides no real contribution to this particular 

study.  A different study is in progress where more technology will be integrated to ensure 

that the packaging section is fully functional. Therefore, SMU3 is beyond the scope of this 

specific research, hence it will not be discussed, although it can be seen as part of the 

complete automated plant. 

 

The proceeding sections will discuss the two approaches that will be used in executing the 

single-case experimental setup, namely the machine only and secondly the Human-Machine 

collaborative approach.  Thereafter, the experimental setup and how it is executed and 

applied to develop a generic protocol for collaborative decision-making in an automated 

environment, will be discussed in Section 3.10. 

 

3.7 Machine only  
 

For the machine only scenario, the automated system is responsible for completing the task 

of filling either 330ml or 500ml bottles in optimum time as orders are received via the web 

application referred to in Section 3.5.  The optimization model considers several constraints, 

such as the number of orders received from the cloud, the water level in the storage tank as 

well as the number of 330ml and 500ml bottles and caps in storage for the completion and 

execution of the production process.  Figure 3.5 depicts the top view of the fully automated 

process. No human intervention takes place unless maintenance or unforeseen issues arise. 
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Figure 3.5 Layout of the fully automated production process. 

 

3.7.1   Automated experimental process – the control case 
 

For the control case, the machine, as illustrated in Figure 3.5, exclusively makes all the 

decisions.  Table 3.1 summarizes the working of the different SMUS’s indicating the effect 

on the production process when specific constraints are encountered during the fully 

automated process. 

Table 3.1.  Summary of plant working in fully automated mode. 

Constraint SMU1  SMU2  Process 

Limitation at 100% Water level in 

storage tank OR 

Bottles in storage 

OR Available 

caps in 

feeder   

 Production starts at pre-set speed  

Limitation reaches 50% Water level in 

storage tank OR 

Bottles in storage  

OR Available 

caps in 

feeder   

OR Production pauses as machine waits for 

water level, bottles or caps to increase to 

100%. 

Limitation reaches 25% Water level in 

storage tank OR 

Bottles in storage 

OR Available 

caps in 

feeder   

OR Production stops seconds while waiting 

for water level, bottles or caps available to 

increase levels from 25% to above 50%. 

Limitation increases to 

above 50% 

Water level in 

storage tank AND 

Bottles in storage 

AND Available 

caps in 

feeder   

AND Resumes production 
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The system is programmed to automatically slow down or pause the production process, as 

shown in Table 3.1, when the water level reaches a certain level, when the number of bottles 

are low or when the capping feeder runs low to ensure that the production process does not 

come to a complete halt.  The production process resumes as soon as the capacity of the 

water tank, the number of bottles or number of caps increases to above 50%.   

 

For the execution of the automated process experiments, multiple sets of customer orders for 

filling of water bottles will be placed via the online Web application whereby the Total Time 

to Manufacture (TTM) will be determined for the completion of each customer order by 

executing the SAS program which will be discussed in Section 3.9.  The SMU’s to which the 

model is linked, provides feedback on the completion of orders received from the cloud and 

the resulting data will be recorded for evaluation purposes regarding the subsequent output 

using the Human-Machine collaboration approach. 

 

3.8 Collaborative Decision-Making approach 
 

3.8.1 Introducing a HMI to the manufacturing process 
 

As discussed in Section 2.2.3, a SCADA system will be used to provide the different 

configuration options stated earlier for the study.  A SCADA system is an integrated control 

system that utilizes computer functions, graphical user interfaces and networked data 

communications [66] for the control, data acquisition and monitoring of different aspects of 

industrial plants and manufacturing environments [9],[38].  The SIEMENS Simatic HMI to 

be used in this study, is shown in Figure 3.6. 

 

A SCADA system development environment will be used for configuring the PLC’s to 

enable communication with the HMI’s. A software development platform will be used to 

connect the HMI’s, SMU’s and the SCADA system for bridging the communication between 

the three devices to allow for standardized communication. The HMI is a subset of a SCADA 

system and it provides an effective way for the human operator for communicating with the 

hardware.  The HMI in this study will be localized and focusses on collaborative decision-

making.  
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Figure 3.6  The SIEMENS Simatic HMI used as the SCADA system for the case study. 

 

3.8.2  Human-Machine Collaboration approach 
 

In order to bring the human into the production process a Human-Machine Interface (HMI) 

will be developed and assigned for intervention by the human at SMU1 and SMU2. The HMI 

consists of an intuitive touch-based input screen whereby the human operator will be able to 

communicate with the system.  The human will be able to stop, slow down or continue the 

production process using the HMI’s.  The layout of the collaborative approach indicating the 

HMI’s connected to the SCADA system, is illustrated in Figure 3.7. 

 

In the Human-Machine collaboration scenario, there are different places where the human 

can fit into the production line, such as at the placing of online orders, water filling (SMU1) 

or capping (SMU2) as depicted in Figure 3.7. allowing the human to intervene using the 

HMI’s for making informed decisions during the production process. 

 

© Central University of Technology, Free State



40 
 

 

 

Figure 3.7 The production layout for the automated water bottling plant indicating the HMI's connected to 

the SCADA system. 

 

3.8.3  Experimental setup of Human-Machine Collaboration – The test case 
 

As explained in Section 3.7.1, the automated system has been programmed to create alerts 

when levels of water, bottles and caps, reaches 50% and again at 25%.  By bringing the 

human operator into the control loop, informative decisions can be made by using the 

information and results generated by the SAS program.  

 

Important to note is that no human intervention will be required when all the constraint levels 

are above 50% and the OEE score is above 90%.  The results from the SAS program will be 

presented to the human and when necessary, the HMI will allow the human to intervene and 

make a decision to adjust the speed of production depending on the availability of water 

and/or water bottles.  The human can also intervene when alerts are triggered when the bottle 

capping feeder reaches the specific constraints as indicated in Table 3.2.  
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In addition to the results obtained from SAS, the SCADA system will supply the human with 

an overview of the status of the system to enable the human to make informative decisions 

for the continuing or halting of the automated process.   

Table 3.2. Summary of the collaborative decision-making process. 

Alert  SMU1 

with HMI 1 

Human 

intervention 

SMU2 Human 

Intervention 

Production Process with 

human intervention 

Test case 1: 

Limitation reaches 

50% 

Water level in 

storage tank 

OR Bottles in 

storage  

Human has 

option to stop, 

continue, speed 

up or slow down 

production 

depending on 

orders that need 

to be completed 

Caps in 

storage   

Human has option to 

stop, continue, speed 

up or slow down 

production 

depending on orders 

that need to be 

completed 

Decision: 

HMI indicates levels, 

human makes decision for 

production to continue at 

normal speed if orders can 

be completed with enough 

water, bottles or caps in 

storage 

Test case 2: 

Limitation reaches 

25% 

Water level in 

storage tank 

OR Bottles in 

storage 

Human has 

option to stop, 

continue, speed 

up or slow down 

production 

depending on 

orders that need 

to be completed 

Caps in 

storage   

Human has option to 

stop, continue, speed 

up or slow down 

production 

depending on orders 

that need to be 

completed 

Decision: 

Human can see via HMI 

where constraint levels are 

and what is available. Make 

decision to continue 

production, stop or slow 

down if orders can be 

completed with enough 

water, bottles or caps in 

storage. 

Test case 3: 

Limitation 

increases to above 

50% 

Water level in 

storage tank 

AND Bottles 

in storage 

Human allows 

production to 

continue 

Caps in 

storage   

Human allows 

production to 

continue 

Resumes production at 

normal speed 
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3.9 Definition of Statistical Analysis Software (SAS) used for executing the 

single experimental case 
 

Statistical Analysis System (SAS) is an integrated system of software products which permits 

programmers to perform information retrieval and data management, statistical analysis, 

report writing, graphics, business planning, forecasting, and decision support, among other 

services [67] . SAS will be used for determining the output of the fully automated approach 

vs the Human-Machine collaborative approach by accurately predicting which processes in 

the manufacturing process is best done by Human-Machine collaboration and which are best 

left to be completed by machines only. To achieve this result, the OEE score, as discussed in 

Section 3.3.1, is applied to the SAS program code. 

 

 The following sections will describe how SAS was used for the execution of the data as 

presented in the different cases of customer orders, whereby some guidelines can be derived 

from as stated in the research objectives. This will be presented in Chapter 5 after the 

validation and analysis of the data gathered.  A flowchart of the working of the SAS program 

is indicated in Figure 3.8. 
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Figure 3.8 Flowchart indicating the flow of the SAS program 
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3.10  Execution of the Single Case Experiment 
 

In order to evaluate the effect of introducing collaborative decision-making to the automated 

system, a Human-Machine Interface (HMI) will be developed and attached to SMU1 and 

SMU2 of the water bottling plant, allowing for a collaboration between the human and 

machine. As stated previously, two approaches will be introduced namely the machine only 

and secondly a collaboration between the human and the machine.  Section 3.7 describes the 

operation of the automated system with the machine in control (control case) followed by 

Section 3.8, which describes the operation of the Human-Machine collaborative approach 

(test case).   

 

Based on the steps for developing a generic protocol for collaborative decision-making as 

described in Section 3.3, it should be noted that Steps 1 – 5 in the following sections are 

executed in the fully automated approach while Steps 6 – 8 are performed in the collaborative 

decision-making approach. 

 

As explained and illustrated in Table 3.1 and Table 3.2 the constraints and variables were 

highlighted, as these are the restrictions or limitations that have to be taken into consideration 

in the SAS programming for determining the different production times. Using SAS, the 

production time or Total Time to Manufacture (TTM) for both the automated approach and 

the collaborative approach will be determined.  The main aim is to determine whether the 

production time will be optimized when the human and machine work in collaboration for 

completing a set of orders as this research aims to establish the importance of human 

intervention in a collaborative decision-making process for optimum completion of tasks and 

providing a protocol with guidelines as to which tasks or actions are best done by a machine, 

a human or a collaboration between human and machine. 
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3.10.1 Executing the fully automated approach 
 

The system is programmed to automatically slow down or pause the production process when 

the water level reaches a certain level, when the number of bottles are low or when the 

capping feeder runs low to ensure that the production process does not come to a complete 

halt.  The production process resumes as soon as the capacity of the water tank, the number 

of bottles or number of caps increases to above 50%.   

 

As mentioned in Section 3.7.1, the automated mode of the plant is the control case where the 

machine executes the entire production process without human intervention.  In order to 

determine the TTM for the process, the first important step was to determine the average time 

it takes to fill one 330ml bottle and one 500ml bottle.   

 

3.10.2    Step 1: Determining the average time to fill one 330 ml and one 500ml  

  bottle 
 

To determine the average time, multiple tests were done in real time where the time to fill a 

bottle for production was timed and recorded. The timing commenced when the bottle on the 

conveyor belt started moving towards SMU1 for filling and then towards SMU2 for capping 

the bottle. This process is indicated in Figure 3.9. 
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Figure 3.9 Determining of the time for filling and capping one bottle. 

 

It should be pointed out that the recording of the average times were done in real time on the 

existing automated water bottling plant. The recording of the timing of the process was done 

for both the 330ml bottles and the 500ml bottles.   

After completing several tests, the total time for each individual round of 330ml bottles were 

added together where after the average time was calculated.  The same process was done for 

the 500ml bottles whereby a conclusion was reached indicating that the average time to fill 

and cap a 330ml bottle takes 45 seconds, while the 500ml bottle takes 48 seconds to fill and 

cap.  These results indicate the ideal scenario where the water level, bottles available and 

caps available are at 100%.    

 

As the orders are filled and capped, the levels of the water, bottles and caps will start 

depleting which causes certain constraints to be met as described in Table 3.1.  For purposes 

of executing the experiment it is important to note that when the water level reaches 50%, a 

delay of 15 seconds were recorded, as indicated in Table 3.3, during the production time for 

each 500ml or 300ml bottle. This delay was documented during the timing of the process in 

real time where it was discovered that it takes 15 seconds to replenish the water, bottles or 

caps levels to 100%.   

 

Timing starts at 

SMU1 - filling 

Bottle at SMU2 - 

capping 
Timer 

stopped 
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A similar scenario happens when the levels reaches 25% when a delay of 30 seconds were 

measured while the machine waits for the levels of bottles or caps to be increased, or the 

water level is replenished to above 50% for production to resume. The time delay gets added 

to the average time for filling and capping the bottles once these scenarios occur, as indicated 

in Table 3.3.  

 

It should be pointed out that the delays will only be triggered when the constraint levels 

reaches 50% or 25%, which means that for the first 50% of the filling and capping process 

there will be no delays during the production process.  The same delay times will be included 

in the SAS program for determining the TTM for each order in the Human-Machine 

collaboration mode.   

 

Table 3.3 Summary of real time results of the plant working in fully automated mode. 

Constraint SMU1  SMU2  Process 

Limitation at 100% Water level in 

storage tank OR 

Bottles in 

storage 

OR Available 

caps in 

feeder   

 Production starts at pre-set 

speed  

Limitation reaches 50% Water level in 

storage tank OR 

Bottles in 

storage  

OR Available 

caps in 

feeder   

OR Production pauses for 15 

seconds as machine waits for 

water level, bottles or caps to 

increase to 100%. 

Limitation reaches 25% Water level in 

storage tank OR 

Bottles in 

storage 

OR Available 

caps in 

feeder   

OR Production stops for 30 seconds 

while waiting for water level, 

bottles or caps available to 

increase levels from 25% to 

above 50%. 

Limitation increases to 

above 50% 

Water level in 

storage tank 

AND Bottles in 

storage 

AND Available 

caps in 

feeder   

AND Resumes production 
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3.10.3  Step 2: Determine the OEE score 
 

For the purpose of this case study, taking into consideration the requirements of each of the 

Equations explained in Section 3.3.1, Equation 1 is the more suitable method.  In order to 

determine the OEE score, the following formula for Equation 1 and the parameters described 

in Section 3.3.1 will be used: 

 

(Good Count x Ideal Cycle Time) / Planned Production Time = OEE 

 

Good Count = Total no 330ml + 500ml bottles for customer order 

Ideal Cycle Time = Average time of producing a 330ml + a 500ml bottle per cycle 

Planned Production Time = Total Time to Manufacture a customer order  

 

As alluded to in Section 3.3.1 an OEE score of 85% is considered world class for different 

manufacturers [58].  However, this study places the OEE at 90% which should be seen as a 

good benchmark for determining the efficiency and checking the veracity of the model as it 

also brings into factor the constraints such as the amount of water in the storage tank, the 

number of bottles and caps available for completing the customer orders. The plant utilized in 

this case study functions in a laboratory setup and thus the OEE score of 90% is used as the 

plant operates in ideal conditions.  

 

3.10.4  Step 3: Apply the OEE score to the SAS code for calculating results  
 

The 90% OEE score is coded into SAS which executes the program and is able to provide 

output regarding the efficiency of the machine. The significance of the OEE score is that 

after executing each customer order, a result of  “Yes” or “No” will be generated by the SAS 

code.  A result of “No” indicates that the machine should perform the task as the OEE is 

above 90% as opposed to a result of “Yes” which indicates human intervention is needed 

when the OEE falls below 90%.   
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3.10.5  Step 4: Input Customer Orders 
 

Several customer orders received via the online Web application, as discussed in Section 3.5, 

are used as input to SAS. All combinations and permutations of the constraints as well as the 

OEE score, are taken into consideration resulting in output data that will be used in 

determining the TTM’s for both the machine only approach and the human intervention 

approach. 

 

3.10.6  Step 5: Calculate the TTM for the Automated approach 
 

The set of customer orders received are used as input to SAS and the TTM for the fully 

automated approach are calculated.   

During the production process, different constraints will be encountered as presented in Table 

3.3. The automated plant is preprogrammed, as explained in Section 3.3, to create alerts when 

these constraints are met after which the automated process reacts accordingly.  

An alert is created when the water level or bottles in storage or the caps available reaches 

50%, which results in the system to pause or slow down production.  The same scenario 

happens when the levels reaches 25% which makes the system come to a halt while waiting 

for levels to be replenished and production can resume.     

 

A large number of combinations are possible when taking the constraints into consideration 

for collecting of the data. See Appendix A for a snapshot from the SAS code for the 

programming executed to determine the different combinations available. SAS is able to 

receive the input from customer orders and executes a program to determine the TTM when 

all the different combinations are taken into account for a specific order. Different scenarios 

for customer orders will be executed to determine the effect on the automated process. For 

example, the water level may reach 50% and the bottles available is 25% and caps available 

is 25%.  These combinations have to be programmed into the SAS program for it to 

determine the effect on the production time for that specific case. The results and findings 

will be showcased in Chapter 4 indicating the TTM for the fully automated mode without any 

human intervention. 
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3.10.7  Step 6: Calculate the TTM for the Collaborative approach 
 

The second part of the experiment, which is the test case, will determine the TTM when 

human intervention, using HMI’s, are introduced to the production process.  This is Step 6 of 

developing the protocol as described in Section 3.3.2. Important to note is that the exact same 

set of customer orders used in the automated approach will also be used in determining the 

TTM for the collaborative approach.  The results obtained from the execution of the SAS 

code, will be analyzed and used to compare the TTM for the fully automated mode set 

against the TTM in the collaborative decision-making mode.   

 

The first step in the Human-Machine collaboration approach, which is the same as with the 

automated process described in Section 3.10.2, was to determine the average time to fill one 

330ml bottle and one 500ml bottle. This process is indicated in Figure 3.10.   

 

After executing the same amount of tests as with the automated approach, it was determined 

that the average time for filling and capping a 330ml bottle is 45 seconds and 48 seconds for 

the 500ml, which is identical to the times as established in the automated approach.  

However, it should be pointed out that these are the average times when all levels are at their 

optimum stages of 100% for the water, bottles and caps.   

 

For purposes of validating the TTM for a set of orders, a delay is included as mentioned in 

calculating the TTM with the aim of determining an accurate production time when the 

mentioned constraints are encountered.  These delays occur in the automated approach, seen 

in Table 3.3, and for execution of the experiments, the same applies to the HMI approach.  

Therefore a delay of 15 seconds are added in the SAS code to the production time for each 

330ml and 500ml bottle when levels reach 50% to allow for a slight delay and 30 seconds 

when the levels reach 25% while it waits for the levels of bottles or caps to be increased and 

the water level is replenished. 

 

The next step in the collaborative approach was to introduce the HMI’s to SMU1 and SMU2, 

whereby the human operator will be able to see the status of the different levels of the water, 

bottles and caps on the interactive HMI screen as the production process continues.   
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The constraints and variables are indicated in Table 3.2 which show the restrictions or 

limitations that have to be taken into account in the SAS programming for the different 

production times  or TTM with human intervention.  The status of the production process at 

SMU1 and SMU2 will be clearly visible to the human operator whereby it permits for 

intelligent decision-making by the human to allow for continuation of the production, 

slowing down, speeding up or halting the process.  

 

Many different combinations and permutations of the constraints as depicted in Table 3.2, 

will be encountered during the production process that forms part of the SAS code for 

determining the TTM when implementing the Human-Machine collaboration approach.  The 

next section will give a more detailed discussion of the programming in SAS used to obtain 

the results from executing multiple scenarios of the models. 

 

3.11  Applying SAS to the automated and collaborative models 
 

SAS software was used to create datasets from the results obtained after the experiments 

mentioned in Sections 3.10.1 and 3.10.7 were executed. 

 

As discussed in Section 3.7, the constraints that will be encountered during the production 

process, should be taken into consideration for determining the TTM of both the Automated 

approach and the Human-Machine collaboration approach.   

 

For the execution of the data, it is important to note that both fully Automated and Human-

Machine collaboration models will use the same set of customer orders for each mode, as 

mentioned in Section 3.10.5 and 3.10.6.  In order to determine the TTM’s there are 

limitations set that will be taken into account when collecting the data, which is the 

following: 

 Total liters of water available = 50lt 

 Total no of 330ml bottles = 50 

 Total no of 500ml bottles = 50 

 Total no of caps = 100  (The same size cap is used for both 300ml and 500ml bottles) 
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Important to mention is that the automated system has been programmed to sense between 

the 330ml and 500ml water bottles as per customer order as mentioned in Section 3.4.2. 

The variables and variable names used in SAS programming is specified in Table 3.4. 

 

Table 3.4 Variable names and definitions used in SAS. 

Variable definition Variable name 

Time for machine to complete one bottle TimeM 

Time for HMI to complete one bottle TimeH 

Total liter for 500ml bottle per customer order TL5 

Total liter for 330ml bottle per customer order TL3 

Total liter per customer order TL 

Total number of caps CapsTot 

Total number of 330ml bottles BotTot3 

Total number of 500ml bottles BotTot5 

Total number of 500ml orders &num 

Total number of 330ml orders &num3 

Total time to Manufacture TTM 

Total time to Manufacture Automated mode TTMA 

Total time to Manufacture Human mode TTMH 

Total Time to Manufacture time units minutes 

 

For the creation of SAS datasets, the TTM per limitation per 500ml and 330ml were used to 

determine the TTM per customer order. A macro was created to determine the total time and 

also the amount of liters per set of customer orders.  

 

In order to optimize production, it is imperative to keep track of the amount of water 

available in the storage tank as well as the number of bottles and caps available. 

With reference to Table 3.4, the amount of liters per set of customer orders were calculated 

as:  TL5 + TL3 = TL 

The same method was used to calculate the amount of total caps and bottles per set of 

customer orders. 
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For determining the total time for each customer order, a programming step was created to 

determine the levels (%) of available water, bottles and caps. This step is necessary to take 

into account that each limitation has an impact on the time it takes to fill and cap an 

individual bottle related to both the Automated Mode and the Human-Machine collaboration 

mode. 

 

The next programming step was to combine TimeM and TimeH per customer order that will 

indicate the difference in production time for both models.   

 

Finally, the criteria of where human intervention was required to override the automated 

approach as well as instances where the machine had full control and no human intervention 

was needed, had to be programmed. The ideal situation, as indicated in Table 3.2 and Table 

3.3, are when the constraint levels are all at 100%. As each customer order is being 

processed, the constraint levels will start decreasing and, as explained previously in Section 

3.7.1, an alert will be generated by the automated system, as preprogrammed, when the 

constraint levels reaches 50% and then again at 25%  which causes production to slow down 

or stop.  

 

The SAS program is coded to provide two outputs depending on the OEE score.  If the OEE 

score of 90% results in an output of “No” the machine can continue when the OEE is above 

90% and “Yes” when the OEE is below 90% allowing the human to intervene as explained in 

Section 3.10.4.  The alert is sounded and poses the question to the human operator via the 

HMI whether the process must stop, continue or slow down.  The human can see on the HMI 

screen the amount of water, bottles and caps left and whether it will be sufficient to complete 

the order.  The human can thus override the machine and indicate that the process can 

continue.   
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3.12  Chapter Conclusion 
 

Chapter 3 provided an overview of the research design and methodology involved in the 

study and the procedures that were followed.  The steps for developing a generic protocol for 

collaborative decision-making were highlighted and applied to the case study of the water 

bottling plant exploited in this research.  The importance of determining an OEE score for 

measuring machine efficiency was discussed along with the formulas and parameters used to 

calculate the OEE score to be used in the generic protocol.  In the next chapter, Chapter 4, the 

presentation, analysis and the discussion of the relevant data outputs obtained from the 

experiments will be discussed.  Different scenarios for customer orders will be introduced 

with the results and findings showcased for each scenario.  The aim is to show the automated 

approach without human intervention and then the results of the model when Human-

Machine collaboration is introduced.  The TTM for each scenario will be shown for purposes 

of assessing the results found for the machine only approach as opposed to the Human-

Machine collaboration approach of executing the production process of the plant.  The results 

will specify where the machine continues production without human intervention and where 

human intervention becomes necessary. 
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4 Chapter 4: Results and Data Analysis 
 

4.1 Introduction 
 

The aim of this chapter is to showcase the results of the tests that were done on the model as 

described in Chapter 3. Chapter 4 focusses on the results obtained after executing the 

experiments and Chapter 5 will be a dicussion of the results.  With reference to Chapter 3, a 

protocol for collaborative decision-making is developed.  Sections 3.5 and 3.6 discussed the 

case study of an existing automated water bottling plant that is used for this study. This 

chapter will look at how the protocol was implemented using the case study of the 

automated water bottling plant.   

 

The chapter is structured such that for each scenario, the results for the fully automated 

approach of the plant will be shared. Secondly the experimental setup and  results of the 

Human-Machine collaborative approach will be highlighted. Finally, an analysis will be 

done where the two sets of results will be compared to determine which process contributes 

to the optimization of the production process and where the best fit will be for the human to 

intervene in an automated production process.  

 

4.2  Customized Testing and Results 

 
The automated model of the plant was discussed in Section 3.7, followed by the execution for 

the machine that completes the production process without human intervention as explained 

in Section 3.10.1.  The aim of these experiments was to determine the Total Time to 

Manufacture (TTM) multiple customer orders by taking several constraints and limitations 

into account and complete the task of filling and capping 330ml and 500ml bottles. Table 3.3 

indicates these constraints and limitations.  It is important to mention that the experiments 

were executed in real time utilizing the existing automated water bottling plant. 
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The Human-Machine collaboration model of the plant was discussed in Section 3.8, after 

which the Human-Machine collaborative approach to be executed as the test case for the 

experimental setup was explained in Section 3.8.3. In order to bring the human into the 

control loop, HMI’s were introduced to SMU1 and SMU 2 as discussed in Section 3.8.2.  

 

The output from the SAS program will give the human operator information on when the 

machine should carry on or whether the human should intervene as described in Section 3.11 

by implementing the 90% OEE score for this study.  As per discussions in Section 3.3.4, the 

benchmark OEE for this specific study is 90% while also taking the constraints, as indicated 

in Table 3.1 and Table 3.2, into consideration.  By using the SAS output which applies the 

OEE to the protocol, as discussed in Section 3.10.4, the protocol will show a “No” when the 

machine should continue and the HMI is not needed or a “Yes” when the human should 

intervene. The protocol consequently shows the best way to accomplish a specific task, 

whether it is the machine or a collaboration between the human and machine.  The HMI 

dictates what should happen when the results show a “Yes”, meaning the human can make an 

informed decision on the production process. The HMI options available to the human once 

human intervention is flagged by the protocol includes stopping of the process, slowing down 

or continuing as specified in Table 3.2. 

 

The following section will look at six scenarios for six different customer orders that were 

executed in fully automated mode, followed by introducing human intervention where after 

the comparison of machine only and Human-Machine collaboration will be showcased for 

each scenario. The OEE for this specific case study was set at 90% as stated in Section 

3.10.4, hence in all scenarios being presented in the results section where the OEE falls 

below 90% it was decided that the human should intervene in the production process. 

For explaining purposes it was decided to consider the constraints separately as this is the 

most convenient for the water bottling case study.  However, the SAS program is able to look 

at a number of constraints with n number of permutations and combinations. The results are 

being split into two sections where Scenarios 1 – 3 will initially look at a situation where the 

water levels are taken as a constraint.  Sections 4.6.1 – 4.6.3 shows the results for Scenario 4 

– 6 where the bottles and caps are taken as constraints. 
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The formula for determining the OEE score applied to the SAS code will be implemented for 

each scenario.  The definitions, as described in Section 3.3.1, will be applicable to the 

calculations. 

 

4.3 Water level as constraint: Scenarios 1 – 3  
 

Customer orders are received via an online web application, as described in Section 3.6, 

where orders are placed for the filling of 330ml and/or 500ml bottles.  Table 4.1 indicates a 

customer order along with their requirements which were received as input to the SAS 

program where the manufacturing times of the 330ml and 500ml bottles are calculated as 

explained in Section 3.11. 

 

Table 4.1 Customer requirements table – Scenario 1 

Customer  

No of 
330ml 
 bottles 

No of 500ml 
 bottles 

Total No of 
bottles 

A 9 9 18 

B 5 4 9 

C 6 7 13 

D 3 5 8 

E 4 2 6 

TOTAL NO OF BOTTLES  27 27 54 
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4.3.1 Scenario 1  – Filling of 330ml and 500ml bottles: Automated mode 
 

Table 4.2 indicates the manufacturing times for the 330ml and 500ml bottles in Automated 

mode.   

 

Table 4.2 Time to manufacture customer order for 330ml and 500ml bottles – Scenario 1: Automated 

Customer  

No of 
330ml 
 bottles 

No of 
500ml 
 bottles 

Total No 
of bottles 

Time to 
manufacture 
330ml 
Automated 
(minutes) 

Time to 
manufacture 
500ml 
Automated 
(minutes) 

A 9 9 18 6,75 7,2 

B 5 4 9 3,75 3,2 

C 6 7 13 4,5 5,6 

D 3 5 8 2,25 5,25 

E 4 2 6 5 2,6 

TOTAL 27 27 54 22,25 23,85 

 

Figure 4.1 depicts the results for manufacturing the 330ml and 500ml bottles in Automated 

mode. 

 

Figure 4.1 Time for manufacturing customer orders for 330ml and 500ml bottles - Automated mode 

 

The following sections will demonstrate the results for Scenario 1 with human intervention 

introduced to the production process of the plant. 
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4.3.2   Scenario 1 – Human-Machine Collaboration mode (HMI mode) 
 

Table 4.3 shows the same customer order as in Table 4.1, as the same test data have to be 

used to execute machine vs. Human-Machine collaboration in order to compare the results of 

the experiments.  The following set of tables and graphs will indicate the results acquired 

when human intervention was introduced to the production process.   

 

Table 4.3 Customer requirements table – Scenario 1 

Customer 
No of 330ml 
 bottles 

No of 500ml 
 bottles 

Total No of 
bottles 

A 9 9 18 

B 5 4 9 

C 6 7 13 

D 3 5 8 

E 4 2 6 

TOTAL NO OF 
BOTTLES 27 27 54 

 

 

4.3.3   Scenario 1 – Filling 330ml and 500ml bottles: HMI mode 
 

Table 4.4 below indicates the manufacturing times for the 330ml and 500ml bottles in human 

intervention mode.  

 

Table 4.4 Manufacturing time of 330ml and 500ml bottles with human intervention – Scenario 1 

Customer  

No of 
330ml 
 bottles 

No of 
500ml 
 bottles 

Total No of 
bottles 

Time to 
manufacture 330ml 
Human Intervention 
(minutes) 

Time to manufacture 
500ml Human 
Intervention 
(minutes) 

A 9 9 18 6,75 7,2 

B 5 4 9 3,75 3,2 

C 6 7 13 4,5 5,6 

D 3 5 8 2,25 4,83 

E 4 2 6 3,67 2,27 

TOTAL 27 27 54 20,29 23,1 
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Figure 4.2 Time for manufacturing customer orders of 330ml and 500ml bottles with human intervention 

 

Figure 4.2 portrays the production time for both the 330ml and the 500ml bottles for  

Scenario 1 in the HMI mode where the human is able to intervene in the production process.  

 

4.3.4 Scenario 1 - Results of the Automated mode vs the Human-Machine    

Collaboration mode 

  
Table 4.5 shows the results of Scenario 1 where the TTM for the Automated process and the 

TTM for Human Intervention are presented. As per discussion in Section 3.3.1, the OEE 

score had to be determined for applying it to the SAS code. Based on the discussions in 

Section 3.10.3 the benchmark for the OEE  used in this study will be at 90%.  The rationale 

behind this, as discussed in Section 3.10.4, is that the OEE score directs whether the machine 

should continue the production process or whether the human should intervene in the 

production process.  Table 4.5 specifies the OEE percentage and a “Yes” or “No” decision.  

Depending on the OEE score, a “No” will indicate that the machine can continue the process 

without human intervention as the OEE is above 90% and a result of “Yes” implies that the 

human should intervene and override the automated process when the OEE falls below 90% 

as deliberated in Section 4.2.   
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For the calculation of the OEE score that was applied to the SAS code, Equation 1 and the 

following values from Scenario 1 were used to determine the OEE: 

 

(Good Count x Ideal Cycle Time) / Planned Production Time = OEE 

Good Count = Total no 330ml + 500ml bottles for customer order 

            = 54 bottles 

Ideal Cycle Time = Average time of producing a 330ml + a 500ml bottle per cycle 

   = (48 seconds x 45 seconds)  

   = 93 seconds / 2 

   = 0,775 seconds 

Planned Production Time = Total Time to Manufacture customer order  

        = 46,1 minutes  

 

(Good Count x Ideal Cycle Time) / Planned Production Time = OEE 

 (54 x 0.775min)/46,1 = 90,7% 

 

Table 4.5 TTM of Automated mode vs HMI mode – Scenario 1 

Customer  

Total no 
of 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt used OEE % 
Human to 
Intervene 

A 18 13,95 13,95 7,47 100% No 

B 9 20,9 20,9 11,12 100% No 

C 13 31 31 16,6 100% No 

D 8 38,5 38,08 20,09 98,91% No 

E 6 46,1 44,02 22,41 95,49% No 

Totals 54 46,1 44,02    

 

The results of Scenario 1 for Human-Machine collaborative decision-making versus the 

automated mode, is shown in Figure 4.3.  When considering the times to manufacture for this 

specific scenario, one sees that for Customer order A, B and C it takes the same amount of 

time to fill and cap the water bottles, after which, as the production process continues, the 

TTM’s starts to fluctuate.   
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Figure 4.3 Results of the TTM for Automated mode vs HMI mode – Scenario 1 

 

The amount of water used to complete the customer order is indicated in Table 4.5 which 

amounts to 22 liters.  In this scenario, the water level is just above 50% on completion of the 

order.  As stated in Table 3.3, the machine is pre-programmed to pause when the water level 

reaches 50% and when at 25% comes to a halt while it waits for the water level to be 

replenished.  However, there is still enough water available and thus the plant is able to 

complete the customer order without human intervention.  

 

Figure 4.3 depicts the combined TTM’s for Scenario 1 in the Automated as well as the 

Human Intervention mode.  Table 4.5 indicates the efficiency percentage of the plant by 

applying the OEE score as discussed in Section 3.10.4 . The “No” indicates that the machine 

completes the order without human intervention and “Yes” when human intervention should 

take place. 

 

 

 

 

 

© Central University of Technology, Free State



63 
 

 

4.4 Water level as constraint:  Scenario 2  
 

4.4.1   Scenario 2 – Fully Automated Mode 
 

The following tables and graphs for Scenario 2 indicates the manufacturing times for a 

second customer order and will show the results for the automated mode, the human 

intervention mode followed by a comparison between the TTM results of the automated vs 

the human intervention mode. 

 

Table 4.6 Customer requirements table - Scenario 2 

Customer  
No of 330ml 
 bottles 

No of 500ml 
 bottles 

Total No of 
bottles 

A 13 15 28 

B 8 12 20 

C 10 11 21 

D 8 7 15 

E 10 5 15 

TOTAL NO OF BOTTLES 49 50 99 

 

 

4.4.2 Scenario 2 - Filling the 330ml and 500ml bottles: Automated mode 
 

The customer orders for Scenario 2 of fillling the 330ml and 500ml bottles are shown in 

Table 4.7 indicating the total times for filling and capping the bottles. The results are 

depicted as a graph in Figure 4.4. 
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Table 4.7 Customer orders for 330ml and 500ml bottles with the manufacturing times in automated mode – 

Scenario 2 

Customer  
No of 330ml 
 bottles 

No of 500ml 
 bottles 

Total No of 
bottles 

Time to 
manufacture 
330ml 
Automated 
(minutes) 

Time to 
manufacture 
500ml 
Automated 
(minutes) 

A 13 15 28 9,75 12 

B 8 12 20 6 12,6 

C 10 11 21 12,5 19,8 

D 8 7 15 16 14,35 

E 10 5 15 22,5 11,5 

TOTAL 49 50 99 66,75 70,25 

 

 

 

Figure 4.4 Results of filling 330ml and 500ml bottles for Scenario 2: Automated mode 

 

4.4.3 Scenario 2 – Human Intervention mode 
 

For the execution of the customer order for Scenario 2 in HMI mode, the same set of orders 

as shown in Table 4.6 are used as input to SAS, since the same test data is used to execute 

machine vs. Human-Machine collaboration for comparing the results of the experiments.  

The following set of tables and graphs will indicate the results attained when human 

intervention was introduced to the production process.   
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4.4.4 Scenario 2 – Filling the 330ml and 500ml bottles in HMI mode 
 

The time to manufacture both the 330ml and 500ml bottles are indicated in Table 4.8 and it 

perceptible that the manufacturing process takes significantly more time to complete when 

compared to Scenario 1.  This is due to the large customer order received. 

 

Table 4.8 Time to manufacture the 330ml and 500ml bottles in HMI mode - Scenario 2 

Customer  
No of 330ml 
 bottles 

No of 500ml 
 bottles 

Total No of 
bottles 

Time 330ml 
Human 
Intervention 
(minutes) 

Time 500ml 
Human 
Intervention 
(minutes) 

A 13 15 28 9,75 12 

B 8 12 20 6 11,6 

C 10 11 21 9,17 15,22 

D 8 7 15 9,33 10,27 

E 10 5 15 12,5 7,75 

TOTAL 49 50 99 46,75 56,84 

 

 

 

Figure 4.5 Results of applying the HMI mode for filling the 330ml and 500ml bottles – Scenario 2 
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4.4.5 Scenario 2 – TTM of the customer order: Automated mode vs HMI   

mode 
 

Table 4.9 shows the TTM’s for the Automated process as opposed to the Human Intervention 

mode.  Figure 4.6 portrays the TTM’s for both the Automated mode and the Human 

Intervention mode.  

 

The calculation of the OEE score  for Scenario 2 is shown below:  

 

(Good Count x Ideal Cycle Time) / Planned Production Time = OEE 

Good Count = Total no 330ml + 500ml bottles for customer order 

            = 99 bottles 

Ideal Cycle Time = Average time of producing a 330ml + a 500ml bottle per cycle 

   = (48 seconds x 45 seconds)  

   = 93 seconds / 2 

   = 0,775 seconds 

Planned Production Time = Total Time to Manufacture customer order  

        = 137 minutes  

 

(Good Count x Ideal Cycle Time) / Planned Production Time = OEE 

 (99 x 0.775min)/103.59 = 74,06% 

 

Table 4.9 TTM of manufacturing in Automated mode vs HMI mode – Scenario 2. 

Customer  
Total No of 
bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 

Human 
to 
Intervene 

A 28 21,75 21,75 11,79 100% No 

B 20 40,35 39,35 20,43 97,52% No 

C 21 72,65 63,74 29,23 87,74% Yes 

D 15 103 83,34 35,37 80,91% Yes 

E 15 137 103,59 41,17 75,61% Yes 

Total no 
of bottles 99 137 103,59  
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At the completion of the order, the total water used to fill the bottles were approximately 41 

litres, which is still below the limitation of 50 litres, although the water level is under 25%. 

Referring to the OEE percentage exhibited in Table 4.9, it is clear to determine when the 

machine should continue and when the human operator should intervene in collaboration 

with the machine for the completion of the order. As one can see in Table 4.9, a total of 137 

minutes were used to complete the order in Automated mode in contrast to the HMI mode 

that used 103 minutes for completion of the order. 

 

 

Figure 4.6 Results of the TTM for Automated mode vs HMI mode for completing the customer order – 

Scenario 2. 

 

4.5 Water level as constraint:  Scenario 3 
 

4.5.1  Scenario 3 - Fully Automated mode 
 

The last scenario that showcases the results of the two models with the water level as a 

constraint is presented in Sections 4.5.2 up to Section 4.5.8. 
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The following tables and graphs for Scenario 3 indicate the times to manufacture the 330ml 

and the 500ml bottles for another customer order, Scenario 3, and will show the results for 

the Automated mode, the HMI mode followed by a comparison between the TTM results of 

the Automated vs the HMI mode. 

 

Table 4.10 Customer requirements table - Scenario 3. 

Customer 
No of 330ml 
 bottles 

No of 500ml 
 bottles 

Total No of 
Bottles 

A 8 26 34 

B 8 25 33 

C 6 19 25 

D 6 13 19 

E 3 16 19 

TOTAL 31 99 130 

 

For the order in Scenario 3, a total of 130 bottles must be filled as shown in Table 4.10. 

 

4.5.2 Scenario 3 – Filling the 330ml and 500ml bottles: Automated mode 
 

In Table 4.11 it can be seen that the number of 500ml bottles are significantly more than the 

required 330ml bottles.  The manufacturing time for the 330ml bottles are approximately 38 

minutes while the time for the 500ml bottles are approximately 183 minutes. 

 

Table 4.11 Time to manufacture 330ml and 500ml bottles – Scenario 3 (Automated) 

Customer 

No of 
330ml 
 bottles 

No of 
500ml 
 bottles 

Total No 
of Bottles 

Time to 
manufacture 
330ml 
Automated 
(minutes) 

Time to 
manufacture 
500ml 
Automated 
(minutes) 

A 8 26 34 6 27,3 

B 8 25 33 6 45 

C 6 19 25 7,5 43,7 

D 6 13 19 12 29,9 

E 3 16 19 6 36,8 

TOTAL 31 99 130 37,5 182,7 
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The diagram in Figure 4.7 below shows the results for filling applying the Automated mode 

for the 330ml and 500ml bottles. 

 

 

Figure 4.7 Results of the TTM for the Automated mode of filling 330ml and 500ml bottles 

 

4.5.3 Scenario 3 – Filling the 330ml and 500ml bottles: HMI mode 
 

The following table, Table 4.12, indicates the manufacturing times for both the 330ml and 

the 500ml bottles when implementing the HMI mode. 

 

Table 4.12 Manufacturing time for 330ml and 500ml bottles: HMI mode 

Customer 

No of 
330ml 
 bottles 

No of 
500ml 
 bottles 

Total No 
of Bottles 

Time to manufacture  
330ml 
Human Intervention 
(minutes) 

Time to 
manufacture  500ml 
Human Intervention 
(minutes) 

A 8 26 34 6 25,13 

B 8 25 33 6 34,58 

C 6 19 25 5,5 29,45 

D 6 13 19 7 20,15 

E 3 16 19 3,5 24,18 

TOTAL 31 99 130 28 133,49 

 

In Figure 4.8, one can see that there were considerable more orders for the 500ml bottles 

which resulted in significantly more time to complete the orders for the 500ml’s. 
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Figure 4.8 Results of the manufacturing times for the HMI mode of filling the 330ml and 500ml bottles - 

Scenario 3 

 

 

4.5.4 Scenario 3 – TTM for manufacturing customer order: Automated mode 

vs HMI mode 
 

Table 4.13 displays the results of the Total Time to Manufacture (TTM) when the automated 

mode is compared to the HMI mode.  In this instance almost 60 liters of water were used to 

complete the order while the limitation, as specified in Section 3.12, is 50 liters of water.  

Figure 4.9 demonstrates the TTM results in the chart below.   
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The OEE score for this scenario is as follows: 

 

(Good Count x Ideal Cycle Time) / Planned Production Time = OEE 

 

Good Count = Total no 330ml + 500ml bottles for customer order 

            = 130 bottles 

Ideal Cycle Time = Average time of producing a 330ml + a 500ml bottle per cycle 

   = (48 seconds x 45 seconds)  

   = 93 seconds / 2 

   = 0,775 seconds 

Planned Production Time = Total Time to Manufacture customer order  

        = 162,11 minutes  

 

(Good Count x Ideal Cycle Time) / Planned Production Time = OEE 

 (99 x 0.775min)/162,11 = 47,32% 

 

As can be seen in the result of the calculated OEE for this scenario, the OEE score drops to 

47% which indicates that the OEE also depends on the order size. The automated system is 

stochastic in nature, as explained in Section 2.2, which results in several different order sizes.  

However, the benchmark, as mentioned previously, is 90% for this case study.   

 

Table 4.13 TTM’s to manufacture the 330ml and 500ml bottles – Scenario 3 (HMI) 

Customer 
Total No of 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 
Human 
Intervention 

A 34 33,3 31,13 15,64 93,48% No 

B 33 84,3 71,71 30,78 85,06% Yes 

C 25 135,5 106,66 42,26 78,71% Yes 

D 19 177,4 133,81 50,74 75,43% Yes 

E 19 220,2 162,11 59,73 73,61% Yes 

Total no 
of bottles 130    
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Figure 4.9 Results of the TTM’s for the Automated mode vs the HMI mode - Scenario 3. 

 

Based on the findings for Scenario 3, Figure 4.9 shows that this specific order was relatively 

large as 130 bottles in total needed filling and capping.  Therefore the human had to intervene 

in the process from customer order B as indicated by the OEE score and the TTM for the 

complete operation was 220,2 minutes for the Automated approach and 162,11 minutes for 

the Human-Intervention approach. 

 

4.6  Bottles and caps as constraints:  Scenarios 4 – 6 
 

The second set of variables, as specified in Section 3.8, namely the number of bottles and 

caps, were used as input to the SAS program for establishing the TTM for three different sets 

of customer orders.  The same constraints as with the water level apply to the water bottles 

and caps as they all are variables used to program the SAS code. Scenarios 4 – 6 have very 

similar results as that of Scenario 1 – 3 and based on the bottles and caps as constraints.  For 

this reason, only the comparison of the Automated approach as opposed to Human-Machine 

collaboration approach will be showcased for each scenario. The full set of results are 

available in Appendix B.   
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4.6.1  Scenario 4 - TTM for manufacturing in Automated mode vs HMI mode 
 

Table 4.14  TTM for filling and capping: Automated vs HMI – Scenario 4 (HMI) 

Customer 

Total No 
of Caps & 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 
Human 

Intervention 

A 10 7,6 7,6 3,64 100% No 

B 11 16,3 16,3 8,8 100% No 

C 5 20,2 20,2 10,96 100% No 

D 4 23,25 23,25 12,45 100% No 

E 9 30,2 30,2 16,1 100% No 

TOTAL 39 30,2 30,2    

  

Based on the results in Table 4.14, the Automated system completed the order without any 

human intervention. 

 

 

Figure 4.10  TTM for filling and capping: Automated mode vs HMI mode - Scenario 4. 

 

As can be seen from the results showcased in Figure 4.10 the TTM for both modes were the 

same for this scenario.  The total amount of water used for filling and capping the 39 bottles 

for this customer order were 16 liters.  The constraints never reached 50% which means that 

the machine could complete the order without human intervention.   
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4.6.2 Scenario 5 - TTM for manufacturing 300ml and 500ml bottles: 

Automated mode vs HMI mode 
 

Table 4.15  TTM of customer order for the 330ml and 500ml bottles: Automated vs HMI mode – Scenario 5. 

Customer 

Total no of 
caps and 
bottles  

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE% 
Human 

 Intervention 

A 13 21,75 21,75 11,79 100% No 

B 31 55,35 50,35 23,73 90,97% No 

C 38 90,15 74,06 31,54 82,15% Yes 

D 41 110,5 87,83 36,03 79,48% Yes 

E 45 130 100,25 39,85 77,11% Yes 

TOTAL  95 130 100,25    

  

For this specific order, the total amount of liters used to fill and cap the 330ml and 500ml 

bottles were almost 40 liters. The number of bottles and caps needed were 95 as seen in 

Table 4.15. The results, according to the OEE score, gives an indication of where the human 

should intervene in the production process.  The TTM for completing this order in 

Automated and Human Intervention mode is displayed in Figure 4.11.  

 

 

Figure 4.11 Diagram showing the TTM of filling and capping all customer orders for 330ml and 500ml 

bottles: Automated vs HMI mode - Scenario 5. 
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4.6.3 Scenario 6 - TTM for filling and capping customer order: Automated vs 

HMI mode 
 

The results, according to the OEE score in Table 4.16, gives an indication of where the 

human should intervene in the production process.  For this specific order, the total amount 

of liters used to fill and cap the 330ml and 500ml bottles were almost 42 liters. The number 

of bottles and caps needed were 102 as seen in Table 4.16.  The TTM for completing this 

order in Automated and Human Intervention mode is displayed in Figure 4.12.  

 

Table 4.16 TTM of customer order for the 330ml and 500ml bottles: Automated vs HMI mode – Scenario 6 

Customer 

Total No of 
Caps & 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE% 
Human 

 Intervention 

A 21 16,2 16,2 8,46 100% No 

B 26 40,5 39,17 19,76 96,71% No 

C 28 90 73,83 30,7 80,56% Yes 

D 12 114,25 105,5 35,51 77,02% Yes 

E 15 148,4 135,4 41,82 73,55% Yes 

TOTAL 102 148,4 135,4    

  

 

 

Figure 4.12 Diagram showing the TTM of filling and capping all customer orders for 330ml and 500ml 

bottles: Automated vs HMI mode - Scenario 6. 
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4.7  Chapter Conclusion 
 

The focus of this chapter was on presenting the results that was acquired by executing the 

SAS program, as explained in Section 3.12, when multiple tests with different variables were 

used as input to the program.  The aim was firstly to showcase the results obtained for 

performing orders of the fully Automated approach of the plant for a set of customer orders. 

Secondly, the results for the execution of the Human-Machine collaborative approach using 

the same set of customer orders were highlighted.  Lastly, a comparison between the results 

of the Automated approach was compared to the Human-Machine collaboration results found 

during the execution of multiple experiments on a set of customer orders.  

 

By applying the OEE score to the SAS code, it was determined that an OEE score above 90% 

indicates that the machine should continue the production process without human 

intervention but as soon as the OEE is below 90%, the human should intervene in the process 

by overriding the automated system. 

 

According to literature, an OEE score of 85% is world class [58] to implement although the 

value can change.  The generic protocol allows businesses or companies for the adaptation 

and deciding on their own parameter for the relevant OEE score.  Appendix D showcases the 

results if an OEE score of 85% is implemented for executing the experiment on the same set 

of customer orders used for this study.   

 

Chapter 5 will focus on a detailed discussion of the results and findings of the execution of 

the experimental setup to establish which process contributes to production optimization and 

where the best fit will be for human intervention in the automated production process.  

© Central University of Technology, Free State



77 
 

 

5 CHAPTER 5: Discussion 
 

5.1 Introduction 
 

The following chapter discusses how the research gap, identified through the limitations  of 

existing research discussed in Section 2.5, have been negated through this study. In doing so, 

the chapter aims to present the original contribution of the study. This is accomplished by 

reviewing the results for each scenario and elaborating on the insights gained from the 

analyzed data.   

 

5.2 Summary of limitations  
 

The limitations of the existing research, point to the fact that a close collaboration between 

humans and machines are of vital importance in the manufacturing environment.  However, a 

conclusion was reached that there exists a lack of a protocol or guidelines for deciding when 

a machine or a collaboration between the human and machine, should undertake a specific 

task in an automated environment.  

 

The aim of this research is to investigate and establish the importance of human intervention 

in a collaborative decision-making process for the optimum completion of tasks performed 

by an ICT enabled Smart automated manufacturing system and propose a protocol to 

determine the tasks/actions best performed by machine, by a human and a collaboration of 

human and machine.  Although a level of human involvement is very visible in the examples 

discussed in Section 2.5, a common thread is that there are no usable guidelines for the 

distribution of tasks or actions between humans and machines.   

Based on the discussion in the literature review, specifically with reference to Section 2.2, it 

was highlighted that Industry 4.0 is set to revolutionize the way manufacturing has been done 

thus far [11]. Traditionally, industries made use of a make-to-stock approach which signified 

that products were manufactured to be stocked up ahead of customer demand.  In the 

Industry 4.0 era, the focus of manufacturing industries have shifted towards a make-to-order 

approach which is geared towards the individual needs from customers.   
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The problem with the make-to-stock approach is that the demand for products are stochastic 

which implies that it cannot be predicted precisely what the customer requirements will be 

and the factory has to depend on a random probability for manufacturing of products.   

The nature of this study is to make use of a mixed-model stochastic approach whereby the 

customers are able to place orders based on their specific make-to-order needs.  The inputs 

received from the Web based ordering system for this case study were all random amounts of 

orders that needed completion by the automated water bottling plant as presented in    

Chapter 4 of the results section.   

Based upon the limitations of existing research, an approach using a single-case experimental 

study was implemented to execute multiple experiments. Section 3.2.1 gave a description of 

a single-case experiment whilst Section 3.2.2 indicated the motivation of using a single-case 

experiment as well as the goal of the experimental case study.  The approach followed for the 

execution of the single-case experiment were discussed in Section 3.2.3.  The development of 

a generic protocol was deliberated in Section 3.3 as well as the steps to follow for developing 

a generic protocol which includes the definition, importance and determining of the Overall 

Equipment Effectiveness (OEE) score needed in creating the protocol. 

 

The ensuing sections included a detailed reflection on the execution of the experiments on 

the automated mode versus the human-collaboration mode by using SAS programming.  The 

results of the experiments were shared in Chapter 4.  The aim of the experiments were to 

determine the Total Time to Manufacture (TTM) a specific set of customer orders.  The same 

set of orders were tested for machine only followed by testing a collaboration between 

human and machine, which delivered results for the manufacturing time for each approach.  

By comparing the results of the two models based on the output from SAS, conclusions can 

be drawn that assists in developing a set of guidelines to indicate when a Human-Machine 

collaboration should be used during the production process. 
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5.2.1  Scenario 1 discussion 
 

The customer requirements for the first customer order is represented in Table 4.1 where it is 

specified that the total number or bottles to be filled and capped for Scenario 1, is 54 bottles, 

including all the 330ml and 500ml bottles for the specific order.  The TTM’s for both the 

Automated approach and the Human-Machine collaboration approach was determined and 

the results of these experiments are illustrated in Figure 4.3.   

 

Based on the results of Scenario 1, Table 4.5 shows the TTM’s for both automated and 

human intervention and also the total amount of water used for completing the customer 

order.  The OEE percentage in Table 4.5 signifies whether the machine should continue the 

production process without human intervention or when the human should intervene.  These 

decisions are based on the OEE percentage where an OEE above 90% results in a “No” 

indicating the machine should continue or a “Yes” when the human should intercede, as 

discussed in Section 3.10.4.  

 

Figure 4.3 reveals that the TTM’s for both approaches producing customer order A takes 

exactly the same amount of time, which is 13,95 minutes.  The rationale for these results are 

that at the beginning of the production cycle all levels of water, bottles and caps start at 

100%.  As a consequence of these levels, both approaches will use the same time to complete 

the order. 

 

The TTM for Customer order B is also the same for both approaches, which is 20,9 minutes.  

In this instant the water level is still above 50% of the 50 liter limit, thus the machine can 

continue production without human intervention as is observable in Table 4.5.  The same 

applies for Customer order C where it can be seen in Figure 4.3, that the automated mode 

takes slightly longer than the human intervention mode.  However, the amount of water used 

at this point in time is still above 50% thus the automated process will continue without any 

human intervention.   
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Although an alert will be generated when the water level reaches 50% and then again at 25%, 

as explained in Section 3.7.1, the process can continue in automated mode as the constraints 

are within an acceptable range for completing the order and the OEE score is above 90%.  

Figure 4.3 illustrates the TTM’s for the Automated approach vs. the Human Intervention 

approach.  Owing to the fact that the amount of water, bottles, caps and the OEE are taken 

into consideration during the execution of the experiment, the entire customer order in 

Scenario 1 was executed in the Automated mode. On further testing, the reason for this was 

that there was adequate water, bottles and caps available, and/or the number of orders were 

less than the constraints as outlined in Section 3.10.2. 

 

5.2.2  Scenario 2 discussion 
 

The customer order for Scenario 2 consisted of 99 bottles that needed filling and capping as 

seen in Table 4.9.  Based on the results of the second scenario, illustrated in Figure 4.6, it is 

detectable that there are more instances where the human needs to intervene.  Table 4.9 

summarizes the TTM’s for both approaches where it shows that the total amount of water 

used for this particular customer order was 41 liters, which is very close to the limit of         

50 liters.  

 

The graphical representation in Figure 4.6 shows the difference in production time for the 

Automated mode and the Human-Intervention mode.  The total time for the Automated 

process is 137 minutes, and for the Human-Intervention mode the time to manufacture is 104 

minutes. Furthermore, Table 4.9 exhibits that at least 60% of the task requires human 

intervention and this is as a result of the amount of water used for the production process. 

 

According to the OEE results  in Table 4.9, human intervention is needed starting from the 

order for Customer C as the water reaches a level below 50% which causes an alert to be 

generated by the system, as presented in Table 3.1, when the process will come to a pause. At 

this juncture, the human will be able to make a decision given the information received from 

the SAS code and viewing the overall status of the system on the SCADA. 
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The human can perceive the data indicating that there are still a number of bottles that needs 

filling, but it is evident that there is still enough water in the tank for completing the order, 

thus allows the human to intervene and override the automated process and continue 

production.  This particular scenario demonstrates a well-balanced task allocation between 

the human and the machine. 

 

5.2.3  Scenario 3 discussion 
 

A classic example of a scenario where the human needs to intervene more actively, can be 

seen in Scenario 3 where Figure 4.9 shows the results of the TTM’s for the Automated mode 

vs the Human-Intervention mode.  Table 4.13 indicates the total number of bottles to be filled 

and capped for this scenario which amounts to 130 bottles.  This specific customer order 

requires more bottles, caps and water as per the limits available specified in Section 3.11.   

  

From the results in Figure 4.6 it is obvious that after completing Customer A’s order, the 

TTM for human intervention is less than for the automated approach. Up to this point the 

automated modes takes 33,3 minutes as opposed to the HMI approach which takes 31,13 

minutes. An amount of 15,64 liters were used to complete the order for Customer A allowing 

the machine to carry on and complete the order as the water level is well above 50% and the 

OEE percentage is above 90%. 

 

When Customer order B is processed, Table 4.13 shows that the amount of water used 

reached a level of 30,78 liters, which is below the 50% water level and thus an alert is 

generated while the process pauses as preprogrammed and the question whether to proceed or 

not is posed to the human operator.  At this point the OEE percentage is below the 90% 

benchmark and the results indicate that the human should intervene by overriding the 

automated process.   

 

The SCADA and HMI allows the human to estimate that there is enough water in storage to 

complete the order and the human can make a decision in advance for the obtaining of more 

bottles and caps. These scenarios point out that human intervention plays a critical role in 

making informed decisions based on the information received.  
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The same results are seen for Customer orders D and E where the OEE is below 90% and the 

amount of water used is below the limits set and therefore needs the human to intervene and 

work in collaboration with the machine for completing the orders, thus contributing to a 

faster completion time of the customer order 

 

The following sections will discuss Scenarios 4 – 6 where the bottles and caps were used as 

the constraints. 

 

5.2.4  Scenario 4 discussion 
 

The same constraints as with the water level apply to the water bottles and caps as they are 

all used as variables to program the SAS code.  

 

Table 4.14 specifies the customer requirements for the order in Scenario 4, which consists of 

a total number of 39 bottles and caps.  The time to manufacture the customer order is 

determined by executing the SAS code and indicates the amount of water, bottles and caps 

used to complete the order.  Table 4.14 shows the TTM for both the Automated and HMI 

approach and is depicted in Figure 4.10 where it is noticeable that the TTM for both 

approaches were the same, which is 30,2 minutes.  The amount of water used to complete the 

order was 16 liters which is well above the 50% level of the storage tank and 39 bottles and 

caps were used which is below the limits as set out in Section 3.11.   

 

The results obtained from the SAS program indicates that the OEE percentage is well above 

90% and the constraint levels never reached 50% which allowed the machine to complete the 

order in fully automated mode without any human intervention needed.  

 

5.2.5   Scenario 5 discussion 
 

The customer requirements for Scenario 5 are indicated in Table 4.15 which shows a total 

number of 95 bottles for the 330ml and 500ml to be filled and capped.  Table 4.15 shows the 

results of the TTM for Automated mode versus the HMI mode after execution of the SAS 

program.   
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Both Customer orders A and B were executed by the machine only as the constraint levels 

are above 50% and the OEE is above 90%.  As soon as the constraint levels reach 50% or 

25%, the alert is sounded where the HMI requests whether production should continue, slow 

down or stop.  This is the case where Customer order C, D and E is encountered where the 

constraint levels drops below 50%.  When Customer order C is reached, the amount of 

bottles and caps are 38 which is below the 50% level.  At this instant the human can 

determine whether there is enough water, bottles and caps available for the process to 

continue or stop, by making use of the information received and displayed on the HMI. 

 

The same applies to Customer orders D and E.  For completion of the order, almost 40 liters 

were used but human intervention was needed when the limitations of the constraints were 

met.  Figure 4.11 shows the chart with the resulting output of Scenario 5 indicating the 

TTM’s for the Automated Mode in contrast to the HMI Mode.  The TTM for the HMI Mode 

took 100,25 minutes to complete as opposed to the automated process that took 130 minutes 

to complete the order of the 95 water bottles.  Based on the results, the collaboration between 

the human and machine was the approach that resulted in the optimization of the production 

process. 

 

5.2.6   Scenario 6 discussion 
 

Scenario 6 is the final example that is presented for this particular study.  The requirements 

of the customers are indicated in Table 4.16 where it displays that a total number of 102 

bottles are required to be filled of which 54 was 330ml bottles and 48 bottles for the 500ml’s.  

After executing the SAS program, the results for both the Automated and HMI approaches 

were presented.  The results obtained after executing the SAS program is presented in Table 

4.16.  For the filling and capping of the 102 bottles, the total amount of water used was 

almost 42 liters, which is very close to the limit of 50 liters.   

 

The TTM for the Automated approach was 148 minutes and the HMI approach needed 135,4 

minutes to complete the order.  As can be seen in Table 4.16, customer orders A and B were 

completed without any human intervention as the level of 50% was not reached when 

producing these orders.   
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When the order for Customer C is reached, the amount of water is at 30,7 liters which is 

below the 50% level and the OEE is below 90%.  The results indicate that the human is 

required to make a decision to complete the order or to slow it down or stop while levels are 

replenished.  However, the human can see that there is still enough water, bottles and caps 

available and therefore overrides the machine to continue production and complete the order.   

Figure 4.12 illustrates the output of the test performed for completing the customer order for 

Scenario 6.  The results obtained for Scenario 6 established that the Human-Machine 

collaboration approach was faster than the Automated Mode and therefore assists in an 

optimum production time for the process. 

 

5.3 Protocol for Collaborative Decision-Making 
 

The limitations of existing research were highlighted in Section 2.5 where it was indicated 

that, at the time of writing this thesis, there were no usable guidelines or protocols to assist in 

making informed decisions of how the task allocation should be distributed between humans 

and machines.  

 

Work done by Kruger, et.al [68], Ponsa, et.al [21], Muller, Vette and Mailahn [20] and 

Garcia investigated some of the issues but there is no existing research on specifying or the 

provision of guidelines designating where the human operator is best suited in the automated 

process and where the machine should take full control. 

 

The single-case experimental study was performed on the case study, as described in       

Chapter 3.  The stochastic nature of the make-to-order process, which this case study 

undertook, limits the extent to which an automation strategy can be used in such applications. 

Keeping this in mind, a protocol was developed for indicating human-machine collaboration 

in an automated environment. 
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During this study, a generic protocol was developed for collaborative decision-making which 

includes the steps to ensue for developing a protocol as presented in Section 3.3.2.  A 

significant component in developing the protocol, described in Section 3.3, is a Key 

Performance Indicator (KPI) known as Overall Equipment Effectiveness (OEE), which is 

used to measure equipment efficiency and performance in an automated environment.   

 

The OEE is a gold standard for measuring performance and standard benchmarks exist for 

implementing an OEE score as indicated in Section 3.3.1.  

Although a world class benchmark for OEE is 85%, as stated in Section 3.3.1, this study 

adopted an OEE score of 90%. The rationale behind this is that the constraints, namely the 

water in the storage tank and the number of bottles and caps as presented in Tables 3.1 and 

3.2, deemed that a higher percentage than 85% for functioning of the plant was possible.  In 

addition, the manufacturing line for this specific case study is not very long and it functions 

in an ideal laboratory setup, hence it was decided to adopt a 90% OEE score.  It is 

noteworthy to state that for larger processes the OEE can differ, depending on the 

application, needs and industry of a company or manufacturer.  

 

With the execution of the SAS program, the output was able to identify some guidelines as to 

where the machine should perform the task or where a collaboration between the human and 

machine should take place when referring to the OEE percentage, therefore a protocol was 

developed for collaborative decision-making in an automated environment.  A novel solution 

that was achieved in this study is that it was able to use a SAS model to be a generic solution 

allowing for customization of constraints, variables and limitations to suit the needs of the 

user. 
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For this particular case study, the limitations accepted as input to the SAS program for 

determining the TTM’s for both approaches as set out in Section 3.11 were as follows: 

 

Constraints: 

  Amount of water available, number of bottles and number of caps 

Limitations: 

 Total liters of water available = 50lt 

 Total no of 330ml bottles = 50 

 Total no of 500ml bottles = 50 

 Total no of caps = 100  (The same size cap is used for both 300ml and 500ml bottles) 

  

Variables:  Each customer order had different requirements with respect to number 

and size of bottles ordered. 

  Decisions to be made at 50% of constraint levels and at 25% of constraint levels –   

   whether machine continues the process or does it need human intervention which  

was indicated by taking the constraints and the OEE score into consideration. 

 

The nature of the SAS model is thus that, irrespective of the constraints, variables and 

limitations, it is possible to customize the program to accept different variables as inputs. 

 

5.4 Chapter Conclusion 
 

The aim of this chapter was to summarize the limitations of existing research followed by a 

review of the results for each scenario that was tested during the execution of the experiments 

in SAS.  Insights gained from the analysed data was shared and based on the results, the 

research aimed to show how some of these limitations were overcome.   

The results obtained from the execution of the single-case experiment proved the hypothesis 

that human-machine collaboration contributes to optimizing the production time for the  

automated production plant in this specific case study. 
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6 Chapter 6: Research Contributions and Conclusion 
 

6.1 Introduction 
 

This chapter aims to highlight an original contribution to the existing body of knowledge. 

The ultimate goal of the study was to explore the importance of human-machine 

collaboration in a Smart manufacturing environment and to provide a protocol with 

guidelines/tasks as to where the machine is best to continue a process and where the best fit 

for human intervention will be in the factory of the future. 

 

The achieved results are showcased, analyzed and discussed and the research goals and 

objectives of the study are revisited.  The conclusion to the research is drawn by identifying 

the research contributions of the study and finally an emphasis to the future scope of the 

study is brought to light. 

 

6.2 Summary 
 

The first chapter introduced the research project and stated the problem identified that the 

research intended to solve.  Thereafter an appropriate hypothesis was stated followed by the 

research aim and list of objectives.  The research objectives were used to articulate the 

project’s research methodology.  To conclude chapter 1, a layout of the thesis was presented.  

In Chapter 2 the most relevant contributions of the content that was reviewed were discussed 

through a review of literature relating to the study.  This was done by giving an overview of 

Industry 4.0 after which Smart manufacturing was introduced, followed by several models 

employed in the Smart manufacturing environment.  This highlighted the research problem 

identified.  The chapter was concluded by examining the limitations of existing research in 

the relevant field for this particular study.  The third chapter focussed on the research 

methodology employed to provide solutions to the problem which was a single-case 

experimental  study executed on the automated plant.  The steps for developing a generic 

protocol were introduced whereafter the water bottling plant utilized for this study was 

discussed showcasing the two models identified that were tested using a single-case 

experimental research approach.   
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This chapter detailed the two models, namely a fully automated approach versus a human-

machine collaborative approach for completing a set of orders.  SAS programming was used 

in the execution of the data collected and provided valuable outputs for the determining of 

optimization of the automated system.  Chapter 4 portrayed the results and conducted an 

analysis of the results achieved.  A detailed discussion of the scenarios tested in Chapter 4, is 

presented in Chapter 5 which summarized the limitations of existing research followed by a 

review of the results for each scenario that was tested during the execution of the experiments 

in SAS.  Insights gained from the analysed data was shared and based on the results, the 

research aimed to show how some of these limitations were overcome by being able to 

develop a generic protocol for collaborative decision-making in a Smart manufacturing 

environment. 

 

6.3 Research Aim and Objectives 
 

The aim of this research was to investigate and establish the importance of human 

intervention in a collaborative decision-making process for the optimum completion of tasks 

performed by an ICT enabled Smart automated manufacturing system and propose a protocol 

to determine the tasks/actions best performed by machine, by a human and a collaboration of 

human and machine. 

 

The main goal of the research was to determine the effects of human-machine collaboration 

on an automated system as it was established, through an extensive literature review, that the 

absence of collaborative decision-making processes were recognized as a problem in 

achieving optimum performance of automated systems and thus the research gap was 

identified. 
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6.3.1 Objective 1: Testing, analyzing and validation of the production time 

for a machine only and the collaboration of a human-and-machine 

system 

Industry 4.0 has revolutionized the way manufacturing was done up to now where production 

moved away from a make-to-stock approach, which was the traditional approach, to a make-

to-order approach [11], [62].  By implementing a mixed-model stochastic method, customers 

will be able to place orders in accordance with their unique needs for make-to-order products, 

which meant that the factory relies on a random probability to produce orders as it is difficult 

to predict what the customer's orders will be [12].  As a result of this, an important concern is 

the effect that it will have on the interaction between human and machine, as the role of 

human operators in automated production systems becomes more advanced involving 

activities of decision-making, interpretation of information and observing real-time data in 

the manufacturing process [69].   

 

Given the level of human interaction, which is constantly present in automated systems, it 

becomes important to consider how to incorporate human skillsets in the Industry 4.0 

environment for the human to form part of the production control loop [20], [21].  Based on 

this, it becomes important to consider how a collaborative decision-making process between 

the human and machine will benefit the automated manufacturing process [4].  

 

The lack of collaborative decision-making in modern Smart factories has been identified as a 

problem, therefore this study aimed to determine how to implement collaborative decision-

making in an automated environment [4].  Several methods were presented, however, to 

achieve the objectives, a single-case experimental study was implemented [53].  The single-

case experimental approach was chosen to prove that a specific theory holds and that all 

potential doubts are removed.  The single-test case experiment was designed and executed 

using a case study of an existing fully automated water bottling plant to test and prove the 

theory, which is that the completion time for customer orders received will be optimal when 

the human and the machine collaborate for the completion of the production process.  
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Two different scenarios were introduced to determine the impact of collaborative decision-

making in the automated system, namely the machine-only approach and, secondly, a 

collaboration between the human and the machine. 

 

By executing the single-experimental setup through practical examples, it was possible to 

determine the Total Time to Manufacture (TTM) for each approach.  The TTM was the most 

important outcome to determine for each approach, as it contributed towards identifying 

which approach played an important part towards optimised production times.   

 

6.3.2 Objective 2: Determining the effects of human-machine collaboration 

on an automated production system from the testing process. 

Several studies previously have looked at the impact of human-machine collaboration on 

automated systems and some have shown that there is merit in having a human included as 

part of the production control loop. An example of such a study was performed by Klump, 

et.al [70] whereby a traffic control problem was introduced to create possible models for 

collaborative decision-making.  In this study it was found that a collaboration between 

human and machine was the preferred model as it lead to fewer traffic collisions [70].  

Another example is a study done by Kruger et. al [47], which found that both humans and 

machines have strengths and weaknesses and it was argued that a collaborative approach 

should make use of both sides during the production process.  

 

Based on the results from previous studies, this study was done to determine if a similar 

pattern arose in this research study through testing the impact of collaborative decision-

making in a Smart manufacturing environment using an existing automated water bottling 

plant as a case study.   
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Chapter 4 examined the testing that was done on the water bottling plant case study and by 

interpreting the results, it was established that previous studies had some merit which was 

proven by this research study. By performing the single-case experimental study, it was 

possible to determine the effects of human-machine collaboration on an automated 

production system by comparing the TTM’s of the fully automated approach and the human-

machine collaboration approach using the experimental results.   

 

The results of this research study indicated the impact of human-machine collaboration 

which was that the completion time for customer orders were faster as compared to a fully 

automated mode, and therefore assisted in an optimum production time for the manufacturing 

process. A journal article presenting the results of this specific research was published by 

Coetzer, et. al [71].   

6.3.3 Objective 3: Developing a protocol with guidelines on tasks/actions best 

performed by a machine, a human and a collaboration of human and 

machine. 

Based on Objectives 1 and 2, the major drawback from all existing research was that while 

there has been enough research to show that collaborative decision-making will add value to 

a manufacturing process, there has never been a protocol or guidelines to state how this can 

be achieved.  The lack of such guidelines or protocols were the reasoning behind developing 

a protocol for collaborative decision-making in an automated environment in this study.   

 

In achieving the third objective, this research used the Overall Equipment Effectiveness 

(OEE) approach, which is a key factor in developing a protocol for an automated 

environment.  The OEE is a Key Performance Indicator (KPI) used to measure equipment 

efficiency and performance [56].  OEE is the gold standard for determining manufacturing 

productivity and efficiency [58] and an OEE score of 90% was used as a benchmark in this 

study as a tool in supporting decision-making and equipment effectiveness.  A formula for 

calculating the OEE and how it can be formulated to be included in a SAS program was 

developed.  It was decided that where the OEE is 90% and above, the automated system will 
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carry out the process and where the OEE falls below 90%, the human should intervene in the 

production process.  

By comparing the results of the two models based on the output from SAS, conclusions could 

be drawn that assisted in developing a set of guidelines to indicate when a human-machine 

collaboration should be used during the production process. 

 

Based on the evidence presented, Objective 3 was achieved and the study was able to 

develop a generic protocol with guidelines on tasks or actions best performed by a machine, a 

human, and a collaboration of human and machine.    

 

6.4 Research Contributions 
 

This research project developed a protocol for collaborative decision-making in a           

Smart manufacturing environment.  The following contributions from the study are 

considered to be novel; 

 

6.4.1 Contributions to existing knowledge 
 

Several journal articles and research studies related to the field of human-machine interaction 

and collaborative decision-making in automated environments were studied starting from 

2009 [22] (M. Rother) to 2022 [58] (J. Trout).  As discussed in the limitations of the study in 

Section 2.5, numerous studies were done on how the interaction and communication of the 

human operator within the automated environment processed can become part of the 

production process control loop.   

 

With reference to the problem statement identified in Section 1.2, no existing research was 

found at this time related to providing a protocol or guidelines of where the machine should 

be more pertinent in the production process or where a collaboration between the human and 

machine is the more applicable method.  The problem identified paved the way for this 

specific research study to investigate the problem and to put forward a protocol for providing 

guidelines on where the machine should complete a process and when a human should 
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intervene which will result in the optimization of the automated production process in a 

Smart manufacturing environment. 

 

A total of four journal articles, as indicated in Section 6.6, indexed in SCOPUS journals 

related to Computer Science, were published at the time of submitting this thesis. 

 

The paper titled “Collaborative Decision-Making for Human-Technology Interaction - A 

Case Study Using an Automated Water Bottling Plant” [9] added on to the existing research 

in the field.  This paper concentrated on current research performed in this field with a 

comprehensive literature review, followed by an evaluation of potential models for Human 

Technology Interaction. The paper then uses the case study of an automated water bottling 

plant to advance the study in collaborative decision-making and concludes with a discussion 

on the advantages of collaborative decision-making. 

 

The paper titled “Devising a Novel Means of Introducing Collaborative Decision-Making to 

an Automated Water Bottling Plant to Study the Impact of Positive Drift” [11], examines to 

develop a novel means of introducing a collaborative decision-making framework to an 

automated assembly line while determining the impact of collaborative decision-making on 

positive drift involving humans as well as machines to reduce the impact of positive drift in 

automated assembly lines. 

 

The methodology used in the study was detailed in the paper titled “Using a Single Group 

Experimental Study to Underpin the Importance of Human-in-the-Loop in a Smart 

Manufacturing Environment” [72].  The single group experimental study was introduced to 

investigate an original method for presenting the Human-in-the-Loop to the existing 

automated plant utilized in this study.  The paper identified ways in which the human 

operator can be kept in the production loop resulting in having a positive contribution to the 

optimization of production times in an automated manufacturing plant. The methodology for 

setting up the experimental study was highlighted and the paper was concluded by 

showcasing the results of the study. 
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"The Impact of Collaborative Decision-Making in a Smart Manufacturing Environment: 

Case Study Using an Automated Water Bottling Plant” [71],  was a paper written to highlight 

the results of the study with respect to the case study that was utilized.  The results and 

impact of collaborative decision-making in an automated environment was showcased in this 

paper.   

 

Based on all the above mentioned articles and the research done during this study, a generic 

protocol for collaborative decision-making was developed.  A novel contribution of the study 

is that the protocol is able to be customized based on different constraints, variables and 

limitations for a variety of customer inputs and provide the necessary guidelines for 

application in similar automated environments. 

 

6.5 Future Work 
 

The Fifth Industrial Revolution, also recognized as Industry 5.0, is a new stage of 

industrialization which deals specifically with machines and humans and their collaborations 

to improve processes inside the workplace [73].  It will be worthwhile for a study to look at 

how the protocol developed in this research study, can be implemented in an Industry 5.0 

environment. 

 

An additional study that may possibly be beneficial would be to gain a better understanding 

of what elements are done better by humans and what elements are best done by machines.  

Further studies can also take a closer look at why human intervention cannot be avoided, 

even if  better automation processes are implemented in the manufacturing process. 

 

In addition, to verify the SAS model, further testing can be done on real automated industries 

so as to see how applicable it will be in manufacturing environments. 
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6.6 Scientific Outcomes 
 

J Coetzer, HJ Vermaak and RB Kuriakose. “Collaborative Decision-Making for Human-

Technology Interaction - A Case Study Using an Automated Water Bottling Plant” [9]. 

Journal of Physics Conference: ISSN: 17426588, 10.1088/1742-6596/1577/1/012024, 2020. 

 

J Coetzer, HJ Vermaak and RB Kuriakose. “Devising a Novel Means of Introducing 

Collaborative Decision-Making to an Automated Water Bottling Plant to Study the Impact of 

Positive Drift” [11] in Lecture Notes in Networks and Systems : ICT Analysis and 

Applications.  Volume 154, pp 661-669. ISBN: 978-981-15-8354-4, doi: 10.1007/978-981-

15-8354-4, 2021. 

 

Coetzer J, Vermaak HJ, Kuriakose RB, and Nel G.  “Using a Single Group Experimental 

Study to Underpin the Importance of Human-in-the-Loop in a Smart Manufacturing 

Environment” [72], Advances in Intelligent Systems and Computing. SUSCOM 2022, 

Volume 464, ISSN:2194-5357, doi: 10.1007/978-981-19-2394-4, 2022. 

 

Coetzer J, Vermaak HJ, Kuriakose RB, and Nel G, 2022. "The Impact of Collaborative 

Decision-Making in a Smart Manufacturing Environment: Case Study Using an Automated 

Water Bottling Plant" [71], in Lecture Notes in Networks and Systems: Proceedings of 

Seventh International Congress on Information and Communication Technology. 

ICICT2022, London, Volume 464, pp 321-332.  ISBN 978-981-19-2393-7, ISSN 2367-3370,  

doi: 10.1007/978-981-19-2394-4_30 
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8 Appendix A  
 

A Snapshot of the SAS code for determining the different combinations of constraints 
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9 Appendix B 
 

Appendix B shows the full results for Scenario 4 – Scenario 6 as executed during the single-

case experiment of the study. 

 

B1: Scenario 4 – Automated and HMI approach with bottles and caps as constraints 

 

Table B1.1 indicates the customer requirements for filling and capping the 330ml and 500 ml 

bottles for Scenario 4.  For this scenario, a total of 39 bottles need filling and capping. 

     

B1 1. Customer requirements for the 300ml and 500ml bottles - Scenario 4 

Customer 
No of 330ml 
 caps, bottles 

No of 500ml 
 caps, bottles 

Total No of 
Caps & Bottles 

A 8 2 10 

B 2 9 11 

C 2 3 5 

D 3 1 4 

E 5 4 9 

TOTAL NO OF 
CAPS & 
BOTTLES 20 19 39 

 

B1: Scenario 4 – Filling and capping the 330ml and 500ml bottles: Automated mode 

 

As indicated in Table B1.2, a total of 20 of the 330ml bottles must be filled and capped for 

this specific customer order. Figure B1.3 illustrates the time to manufacture the order and 

indicates the number of bottles and caps needed for each order. 
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B1 2. Manufacturing time for filling and capping 330ml and 500ml bottles: Automated 

Customer 
No of 330ml 
 caps, bottles 

No of 
500ml 
 caps, 
bottles 

Total No 
of Caps & 
Bottles 

Time 330ml 
Automated  
(minutes) 

Time 500ml 
Automated  
(minutes) 

A 8 2 10 6 1,6 

B 2 9 11 1,5 7,2 

C 2 3 5 1,5 2,4 

D 3 1 4 2,25 0,8 

E 5 4 9 3,75 3,2 

TOTAL 20 19 39 15 15,2 

 

 

B1 3. Diagram presenting the manufacturing time of customer order for 300ml and 500ml bottles: 

Automated 

 

B1: Scenario 4 – Filling and capping the 330ml and 500ml bottles: HMI mode 

 

The same set of orders, as indicated in Table B1.4 for the automated mode, is applied for the 

execution of the experiment in HMI mode. 
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B1 4. Manufacturing time for filling and capping the 330ml and 500ml bottles: HMI mode 

Customer 

Total No 
of Caps & 
Bottles 

Time to manufacture 
330ml 
Human Intervention 
(minutes) 

Time to manufacture 
500ml 
Human Intervention 
(minutes) 

A 10 6 1,6 

B 11 1,5 7,2 

C 5 1,5 2,4 

D 4 2,25 0,8 

E 9 3,75 3,2 

TOTAL 39 15 15,2 

 

The manufacturing time for the customer order in Scenario 4 using the HMI mode can be 

seen in Figure B1.5. 

 

B1 5. Diagram presenting the manufacturing time of Scenario 4 in HMI mode 

 

  B1: Scenario 4 – TTM for manufacturing in Automated mode vs HMI mode 

 

As can be seen from the results showcased in Table B1.6 the TTM for both modes were the 

same for this scenario.   
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B1 6. TTM for filling and capping: Automated vs HMI – Scenario 4 (HMI 

Customer 

Total No 
of Caps & 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 
Human 

Intervention 

A 10 7,6 7,6 3,64 100% No 

B 11 16,3 16,3 8,8 100% No 

C 5 20,2 20,2 10,96 100% No 

D 4 23,25 23,25 12,45 96,02% No 

E 9 30,2 30,2 16,1 90,08% No 

 

The total amount of water used for filling and capping the 39 bottles for this customer order 

were 16 liters.  The constraints never reached 50% which means that the machine could 

complete the order without human intervention.  The machine efficiency as portrayed by the 

OEE%, stays above 90% for the specific order, therefore it can be deduced that the machine 

is in full control for the duration of completing this order and completed the order in 30,2 

minutes.  Figure B1.7 graphically shows the results for Scenario 4.   

 

 

B1 7. TTM for filling and capping: Automated mode vs HMI mode - Scenario 4. 
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B2: Scenario 5 –Bottles and caps as constraints 

 

Table B2.1 indicates the customer order requirements for Scenario 5.  The following section 

will display the results for executing Scenario 5. 

 

B2 1. Customer requirements for the 330ml and 500ml bottles – Scenario 5 

Customer 
No of 330ml 
 caps, bottles 

No of 500ml 
 caps, bottles 

Total No of Caps 
& Bottles 

A 13 15 28 

B 18 12 30 

C 7 11 18 

D 3 7 10 

E 4 5 9 

TOTAL NO OF 
BOTTLES AND CAPS 45 50 95 

 

 

B2: Scenario 5 – Filling and capping 330ml and 500ml bottles: Automated mode 

 

B2 2. Time to fill and cap customer order for 330ml and 500ml bottles: Automated 

Customer 
No of 330ml 
 caps, bottles 

No of 500ml 
 caps, bottles 

Total No of 
Caps & 
Bottles 

Time 330ml 
Automated  
(minutes) 

Time 500ml 
Automated  
(minutes) 

A 13 15 28 9,75 12 

B 18 12 30 18 15,6 

C 7 11 18 12,25 22,55 

D 3 7 10 6 14,35 

E 4 5 9 8 11,5 

TOTAL 45 50 95 54 76 
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B2 3. Diagram presenting the manufacturing time for 330ml and 500ml bottles for Scenario 5: Automated 

mode 

 

B2: Scenario 5 – Filling and capping 330ml and 500ml bottles: HMI mode 

 

Table B2.4 presents the time to fill and cap the 330ml and 500ml bottles for customer order 

in Scenario 5 when the HMI mode is executed. 

 

B2 4. Filling and capping time for the 300ml and 500ml bottles for Scenario 5: HMI mode 

Customer 

Total No of 
Caps & 
Bottles 

Time to 
manufacture 330ml 
Human Intervention 
(minutes) 

Time to manufacture  
500ml 
Human Intervention 
(minutes) 

A 28 9,75 12 

B 30 15 13,6 

C 18 7,58 16,13 

D 10 3,5 10,27 

E 9 4,67 7,75 

TOTAL 95 40,5 59,75 
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B2 5. Diagram presenting the manufacturing time for 330ml and 500ml bottles for Scenario 5:  HMI mode 

 

B2: Scenario 5 – TTM for manufacturing 330ml and 500ml bottles: Automated mode vs 

HMI mode 

 

Table B2.6 shows the TTM’s of the customer order for Scenario 5, the amount of bottles and 

caps used and where the human should intervene in the process.  

 

B2 6. TTM of customer order of 330ml and 500ml bottles: Automated vs HMI mode – Scenario 5  

Customer 

Total no of 
caps and 
bottles  

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 
Human 

 Intervention 

A 28 21,75 21,75 11,79 100% No 

B 30 55,35 50,35 23,73 90,97% No 

C 18 90,15 74,06 31,54 82,15% Yes 

D 10 110,5 87,83 36,03 79,48% Yes 

E 9 130 100,25 39,85 77,11% Yes 

 

For this specific order, the total amount of liters used to fill and cap the 330ml and 500ml 

bottles were almost 40 liters. The number of bottles and caps needed were 95, as identified in 

Table B2.6.  The TTM for completing this order in automated and human intervention mode 

can be perceived in Figure B2.7.  
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B2 7. Diagram showing the TTM of filling and capping customer orders for 330ml and 500ml bottles: 

Automated vs HMI mode – Scenario 5 

 

As graphically pointed out in Figure B2.7, the TTM for the Automated approach to complete 

the customer order for Scenario 5, was 130 minutes in contrast to the Human-Intervention 

approach completed the order in 100,25 minutes. 

 

B3: Scenario 6 – Bottles and Caps as Constraints 

 

Table B3.1 specifies the customer order requirements for Scenario 6.  The following section 

will display the results obtained after executing Scenario 6. 

 

B3 1. Customer requirements for the 330ml and 500ml bottles – Scenario 6 

Customer 

No of 330ml 
 caps, 
bottles 

No of 500ml 
 caps, bottles 

Total No 
of Caps & 
Bottles 

A 12 9 21 

B 10 16 26 

C 18 10 28 

D 7 5 12 

E 7 8 15 

TOTAL 54 48 102 
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B3: Scenario 6 – Filling and capping 330ml and 500ml bottles: Automated mode 

 

B3 2. Manufacturing time of customer order Scenario 6 for 330ml and 500ml bottles: Automated mode 

Customer 

No of 330ml 
 caps, 
bottles 

No of 500ml 
 caps, bottles 

Total No of 
Caps & 
Bottles 

Time to 
manufacture 
330ml 
Automated  
(minutes) 

Time to 
manufacture  
500ml 
Automated  
(minutes) 

A 12 9 21 9 7,2 

B 10 16 26 7,5 16,8 

C 18 10 28 31,5 18 

D 7 5 12 14 10,25 

E 7 8 15 15,75 18,4 

TOTAL 54 48 102 77,75 70,65 

 

The results in Table B3.2 indicates the manufacturing time to complete the customer order 

for Scenario 6 in Automated Mode. 

 

 

B3 3.  Manufacturing time for 330ml and 500ml bottles for Scenario 6: Automated mode 
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B3: Scenario 6 – Filling and capping 330ml and 500ml bottles: HMI mode 

 

B3 4. Time to manufacture 330ml and 500ml bottles for Scenario 6: HMI mode 

Customer 

No of 500ml 
 caps, 
bottles 

Time to manufacture  
330ml 
Human Intervention 
(minutes) 

Time to manufacture  
500ml 
Human Intervention 
(minutes) 

A 9 9 7,2 

B 16 7,5 15,47 

C 10 19,5 13,83 

D 5 8,17 7,33 

E 8 8,75 12,4 

TOTAL 48 52,92 56,23 

 

 

 

B3 5. The Manufacturing time to complete Scenario 6 customer order: HMI mode 

 

 

 

 

 

 

 

© Central University of Technology, Free State



115 
 

 

B3: Scenario 6 – TTM for filling and capping customer order: Automated vs HMI 

mode 

 

B3 6. TTM of customer order for 330ml and 500ml bottles: Automated vs HMI mode – Scenario 5 

Customer 

Total No of 
Caps & 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 
Human 

 Intervention 

A 21 16,2 16,2 8,46 100% No 

B 26 40,5 39,17 19,76 96,71% No 

C 28 90 72,5 30,7 80,56% Yes 

D 12 114,25 88 35,51 77,02% Yes 

E 15 148,4 109,15 41,82 73,55% Yes 

TOTAL 102      

  

As indicated in Table B3.6, the order for Scenario 6 needed a total of 102 bottles and caps to 

complete.  The amount of water used for completing the order was almost 42 liters and as per 

Table B3.6, the human had to intervene from the order for Customer C as the OEE dropped 

below 90%.  Figure B3.7 illustrates the results found for the TTM of filling and capping the 

orders in Automated mode vs the HMI mode.  
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B3 7. Diagram showing the TTM of filling and capping all customer orders for 330ml and 500ml bottles: 

Automated vs HMI mode - Scenario 6. 

 

Based on the results shown in Table B3.6 and Figure B3.7, one can see that the Total Time to 

Manufacture for the Automated approach was 148,4 minutes as opposed to the Human-

Intervention approach that took a TTM of 109,5 minutes to complete the customer order for 

Scenario 6. 
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10 Appendix C 
 

A list of models based on OEE, listed by the author name and model name as presented by 

Carmen, et.al [56], is shown in Table 1. A brief description of each model is provided. 

 

Table 4. List of models based on OEE. 

Author(s) Year Model Name Brief Description 
Huang, S.H.; Dismukes, J.P.; 

Shi, J.; Su, Q.;Wang, G.; 

 Razzak, M.A.; Robinson, 

D.E. 2002 Overall throughput 

Calculates the productivity of a manufacturing 

system 

measures the factory level performance;  

Muthiah, K.M.N.; Huang, 

S.H. 2007   
 

identifies the bottleneck and hidden capacity. 

deRon, A.J.; Rooda, J.E. 2005 Equipment Effectiveness 

Measures the equipment-dependent states, such as  

productive state, scheduled downstate and  

unscheduled downstate. 

Nachiappan, R.M.; 

Anantharaman, N. 2006 Overall line effectiveness 

Measure the productivity of a line manufacturing 

system 

Sheu, D.D. 2006 Total equipment efficiency 

To achieve total equipment efficiency, it must 

include  

the resource usage efficiency of a machine. This 

input 

factor (resource requirements) is known as the 

overall 

input efficiency. 

Muchiri, P.; Pintelon, L. 2008 

Overall asset effectiveness 

Overall production 

effectiveness 

Measures losses due to external and internal factors 

contributing to overall production/asset 

effectiveness. 

Badiger, A.S.; Gandhinathan, 

R.;  

Gaitonde, V.N. 2008 Modified OEE 

Includes new factor usability; it classifies unplanned 

downtime events into equipment-related downtime. 

Dunn, T. 2008 

Overall equipment 

effectiveness of a 

manufacturing line 

Measures the performances of an automated line in 

the system. 

Elevli, S.; Elevli, B. 2010 

OEE for shovel/OEE for 

trucks OEE is calculated for mining equipment. 

Anvari, F.; Edwards, R.; Starr, 

A. 2010 

Overall equipment 

effectiveness market-based 

Monitors production in the steel market; measures 

equipment effectiveness for a full process cycle. 

Raja, P.N.; Kannan, S.M.; 

 Jeyabalan, V. 2010 Overall line effectiveness 

The performance of the production line in the 

manufacturing system is measured. 

Anvari, F.; Edwards, R. 2011 

Integrated equipment 

effectiveness 

This integration is based on three elements: 

loading-based, capital-based and market-based 

elements. 

Wudhikarn, R. 2012 

Overall equipment and 

quality cost loss 

Calculates the losses of equipment, specifically 

production and quality cost losses, in monetary units. 

Eswaramurthi, K.G.;  

Mohanram, P.V. 2013 

Overall resource 

effectiveness 

Includes losses related to resources, e.g., people, 

machines, materials and methods. 
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Jauregui Becker, J.M.; Borst, 

J.; 

 van der Veen, A. 2015 

Machining equipment 

effectiveness 

Calculates the OEE of a high-mix-low-volume 

manufacturing environment. 

Garza-Reyes, J.A. 2015 

Overall resource 

effectiveness 

Provides information regarding the process 

performance based on factor material efficiencies, 

process cost and material cost. 

Domingo, R.; Aguado, S. 2015 

Overall environmental  

equipment effectiveness 

Identifies losses due to sustainability, based on the 

calculated environmental impact of the workstation. 

Zammori, F. 2015 

Fuzzy overall equipment 

effectiveness 

Identifies performance fluctuations through LR 

Fuzzy numbers. 

Dindarloo, S.R.; Siami-

Irdemoosa, E.;  Frimpong, S. 2016 

Stochastic shovel 

effectiveness 

Quantifies performance effectiveness of electric and 

hydraulic shovels. 

Mohammadi, M.; Rai, P.; 

 Gupta, S. 2017 OEE of BELT equipment 

Bucket-based excavating, loading and transport 

(BELT) 

including all equipment comprising a bucket, e.g., 

draglines, shovels, load-haul-dumps and trucks. 

Larrañaga Lesaca, J.M.; 

Zulueta Guerrero, E.; Lopez-

Guede, J.M.; Ramos-Hernanz, 

J.; Larrañaga Juaristi, A.; 

Akizu, O. 2017 

Strategic equipment 

effectivenessOperational 

equipment effectiveness 

A global measure of the e activeness of an 

integratedelectrical system. 

da Silva, A.F.; Marins, F.A.S.; 

Tamura, P.M.; Dias, E.X. 2017 

Overall machinery  

effectiveness 

Identifies and ranks decision-making-units in terms 

of efficiency 

Pinto, M.M.O.; Goldberg, 

D.J.K 

Cardoso, J.S.L. 2017 OEE of port terminal 

Identifies the most efficient terminal, addressing 

either manageable or unmanageable factors. 

Puvanasvaran, A.P.;Yoong, 

S.S.; 

 Tay, C.C. 2017 Modified OEE 

Includes losses associated with human factors and 

usability (the frequency of setup and  

changeover process) 

Nakhla, M. 2018 

Extended overall equipment 

effectiveness 

Evaluates the entire process considering human 

resources and equipment Performance. It is applied 

in 

medicals activities of operating rooms. 

García-Arca, J.; Prado-Prado,  

J.C.; Fernández-González, 

A.J. 2018 

OEE to transport 

management 

Improves efficiency in road transport by adapting 

OEE 

to transport management. 

Muñoz-Villamizar, A.; 

Santos, J. 

 Montoya-Torres, J.; Jaca, C. 2018 Modified OEE 

Optimizes the effectiveness of urban freight 

transportation. 

Braglia, M.; Castellano, D.; 

 Frosolini, M.; Gallo, M. 2018 

Overall material usage  

effectiveness 

Measures material usage effectiveness and identifies 

material loss in the manufacturing process. 

Durán, O.; Capaldo, A.;  

Duran Acevedo, P. 2018 

Sustainable overall  

throughput ability 

effectiveness 

Includes sustainability criteria and can be used in the 

system lifecycle. 

Braglia, M.; Gabbrielli, R.;  

Marrazzini, L. 2019 Overall task effectiveness 

Analyses and evaluates losses related to manual 

assembly tasks. 

Abdelbar, K.M.; Bouami, D.;  

Elfezazi, S. 2019 OEE-TCQ 

Improves the process approach in maintenance in  

terms of time, cost and quality. 

Brodny, J.; Tutak, M. 2019 

Overall effectiveness 

indicator 

Adapted for mining production to examine the 

effectiveness of the mining machine. 
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Tang, H. 2019 Standalone OEE 

Identifies system bottleneck and excludes effects 

from 

upstream and downstream. 

Durga Prasad, N.V.P.R.; 

Radhakrishna, C. 2019 

Overall substation  

effectiveness 

Measures substation performances and indicates the 

overall maintenance performances. 

 

As presented above by Carmen, et. al [73], the OEE was adapted to resolve gaps in various 

matters, such as sustainability, human factor, transport, manufacturing system, mining, cost, 

port and resources. 
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11 Appendix D 

 

As referred to in Section 3.3.1 an OEE score of 85% is considered world class for various 

manufacturers [58].  However, in this study an OEE score of 90% was adapted to determine 

where the machine must complete the process in fully automated mode or when human 

intervention is needed for completion of the process.  The following tables and figures 

showcases the results after executing the experiments when an OEE score of 85% is 

implemented.  The exact same set of customer orders were used as input to SAS to determine 

the effect on the results of where the machine should complete the process and where human 

intervention is needed when the OEE score is 85%.  The results of Scenarios 1 – 6 are shown 

in this appendix. 

 

D1: Results for Scenario 1 with 85% OEE score 

Based on the results for Scenario 1 with an OEE score of 85% is, it can be seen that the 

output is the same as when the OEE score of 90% is implemented for Scenario 1.  The OEE 

score is well above 85% in this scenario, thus the machine completes the order without any 

human intervention as detectable in Table D1. 

 

Table D1. TTM of Automated mode vs HMI mode – Scenario 1(OEE = 85%) 

Customer  

Total no 
of 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt used OEE % 
Human to 
Intervene 

A 18 13,95 13,95 7,47 100% No 

B 9 20,9 20,9 11,12 100% No 

C 13 31 31 16,6 100% No 

D 8 38,5 38,08 20,09 98,91% No 

E 6 46,1 44,02 22,04 95,49% No 

Totals 54 46,1 44,02    
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Figure 1.  Results of the TTM for Automated mode vs HMI mode – Scenario 1 (OEE = 85%) 

 

 

D2: Results for Scenario 2 with 85% OEE score 

The results of implementing a 85% OEE score is shown in Table D2.  Customer order C has 

an OEE score of 87,74% which allows the machine to complete the order without human 

intervention as opposed to the results of Scenario 2 in Section 4.4.5, where Customer order C 

requires human intervention. 

 

Table D2. TTM of Automated mode vs HMI mode – Scenario 2 (OEE = 85%) 

Customer  
Total No of 
bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 

Human 
to 
Intervene 

A 28 21,75 21,75 11,79 100% No 

B 20 40,35 39,35 20,43 97,52% No 

C 21 72,65 63,74 29,23 87,74% No 

D 15 103 83,34 35,37 80,91% Yes 

E 15 137 103,59 41,17 75,61% Yes 

Total no 
of bottles 99 137 103,59  
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Figure D2.  Results of the TTM for Automated mode vs HMI mode – Scenario 1 (OEE = 85%) 

 

Implementing an OEE score of 85% has no effect on the TTM’s of the order as can be seen 

in Figure D2 when compared with Figure 4.6 in Section 4.4.5. 

 

D3: Results for Scenario 3 with 85% OEE score 

The results of implementing a 85% OEE score is shown in Table D3.  Customer order B has 

an OEE score of 85,05% which indicates that the machine will complete the order without 

human intervention as opposed to the results of Scenario 3 in Section 4.5.4, where Customer 

order B requires human intervention when the OEE score is 90%. 

 

Table D3. TTM of Automated mode vs HMI mode – Scenario 3 (OEE = 85%) 

Customer 
Total No of 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 
Human 
Intervention 

A 34 33,3 31,13 15,64 93,48% No 

B 33 84,3 71,71 30,78 85,06% No 

C 25 135,5 106,66 42,26 78,71% Yes 

D 19 177,4 133,81 50,74 75,43% Yes 

E 19 220,2 162,11 59,73 73,61% Yes 

Total no of bottles 130      
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Figure D3.  Results of the TTM for Automated mode vs HMI mode – Scenario 1 (OEE = 85%) 

 

 

D4: Results for Scenario 4 with 85% OEE score 

Based on the results for Scenario 4 with an OEE score of 85% is, it can be seen that the 

output is the same as when the OEE score of 90% is implemented for Scenario 1 in Section 

4.6.1.  The OEE score is well above 85% in this scenario, thus the machine completes the 

order without any human intervention as detectable in Table D1.   

 

Table D4.  TTM for filling and capping: Automated vs HMI – Scenario 4 (OEE = 85%) 

Customer 

Total No 
of Caps & 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE % 
Human 

Intervention 

A 10 7,6 7,6 3,64 100% No 

B 11 16,3 16,3 8,8 100% No 

C 5 20,2 20,2 10,96 100% No 

D 4 23,25 23,25 12,45 100% No 

E 9 30,2 30,2 16,1 100% No 

TOTAL 39 30,2 30,2    
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Figure D11.  TTM for filling and capping: Automated mode vs HMI mode - Scenario 4. (OEE = 85%) 

 

 

D5: Results for Scenario 5 with 85% OEE score 

The results obtained for executing Scenario 5 with an OEE score of 85% is presented in 

Table D5.  When the results are compared to the results of Scenario 5 in Section 4.6.2, it 

indicates that the machine will complete the Customer orders A and B without any human 

intervention.  The results are the same irrespective of whether the OEE is 90% or 85%.  

 

Table D5.  TTM of customer order for the 330ml and 500ml bottles: Automated vs HMI mode – Scenario 5. 

(OEE = 85%) 

Customer 

Total no of 
caps and 
bottles  

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE% 
Human 

 Intervention 

A 13 21,75 21,75 11,79 100% No 

B 31 55,35 50,35 23,73 90,97% No 

C 38 90,15 74,06 31,54 82,15% Yes 

D 41 110,5 87,83 36,03 79,48% Yes 

E 45 130 100,25 39,85 77,11% Yes 

TOTAL  95 130 100,25    
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Figure D5. Diagram showing the TTM of filling and capping all customer orders for 330ml and 500ml 

bottles: Automated vs HMI mode - Scenario 5 (OEE = 85%). 

 

 

D6: Results for Scenario 6 with 85% OEE score 

By comparing the results of Scenario 6 in Section 4.6.3 with the results in Table D6 below, it 

shows that the results are the same regardless of whether the OEE is 90% or 85%.  

 

Table D6. TTM of customer order for the 330ml and 500ml bottles: Automated vs HMI mode – Scenario 6 

(OEE = 85%). 

Customer 

Total No of 
Caps & 
Bottles 

      TTM 
Automated 
(minutes) 

TTM Human 
Intervention 
(minutes) 

Total Lt 
used 

OEE% 
Human 

 Intervention 

A 21 16,2 16,2 8,46 100% No 

B 26 40,5 39,17 19,76 96,71% No 

C 28 90 73,83 30,7 80,56% Yes 

D 12 114,25 105,5 35,51 77,02% Yes 

E 15 148,4 135,4 41,82 73,55% Yes 

TOTAL 102 148,4 135,4    
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Figure D6. Diagram showing the TTM of filling and capping all customer orders for 330ml and 500ml 

bottles: Automated vs HMI mode - Scenario 6 (OEE = 85%). 
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1 Appendix E 

Pictures of the physical setup of the water bottling plant. 

 

 

Figure E.1.  The water bottling plant in operation. 
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Figure E.2.  A water bottle being filled at SMU1. 
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Figure E.3.  A water bottle being capped at SMU2. 
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Figure E.4.  The production process of the water bottling plant.. 
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