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Abstract 
 

The introduction of Google Street View, which is an integral part of Google Maps, has brought 

to the surface a method of roof-mounted mobile cameras on vehicles. This is regarded as one 

of the highly known and adopted methodically for capturing street-level images. Computer 

vision as one of the frontier technologies in computer science has allowed for the use of 

building artificial systems to extract valuable information from images. This approach has a 

broad range of applications in various areas such as agriculture, business, and healthcare.  

This dissertation contributes to the development and implementation of Image-Based 

Rendering (IBR) techniques by presenting a method that makes use of hexagon-based camera 

configuration for image capturing. Upon the image capturing, each segmented image was 

stored in a specific folder relative to the camera number. Following this process, the images 

were chosen based on their timestamp and GPS coordinates and copied to a master folder where 

the rendering took place. 

However, before rendering can take place, the master folder was called inside Blender 

software. The reason for placing the master folder inside Blender3D was to ensure smooth 

blending of different image datasets with fewer resources and low computing power during the 

rendering process. This is feasible as all the image datasets are in one folder as compared to 

the calling of multiple datasets from different directories which might affect the processing 

power. Subsequently, OpenCV algorithms were utilised for the Structure from Motion and 

points of cloud simulation. These techniques and algorithms were based on the available image 

datasets that were created in the master folder.  

Following the optimal image rendering, a process of image blending took place inside the 

Blender3D software where the captured images (dataset) were rendered for utilisation in the 

simulator. The use of the Structure from Motion algorithm was utilised for the development of 

the dense point image, feature, and matching detection. Furthermore, the process for extraction 

of a depth map model from the three-dimensional (3D) mesh was also highlighted as well as 

the image restoration process utilising the 3D warping approach. In addition, after these 

processes were completed, the IBR technique was utilised again for rendering the scenes from 

the multiple datasets that were captured from the Hexagon Camera Configuration Model to 

present a scenery that can allow for bidirectional movement. It is therefore noted that the entire 

work done in this dissertation was substantiated using simulations, genuine data, and physical 
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analysis based on the physically gathered raw data and results from the analysis. The study 

objectives were therefore achieved by presenting a framework that allows for virtual driving 

and bidirectional movement of the scene from a Hexagon Camera Configuration Model. 

Furthermore, the image datasets showed an improvement in the visuals, spatial details and 

quality of the panoramic images for location identification based on GPS coordinates. 

Additionally, the rendered images were observed to be smaller than the originally captured 

images.  

The study contribution was based on the GPS module which was utilised to observe and project 

the scene altitude and coordinates. Moreover, the contribution results process allows for free 

movement within the 3D-rendered scene to allow for back and forward motion as compared to 

a slide show that only allows for forwarding motion. In evaluating the efficacy of this research 

study, the objective argument highlights that through the use of a Hexagon Camera 

Configuration Model, the user is permitted to move in both the forward and reverse direction 

within a simulator as opposed to the one-directional movement. These results demonstrate the 

feasibility of utilising an alternative model for image capture as opposed to the utilisation of a 

360o omnidirectional camera and image stitching protocol. Furthermore, the study results 

demonstrate that the more the input image data, the higher the realism of such a model. In 

contrast, for 364 image datasets, the output scene is high as a result of a large number of input 

image datasets with the scene realism observed for both points of cloud and mesh-based on 

106110 points. 
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Chapter 1: Introduction to the dissertation research  
 

This chapter appraises the introduction to the research work to be conducted. The problem 

statement is outlined detailing the research question for testing the feasibility for free movement 

within the 3D-rendered scene to allow for back and forward motion as compared to a slide 

show that only allows for forwarding motion. Additionally, the study objectives, limitations, and 

expected outcomes are also outlined. 

 

1.1 Introduction 

 

Over the years different kinds of techniques have been proposed for image data collection and 

image rendering. Such techniques include but are not limited to Image-Based Rendering (IBR) 

and Model-Based Rendering (MBR). However, according to the technical merits that are found 

in the IBR technique, the technique is deemed relevant and useful for utilisation in this research 

study. This is due to its benefits such as the ability to capture real-world effects and detail the 

imperfections of the real world [1]. It has been noted in the past few years that the IBR technique 

has gained much attention mainly in image processing, computer vision, and the computer 

graphics community due to its potential to create realistic images [2]. In addition to IBR interest 

in communities, IBR is also used within the spatial knowledge framework, such as in 

geoscience, urbanism, geography, etc. that are inherent to sustainable cities, reduction in air 

pollution, and improvement of human living conditions. 

Additionally, to delineate the Virtual Map (VM) and real scenery, Google provides a service 

known as Google Maps that also possesses scenery called street view by which users can view 

the scenery as if they are driving, riding, or walking in it.  

Street View has debilitated previous restrictions on the availability of data sources for 

evaluating streets [3, pp. 337-345], [4]. Furthermore, large-scale scenes within the cities are 

associated with MBR and IBR methods [5]. However, the scalability of these two techniques is 

their implementation and developmental capabilities for Google Street View. 

In addition, the MBR technique is defined by depicting it as a classified rudimentary method 

for reconstructing a virtual view from any arbitrary viewpoint by using an explicit 3D geometric 

model and texture information about the scene, while IBR is a method that constructs a virtual 
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view by using several images captured beforehand [6, p. 87]. In an MBR system, the images 

can provide valuable information about the incident such as its location. The location has the 

exact Global Positioning System (GPS) coordinates, which can also be an estimation of the 

location. 

In 2005 Google launched what is currently known as Google Maps (Google 2014c) which is a 

free-to-use web-based mapping service that combines conventional cartography maps with 

satellite imagery and high-resolution aerial photography [7, pp. 1-16]. Images from Google 

Street View provide geographical information and service with high coverage which shapes the 

street view as a true database. Furthermore, cross-view globalisation has been addressed 

utilising a technique or method called deep learning which was identified and observed through 

scientific results that outperform the hand-craft technique [8, pp. 5007-5015], [9, pp. 2794-

2802]. Figure 1.1 presents the graphical representation of inquiring a query image to the 

reference database of the captured Google Street View imagery to find the match between a 

stored image and the query image presented by ref. [10, p. 2]. 

 

Figure 1.1: Street-view to overhead-view image matching [10, p. 2] 

 

In addition to Figure 1.1, the conventional driving simulators in driving schools or railways 

provide the driver with the view in a geometric view as indicated in Figure 1.2 [11]. Figure 1.2 
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further outlines the merged roads based on the simulation of multiple images to design a view 

as indicated.  

 

Figure 1.2: Geometric-based views of the driving environment [11]. 

 

Geometric-based views as presented in Figure 1.2 have a relatively less data size and their view 

is a result of poor photo-reality. It is for such reasons that the geometric-based rendering 

technique is not ideal for such a simulation. The selection of this rendering model is based 

against the traditional process-based 3D modelling and rendering. This can allow users the 

flexibility to change the external conditions with the time required for rendering increasing 

exponentially. The IBR model allows for the generation of rendering results of an unknown 

viewpoint by interpolating through discrete input images. As a result, geometric and IBR 

techniques are used according to their roles depending on the forecast objective of the study. 

Due to the reasons outlined earlier the use of the IBR technique is aimed to produce high output 

efficacy. This can be subjective, as the factual output result will indicate in Chapter 4. The 

model efficacy will also be outlined. 
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1.2 Problem statement 

 

The 3D data acquisition process provides the probe position and orientation that remain in static 

order to produce accurate datasets. A single 3D capacity is not able to support the translational 

motion of the simulated probes, thus the need to develop a methodology for recording and 

capturing of single 3D images and amalgamating the images into multiple 3D image datasets 

within a single unit.  

The issue of emulating street-view images for multiple image transitions for application in 

geolocalisation for utilisation in a simulator needs to be investigated. Additionally, the increase 

in the coverage renders the opportunity for image dataset scanning within the simulator. Hence 

the importance for investigating the feasibility of image rendering and permitting for 

bidirectional movement of the scene from multiple image capture in the simulator. 

 

1.2.1 The research question for this research study is as follows: 

 

Is it feasible to capture multiple images and render them for a bidirectional movement? 

• This research study seeks to explore the feasibility for image capture by making use of 

the Hexagon Camera Configuration Model. The question further seeks to investigate the 

possibility and feasibility for creating a rendered scene that can be used in a simulator 

from a Hexagon Camera Configuration Model and permitting for bi-directional 

movement within the simulator.  

 

1.3 The objective of the research study 

 

This research study aims to: 

● Incorporate the image dataset into the simulation system in real-time for increasing the 

reality of the simulation system in different geographical locations based on the 

Hexagon Camera Configuration Model.  

● Simulate a rendering technique for improvement of visual and spatial images, and the 

quality of the panoramic images for location identification.  
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● Present a framework that allows for virtual driving and bidirectional movement of the 

scene. 

● Model the image data collection technique using multiple cameras. 

 

1.4 Fact-finding technique and design 

 

There are other methodologies that are associated with image rendering and image smoothing 

transition [2]. Other methodologies include hybrid image-based rendering and pure image-

based rendering encompassing 3D wrapping and layered depth images. In this research study, 

a Hexagon Camera Configuration Model is used and is prompted to achieve the same results 

despite the number of cameras utilised, and this output is made in comparison to the use of the 

omnidirectional camera. Figure 1.3 outlines the intersection of the image intervals between 

multiple images that are captured utilising multiple camera configuration models. Furthermore, 

this process can be denoted through the angular flow between multiple images. This research 

study makes use of a six camera configuration model at an angular distance of 60o between 

cameras. 
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Figure 1.3: Intersection intervals methodology between perspective images  

 

Figure 1.3 further enables the concept of image capture as outlined in Figure 1.4 where the 

camera setup model is highlighted for image camera capturing citing Figure 1.3 as the basic 

configuration model. O is the circumference of the camera holder. A (A1-A3) represents the 

camera placement, while B (B1) represents the camera lens holders and the intersection 

intervals between O and A images. The reason for adding an extra layer for the camera lens 

holder is to ensure that the lens is protected. Figure 1.4 depicts the camera configuration to be 

utilised in this research study to capture images. Additionally, this model can be altered 

depending on the testing site, and theoretically, the number of cameras  does not affect the 

results depending on the study's aim and objectives. 
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Figure 1.4: Architectural proposition for data collection and rendering using IBR technology 

 

The preliminary data collection model is conducted by the use of a vehicle that is mounted with 

six (6) cameras at the top as indicated in Figure 1.4. In Figure 1.4 the components that are 

utilised are as follows: 1) test vehicle; 2) camera configuration model; 3) Arduino 

microcontroller integrated with GPS module; 4) laptop. However, the system modelling and 

development made use of Open-Source Computer Vision (OpenCV) and Unity3D for image 

processing, image compression, and image rendering processes. Additionally, from the camera 

formation, six (6) of the cameras will be placed in a hexagon formation at a 60o angular 

difference between the cameras to obtain a full 360o camera view. The selection for utilisation 

of a multi-camera configuration model, as opposed to the use of a 360o omnidirectional camera, 

is to test the feasibility for bidirectional movement of the scene within a simulator utilising other 

camera configuration models as opposed to the use of a 360o omnidirectional camera.  

All six cameras will be connected to a laptop as depicted in Figure 1.4, and the laptop will be 

used for image storage, image data processing, and computation purposes. OpenCV is defined 

as a free computer vision library that allows for the manipulation of images and videos to 

accomplish a variety of tasks - from displaying the feed of a webcam to potentially teaching a 

robot to recognise real-life objects, and it will be utilised for image processing with a focal point 
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on image compression [12]. In Addition, Blender3D software will be used for image rendering 

and processing of the compressed image datasets. This process will be executed simultaneously, 

hence the need for a laptop with high processing power and multi-threading capability needs to 

be used. Each image that is obtained from the datasets will be Geotagged using a Global 

Positioning System (GPS) module which will also be attached to Arduino microcontroller. 

Arduino microcontroller will be used to process coordinates from the GPS module with the 

laptop running lossy compression algorithm for the compression of images of the same area 

(GPS-based images but different cameras to obtain the 360o view). 

 

  

Figure 1.5: An image capturing and acquisition overview 

 

Figure 1.5 outlines the methodological overview of the study representing the image acquisition 

process. Firstly, the process will be started by allowing the cameras to capture the images, and 

a code will be written in Python using OpenCV to allow for interval camera capture between 

six cameras. A mathematical approach for counting the camera capture interval will be 

discussed in the later chapters. During the image capture phase, the images are stored 

automatically into the folders assigned per camera, for example “camera 1 = storage folder 1”, 

and during this process it is important that the images have GPS coordinates attached to them. 

The reason for obtaining GPS coordinates is to ensure that the images can be merged into one 

dataset to obtain a 3D panoramic view. However, before the rendering and compression can 

occur, the images are sorted manually and placed into the master folder to create an image 
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dataset. Upon the successful image dataset creation, the dataset is called into Blender3D 

software for compression before the IBR technique can be applied.  

Due to the test vehicle velocity and camera capture speed, oversampling might occur during the 

image capturing process. Therefore, a mathematical approach to reduce or mitigate that 

possibility needs to be implemented. Due to the study focus area and objectives oversampling 

is not accounted for, and as a result, it is the prerogative of the researcher to determine the 

number of images required to develop a full image dataset that can be rendered. The camera 

capture speed will, however, be explored in Chapter 3. There are several kinds of IBR 

techniques such as Vector Quantization (VQ) or Disparity Compensation Prediction (DCP) that 

may be considered for utilisation for this research study depending on the literature review 

chapter. These techniques can be altered depending on the results obtained during the 

development phase. Furthermore, for image rendering, the techniques Unstructured Lumigraph 

Rendering (ULR) and Light Field Rendering (LFR) will also be considered, since they make 

use of fewer geometry principles. The technique selection can also be altered depending on the 

results.  

In addition, other non-geometric methods that utilises computer vision application such as 

plenoptic function which is defined as the intensity of light rays passing through the camera 

center at every location at every possible angle for every wavelength at every time [13], will be 

tested for a better algorithm aimed at producing satisfactory study results output. 

The plenoptic function can be expressed as follows: 

𝑃7 = 𝑃(𝐿𝑥, 𝐿𝑦, 𝐿𝑧, ∅, 𝜃, ƛ, 𝑡)                                                                                                      (1.1) 

Where: 

(𝐿𝑥, 𝐿𝑦, 𝐿𝑧) = GPS location 

(𝜃, ∅) = angle for forward movement 

ƛ = wavelength between the eye and the object focal point 

t = time spent looking in the same direction 

All the variables are highlighted in the plenoptic definition. 

The images will be projected from the laptop, and keyboard inputs will be used to navigate 

through the rendered scene for both forward and backward movement. Furthermore, the GPS 
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information (e.g. longitude, latitude, and elevation) from the scene will be written to a text file 

which will be stored in a specified directory. 

Cylindrical panorama will be utilised due to its ease-to-build method for the single unit camera, 

and due to the research proposition, the cylindrical panorama will be modified to accommodate 

multiple camera input sources. This is due to the study objective focusing on the development 

of a panoramic simulation model using image data from the multiple camera feed. 

 

1.5 Challenges of the research study 

 

• The development of an automated data integration algorithm into the simulator. 

• Incorporation of the fisheye camera image sample into the dataset due to the test 

environment. 

 

1.6 Expected outcomes 

 

• The incorporation of a 3D panoramic model into the simulation model in real-time for 

increasing the reality of the simulation system in different geographical locations. 

• Simulating a rendering technique for improvement of visual and spatial images and 

quality of the panoramic images for location identification. 

• Development of a technique that allows for bidirectional movement within a simulator 

from a Hexagon Camera Configuration Model. 

 

1.7 Publications and presentations during the study 

 

• Lepekola Lenkoe, Ben Kotze: “Enhancing Spatial Image Datasets for Utilisation in a 

Simulator for Smart City Transport Navigation” The Tenth International Conference on 

Smart Cities, Systems, Devices and Technologies” 30 May – 03 June 2021, Valencia, 

Spain. 

• Lepekola Lenkoe, Ben Kotze, Pieter Veldtsman: “Simulation of Hexagon Spatial 

Datasets for Free Motion in a Simulator for Smart City Bidirectional Navigation 
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Purposes” The Sixth International Conference on Applications and Systems of Visual 

Paradigms” 18 July – 22 July 2021, Nice, France. 

 

1.8 Dissertation structure 

 

This dissertation has been arranged into five chapters, consisting of the introductory chapter, 

literature chapter, methodology chapter, results chapter, and finally the conclusion chapter. 

Chapter 1 outlines the introduction to this dissertation focusing on the background, problem 

statement, objectives, methodology, and expected outcomes for the research conducted that are 

consolidated to explain the reason for conducting this study. 

Chapter 2 presents the overview of the different methodologies and studies conducted that 

relate to spatial data, image rendering techniques, and the current studies focusing on the 

method used for data collection using datasets in the simulator.  

Chapter 3 presents the design and modelling techniques for IBR rendering, image capturing 

techniques, and the configuration model focusing on camera calibration and the manipulation 

of imaging techniques such as image acquisition and image compression to obtain noise-free 

images before image rendering can occur. 

Chapter 4 outlines the results obtained from the model developed in Chapter 3. In this chapter, 

the results are evaluated, analysed, and discussed with reference to the study's aims and 

objectives. 

Chapter 5 outlines the dissertation`s conclusion based on the method and results obtained. This 

chapter further focuses on the research contribution to the field of computer vision and the 

application of 3D panoramic image rendering techniques on the simulators. This chapter further 

presents the dissertation remarks and suggests the future works emanating from this research 

study that were not addressed due to the research scope and also presents the shortcomings.  
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Chapter 2: Overview of the study conducted on panoramic image 

and spatial data models 
 

This chapter outlines the theoretical overview of the studies conducted on panoramic images 

using spatial data modelling techniques. Furthermore, different literature is also outlined 

together with the shortcomings and advantages from the results obtained by other authors in 

this field of study. 

 

2.1 Introduction 

 

This chapter evaluates the theoretical background relating to the currently available methods 

and techniques that are used for image data collection and image rendering techniques such as 

IBR and MBR techniques. The use of such datasets in a simulator is mainly for image 

construction and reconstruction and also image rendering that are viewed relevant for this 

research study. Additionally, the camera content acquisition in a 3D content view can be viewed 

as an alternative modelling approach for such a study. In this chapter, several methods and 

techniques are reviewed, analysed, and implemented to address the research question. 

The study of Li and Ratti [14, pp. 109-119] resonates with this current research study to a certain 

degree, where the author outlines the significance of cities in the context of global warming and 

urbanisation that is also interpreted and analysed for further developments. Furthermore, Li and 

Ratti outline the significance of having both the ID and data information of the image. However, 

this thought process depends on the research objective. For this research study, it is important 

to have the Global Positioning System (GPS) coordinates on each image, since multiple image 

datasets will be compressed. In addition, Martinez-Carranza et al.  [15] present an image data 

capture model that makes use of a drone in real time. The author makes use of image mosaicking 

and 3D point cloud generation as well as the tessellation. The author does not clearly outline 

how many cameras were used to capture either the images or the video. Additionally, the system 

has a drawback of precision alignment when the number is high (in this context the author did 

not articulate or indicate what high implies). This chapter further discusses the historical 

background of Google Maps’ development in conjunction with Google Street View. 
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2.2 Review on approaches of the existing systems 

 

Typically, there are massive amounts of image data collections that are presented as slideshows 

which are arguably the practical way. However, with the current technological advancement, 

these methodological approaches are deemed not engaging, and as a result, new techniques and 

models need to be developed and implemented to investigate their efficiency and efficacy as 

compared to the slideshow models. The reason for the investigation of other models is due to 

the fact that the slideshow is deemed not to be engaging as it is one-sided, and the user cannot 

go back and forth within the view. Dong et al. [16] outline the fast development of Structure 

from Motion (SFM) and depth camera-based 3D scene reconstruction. Bianco et al. [17] 

presents the evaluation of Structure from Motion utilising the real dataset. In their study, these 

authors evaluate the reconstruction errors, as well as the estimation errors of the camera pose 

used in the reconstruction. This research study makes use of Structure from Motion that is 

utilised as a tool for converting 2D images into 3D image datasets and as a result, the error or 

loss of data during the conversion is not considered. Furthermore, Schonberger and Fram, [18] 

and Xu et al. [19] present the method for capturing high-quality geometric images of an indoor 

scene to improve even the mirrors and glasses. This paper`s results make it possible to argue 

that image capturing in a controlled environment is more content as opposed to an outdoor 

controlled environment due to factors such as setting up of the ambient light. Hence the 

complexity of the current research study as it focuses on an outdoor setup. Additionally, the 

change in scenery for such a model is due to technological improvements, and this change has 

led to a wide study pool that also cites the research conducted by Sivic. Sivic et al. [20] highlight 

the connection of clustering visually similar images together to create a virtual space in which 

the users are free to change position from one image to another. This virtual space modelling 

can be obtained by utilising intuitive 3D control objects such as moving left/right, zooming 

in/out, and rotating. Sivic`s study resonates with the current study to a certain degree, hence the 

importance of ensuring that each image has GPS coordinates to enable for change in position 

should the need arise. 

Sivic further supports his work by outlining that the displayed images in a correct geometric 

and photometric alignment concerning the current photo results in a smooth transition between 

multiple images. In addition, Kopf et al. [21] present a method of combining images in the street 

view system by stitching the image side views. This approach means you have to be standing 

on the street and looking in either the left or right direction of a certain street together to generate 
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a long street slide for users to quickly browse if the street is feasible for motion or not, despite 

the foundational way of viewing the side scene of a certain street from Kopf`s methodology. 

Furthermore, the practicality of this approach remains scientifically arguable, as this approach 

focuses on a one-sided approach that is not always the case while driving or walking, which 

opens a window for further research.  

Peng et al. [22, p. 1] present a system that takes the start and endpoint as inputs and 

automatically connects them to Google Maps utilising street view to achieve the route planned 

result and scenery along the route. The system can generate smooth scenic video from the 

starting point to the destination and combine Google Maps to provide better route recognition 

to users. Despite the advantage of smooth scenic video that Peng proposes, the element of 

duration for downloading images from Google Maps still needs to be investigated. Furthermore, 

Peng`s study represents the combination of Google Maps, which is seen as an addition of a few 

image datasets to the existing dataset rather than the capturing and the development of a full 2D 

dataset.  There are other proposals that do not make use of the feature matching model but of 

metrics similarities which are calculated from the pixel values. Additionally, there are other 

techniques based on local traits that allow for the rapid search of the correspondence features, 

and this improves the image alignment accuracy and processing time [23], [24]. Despite the 

improvements outlined by Kokate et al, [24], the use of feature detection and matching is still 

deemed as the best approach for IBR rendering, especially for multiple datasets. One of the 

different approaches is presented by Rzotkiewicz et al. [25] where the authors agree that GSV 

imagery strength includes low cost, ease of use, and it saves time. In retrospect to the study by 

Rzotkiewicz et al. [25], the research was based on the availability of literature on health research 

which resulted in the final review of 54 articles relevant to the health GSV. Furthermore, the 

lack of relevant or extended weakness of accessing the GSV might be as a result of high-

definition imagery that may already be in some areas and not others, and the inconsistency of 

image resolution quality and date which may result in error inclusion/exclusion. Rzotkiewicz`s 

study can be argued citing Coronelli and Rinaudo et al. [26] and Wahbeh et al. [27], stating that 

nowadays images and open data that are obtained online are increasing exponential with 3D 

reconstruction available from generic touristic photos gathered from the web and frames 

extracted from the videos.   

Kopf et al. [28] present street slide methodology that combines the nature of bubbles provided 

by perspective stripe panoramas. Their study further presents an integrated annotation and a 

mini-map within the user interface to provide geographic information as well as additional 
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affordances for navigation. Kopf`s work relates to that of Gortler et al. [29] due to their classic 

approaches of using image-based rendering such as the Lumigraph technique. Kopf's work is 

further supported by Agarwala et al. [30, pp. 853-561], by emphasising the utilising of the 

correlation alignment techniques for aligning adjacent vertical strips instead of modelling a full 

3D geometric proxy. 

Najafizadeh et al. [31, p. 1] present a methodology for utilising the Google Street View feature 

as a three-stage classification framework by manually labelling the accessibility problems in 

one time period. The classification of the labelled image patch into one of five accessibility 

categories, and the patch is then localised in all previous snapshots. Najafizadeh and his co-

authors’ work is supported by Serferling and co-authors, basing their arguments on image 

relationships. Serferling et al. [32] present a computer vision application that is utilised to 

qualify urban tree cover at street level by employing open-source image data of city streetscapes 

that are abundant by Google Street View. This application is achieved by displaying a computer 

vision algorithm segment that qualifies as a percentage of the tree cover in the streetscape 

images, as well as by modelling the relationship between neighbouring images along the city 

street segment. However, these authors have not presented their data collection model. In these 

papers, they only highlighted the use of Google Street View, but did not indicate the 

compatibility of the dataset with their applications. 

 

Furthermore, is important to compare the two basic rendering models namely the IBR and 

MBR. The two rendering models rely primarily on the original and/or trained image dataset to 

produce new and virtual views. Table 2.1 depicts the comparison between MBR and IBR. Table 

2.1 also gives context into the selection of the IBR as the relevant technique for utilisation in 

this research study.  
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Table 2.1: Rendering comparison between IBR and MBR techniques [33]. 

IBR technique MBR technique 

Direct use of collection of images Explicit use of 3D models 

Based on interpolation Uses conventional rendering pipeline  

Speed independence depends on scene 

complexity 

Speed depends on scene complexity 

Relies on processor speed Relies on hardware accelerator speed 

Realism depends on input images Requires sophisticated software for realism 

 

Table 2.1 depicts the difference between MBR and IBR techniques. As a result, the above-

mentioned differences direct the selection of the appropriate technique such as realism, which 

requires sophisticated software on the MBR site, while on the IBR realism depends on the input 

data. Additionally, the cost of rendering in an IBR model is independent of the scene 

complexity, while in an MBR model the cost of rendering depends on the objects or complexity 

of the scene and the number of facets. 

 

Furthermore, Voumard et al. [34], in their study, focused on the performance of an online 

imagery dataset utilising photographs. Voumard`s study was based on a scaled imagery size of 

approximately 50 and 60 image datasets for the rock survey. In addition, the scaled datasets by 

Voumard resonated with Gribble et al. [35]  and presented an approach to rendering large, time-

varying particle-based simulation datasets using programmable graphics hardware on a desktop 

computer system. Yet, this study also focuses on image rendering. 

Kang [36] and Lengyel [37] presented an IBR method that is based on a trade-off by estimating 

how many input images are needed and how much is known about the scene geometry. Kang`s 

study also includes capturing or data collection based on nine camera configurations. A smaller 

number of research studies have been conducted in this discipline despite much traction in this 

field. Theoretically, the number of input camera configuration model does not change the 

required output, but rather depends on the data collection environment.   
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2.3 Technological inclination  

 

The technological inclination section gives more context to the historical developments around 

the Google Street View and its influence on the modern era. The process of development and 

the background is outlined also quoting the shortcomings and how this technology can be 

improved citing the literature in this discipline. 

 

2.3.1 Historical background on Google Street View 

 

Google has revolutionised the online mapping environment by creating an efficient and 

immediate spatial data collection method. This method is supported by the affluent misuse of 

the principles of stereopsis presented by Hu and Ming [38, pp. 2161-2191]. Stereopsis in this 

context is denoted as a perception of the depth and the 3D structure obtained based on visual 

information derived from two eyes by individuals with normal developed binocular vision. 

It is highlighted that Google Street View (GSV) was first put into action in May 2007 with the 

primary objective of capturing pictures in major cities. It is recommended that a third-party 

mode overpass the abstract map and the distant aerial view environments by providing street-

level imagery. Google Street View is a model that presents the world as a fact, mapped, and 

documented view in an approximation of the street condition [39]. Furthermore, in the context 

of data collection for GSV, the images were collected (historical context) with a panoramic 

camera model mounted on a different type of vehicle or backpack as per this research study`s 

data collection method of mounting cameras on top of a moving vehicle [40].  

This technique of camera mounting or the utilisation of a backpack is also supported by 

Dragomir Anguelov et al. [41], and he also outlines the data capturing technique using the same 

technique of mounting cameras on top of a moving vehicle, but the difference is the number of 

cameras and the camera configuration technique that he uses. Additionally, the technique is as 

also supported by Lenkoe et al. [42], who highlighted the advantages of using a Hexagon 

Camera Configuration Model as compared to the utilisation of the use of a 360o omnidirectional 

camera. In this research study the camera configuration model will be altered as per Lenkoe`s 

study. Additionally, the details and reasons for altering the camera numbers will be discussed 

in the design chapter. The proposed camera configuration model is based on the test 

environment; hence the utilisation of the six cameras. 
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2.3.2 Image-based rendering techniques 

 

This research study aims at exploring the IBR technique citing the work presented by Shum and 

Kang [43], who presented the advanced image pixel indexing methodologies utilising the IBR 

technique. The advanced IBR method was presented by Mao et al.  [44] and Shi et al.  [45], 

who outlined the depth map containing associated pixels to the reference image in a 3D 

environment. Furthermore, the concept has been explored more with the application 

development focusing on the estimation of depth values from a single monocular image value. 

The result of this application is seen as an issue due to depth estimation, as it requires a 

reformulation of (colour) image to depth image generation [46]. In addition to the parametric 

methods for extracting depths, many non-parametric depth sampling approaches have also been 

proposed to automatically convert monocular images into stereoscopic images with good 

performances. In addition to the real-world environments, these models can be generated using 

a 3D scanner or by applying computer vision techniques to the captured images. Unfortunately, 

vision techniques are not robust enough to recover accurate 3D models, as indicated in Figure 

2.1. Additionally, this makes it difficult to capture visual effects such as reflections and 

transparency utilising a single texture-mapped model. 

 

 

Figure 2.1: Quantitative analysis of the relationships between depth and texture information, number of 

input images, and rendering resolution 
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Figure 2.1 depicts the qualitative analysis of the relationship between depth and texture 

information. This is very essential in an image processing system where a certain type of input 

dataset in a specific type needs to be first put into a depth and texture model. Furthermore, as 

indicated in Figure 2.1, the input dataset can still be rendered directly, but in most cases the 

issue is around the processing time and system accuracy. However, such a process can be 

optimised by obtaining the visual effects of the reconstructed environment and implementing 

them in a view-dependent and texture mapping model. Nonetheless, the texture mapping 

process in this context is used for rendering new views by warping and compositioning several 

input image datasets of an environment. 

Additionally, rendering techniques are associated with computer graphics to enable better 

processing of images [47, p. 25]. Many rendering techniques can be used to address such a topic; 

yet, this study focuses on the use of the IBR technique as compared to other traditional 

techniques. One of the fundamental reasons for this selection is the ability of the IBR technique 

to use 3D computer graphics and images as an elementary description, and also citing Table 2.1 

for in-depth reasons. The IBR technique brings about a bridge in the gap between computer 

graphics and computer vision as indicated in Figure 2.2, which also adds to the motivation for 

the selection of this technique to be used in this research study. 

 

 

Figure 2.2: IBR difference between computer vision and graphics 

 

Figure 2.2 depicts the difference between computer vision and computer graphics. Many people 

interpret the two as a single word. Computer vision is defined as a field of study that seeks to 
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develop techniques to help computers see and understand the content of digital image and 

videos [48], while computer graphics depict the creation or manipulation of images on a 

computer including animated images [49]. Furthermore, it is highlighted that some of the IBR 

techniques do equally manipulate the geometric data during the rendering process. This data 

manipulation has led to the current development of Google Maps demonstrating great attention 

to the transition between cartographic and photographic modelling techniques [50]. As a result, 

a wide window has opened for further research in this subject line. Furthermore, IBR 

classification in the context of this research study defines image recognition and how the image 

is matched. There are other classifications such as restraining the view, space, and the 

introduction of resource descriptors also resonate with the objectives of this research study.  

 

2.3.3 Image recognition and identification 

 

There are several features associated with computer vision applications due to their roles in 

image data collection and processing features. The interpretation of the words “Computer 

Vision” – similar to any other words – is based on the context of utilisation within the sentence. 

Other authors give context to this terminology in relation to their experience. As a result, this 

discussion of the pixel indexing scheme has contributed to the methodological development for 

IBR mainly in the geometric view, and this method is widely accepted in the computer vision 

research community. 

 

2.3.4 Image matching gauge 

 

The spatial image datasets using IBR functions are important, since the pixel coordinates from 

two or more different intensity images correspond to the same point in the world data. The 

mathematical equations are developed to properly analyse the absolute as well as the square 

difference of the function computation. The Sum of Absolute Difference (SAD) and the Sum 

of Squared Difference (SSD) are classified as popular computationally inexpensive image 

regions for matching the measured images [51]. These methods are not entirely justified in 

terms of image feature matching, and further to that, Gaussian noise is still an unsolved 

phenomenon as outlined by Bhat and Nayar [52] referring to equations 2.1 and 2.2. Equations 
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2.1 and 2.2 depicts the Sum of Squared Difference and Sum of Absolute Difference which are 

the equations to be used in this research study. 

 

𝑆𝐴𝐷 =  ∑ |𝐼1(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝐼2(𝑥 + 𝑑𝑥 + 𝑖, 𝑦 + 𝑑𝑦 + 𝑗)|(𝑖,𝑗)€𝑈              (2.1) 

𝑆𝑆𝐷 =  ∑ (𝐼1(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝐼2(𝑥 + 𝑑𝑥 + 𝑖, 𝑦 + 𝑑𝑦 + 𝑗))(𝑖,𝑗)€𝑈
2
              (2.2) 

Where: 𝐼1, 𝐼2, 𝑥, 𝑦  denotes compatible regions 

 : 𝑥1, 𝑑𝑥, 𝑦, 𝑑𝑦 denotes the local coordinates of the image 

The IBR method comprises of several functions such as plenoptic, light field, and other 

concentric mosaic functions. These functions are associated with geometric rendering. The 

plenoptic function is representative of the intensity of the light ray passing through the camera 

centre at a 3D spatial location mostly in the (x, y, z) algorithm. 

 

2.4 Different construction methods 

 

In this section, construction and rendering are used interchangeably. 

 

In determining the best construction method, the comparison analysis of different construction 

methods needs to be outlined. In this section, the rendering construction methods are discussed 

also citing their advantages over each other.  

 

2.4.1 Construction standard measurement 

 

IBR techniques are currently receiving much attention due to their powerful alternative to 

traditional geometric-based techniques that are outlined in this subsection for image synthesis.   

There are several types of construction matrix namely geometric, matrix, and no geometric 

construction. In a rendering process, it is very important to note that the vector images form 

part of the pre-processing process and also contribute to the ability of the model to resolve the 

visibility issue. The acceleration of this process relies much on the axis-aligned bounding boxes 

© Central University of Technology, Free State



 

22 
 

for each fragment that is computed [53]. As a result of this approach, a more detailed and 

graphical representation of this approach will be elaborated on in detail in the design chapter, 

as the same approach is going to be followed in this research study. Subsequent to these 

approaches, rendering displacement in maps requires the surface to be adaptively re-tessellated 

[54, pp. 171-180]. The significant difference between these methods is outlined in Figure 2.3. 

A high-level sample of these techniques are also indicated as follows: 

 

Figure 2.3: Different rendering techniques 

 

Figure 2.3 depicts the different and most common rendering techniques. Figure 2.3 presents 

three geometry functions namely less geometry, rendering with implicit geometry and more 

geometry. The less geometry presents a function of no geometric rendering, which is an 

expensive method due to data acquisition and storage requirements. More geometry presents a 

function of explicit geometry and rendering with implicit geometry presenting the view 

morphing. Rendering with no geometry comprises of light field and concentration mosaics 

which are functions of the view interpolation. Additionally, the rendering with implicit 

geometry constitutes the transfer methods, while more geometry includes the 3D warping and 

view-dependent geometry. 

 

Geometric construction relates to both implicit and explicit construction [55]. There are several 

construction methods that are associated with image rendering techniques. Explicit geometric 

rendering relies on the use of the approximate geometric view of the Lumigraph rendering. This 

is as a result of the view dependency, which means that the explicit geometric rendering much 

relies on the known approximate environment [56]. The use of the explicit rendering becomes 

much more difficult in an informal environment or settlement due to the tiring exercise of data 
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collection, which is skewed since residents can build on the road and mountains. This is deemed 

as one of the main concerns due to the need for a frequently updatable data collection model 

that needs to be implemented and monitored. 

 

2.5 3D Panoramic image generation 

 

Multiview image processing has been receiving increased attention lately with the advent of 

interactive navigation applications and immersive communication [57]. In addition, the use of 

computer-based models is growing exponentially in support of urban planning and 

management. The evolution of such a solution or innovation is mainly based on the increased 

data resources, multiple spatial datasets, and tools for processing and computation [58], [59]. 

Subsequently, the panorama creation of the 360o panorama is limited to the horizontal axis, 

hence allowing the virtual spin around the axis [60, pp. 261-271]. However, this study focuses 

on the use of multiple cameras rather than the use of a single 360o omnidirectional capable 

camera with its shortcomings. The word omnidirectional refers to the ability to sense in all 

directions (a full 360o view), and is part of the shortcomings identified in such a camera. The 

feasibility for a new model utilising hexagon camera configuration has to be exploited. Borg  

[61] depicted that achieving a full omnidirectional vision is possible in practice since the sensors 

themselves (despite how small they might be) must hide part of the view. 

The intrinsic movement parallax and single effective viewpoint are associated with a panoramic 

view of a scene, bearing in mind that the panorama is from two different panoramic views. In a 

panoramic image generation, a new phenomenon of image stitching surfaces. Image stitching 

(mosaicking) is denoted as a process of combining multiple photographic images with 

overlapping fields of view to produce a segmented panorama or high-resolution image [62, p. 

1]. Image stitching can be grouped into two approaches, direct and indirect feature-based 

techniques. Direct technique constitutes the dependent comparison of pixel intensities of the 

images and decreases the total differences among overlapping pixels. In contrast, the feature 

technique can recognise panoramas by utilising an automatic discovery of associations among 

the undistorted images [63]. Furthermore, intrinsic and extrinsic parameters are deemed crucial 

in obtaining camera calibration and pose estimation for the selection of an appropriate technique 

[64]. 
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Figure 2.4: Geometric view of a GSV [62]. 

 

Figure 2.4 outlines the geometric view of Google Street View where the camera pose is 

highlighted for taking multiple image shoots. This approach makes use of multiple cameras and 

the image capture takes place along the 180o plane. The camera focuses and the angular distance 

for proper or overhead image stitching must be correctly aligned. 

Figure 2.4 depicts camera planes (camera plane 1 and camera plane 2) for a geometric 

architecture that is almost identical in theoretical overview than the proposed research model. 

Each camera in the context of this research study is placed at 60o Ø angle between each other 

with the camera focal point at position dA. As a result, this gives the holistic view of the 180o 

plane in the context of Figure 2.4, while in the conducted research study, this approach will 

present a full 360o view utilising the Hexagon Camera Configuration Model.  

 

2.5.1 Construction of panoramic image 

 

Several methods are used in the construction of panoramic images. The two most common and 

easy-to-construct methods are cylindrical and spherical panoramas. Shum [65] outlined the 

cylindrical panorama as the easier one of the two methods. The cylindrical panorama is 

constructed in a 2D model to a 3D model which makes it an easier approach, as both the focal 

point and the field of view are known. The cylindrical panoramas (CP) are mostly mapped in 

© Central University of Technology, Free State



 

25 
 

the following manner CP = (X, Y, Z) into a 2D model (Ø, v) using both formulae 2.3 and 2.4, 

and CP is an abbreviation for cylindrical panorama. 

∅ = 𝑡𝑎𝑛−1 (
𝑋

𝑍
)           (2.3) 

𝑣 = 𝑡𝑎𝑛−1(
𝑌

√𝑋2+𝑍2
)           (2.4)  

Where: 

∅   denotes the panning angle  

𝑣  denotes the scanline 

 

The GSV panoramas will be requested using image indexing and WiFi as compared to inputting 

coordinates through the Application Programming Interface (API). Subsequently, Li and Ratti 

[66] utilised the same request methodology of ID and date information which resonates with 

the fundamental study aims of indirect improvement of this system by using other parameters 

apart from only the date and ID tag. A more detailed methodology structure will be outlined in 

Chapter 3. 

 

2.5.2 Google Street View application interface  

 

The GSV model has a distinctive quality due to factors such as a possible API interface to the 

existing platform. The image database of Google Street View is a network of adjacent 360o 

high-resolution panorama images, which are divided into quadratic tiles [67].  

The GSV`s API interface from google comprises the four (4) distinct APIs that are freely 

available for download. The API interface is outlined as follows: 

• Thumbnail from GPS coordinates – use GPS coordinates (latitude and longitude), 

requires the street view image not to be close to the available position 

(...output=thumbnail&w=[SX]&h=[SY]&ll = [LAT, LNG]). 

• XML – is based on the request and retrieval of GPS coordinates from a panoramic image  

…output=xml&11 = [LAT, LNG], yet this approach differs from one database directory 

to another. 
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• Tile - given the panorama ID, the API can be used to access the panorama image using 

this ID in the request. 

(…output = tile&panoid=[ID] & zoom=[z] &x=[X] &y = [Y] 

• Thumbnail from ID 

(…output=thumbnail&w=[SX] &h=[SY] &panoid=[ID] 

 

2.6 Summary 

 

Google Street View is an integral part of image processing with different kinds of data 

acquisition models such as remote sensing, which models are adopted methods that are mostly 

utilised for urban planning. Google Street View has the advantage of covering large areas in 

both rural and urban areas as opposed to other technologies. It is noted that IBR sampling is 

crucial in a multi-dimensional signal processing problem. This chapter has further outlined the 

work done thus far in the field of image processing, computer vision, and data requisition using 

Google Street View and Image-Based Rendering technology. Several methods have been 

outlined citing both the advantages and shortcomings of these models and reasons for the 

selection of the IBR techniques as the best approach to achieve the study objectives. It is seen 

through the literature that there is a piece of strong feasibility evidence that the study in hand 

can be conducted and further improved utilising IBR and other techniques. Despite the 

feasibility for utilising other methods for such a research study, the IBR technique is still 

deemed the most appropriate model in terms of data processing with fewer resources, and its 

efficiency is deemed optimal.  
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Chapter 3: Development of the image capture model and the use 

of IBR technique to render the captured images 
 

This chapter presents the design and modelling techniques for capturing images utilising the 

hexagon image capture model. This model converts the images into a set of image datasets 

which are then calibrated utilising Blender3D software. The IBR technique is then called by 

focusing the calibrated images, resizing and aligning the camera number with the datasets, and 

then applying texture onto each image before the model can be simulated. This dataset 

manipulation is then optimised by calibrating individual images in the datasets to obtain noise-

free images that are ready for simulation and rendering. 

 

3.1 Introduction 
 

The IBR modelling techniques are newly observed with high attention as one of the powerful 

alternative rendering techniques as opposed to geometric-based techniques. As opposed to the 

geometric-based technique, the IBR model makes use of a small number of images that generate 

the feature correspondence. In addition, the scene depth is important for accomplishing different 

tasks such as 3D modelling. Subsequently, the image capture proposition obtained by a 

conventional camera contains blurred scenes that are out of focus that are commonly known as 

Circle of Confusion (COC) [68, p. 1]. 

The research study test environment was conducted at Botshabelo (Place of Refugee), which is 

a small town located 45KM outside Bloemfontein (the capital city of the Free State province in 

South Africa). The reason for the selection of the test place was the prerogative of the 

researcher, and the technical factors taken by the research will be highlighted later in the 

chapter.  Moreover, the test site bought about changes to the initial camera configuration model. 

The reason is due to the fact that Botshabelo township does not have high buildings, and as a 

result the configuration had to be altered from fisheye model with 9 cameras to the Hexagon 

Camera Configuration Model. The Hexagon Camera Configuration Model was then chosen as 

the prerogative of the researcher at a 60o angle between the cameras, and this selection does not 

affect the study objective in any way.  
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3.2 System apparatus selection  
 

Before the system setup model is developed, a series of apparatus and system model 

configurations had to be identified. As a result, the hexagon-based cameras pose model was 

selected due to the reasons outlined in section 1.3. Following the successful system architectural 

model development of the hexagon configuration model, the apparatus were selected based on 

the power output for both the inverters and batteries, while for the cameras, the selection was 

based on the camera quality and pixels size.  

The components outlined in Figure 3.1 depict the primary components or tools, namely the 

cameras and laptop for processing as well as the USB hubs and the power supply to be used for 

powering the cameras in this research study. Nonetheless, this does not in anyway discredit the 

importance of both the GPS module and the Arduino microcontroller. It is important to note 

that the architectural system model development was constructed before any physical 

development process could take place to visualise and direct the components selected for the 

physical model. This system modelling task needed to take place before the system components 

can be acquired/bought and the functionality test can be conducted either in a stationary or 

dynamic environment. The system design model architecture is based on the initial model 

designed on Microsoft® Visio Professional 2016, as indicated in Figure 3.1. 

 

Figure 3.1: System architectural model 
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Figure 3.1 depicts the Hexagon Camera Configuration Model in an architectural view. The 

model consists of the following components: 

• 6 HD cameras 

• Laptop 

• 2 USB HUBs 

• Power Supply  

These components are based on the initial model configuration of utilising six cameras at 60o 

distance apart to capture the entire 360o view. 

 

3.2.1 HD cameras 

 

Figure 3.1 highlights the components selected for this research study in the context of how the 

components will be placed and utilised. The full camera holder will hold the cameras that are 

mounted on the test vehicle rooftop, while the inverter converts the Direct Current (DC) to an 

Alternating Current (AC) and provides stability in the charging of the cameras during the testing 

phase. The six Full HD Action cameras were selected and utilised to capture quality images that 

do not require any customisation, which might delete some important data from the image such 

as image descriptor/GPS coordinates. Blender3D was selected and utilised due to its ability to 

convert and remodel files other than the .bli files, and also because it has the capabilities for 

code reuse. The detailed description of how the components are mounted and used on the live 

site will be addressed at a later stage. Furthermore, these cameras were utilised with the 

specifications with reference to Table 3.1 [69]: 
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Figure 3.2: Go Xtreme Rebel Full HD camera 

 

Figure 3.2 depicts the Go Xtreme Rebel Full HD camera. This camera was selected based on 

its specifications outlined in Table 3.1.  

 

Table 3.1: Go Xtreme Rebel Full HD camera specifications 

Technical Specifications Specifications 

- Resolution - 1080p @30fps | 720p@30fps 

- Effective pixels - 16MP*, 12MP*, 10MP*, 8MP*, 

5MP*, 3MP*, 2MP* 

- Sensor type - 2”/5cm display 

- USB type - Interface: USB 2.0 

- WIFI - Yes 

- Durability - Waterproof case upto 30m 

- Battery - 900mAh lithium battery  

- Product length  - 6.000000 

- Product width - 3.000000 

- Product height  - 4.000000 

 

The camera model is selected based on its specifications that are outlined in Table 3.1, that 

demonstrates the feasibility of achieving the study objectives. The HD camera in Figure 3.2 

will be used for image acquisition and the acquired data images will be converted into an image 

dataset that will be used to render the captured scene. 
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3.2.2 Acer laptop 

 

In this research study, an Acer Aspire ES14 laptop with the following specifications outlined in 

Table 3.2 is selected. 

Table 3.2: Acer Aspire ES14 laptop specifications 

Technical specification Old specifications Modified specification 

- Display size - 14.00 inch - 14.00 inch 

- Display resolutions - 1366X768 

pixels 

- 1366X768 pixels 

- Processor  - Intel core 5 - Pentium quad core 

- RAM - 2GB - 4GB 

- Operating system - Windows 10 

Pro  

- Linux 

- Hard disk - 500 GB - 5TB 

- Weight - 2.40 kg - 2.40 kg 

 

Table 3.2 outlines the laptop specifications. Due to data processing and large datasets, the laptop 

was modified by adding a new processor, and RAM as well as increasing the hard disk space 

for better data processing power and data storage, as indicated in Table 3.2. Furthermore, it is 

theoretically proven that rendering requires much hard disk space, hence the hard disk upgrade. 

 

3.2.3 USB hubs and power supply 

 

Due to the camera specifications outlined in Table 3.1, an additional external battery worth 

1200mAh was purchased and used to power the two hubs. This extra battery acts as an 

additional power supply to the computer due to the high amount of power needed to keep the 

system active. It is important to keep the system active without interruptions as this will 

negatively affect the data collection, mainly the coordinates and timestamp. In such a study that 

mainly focuses on accurate and timely data capture processes, any distortion that might arise 

will affect the coordinates and timestamp which are crucial in the final rendered output. 

Furthermore, the system test duration was calculated as indicated in equation (3.1) as follows: 
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𝐵𝑑 =  
𝐶𝑐∗𝐶𝑏𝑣∗ 𝑁𝑏𝑠

𝐿𝑐
         (3.1) 

= 
0.9𝐴ℎ∗3.8𝑣∗3

11.4𝑤
 

= 0.9hr 

= 1 hr testing 

 

Where: 

𝐶𝑐 = camera battery capacity 

𝐵𝑑 = battery duration 

𝐶𝑏𝑣 = camera battery voltage capacity 

𝑁𝑏𝑠
 = number of batteries connected in series 

𝐿𝑐 = load connected in watts 

 

Note that both the series and parallel connection in the context of equation (3.1) does not make 

a significant change in the calculation in terms of the power dissipation. Furthermore, equation 

(3.1) represents a single hub, therefore each hub power supply can last for at least one hour.  

 

3.3 The system`s software design process  
 

The system`s software design and development is based on the use of Blender3D software as 

outlined earlier. Blender3D is an open-source 3D creation suite. It also supports the entirety of 

the 3D pipeline modelling, rigging, animation, simulation, rendering, compositing, motion 

tracking, video editing, and 2D animation pipeline [70]. The reason for the selection of this 

software is the ability to convert and remodel files other than the .bli files and to re-sue codes. 

Additionally, the use of this software is deemed useful for this research study as it focuses on 

the simulation and rendering components of the suite. 

Figure 3.3 depicts the connected system in a stationary position for testing. 
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Figure 3.3: System components configuration setup in a stationary position  

 

Figure 3.3 depicts the Hexagon Camera Configuration Model`s physical system components in 

a stationary position. The components are connected without programming involved to test the 

feasibility of this physical model before it is mounted on the vehicle rooftop. Upon successful 

mounting of the stationary model, the system was placed on top of the vehicle. The same six-

camera model was mounted on top of the vehicle and hooked at the edges of the vehicle roof 

so that the system is firm and rigid and does not fall during the testing phase. Once this system 

was mounted, a quick test of checking the firmness of the mounted system was conducted with 

the vehicle traveling at 80km/h on the test route.  
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3.4 System development process 

 

The current spatial urban models have unique requirements in terms of data for parameterisation 

such as data on the urban extension. Remote sensing products are widely used to provide such 

datasets and have the capability to improve existing datasets [71, pp. 369-399]. The hexagon 

configuration model was constructed from a 2D model configuration as indicated in Figure 1.4 

of Chapter 1. This was accomplished through the addition of the z-coordinate. This model was 

later transposed into a 3D model. The current technological capabilities enable the use of an 

omnidirectional camera to perforem this activity, but due to the reasons already highlighted in 

Chapter 1 and Chapter 2 to answer the research question, a different model and approach had 

to be taken. The other reason for not utilising the omnidirectional camera is that the rendering 

construction specifically for this research study requires individual camera feeds as opposed to 

a single 360o feed. The use of the 360o omnidirectional camera will mean that the system only 

gets one set of feeds, which will not meet the study objectives. However, during the construction 

and development assessment it was noted that despite the researcher`s prerogative, the 

following shortcomings regarding the testing site had to be considered: 

• the applicable time with traveling from Botshabelo to Bloemfontein to conduct 

testing and data collection; 

• traffic jams in the capital city (Bloemfontein); and 

• high possibility of noise and skewed data due to high volumes of traffic.  

After carefully considering, the assessment report outlined that it is critical to amend the scope 

of work and develop a Hexagon Camera Configuration Model that will act as an x-axis 

rotational 360o camera configuration at a 60o angle between each camera. 

 

This process was then supported on the basis that Botshabelo township is a township close to 

the researcher`s residential area, and it has less traffic and a low noise ratio (this has not been 

determined scientifically, but the conclusion was taken on those bases and also the township 

building infrastructure). The system development was then initiated based on the model layout 

as indicated in Figure 3.4.  
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Figure 3.4: System model layout 

 

Figure 3.4 depicts the system model layout in terms of the processes required before the system 

can be functional. The system commences by collecting the data utilising all six cameras in an 

asynchronous format with time intervals between each capture process. The system process 

model works as follows: 

• image collection – the images are captured by six independent cameras with a 60o space 

between each camera; 

• compress images – once the images are captured they are stored in a master folder and 

placed inside Blender3D software. Lossy algorithm is then applied to reduce the image 

dataset size; and 

• image calibration – the dataset is then calibrated and rendered to produce an output 

simulation that permits for bidirectional movement within the simulator. 

Due to the image dataset size, the images are compressed and then calibrated. After the images 

are calibrated, they are rendered inside the Blender3D software, and finally simulation takes 

place where the user can move forward and backward in the simulator. Figure 3.5 depicts the 

architectural model of the system when placed on the rooftop of the test vehicle. 
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Figure 3.5: Hexagon architectural camera configuration model 

 

Figure 3.5 depicts the architectural model of the developed system model. The camera 

configuration model is placed on the vehicle rooftop. The system is then connected to the laptop 

that is seated in the car, and the GPS integrated module is connected to the Arduino 

microcontroller, which in turn is connected to the laptop for powering of both the GPS module 

and the Arduino microcontroller, as well as the simulation of the algorithm. 

The study methodology is based on the flow diagramme and architectural models as indicated 

in figures 3.4 and 3.5. In these figures the images are captured concurrently with the six cameras 

and stored in different folders. Each camera has its own storage folder, for example “Camera 1 

= folder 1”, and “Camera 2 = folder 2” up until the sixth camera. The image post-processing 

only includes the images that are selected based on their timestamp and GPS coordinates. The 

selected images are placed in one master folder to allow for accurate image processing and less 

processing power during the rendering and simulation of the image dataset. The selection of 
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images based on the timestamp and GPS coordinates was to reduce the number of images which 

would result in the computation taking longer. 

The pinhole model which is an alternative model that is commonly known and used for non-

sensor-based cameras [72] is utilised for this research study. The reason for opting to utilise this 

method is because the study does not entail or have any significance for a built-in sensory 

camera. This is due to data processing and image data manipulation that is concluded after the 

images are captured and datasets are created. Figure 3.6 depicts the pinhole model that is utilised 

in this research study.    

 

Figure 3.6: Pinhole camera model 

  

The pinhole model is a model used for the image acquisition-based technique for sensorless 

cameras, and as a result it is based on the mathematical approach. Figure 3.6 depicts the camera 

centre projection for the pinhole as well as the principal axis. 

The camera`s centre of projection is defined by a character 0 and also the principal axis that is 

parallel to the Z-axis. The image plane is at the focal length f which is away from the centre of 

projection in the camera lens. 
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The P variables X, Y, and Z outline the 3D components of the camera lens. 

The camera`s image plane coordinates as indicated in Figure 3.6, which highlights the camera 

calibration matrix. The same calibration matrix of 3 X 3 is applied for mapping the 3D P to 2D 

Pc. 

Equation 3.2 is used to locate the 3D coordinates using a similar triangle as depicted in Figure 

3.6: 

𝑓

𝑍
=

𝑢

𝑋
=

𝑣

𝑌
          (3.2) 

Where: 

 f = focal point 

u, v = camera image plane coordinates 

Equation 3.2 can further be simplified as follows to construct equations 3.3 and 3.4: 

𝑢 =
𝑓𝑋

𝑍
           (3.3) 

𝑣 =
𝑓𝑌

𝑍
           (3.4) 

Alternatively, these equations can be addressed utilising homogeneous coordinates to match or 

formulate the calibration to a 3 X 3 matrix as follows: 

(
𝑢
𝑣
𝑤

) = (
𝑓 0 0
0 𝑓 0
0 0 1

)(
𝑋
𝑌
𝑍

)         (3.5) 

 

The implementation of these equations resonates with the chessboard algorithm. The 

introduction of these equations are based on the pinhole model. As the camera capture is 

executed, the pattern matching algorithm makes use of these calculations to address the 

homogeneous coordinates. This is important, as the image datasets are supposed to be 

calibrated; hence, the emphasis of these calculations in the introductory part of the system 

development subsection. 
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Figure 3.7: Hexagon camera configuration setup 

 

Figure 3.7 depicts the hexagon camera model attached to the test vehicle. Furthermore, Figure 

3.7 outlines the model connection also displaying the rigid camera holder with the configuration 

model enlarged for a better view. Before system testing can commence, the second stationary 

test has to be conducted to ensure the full and correct functionality of the apparatus. Following 

the secondary stationary test results, the test vehicle speed together with the frame speed are 

calculated to obtain the best test speed for this research test. Equation 3.6 depicts the test vehicle 

and camera frame speed for the selection of the best test speed to be utilised for this research 

study. The method used for this application is derived from the video image equation [73]. Since 

the camera configuration model is based on a fixed model status, the equation is firstly obtained 

by calculating the vehicle speed as follows: 

𝑣 =
∆𝑝

∆𝑡
           (3.6) 

Where: 

v = instantaneous velocity 

∆𝑝 = displacement vector 

∆𝑡 = time interval  
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In addition to estimating the vehicle speed, the instantaneous velocity vector is computed by 

adding the n points to the equation as follows to obtain speed at each nth position with reference 

to camera frames: 

𝑣𝑖(𝑡) =
𝑖

𝑛
∑ 𝑣𝑖(𝑡)𝑛

𝑖=1          (3.7) 

Additionally, the camera calibration matrix is important for determining the intrinsic parameters 

of the camera imaging process. As a result, the conversion between the raw image plane and 

the retinal plane occurs in this process. 

 

3.4.1 Image capturing and collection 
 

The image capture section consists of the following apparatus: camera, images, and GPS 

module. The six-mounted camera configuration model captures images while the vehicle is in 

motion, and each image is treated as a frame. During the image capturing process each camera 

image dataset is stored in its specific folder as outlined earlier. Post this action process, image 

compression activity commences. 

 

3.4.2 Image compression  
 

The scene depiction utilising multiple depth images in a dataset format is compressed. The 

image samples are captured and obtained from the camera capture by delaying the camera 

switching algorithm between multiple cameras by 3ms. The camera switching duration was 

selected to allow for proper transition between cameras taking into account the number and size 

of the images. The 3ms switching duration was the prerogative of the researcher based on the 

IBR algorithm that does not require a large dataset for rendering. Image compression is utilised 

due to its advantages that correlate with the advantages outlined in [74].  

The switching algorithm was processed from Arduino microcontroller as follows: 

𝑇 =  
𝐴

𝑆
           (3.8) 

Where: T = time 

 S = speed (480MB/s) – USB (2.0 speed) 
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 A = aata transfer speed (1.5MB) raw data 

𝑇 =
1.5𝑀𝐵

480𝑀𝐵/𝑠
          (3.9) 

T = 0.003125s 

T= 3.125ms 

 

In this research study lossy and lossless compression are investigated and the best algorithm is 

selected and implemented. As a result, the two algorithms were tested and the best algorithm 

with the best capabilities for achieving the study objectives was chosen, which in this case was 

the lossy compression. The use of a lossy image compression algorithm was based on the ability 

to compress images by removing redundancy, however, the process is reversible as outlined in 

ref [75, 76]. Lossless image compression algorithm performs redundant processing on image 

information according to the human principle that the human eye is insensitive to certain visual 

features.  

The performance view of the compression algorithms and the methods in which the two 

algorithms can be used are determined by making use of a lossy image compression algorithm. 

In this research study, lossy image compression algorithm is aimed at reducing the size of an 

image to a few kilobytes without compromising the image quality. The lossy image 

compressions algorithm utilised in this research study makes use of the .JPEG image formatting 

to effectively compare the image texture between different views. The sample .JPEG image 

formatting is indicated in Figure 3.8. Additionally, the image dataset is simulated without noise 

for better performance verification. 
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(a) 

(b)  (c) 

Figure 3.8: (a) Captured image dataset with timestamp and date; (b) Lossy image compression 

at 100% quality with file size 2.68MB; (c) Lossy image compression at 9% quality with file 

size 1.05MB  

 

Figure 3.8 depicts the image types for the captured images and also their date and timestamp 

within the camera storage folder. The images are outlined in Annexure E. Before Lossy 

compression algorithm is applied to a .JPEG image file, the file size is huge - in this context it 

is 2.68MB. After applying the lossy image compression algorithm, the file size reduces and this 

algorithm does not affect the image or dataset quality. In this research study, after the lossy 

image compression algorithm was applied, the file size was reduced to 1.05MB and the image 

quality and data were not affected. As a result, the file was ready for rendering.  
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Additionally, the image compression framework used to obtain the results output is outlined in 

Figure 3.9. 

 

Figure 3.9: Compression structure 

 

Figure 3.9 shows the compression structure that is utilised in this research study. The input 

image datasets are then used for the network training sample, by specifically setting the image 

dataset for image recognition where the compressed image datasets are compared against the 

raw image dataset. Additionally, the image compression bit allocation is then used to calculate 

the compression alterations and the alterations depend on the size of the dataset. In the context 

of this research study, each image captured was placed inside the master folder and converted 

into a full image dataset. The execution of these image datasets is accomplished by utilising the 

principles of compression structure, and the laptop is modified to increase the processing power 

and enable multithreading. Hence the image dataset compression is utilised, as opposed to the 

individual image compression, and this is also to retain of the dataset quality due to the use of 

the lossy compression algorithm. The reason for the laptop modification was that the 

compression execution was taking long and in some instances, the laptop was crashing and it 

was observed to be impractical to compress images individually. The individual image 

compression can be done for a smaller dataset, and it will be impractical in a bigger dataset. 

Furthermore, Figure 3.9 comprises of input image, semantic analysis network, image 

compression network and output image. The input image depicts the original input image to the 
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semantic analysis network and the image compression network. From the input image the 

semantic analysis network is used to extract semantic regions of the input image, then calculate 

the compression level corresponding to each area. The image compression network is used to 

compress and decompress the image hierarchically.  

 

3.4.3 Camera calibration 
 

The data collection and image compression process are determined by the reduction in the 

image size whilst still keeping the image resolutions intact. The image calibration model utilises 

the pinhole camera model that introduces some image distortions. These image distortions that 

are seen in this process are classified as either radical or tangential image distortion. The code 

below depicts the sample image calibration code for the intrinsic matrix, which is the matrix 

utilised in this research study. The execution of this code is to detect the focal point of the 

intrinsic image dataset by locating the focal point of the image during the calibration process. 

Due to the online accessabilities of libraries, it was deemed not necessary to re-write certain 

libraries, but rather import and modify/customise them to meet the study requirements or output 

results. Following the successful library import into the working directory of the code sheet, the 

calibration path was assigned and the dataset is loaded and analysed.  

The chessboard matrix corners are then detected through calibration of image corners and points 

and eventually, they are saved as different .xml files in the camera params directory. This is 

important in reducing the execution time of the files and also security around the corruption of 

any file. 

#Importing and loading of libraries 

 
import cv2 

import numpy as np 

import glob 

from tqdm import tqdm 

import PIL.ExifTags 

import PIL.Image 

 

chessboard_size = (9,6) 

obj_points = []  

img_points = []  

 

objp = np.zeros((np.prod(chessboard_size),3),dtype=np.float32) 

objp[:,:2] = np.mgrid[0:chessboard_size[0], 

             0:chessboard_size[1]].T.reshape(-1,2) 

calibration_paths = glob.glob('calibration_images/Front_center/*')#Iterate 
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over images to find intrinsic matrix 

for image_path in tqdm(calibration_paths):#Load image 

 image = cv2.imread(image_path) 

 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 print("Image loaded, Analyzing...") 

 

 #find chessboard corners 
 

 ret,corners = cv2.findChessboardCorners(gray_image, chessboard_size, None) 

if ret == True: 

 print("Chessboard detected!") 

 print(image_path) 

 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) 

 cv2.cornerSubPix(gray_image, corners, (5,5), (-1,-1), criteria) 

 obj_points.append(objp) 

 img_points.append(corners) 

  # Calibrate camera 

ret, K, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, 

gray_image.shape[::-1], None,None) 

  # Save parameters into numpy file 

np.save("camera_params/ret", ret) 

np.save("camera_params/K", K) 

np.save("camera_params/dist", dist) 

np.save("camera_params/rvecs", rvecs) 

np.save("camera_params/tvecs", tvecs) 

#Get exif data in order to get focal length. 

exif_img = PIL.Image.open(calibration_paths[0]) 

exif_data = { 

 PIL.ExifTags.TAGS[k]:v 

 for k, v in exif_img._getexif().items() 

 if k in PIL.ExifTags.TAGS} 

focal_length_exif = exif_data['FocalLength'] 

focal_length = focal_length_exif[0]/focal_length_exif[1] 

np.save("./camera_params/FocalLength", focal_length) 

  

The radical image distortion was calculated as follows: 

𝑋𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟2 + 𝑘3𝑟6)      (3.10) 

𝑌𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟2 + 𝑘3𝑟6)      (3.11) 

Where: x = original x location on the imager 

 y = original y location on the imager 

 k = radical distortion coefficient 

 r = radical distortion form Taylor series 

 

Additionally, the tangential image distortion was also tested. This image distortion test occurred 

mostly when the image lenses were not aligned perfectly and in parallel to the image plane. As 
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a result, some areas within the image appeared nearer than expected or than the actual area. 

These tests were validated using the following equations: 

𝑋𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑟2)]      (3.12) 

𝑌𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑦 + [𝑝2(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦]      (3.13) 

Where: x = original x location on the imager 

 y = original y location on the imager 

 p = tangential distortion coefficient 

 r = radical distortion form Taylor series 

 

For the camera to be fully calibrated, five parameters known as distortion coefficients given 

using equation (3.14) needs to be known. Therefore, it is empirical to calculate this variable 

before the image calibration process can be performed. 

𝐷𝑐 = 𝑘1𝑘2𝑝1𝑝2𝑘3         (3.14) 

Where: k = radical distortion coefficient 

 p = tangential distortion coefficient 

𝐷𝑐 = Distortion coefficients  

Additionally, other camera information including but not limited to intrinsic and extrinsic 

camera properties are important during the camera calibration, and, in most cases, they are 

camera specific. Moreover, the information about the focal length (𝑓𝑥,𝑓𝑦) and optical centre 

(𝐶𝑥, 𝐶𝑦) is critical. The focal length and optical centre are then used to create the camera matrix, 

which is used to remove the distortion due to the lenses which are camera specific. The camera 

matrix is then calculated utilising the focal length and the optical centres for the reused of 

images that are captured utilising a specific camera model as follows: 

𝐶𝑚 =
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

          (3.15) 

Where: 𝐶𝑚 = camera matrix 

(𝐶𝑥, 𝐶𝑦) = optical centres 
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(𝑓𝑥,𝑓𝑦) = focal length 

 

The system setup approach makes use of the chess pattern for the camera calibration setup. 

Some calibration methods in the literature rely on three-dimensional objects through the tests 

conducted, and therefore the flat chessboard pattern approach is deemed appropriate for this 

research study. This is due to the method being less complex and easily understood even by 

non-technical individuals. Furthermore, the usage of altering the black-and-white squared 

pattern ensures that there is no bias towards either side in the measurement algorithms. 

The main aim of the camera calibration is to determine the geometric parameters of the image 

formation process. This is crucial for many computer vision applications, especially when the 

metric information about the scene is required [78, pp. 517-531]. 

The camera calibration process is as follows: 

• Capture 20 chessboard images from different poses – in the context of this research 

study, 60 or more images are needed for calibration. 

• Find the chessboard corners. 

• Find the intrinsic matrix, distortion coefficients, rotation vectors, and the translation 

vector. 

• Store the parameters to the .xml file.  

Following the process completion, OpenCV for the python library is utilised to compute the 

results from the .xml file. This, therefore, allows for the reuse of the code for multiple cameras, 

which is relevant for our study that utilises a Hexagon Camera Configuration Model with a 

rotational image capture technique. 

In order to achieve this task, an OpenCV python code was programmed. The reason for this line 

of code was to take the stored images and enable a camera reading as outlined below: 

ret, frame = cam.read() 

 

Following this process, the image dataset was converted to Gray Scale as indicated below: 

grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) 
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An image calibration utilising a chessboard was utilised as a squared pattern match. The finding 

is outlined as indicated in Figure 3.10. 

 

Figure 3.10: Black-and-white test match on a chessboard 

  

Figure 3.10 depicts a black-and-white match-finding test on a chessboard utilising an intrinsic 

matrix for the reduction of image biasing. This model was deemed less complicated in matching 

the images utilising the Kd-tree approach. It was noted that the CasHash-based approach can 

have a faster computational time compared to the Kd-tree-based image matching, depending on 

the number and size of the datasets. The precision ratio becomes lower, hence the continuation 

of the Kd-tree-based image matching approach. 

The first process to achieve the results in Figure 3.10 is as follows: 
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• Load the chessboard images into the model 

calibration_paths = glob.glob('calibration_images/*') 

• Convert the dataset to grayscale 

image=cv2.imread(image_path) 

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 

• Find image corners 

ret,corners = cv2.findChessboardCorners(gray_image, chessboard_size, None) 

 

Upon finding the image corners, the intrinsic matrix, distortion coefficient, rotation vectors, 

and the translation vector were found utilising the below line of code. 

ret,K,dist,rvecs,tvecs=cv2.calibrateCamera(obj_points,img_points, 

gray_image.shape[::-1], None,None) 

 

After this is achieved the .xml files are stored utilising the below code. 

np.save("camera_params/ret",ret) 

np.save("camera_params/K",K) 

np.save("camera_params/dist",dist) 

np.save("camera_params/rvecs",rvecs) 

np.save("camera_params/tvecs", tvecs) 

 

Figure 3.11 depicts the sneak preview of how the .xml files are stored in the directory. 

 

Figure 3.11: Preview of the .xml directory file.  
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Figure 3.11 depicts the camera parameters for the saved .xml files that are used for rendering 

after the compression process is complete. 

 

3.4.4 Image rendering procedure  
 

The image rendering technique in the context of this research study focuses on the known 

camera parameters and undistorted images for the rendering of the scenes. These images are 

reconstructed, and the texture is applied to their structure before rendering simulation can be 

executed.   

The first step in reconstructing a 3D object from its original 2D digital image form is through 

its corresponding matching points. Correspondence matching points refer to those points across 

the images which projections are of the same 3D point of the object being imaged [79]. For 

correspondence matching, a set of distinctive feature points is detected in the image of the 

dataset. The feature points are searched for the correspondence across the rest of the images 

within the dataset. Additionally, the feature points are then detected in an image reducing the 

number of matched correspondence. 

Furthermore, the exhaustive matching of all the image pixels against each other is deemed 

expensive, and as a result, the robust feature points are readily distinguishable and invariant to 

image transformations. Thus, the computation time of the correspondence matching is greatly 

reduced by detecting feature points in an image. SIFT algorithm is utilised for the detection of 

the feature point in an image as outlined below: 

img=cv2.imread('2019-11-07_122716.jpg') 

#converttogreyscale 

gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 

sift=cv2.xfeatures2d.SIFT_create() 

keypoints,descriptors=sift.detectAndCompute(img,None) 

#drawthedetectedkeypoints 

sift_image = cv2.drawKeypoints(gray, keypoints, img) 

   

The outlined code depicts how the keypoints are computerised and drawn as indicated in Figure 

3.12. 

© Central University of Technology, Free State



 

51 
 

a)  b)  

Figure 3.12: a) original captured image; b) application of SIFT algorithm for keypoints 

detection. 

 

Figure 3.12 a) depicts the originally captured image, while Figure 3.12 b) depicts the calibrated 

image and the application of the SIFT algorithm for the detection of the keypoints in an image. 

The keypoints are highlighted in Figure 3.12 (b), and this enables ease of access to features 

when executing or applying the Structure from Motion Model within a dataset. 

 

For the image dataset to be fully rendered and simulated, the following processes must take 

place namely: 

• Structure from Motion  

• Multi-view stereo 

• Texturing 

 

3.4.4.1 Structure from Motion 

 

Structure from Motion is a technique that uses a series of two-dimensional images of a scene or 

object to reconstruct its 3D structure [80]. Furthermore, SFM permits for three-dimensional 

reconstruction starting from collection of images, hence the application and utilisation of SFM 

and its relevance to this study. For Structure from Motion, similar to any other algorithm, 

sequencing is very important mainly when processing a large amount of data. Structure from 

Motion follows the following steps: 

• An image pair, having some overlapping portion of the scene/object between them, is 

selected from the image sequence. 
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•  All the feature points from one image are inserted into the leaves of the k-d tree. The 

feature points belonging to the other image of the pair are used as queries to the first 

image.  

• Then, the k-d tree algorithm is used for the efficient search of K-nearest neighbour of a 

feature point X. The threshold distance R is selected according to the image resolution.  

• This search across the k-d tree leaves results in correspondence matching the feature 

points in the image pair. 

• The matched points are then checked for accuracy using RANSAC-based estimation of 

the fundamental matrix. Those matched points which are not satisfying the fundamental 

matrix equation are rejected as mismatches. 

The following code outlines how the features are detected in an image with the output depicted 

in Figure 3.13. 

#loading of images  

img1=cv2.imread('2019-11-07_122716.jpg') 

img2=cv2.imread('2019-11-07_122706.jpg') 

 

#convertimagestograyscale 

img1=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) 

img2=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) 

 

#createSIFTobject 

sift=cv2.xfeatures2d.SIFT_create() 

 

#detectSIFTfeaturesinbothimages 

keypoints_1,descriptors_1=sift.detectAndCompute(img1,None) 

keypoints_2,descriptors_2=sift.detectAndCompute(img2,None) 

bf=cv2.BFMatcher(cv2.NORM_L1,crossCheck=True) 

 

#matchdescriptorsofbothimages 

matches=bf.match(descriptors_1,descriptors_2) 

matches=sorted(matches,key=lambdax:x.distance) 
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#drawfirst50matches 

matched_img = cv2.drawMatches(img1, keypoints_1, img2, keypoints_2, matches[:50], 

img2, flags=2) 

 

 

Figure 3.13: Feature detection using SIFT feature extraction and brute force matching. 

  

Figure 3.13 depicts the output obtained by applying the SIFT feature algorithm and the brute 

force matching algorithm to an image. This model still requires further refinement; hence the 

introduction of the point of cloud. These matched image points are then computed as a 

collection of data points by a given coordinate system as outlined in Figure 3.14. 
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Figure 3.14: data points collection flow diagram 

 

Figure 3.14 depicts the data points data collection. The image dataset is placed into the model, 

and the block matching objects are then created from the input dataset. The matching objects 

after execution creates the disparity map which is then computed to generate a new dataset 

height and weight. After this is completed, the focal length is loaded into the model, the 3D 

points are projected, and the model itself gets rid of value 0 points and masks the colour before 

the final output file is produced.  
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Figure 3.15: Application of a point of cloud in an image 

  

Figure 3.15 depicts the application of a point of cloud in an image. To achieve the colourised 

point of cloud in this research study, the 2D camera images are extended over the 3D points so 

that the information is assigned to each 3D point; hence the view of different colours in Figure 

3.15. Additionally, the extraction of the 3D point in the point of cloud was achieved by using 

the extrinsic calibration between the camera and the device. The below code depicts the key 

point computation code as follows: 

win_size=5 

min_disp=-1 

max_disp=63  

num_disp=max_dispmin_disp  

stereo=cv2.StereoSGBM_create(minDisparity=min_disp, 

   numDisparities=num_disp, 

   blockSize=5, 

   uniquenessRatio=5, 

   speckleWindowSize=5, 

   speckleRange=5, 

   disp12MaxDiff=2, 

© Central University of Technology, Free State



 

56 
 

   P1=8*3*win_size**2,#8*3*win_size**2, 

   P2=32*3*win_size**2)  

 

print("\nComputing the disparity  map...") 

disparity_map=stereo.compute(img_1_downsampled,img_2_downsampled) 

 

print("\nGeneratingthe3Dmap...") 

 

h,w=img_2_downsampled.shape[:2] 

 

#Loadfocallength. 

focal_length=np.load('./camera_params/FocalLength.npy') 

 

Q=np.float32([[1,0,0,-w/2.0], 

            [0,-1,0,h/2.0], 

            [0,0,0,-focal_length], 

            [0,0,1,0]]) 

 

Q2=np.float32([[1,0,0,0], 

            [0,-1,0,0], 

            [0,0,focal_length*0.05,0], #Focal length multiplication obtained experimentally. 

            [0,0,0,1]]) 

 

#Reprojectpointsinto3D 

points_3D=cv2.reprojectImageTo3D(disparity_map,Q2) 

#Get color points 

colors=cv2.cvtColor(img_1_downsampled,cv2.COLOR_BGR2RGB) 

 

#Get rid of points with value 0 (i.e no depth) 

mask_map=disparity_map>disparity_map.min() 

 

#Maskcolorsandpoints. 

output_points=points_3D[mask_map] 

output_colors=colors[mask_map] 
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output_file='left.ply' 

 

 

During the image matching process, the flag is passed using the match flag function of the 

FLANN algorithm. The image match function in the context of this research study was used 

with reference to the matrix outlined in Figure 3.6, and was computed after the track 

construction was obtained as follows: 

#Draw keypoint () 

 

 

detIMG=cv2.drawKeyPoints(gray, 

kP,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS_cv2.imwrite 

(‘sift_keypoints.jpg’,detIMG)) 

 

Under normal circumstances mainly utilising exhaustive matching, the computation is usually 

time-consuming and complex; hence the selection of the FLANN algorithm in this research 

study. The FLANN algorithm utilises a tree-based approach by storing the image datasets within 

efficient data structures and utilising the Kd-tree approach. The Kd-tree approach was selected 

based on the literature from [81], [82], highlighting the construction of the tracks for the 

matches. 

In the track construction, the essential and fundamental matrices of a camera are computed. 

These matrices specify the camera motion in terms of the rotational and translational 

components. This function is called in OpenCV to find the fundamental camera matrix as 

indicated: 

cv2.findFundamentalMat(self.match_pts1,self.match_pts2, cv2.FM_RANSAC, 0.1, 0.99). 

 

For the essential matrix, the solve for the structure library is called as follows: 

  

• Solving the Structure from Motion from 2D tracks 

At this stage, triangulation is performed. Triangulation is defined as a process for determining 

the point in 3D space given its projection onto two or more images [83]. Direct linear 

transformation namely a P3P algorithm was used for the triangulation. In the context of this 
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research study, two sets of triangulation methods, namely linear and non-linear triangulation, 

were used. The reason for utilising triangulation is to find the intersections of two or more 

known rays in space. A pinhole model was utilised for the camera projection matrices utilising 

the following equations: : 

𝑆1[𝑢1, 𝑣1, 1]𝑇 = 𝑃1[𝑋, 𝑌, 𝑍𝑊]𝑇       (3.16) 

𝑆2[𝑢2, 𝑣2, 1]𝑇 = 𝑃2[𝑋, 𝑌, 𝑍𝑊]𝑇       (3.17) 

 

Where: 𝑆1, 𝑆2 = two scalars 

 𝑖𝑡ℎ = number of rows 

This linear triangulation is not limited to two images. It can also be extended to the rows per 

dataset which can be obtained in a matrix format. Following this process, the non-linear 

triangulation was applied to minimise the measured error citing the optimisation model 

developed by Zhang [84, pp. 161-195]. Another model based on the Bundle Adjustment (BA) 

algorithm was also utilised by refining the Structure from Motion (SFM) model and applying it 

to the calibrated dataset. 

At this stage, the Bundle Adjustment (BA) is performed. The problem relating to the BA is the 

simultaneous refining of the 3D coordinates describing the scene geometry. The parameters of 

the relative motion and the optical characteristics of the camera (s) are employed to attain the 

images. As a result, particularly for this research study, the CERES algorithm is utilised as well 

to mitigate any errors that might occur in conjunction with the non-linear triangulation.  

 

3.4.4.2 Multi-view stereo 

 

In this section, the camera parameters are captured, and the patch-based stereo and semi-global 

matching are used to generate point tracks, the depth-maps as well as the points cloud. 

Following the successful generation of these variables, a mesh of the scene is created as 

indicated in Figure 3.16. Finally, all the refined depth maps are merged to get the final 

reconstruction model. To obtain the Multiview stereo, the following sequence was followed: 
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• Few image frames with minimal camera motion are selected from the image sequence. 

By doing this, image redundancy is addressed, as image frames having large camera 

motion between them have less amount of overlapping object regions. So, adding two 

frames with large camera motion does not give many corresponding points. 

• Dense stereo matching is ran in these camera frames to obtain a dense 3D point cloud 

of the overlapping object region. A real-time plane sweeping algorithm is used in each 

of the image frames during stereo matching. The basic idea behind this process is 

epipolar geometry. Two corresponding points in a stereo setup follow an epipolar 

constraint, resulting in the corresponding point in an image frame laying along the 

epipolar line. This constraint reduces the correspondence point search area from 2D 

plane across the entire image, to a one-dimensional epipolar line existing in the stereo 

image pair counterpart. 

• A real-time plane-sweeping method is implemented by sweeping a plane through 3D 

space, across the image frames following the camera positions. Light rays from all the 

pixels of the images are projected into the respective imaging planes. 

• The rays are back-projected towards the reconstructed object/scene at each intersection 

of a 3D point. These points come from all the points across the images. So, the 

intersection of these rays results in a dense collection of points in 3D space, which 

represent the object/scene being imaged. The obtained point cloud preserves the object 

geometry and forms a dense 3D point cloud as indicated in Figure 3.15. 
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Figure 3.16: Mesh output from the Multiview stereo 

 

The multi-view stereo algorithm is further used as a Semi Global Matching algorithm (SGM), 

where it consists of calculations, aggregated costs, disparity computation, and the extension for 

multi-baseline matching. Since the mesh output is obtained, the Multiview stereo is operated as 

a 3D model as seen in Figure 3.16.  

 

3.4.4.3 Texturing 

 

After all the patches are formed onto the faces of the model, the texture patches and colours are 

adjusted. This is achieved by adjusting colour between different adjacent patches. This results 

in a seamless texture being achieved across the entire model.  

Figure 3.17 depicts the texture scene overview model. 

 

 

Figure 3.17: Textured scene overview 
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Figure 3.17 depicts the overview model of the textured scene after the multi-view is applied to 

the image dataset. Once the texture is applied to the dataset, the dataset can be simulated to 

provide the required output, which in this case is permitting bidirectional movement. 

Furthermore, the 3D textured model is obtained from each pixel of the datasets. The index of 

the disparity datasets serves as an index for both the left and right image datasets. This is pivotal 

as the textured model needs to be rendered for a panoramic view. If the model is only rendered, 

the full view of the model to enable 360o view that permits for back-and-forth movement cannot 

be realised, and as a result the study objectives could not be met. Hence, the importance of the 

panoramic view in this research study. 

 

3.4.5 Data simulation  
 

This section presents the rendered output in Blender3D software after  the mesh and textured 

models are applied on the simulated model. The model with texture consists of the path/road 

and environment (trees and buildings), lighting, camera, and collides are added. The lighting is 

added to the images with the sole purpose to simulate the light from the sun.  

Furthermore, the movement of the camera simulates a vehicle's motion through the path/road 

created within the model. The movement gets the inputs from the keyboard. The colliders are 

also created in Blender3D software as objects that provide physical attributes to the model. 

These physical attributes are added to prevent the user from moving beyond the required space 

within the simulator.   

 

3.5 Summary 

 

In this chapter, the image-based rendering technique for utilisation in a simulator model was 

presented together with the supporting tools for the development of this model. “The pinhole 

technique” was used for camera configuration and Python programming language was utilised 

for camera switching at 3ms time intervals without the use of camera internal sensors.  

Subsequent to the camera configuration model, the process for capturing the images from the 

fixed Hexagon Camera Configuration Model was outlined, as well as the modelling of the 

configuration model utilised in this research study. Following the image capture stage, the 

captured images were stored on a specified folder per camera, i.e. camera 1 = folder 1. This 

applies to the other five cameras, meaning that all six cameras each had its own folder with 
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image datasets. The datasets were then compressed and calibrated inside Blender3D software 

to reduce noise in the images. Lossy compression algorithm was utilised during the compression 

stage and contributed to the reduction of the dataset size, yet not affecting the image size and 

quality. 

The created image datasets were then calibrated and the Structure from Motion Model and 

texturing were applied to the datasets inside Blender3D software. Additionally, the image 

rendering procedure and data simulation were achieved. The results discussion of the two 

processes namely rendering and simulation are discussed in Chapter 4. 
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Chapter 4: Results and discussions 
 

In this chapter, the study results are outlined based on the implementation and methodology 

chapter. The results are analysed, then compared against the aim and objectives outlined in the 

introduction chapter. Subsequently, the results are presented outlining the bidirectional motion 

that is achieved using the panoramic view of the input image database obtained from the 

Hexagon Camera Configuration Model. 

 

4.1 Introduction to the results chapter 

 

The results outlined in this section depict the image rendering framework for the 364 .JPEG 

images that were captured on each camera at a total dataset worth 2184 .JPEG images at a high 

resolution of 1280 X 720 pixels at a total size of 39.8MB. The system required a dynamic scene 

with six cameras arranged at a 2D arc at a spanning of about 60o angle apart from each other. 

Additionally, each camera frame comprised of 364 .JPEG images that were captured from the 

real scene, and only then the process of image matching and texturing was applied using “depth 

maps. This resulted in an output of a textured .PNG image of 25.2 MB of 8192 X 9192 pixels 

resolution. The depth map components in this research study are treated as graphics models that 

can be easily rendered. Additionally, this image dataset utilises the blending approach that 

computes the weights of each depth image.  

The selected depth maps in the textured image datasets produce acceptable output quality that 

can be utilised for this research study. The quality of the image reconstruction depends on the 

image quality and as a result of outdoor image capture, the texture and lighting were applied on 

each image dataset to enhance the image quality. 

 

4.2 Input image results 
 

To simulate a virtual curved mirror, the simple setup was arranged where a six-camera 

configuration arrangement was set up by placing this configuration model on the test vehicle’s 

rooftop, whilst the display output of the camera was on the computer. The model configuration 

on its own was insufficient, because the viewpoint of the camera depended on the position of 
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the viewer. Therefore, an alternative test had to be conducted. The second scenario had to be 

formulated where a curved mirror surface with the scene points are observed as indicated in 

Figure 4.1.  

 

Figure 4.1: Input captured image scenery 

 

The main challenge around the simulation of the curved mirror in the rendered scene is the 

display of active content correctly depending on the viewer's perspective. However, to simulate 

a large curved mirror surface, the camera display system must be able to capture the 3D 

environment while rendering the new view based on the viewer's position. 

Furthermore, all the tasks were accomplished in real time. Otherwise, the virtual mirror system 

would lose the instant visual feedback required to provide the realism of the mirror. The IBR 

algorithm therefore seeks to advance the geometry and surface properties with images, and this 

is based on the image geometry and material attributes. A method from Szeliski’s [85] study 

was inherited and utilised for image rendering in this research study.  

Figure 4.1 further outlines the multiple captured images based on the Hexagon Camera 

Configuration Model and real-time image capture. The images outlined in Figure 4.1 are images 

that are captured from individual camera feeds and are stored in a folder based on their 

timestamp, and they are transposed to a master folder. 
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4.3 Rendering simulation outcomes  

 

The technique of combining Street View imagery with other known image datasets makes the 

experience of using panoramic view mainly in the virtual world even richer. The use of Street 

View is essential as it is used as a tool to ease the livelihood with the ability to convert it into 

an application tool for driving directions. In the process of acquiring such results, the feature 

detection and matching utilising Structure from Motion technique is important. 

Figure 4.2 presents the output results for feature detection and matching from the Structure from 

Motion algorithm. This output is based on the use of the SIFT feature detection algorithm that 

was utilised in Chapter 3. The SIFT algorithm was presented highlighting the number of interest 

points to detect the images utilising the Difference of Gaussian function as indicated in Figure 

4.2. Furthermore, the feature tracks and the point of clouds are matched to capitulate the feature 

tracks. This is accomplished by tracking each feature in the corresponding image and testing it 

against the 3D point in the Structure from Motion on the drive testing route. 

. 

 

Figure 4.2: Feature detection and matching in Structure from Motion 

 

Another element outlined in Figure 4.3 depicts the point of cloud where all the feature tracks 

are visible in the image. The incremental Structure from Motion (SFM) points are then used in 

the reconstruction of the scene and result in the formulation of the points of cloud as indicated 

in Figure 4.3. The output results are derived based on the camera position as indicated. 
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Figure 4.3: Point cloud and camera position reconstruction 

 

Figure 4.3 depicts the dense geometry reconstruction of the scene. This is achieved by 

performing the multi-view stereo algorithm. The application of the multi-view stereo produces 

the depth maps and dense point cloud and with this, the algorithm can perform the map 

recovery. Following the completion of this process, a mesh of a scene is reconstructed by fusing 

the depth maps and the dense cloud that produces the mesh explained in line with Figure 4.4 

for further apprehension of these results.  

 

© Central University of Technology, Free State



 

67 
 

 

Figure 4.4: Dense point of cloud with Multiview stereo 

 

Figure 4.4. depicts the output results in a form of a dense point of cloud with Multiview stereo. 

The reason for the conversion of the dense point of cloud was to find small and smooth points 

with a good fit to the plane.  
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Figure 4.5: Mesh output from Multiview stereo 

 

Following the creation of the mesh output, the texture was then generated by taking models, 

images, and the camera position (this was achieved through the use of the GPS coordinates). 

This was accomplished in the meshroom function by selecting 8 192 texture slides and 

unwrapping them to produce the desired expected output generate texture as indicated in Figure 

4.6. 
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Figure 4.6: Generated texture 

 

The depth map restoration and colour images were paired up to create the application of texture 

to the 3D mesh model and warp to the new viewpoint. Furthermore, the extraction of the depth 

map model from the 3D mesh,and the shortcomings were observed to be the delay by which the 

mesh update duration is long and as a result, affects the depth map extraction. The long duration 

observed for mesh update processing did not affect the expected results. 

 

4.4 Output simulation results 

 

To complete the simulation mesh model constructed from the different cameras, the integration 

of different models had to be applied. In addition, the scene construction was developed in 

Blender3D software including the camera, light, and colliders that are added to make the scene 

complete. The camera is then used to simulate the movement of the vehicle through the 

constructed scene, and the light is then added to illuminate the scene. The colliders are also 

added to simulate the physical attributes such as coordinates, gravity, and road limitation of the 

scene, as indicated in Figure 4.7.  
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Figure 4.7: Model of the street without texture before simulation 

 

The rendered street view panorama and its utilisation in a simulator are indicated in Figure 4.8. 

The rendering process takes place inside Blender3D, and the output is simulated and projected 

as depicted in Figure 4.8. 
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Figure 4.8: 3D-rendered street view 

 

The technique for combining street view imagery with other know image datasets was extracted 

from the Hexagon Configuration Model. The experience of using a panoramic view mainly in 

the virtual world is deemed essential, as it is used as a tool to ease the livelihood with the ability 

to convert the view into an application tool that is used for driving or bicycle riding directions. 

This application enables individuals to move in a scene that was initially captured by a Hexagon 

Camera Configuration Model with a bidirectional movement option available. Additionally, all 

the depth maps are combined into a single large single-point cloud to produce a mesh that can 

easily be simulated. 

A scale value is attached to every point which indicates the actual size. The actual .JPEG images 

were captured at 1280 X 720 resolutions and this is the default camera resolution. After applying 

texture the .PNG out images had a resolution of 8192 X 8192 pixels. These parameters depict 

the final mesh image that is extracted when the texture is applied to the resulting output dataset 

as indicated in figures 4.9 (a) and (b). 

The final output that is represented in figures 4.9 (a) - 4.9(b) depicts the rendered view of the 

panoramic street views captured in Botshabelo. The panoramic street view in the context of this 

research study can be viewed from multiple viewing angles, and the navigation of the scene that 

was captured from a hexagon camera configuration is also feasible, as indicated in figures 4.9 
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(a) - (b). The depicted images are shown in a rendered street view from a top view perspective. 

This is achieved and projected from a horizontal street view in an omnidirectional manner. 

These results are outlined to provide the freedom of movement and the views that are obtained 

from the Hexagon Camera Configuration Model. These views allow for bidirectional movement 

within the simulator as indicated in figures 4.9 (a) and (b). 

a)  b)   

Figure 4.9: a) Rendered scene in a left direction; b) rendered scene in a reverse direction 

 

The omnidirectional view of the rendered scene is deemed important as compared to the slider 

show that only allows for one-directional motion within the rendered scene. Figures 4.9 (a) and 

(b) presents the reversed horizontal view of the results outlining the effectiveness of this model. 

In addition, Figure 4.10 presents the comparison results between the rendered images and the 

initial captured image. 

(a) (b)  

Figure 4.10: Comparison results between the captured and rendered image 

 

Figure 4.10 (a) presents the originally captured image from one of the cameras. It is important 

to note that these images are obtained from six cameras and they are used as input datasets. 

Figure 4.10 (b) presents the output rendered scene. The process for image dataset constitutes a 

process within the value chain comprising of camera calibration, image compression, and 
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application of SFM and texture to the image dataset. The results shown in figures 4.10 (a) and 

(b) depict that through the completion of the successful application of the value chain process 

images can be converted into a dataset that can permit for bidirectional movement. As a result, 

the model efficacy can be determined by comparing the 2D input model against the rendered 

output model as outlined in figures 4.10 (a) and (b).  
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To determine the efficacy of the research output, Table 4.1 depicts the comparison output results based on the sample size to justify the study 

results. 

Table 4.1: Efficacy comparison table based on image sample size  

Number 

of 

samples 

Point cloud Number of points Mesh Scene Efficacy 

91 

 

16 881 

 
 

Low 

182 

 

39 690 

  

Moderate 

273 

 

74 070 

  

Medium 
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Table 4.1 presents the efficacy test results. The results are based on several sample images taken during the capture phase. The number of images 

in total were 364; however, the sampling was conducted on the multiple of 91 images per dataset. The set number of images taken or utilised for 

each sample image dataset was deemed sufficient as a prerogative of the researcher. For 91 image dataset, the number of points are 16 881, and as 

a result the efficacy of the study is determined by the realism of the rendered output scene from the point of cloud and mesh output.

364 

 

106 110 

 
 

High 
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For the 91 image dataset, the output scene is low as the realism of the entire scene is not 

complete. For 182 image dataset, the rendered output scene efficacy is moderate but still with 

low contrast of the realism, and the realism for the actual scene is imminent. For 273 image 

dataset, the output scene realism is observed as medium due to the high volume of the input 

image dataset. Furthermore, for 364 image dataset, the output scene is high as a result of a high 

volume of input image dataset with the scene realism observed for both points of cloud and 

mesh. This observation does demonstrate that the more images there are in a dataset, the higher 

the realism can be observed in a system.   

 

4.5 Conclusion 
 

In this chapter, the results of the tests that were conducted in Chapter 3 were evaluated and 

analysed with respect to the simulation and rendering of bidirectional panoramic views. The 

evaluation was observed based on the feasibility of the user to move forward and backward 

within the simulator. The prototype development produced good quality rendered frames with 

acceptable data size. In the context of this research study, acceptable data size refers to the 

quick simulation of a full dataset within a five minute period. The time frame was not 

scientifically proven, but it was the prerogative of the researcher and it was compared against 

the initial captured dataset simulation time frame. The success of the developed prototype was 

based on the ability of the model to permit bidirectional movement of the scene in a simulator. 

The results were then separated into scene simulation and panoramic image rendering 

applications as follows: 

 

4.5.1. Panoramic image rendering 
 

In this process, multiple application processes entailing several algorithms for image capture, 

compression, and texturing were utilised before the rendering could take place. It was noted 

that image compression is a very important process in the execution of such a computer vision 

application. The utilisation of the lossy algorithm compensated for the image dataset size of 

38.9 MB and quality at 1270 X 720 pixels. This algorithm only reduced the dataset size but 

also increased the resolution size to 8192 X 8192 pixels at 25.2MB. Furthermore, the SIFT 
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algorithm was utilised for feature and point of interest detection for a set of 2D images. These 

image datasets were then compared against the camera pose related to the previous view. It 

was of high importance to detect the image features to enable for smooth image matching 

application. The reason for rendering the scene in a panoramic view was to allow the user to 

view around the rendered scene at any angle, and to permit them to move forward and backward 

within a simulator. Furthermore, the image rendering application utilising multi-view stereo 

was able to produce the depth maps and dense point cloud and enable the performance recovery 

of the maps. 

 

4.5.2. Data simulation 
 

The data simulation was performed on the meshed dataset that is attained from the Hexagon 

Configuration Model. The initial output mesh simulation light was not satisfactory, and as a 

result the colliders were added to the mesh inside Blender3D to complete the scene and increase 

the output light on the simulated dataset. This process was claimed following the application 

processes were SFM, and Multiview were applied. The introduction of the SFM meant that the 

pose of the calibration camera from a hexagon dataset of 2D images could be estimated, and 

as a result, the information of the 3D reconstruction point of cloud can be applied to the 

unknown objects. The objective of this research study was to test the feasibility for achieving 

bidirectional movement of a scene without the use of a 360o omnidirectional camera. 

The results demonstrate that this task is feasible based on the tested Hexagon Camera 

Configuration Model. Figures 4.9 (a) and (b) presents the output results and the feasibility of a 

concept utilising a six-camera configuration model. It was important to test the feasibility of 

the same concept utilising a Hexagon Camera Configuration Model. These results are measured 

against the study objectives and the research question for testing of the feasibility of a 

developed 360o bidirectional view of a scene. The feasibility testing utilised a Hexagon Camera 

Configuration Model as compared to the use of a 360o omnidirectional camera. Furthermore, 

the input images are broken into two sets of input data, namely left and right cameras. The 

reason for this is to enable bidirectional movement within the simulator. The results also show 

the possibility for dataset creation from the SFM reconstruction with satisfactory output results.  
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Chapter 5: Conclusion & future work 
 

This chapter outlines the conclusion to the research study and recommendations outlining the 

work that was not covered during the execution of this research study and also the study 

contribution are made. This chapter further makes mention of what was achieved in this 

research study. 

 

5.1. Conclusions of the research done 

 

This research study has contributed to human knowledge by testing the feasibility of the 

development of a Hexagon Camera Configuration Model that can permit for bidirectional 

movement of the scene within a simulator. Furthermore, this research study has presented an 

optimal utilisation and development model for spatial image enhancement without the use of a 

360o omnidirectional camera but with the use of the 2D Hexagon Camera Configuration Model. 

The configuration method was developed by placing six cameras on the test vehicle rooftop 

and converting the captured 2D images to 3D images by adding the z-coordinate on the images. 

The drive test was conducted in Botshabelo township, and the rendering and scene creation 

were developed in Blender3D software.  

 

The use of the image-based rendering technique utilising hexagon camera configuration was 

proposed as an ideal method due to the landscape of the testing site. To accomplish this, a 

technique with several algorithms based on SFM and SIFT was utilised. The feature detection 

and matching technique was observed as the best technique for detecting and matching the 

images from multiple image datasets. Subsequently, the process of data extraction from a 3D 

depth map to the mesh was outlined, and the restoration of the image data by utilising the 3D 

warping restoration approach was utilised.  

Furthermore, it was proven that the use of Blender3D software is feasible and effective in 

rendering panoramic images from multiple image datasets and can also allow for code reuse. 

The use of computer vision algorithms were easily integrated into the Blender3D software and 

has proven the feasibility of the enhancement of spatial image data in a short period and with 

more accurate results.  
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The result and outcome of this research study concludes that the use of Google Street View 

and image rendering can be easily integrated into the existing simulations, and that they are 

quite useful in delivering beneficial information from camera input datasets. Furthermore, in 

evaluating the efficacy of this research study, the objective argument highlights that through 

the use of machine vision, the user can move back and forth within the simulator utilising 

multiple datasets that were captured from the Hexagon Camera Configuration Model. This 

contributes to the feasibility aspect of utilising multiple cameras to capture images and 

rendering these datasets to permit for bidirectional movement. In comparison to the use of a 

360o omnidirectional camera, rendering of multiple scenes (datasets) permits the researcher to 

have control over the compression of images by labelling every dataset against its origin. This 

is complex using the 360o omnidirectional camera, as the entire dataset is stored into a master 

folder and images have to be selected individually. 

The fundamental research questions for this research study was based on whether it was 

feasible to develop a bidirectional model from the Multimode Camera Configuration Model. 

The research study objectives were looking at the application of IBR techniques and 

enabling for bidirectional movement within a simulator, and the following objectives were 

achieved, as indicated:  

• To incorporate the system into the simulation system in real time for increasing the 

realism of the simulation system in different geographical locations.  

• To simulate a rendering technique for improvement of visual and spatial images, and 

the quality of the panoramic images for location identification.  

The following outcomes were achieved as follows: 

• The development of a rendered panoramic image model for the enhancement of virtual 

driving through incorporated image datasets for utilisation in a simulator. 

• A possible image capturing technique for improvement of human interaction with the 

virtual world while driving or riding a bicycle. 

 

5.2. Contributions from this research study 

 

This research study has produced the following contributions in furthering the knowledge 

contribution in the field of computer vision as follows: 
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• 6 Degree of Freedom (6 DoF) from the Hexagon Camera Configuration Model - where 

the user can move in any direction as opposed to the use of a single slide that allows 

for one-directional movement in a street view scene. 

• The development of the Hexagon Camera Configuration Model that is used to capture 

images and produce a rendered scene that allows for bidirectional movement of the 

scene within a simulator.  

• Application of rendered images for the enhancement of virtual driving as proof of 

concept. 

• Image capturing technique for improvement of human interaction with the virtual world 

while traveling through a smart city. 

 

5.3. Final dissertation remarks 

 

In view of this research`s methods and results, it is evident that the Hexagon Camera 

Configuration Model with a set of camera models from the same manufacturer and focal length 

can provide a new dimension of Multiview. Furthermore, this camera configuration model 

allows for a scene of interest to be viewed from a simulator and can permit for bi-directional 

movement within the scene.  

 

5.4. Suggested future work 

 

Following the completion of this research study, a window for advanced future investigations 

in this field of study was noted. Due to the current study framework and scope, there were 

limitations, and as a result, not all identified aspects of this research topic were addressed. 

Therefore, the continuing investigation of the study can further be researched by addressing 

the following: 

• Error evaluation algorithm for input view computation. 

• The improvements on the rendering quality through the use of better surface meshing 

processing techniques. In this research study, it was not crucial to look at the rendering 

scene quality as it was out of scope. This study focuses on the image capture techniques 

and the ability to permit bidirectional movement within the rendered scene. 
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• The use of one of the cameras to determine the viewpoint and adapt the display 

accordingly. 

• Investigation on the effect of using different camera models with different focal lengths 

and from different manufacturers as opposed to utilisation of the same camera models 

from the same manufacturer. 

• Developing a quantitative evaluation approach to determine the feasibility and 

importance of such a research study. 
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The annexure section presents the information that was included in the body of the dissertation, 

with the reason either being size or space. The annexure section comprises of eight sections 

presenting additional images, figures, and codes that were used for the execution of the 

prototype. The image size difference and the reason for selection between lossy and lossless 

compression algorithms are outlined in Annexure A, followed by the full algorithm code which 

is broken into pieces in the dissertation and in line with the subject content in Annexure B.  

Annexures C and D present a copy of the two internationally published conference papers. 

Additionally, Annexure E depicts the modelling input of the captured images before image 

sorting based on the timestamp can be actioned, while Annexure F depicts the feature detection 

algorithm applied to the image datasets, with Annexure G presenting the final rendered output 

panoramic view, and Annexure H presenting the image calibration code. 
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Annexure A: Lossy flow chart and code algorithm 
 

Lossless compression(5% quality) file size 26.8KB 

 

 

 

 

 

 

 

 

 

  

Input raw data 

image 
 

 

imgYCC = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) 
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Lossless compression (100% quality) file size 398KB 

 

 

Lossy compression(100%  quality) file size 2,68MB 
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Lossy compression (9% quality) file size 1.05MB 
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Annexure B: Code algorithm 
 

 
import cv2 

 

cam = cv2.VideoCapture(0) 

 

cv2.namedWindow("Capturing Images") 

 

img_counter = 0 

 

while True: 

    ret, frame = cam.read() 

    if not ret: 

        print("failed to grab frame") 

        break 

     

    cv2.imshow("Capture Calibration", frame) 

 

    k = cv2.waitKey(1) 

    if k%256 == 27: 

        # ESC pressed 

        print("Escape hit, closing...") 

        break 

    elif k%256 == 32: 

        # SPACE pressed 

        img_name = 

"calibration_images/back/calibration_image_{}.png".format(img_counter) 

 

        cv2.imwrite(img_name, grey) 

        print("{} written!".format(img_name)) 

        img_counter += 1 

 

cam.release() 

 

cv2.destroyAllWindows() 

 

 
import cv2 

import numpy as np 

import glob 

from tqdm import tqdm 

import PIL.ExifTags 

import PIL.Image 

from matplotlib import pyplot as plt 

 

def create_output(vertices, colors, filename): 

   colors = colors.reshape(-1,3) 

   vertices = np.hstack([vertices.reshape(-1,3),colors]) 

 

   ply_header = '''ply 

      format ascii 1.0 

      element vertex %(vert_num)d 

      property float x 

      property float y 

      property float z 

      property uchar red 

      property uchar green 
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      property uchar blue 

      end_header 

      ''' 

   with open(filename, 'w') as f: 

      f.write(ply_header %dict(vert_num=len(vertices))) 

      np.savetxt(f,vertices,'%f %f %f %d %d %d') 

 

def downsample(image, reduce_factor): 

   for i in range(0,reduce_factor): 

      #Check if image is color or grayscale 

      if len(image.shape) > 2: 

         row,col = image.shape[:2] 

      else: 

         row,col = image.shape 

 

      image = cv2.pyrDown(image, dstsize= (col//2, row // 2)) 

   return image 

 

ret = np.load('camera_params/ret.npy') 

K = np.load('camera_params/K.npy') 

dist = np.load('camera_params/dist.npy') 

 

 

img_path1 = '2019-11-07_122706.jpg' 

img_path2 = '2019-11-07_122716.jpg' 

 

 

img_1 = cv2.imread(img_path1) 

img_2 = cv2.imread(img_path2) 

 

#Get height and width. Note: It assumes that both pictures are the same 

size. They HAVE to be same size and height. 

h,w = img_2.shape[:2] 

 

#Get optimal camera matrix for better undistortion 

new_camera_matrix, roi = 

cv2.getOptimalNewCameraMatrix(K,dist,(w,h),1,(w,h)) 

 

 

img_1_undistorted = cv2.undistort(img_1, K, dist, None, new_camera_matrix) 

img_2_undistorted = cv2.undistort(img_2, K, dist, None, new_camera_matrix) 

 

cv2.imshow('umdestored_1',img_1_undistorted) 

cv2.imshow('understoredted_2',img_2_undistorted) 

 

gray = cv2.cvtColor(img_2_undistorted, cv2.COLOR_BGR2GRAY) 

sift = cv2.xfeatures2d.SIFT_create() 

keypoints, descriptors = sift.detectAndCompute(img_2_undistorted, None) 

# draw the detected key points 

sift_image = cv2.drawKeypoints(gray, keypoints, img_2_undistorted) 

 

img1 = downsample(img_1_undistorted,3) 

img2= downsample(img_2_undistorted,3) 

 

cv2.imwrite('undistorted_left.jpg', img1) 

cv2.imwrite('undistorted_right.jpg', img2) 

 

win_size = 5 

min_disp = -1 

max_disp = 63 #min_disp * 9 

num_disp = max_disp - min_disp # Needs to be divisible by 16 
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#Create Block matching object. 

stereo = cv2.StereoSGBM_create(minDisparity= min_disp, 

   numDisparities = num_disp, 

   blockSize = 5, 

   uniquenessRatio = 5, 

   speckleWindowSize = 5, 

   speckleRange = 5, 

   disp12MaxDiff = 2, 

   P1 = 8*3*win_size**2, 

   P2 =32*3*win_size**2)  

 

disparity_map = stereo.compute(img1, img2) 

 

h,w = img2.shape[:2] 

focal_length = np.load('camera_params/FocalLength.npy') 

Q1 = np.float32([[1,0,0,0], 

            [0,-1,0,0], 

            [0,0,focal_length*0.05,0],  

            [0,0,0,1]]) 

 

 

points_3D = cv2.reprojectImageTo3D(disparity_map, Q1) 

 

colors = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) 

 

mask_map = disparity_map > disparity_map.min() 

 

output_points = points_3D[mask_map] 

output_colors = colors[mask_map] 

 

#Define name for output file 

output_file = 'reconstructed.ply' 

  

create_output(output_points, output_colors, output_file) 
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import cv2 

import numpy as np 

import glob 

from tqdm import tqdm 

import PIL.ExifTags 

import PIL.Image 

 

chessboard_size = (9,6) 

obj_points = [] 

img_points = [] 

 

objp = np.zeros((np.prod(chessboard_size),3),dtype=np.float32) 

objp[:,:2] = np.mgrid[0:chessboard_size[0], 

             0:chessboard_size[1]].T.reshape(-1,2) 

calibration_paths = glob.glob('calibration_images/Front_center/*') 

for image_path in tqdm(calibration_paths):  

 image = cv2.imread(image_path) 

 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 print("Image loaded, Analizying...") 

 

 ret,corners = cv2.findChessboardCorners(gray_image, chessboard_size, None) 

if ret == True: 

  

 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) 

 cv2.cornerSubPix(gray_image, corners, (5,5), (-1,-1), criteria) 

 obj_points.append(objp) 

 img_points.append(corners) 

 

ret, K, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, 

gray_image.shape[::-1], None,None) 

 

np.save("camera_params/ret", ret) 

np.save("camera_params/K", K) 

np.save("camera_params/dist", dist) 

np.save("camera_params/rvecs", rvecs) 

np.save("camera_params/tvecs", tvecs) 

 

exif_img = PIL.Image.open(calibration_paths[0]) 

exif_data = { 

 PIL.ExifTags.TAGS[k]:v 

 for k, v in exif_img._getexif().items() 

 if k in PIL.ExifTags.TAGS} 

focal_length_exif = exif_data['FocalLength'] 

focal_length = focal_length_exif[0]/focal_length_exif[1] 

np.save("./camera_params/FocalLength", focal_length) 
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Abstract—It has been noted that Google Street View 

serves millions of users with panoramic imagery across 

the globe. However, the configuration model such as 

the use of a 3600 omnidirectional camera is utilised. 

However, an optimal model for capturing, calibrating, 

and compressing the captured images differs. It is for 

these reasons that a Hexagon Camera Configuration 

Model is investigated, including but not limited to 

imagery capture and simulation of results to allow for 

bidirectional navigation within a simulator with the 

ability to view the initially uncaptured scenery. On the 

configuration model, cameras were placed at a 60o 

angle apart to obtain the full 360o scenery view. It is 

seen that this model can optimally produce a full 360o 

panoramic view with the capabilities for a 

bidirectional view and movement of the initially 

uncaptured scene/ view through the application of the 

image rendering technique. 

Keywords – Simulation; Image-Based Rendering; 

Spatial datasets; Google Street View; Smart cities;  

I. Introduction 

The smart city concept has the potential to 
capture real-time data that communicates with 
stakeholders for optimising decision-making 
utilising artificial intelligence and a low latency 
response rate. In addition, the modelling and 
visualisation of complex processes and data are 
significant. Hence, the hype in the furthering the 
concept of Google Street View (GSV) for mapping 
and documenting of rendered spatial built 
environment [1]. 

Furthermore, GSV is deemed as a technology 
implemented in several Google services to provide 
the user interested in viewing a particular location 
on the map with panoramic images [2]. In addition, 
the GSV implementation in most cases is achieved 
utilising the Image-Based Rendering (IBR) 
technique. Despite the selection of the IBR 
technique in this paper, several modelling 
techniques can be utilised to achieve the same 

results such as the Model-Based Rendering (MBR) 
technique. However, the construction and 
implementation of such techniques rely on 
techniques such as Structure from Motion, which is 
used to build 3D models from both structured and 
unstructured image collection depending on the 
dataset model [3].  

II. Problem statement 

In most GSV-based applications, a 360o 

omnidirectional camera is utilised for image capture. 
However, as a result of having a single dataset, the 
application becomes limited and reduces the 
application of a full 3D panoramic view processing 
power. It is for such reasons that a new image 
capture technique utilising six (6) camera 
configurations at a 60o angle needs to be tested and 
investigated and modelled for a full 3D panoramic 
view to observe the feasibility for free motion in a 
simulator for bidirectional imagery viewing of the 
initially captured images utilising an alternative 
model configuration as opposed to 360o 
omnidirectional camera.  

III. Objectives of this study is therefore 

to: 

● Simulate a rendering technique for 
improvement of visual and spatial images, 
and quality of the panoramic images for 
location identification. 

● Present a framework that allows for 
omnidirectional virtual driving. 

● Model image data collection technique 
utilising Hexagon Camera Configuration 
Model. 
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IV. Original contributions of this 

research paper 

This research paper has produced the following 
contributions in furthering the knowledge 
contribution in the field of computer vision as 
follows: 

● Development of a rendered panoramic 
image model for the enhancement of virtual 
driving through incorporated image datasets 
for utilisation in a simulator. 

● Image capturing technique for improvement 
of human interaction with the virtual world 
while traveling through a smart city. 

This paper is arranged as follows:  Section II 
gives background to the work conducted in this field 
also pointing out the shortcomings from the research 
conducted. Section III presents the configuration 
model for image capture and data processing 
techniques, while Section IV discusses the results 
obtained from the study. Section V awards the 
conclusion of the results obtained from the study. 

V. Literature Review 

The use of datasets in a simulator for 
constructing image rendering and camera content 
acquisition in a 3D content view is regarded as a 
significant approach in such a study.  

It is with such reasons, that a study from Li et al. 
[4] outlines the significance of cities in the context 
of global warming and urbanisation that is also 
interpreted and analysed for further developments.  

This is as a result of the view dependency, which 
means that the explicit geometric rendering much 
relies on the known approximate environment [5]. 
The use of the explicit rendering becomes complex 
in an informal environment/settlement due to the 
tiring exercise of data collection, which is skewed 
since residents can be built on any topography. 
However, the observation of the feature detection 
and matching technique utilising IBR technique for 
multiple image datasets is feasible to achieve the 
objectives of such a study.  

It is with such reasons supporting the use of the 
advanced IBR method presented by Mao et al. [7] 
and Shi et al. [8]  outlining the depth map containing 
associated pixels to the reference image in a 3D 
environment. It is noted according to the literature 
that depth estimation from a single image is an 
important issue in understanding a 3D scene. 

In addition to the parametric methods for 
extracting depths, many non-parametric depth 
sampling approaches have also been proposed to 
automatically convert monocular images into 
stereoscopic images with good performances. 

Unfortunately, vision techniques are not robust 
enough currently to recover accurate 3D models. In 
addition, it is difficult to capture visual effects such 

as highlights reflections and transparency making 
use of single texture-mapped model. 

 It is for such reasons that the rendering 
techniques are associated with computer graphics to 
enable better processing of images [9].  

The evolution of such an innovation is mainly 
based on the increased data resources, multiple 
spatial datasets, and tools for processing and 
computation [10] [11]. This paper focuses on the use 
of multiple cameras rather than the use of a single 
3600 omnidirectional camera to allow for 
bidirectional imagery viewing of the initially 
uncaptured scene. It is noted against the literature 
that much work has been conducted in this field of 
study. However, the exploration of IBR technic 
utilising another configuration model apart from the 
use of a 3600 omnidirectional camera has not yet 
been fully explored. Furthermore, the use of the 3600 
omnidirectional camera has still not yet proved the 
concept of imagery view of the uncaptured scene. 

VI. Methodology 

Figure 1 depicts the camera configuration setup. 
However, this model can be altered depending on 
the testing site, and theoretically, the number of 
cameras does not affect the results, but rather affects 
the resources required to process the output. 

 

 

Figure 1. Architectural proposition for data collection and 

rendering using IBR technology 

 

The data collection was conducted utilising a 
vehicle that is mounted with six cameras on its roof 
with the processing of the algorithms simulated in 
Blender3D for both image compression and image 
rendering. The camera configuration model consists 
of six cameras that are placed in a hexagon 
formation at a 60o angle between the cameras.  

All six cameras are connected to a laptop that is 
used for image storage, data processing, and data 
computation. Each image is Geotagged using a 
Global Positioning System (GPS) module that is 
attached to the Arduino microcontroller. 
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The process is started by allowing the cameras to 
capture individual images at a 3ms switched interval 
between the cameras. The switching duration was 
selected to allow for proper transition between the 
cameras taking into account the number and size of 
the images. The switching algorithm is processed 
from Arduino Microcontroller as follows: 

𝑇 =
𝐴

𝑆
             (1) 

Where: A = data transfer speed (1.5 MB) raw 
data, 

 S = speed (480 MB/s) USB 2.0 speed  

 

Following the image capture phase, the captured 
images are downloaded and manually placed into a 
single folder based on their timestamp.  

The reason for obtaining GPS coordinates is to 
ensure that the images can be merged to obtain a 
panoramic view with approximately the same 
timestamp and location.  

Other non-geometric methods that utilises 
computer vision functions, such as plenoptic 
function are utilised for allowing the intensity of 
light rays to pass through the camera centre at every 
location (𝐿𝑥, 𝐿𝑦, 𝐿𝑧) and at every possible angle 

(𝜃, ∅) for every wavelength ƛ, at every time t were 
tested [87]. In this paper, two algorithms were tested 
namely; Lossy and Lossless algorithms. However, it 
was noted that the Lossy compression algorithm was 
the best algorithm for utilisation in this research 
based on the reduced image size and less reduction 
of the image quality as compared to Lossless 
compression that can still do the same but with the 
image sizes being a concern. 

The plenoptic function is expressed as follows: 

𝑃7 = 𝑃(𝐿𝑥, 𝐿𝑦, 𝐿𝑧, ∅, 𝜃, ƛ, 𝑡)      (2) 

The images are projected from the laptop, and 
keyboard inputs are being used to navigate through 
the rendered scene. Furthermore, the GPS 
information such as longitude, latitude, and 
elevation from the scene is written to a text file, 
which is stored in a specified directory. 

The cylindrical panorama was also utilised due 
to its ease-to-build method for the single unit 
camera.  

A. System apparatus setup 

The following components were selected as 
indicated in Figure 2 as the primary apparatus for 
this research. It is important to note that the 
development of the physical model was constructed 
before any process can take place. 

This task needed to take place for the system 
component's functionality to be tested in a stationary 
environment before they can be placed on the test 
vehicle.  

 

Figure 2. System components setup 

 

The six full HD action cameras were selected 
and utilised to capture quality images that do not 
require any customisation which might delete some 
important data from the image, such as image 
descriptor/GPS coordinates. 

 Blender3D was selected and utilised due to its 
ability to convert and remodel files other than the 
.bli files, and also because it has the capabilities for 
code re-use. Furthermore, Blender3D was compared 
against Cinema4D as indicated in Table I as follows: 

 

TABLE I. CINEMA4D COMPARISON TO BLENDER3D 

  Cinema 4D Blender3D 

Availability 

Paid, R700 – 

R1 200 per 

month 

Free 

Source  Closed Open 

Applications 

Animation Animation 

Rendering Rendering 

Texturing Texturing 

 3D printing 

Learning 

curve 
Easy to learn 

A hard 

learning curve 

at the 

beginning  

User 

interface 
User-friendly 

No such 

intuitive 

 

Table I depicts the reasons for the selection of 
Blender3D over Cinema4D. There are other 
softwares available; however, for this paper, it was 
deemed necessary to evaluate only these two 
softwares due to resource constraints. 

Furthermore, the system design model is based 
on the initial model designed on Microsoft® Visio 
Professional 2016 as indicated in Figure 3. 
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Figure 3. Camera configuration setup 

 

The camera configuration setup outlined in 
Figure 3 depicts the system connections of the two 
hubs, which are connected to an ACER laptop that 
processes the incoming data from the cameras. 
There are six cameras, which are divided into two 
sectors/groups of three cameras per hub. 

 Due to the much-required processing power, the 
laptop specifications had to be modified for 
rendering and processing to take place without any 
interruptions. Additionally, an external battery with 
a 1200mAh capacity was purchased and used to 
power the two hubs and act as an extra power supply 
to the laptop due to the high amount of power needed 
to keep the system active. 

Furthermore, the system test duration was 
calculated as indicated in (3) as follows: 

𝐵𝑑(𝐴) =  
𝐶𝑐∗𝐶𝑏𝑣∗ 𝑁𝑏𝑠

𝐿𝑐
         (3) 

= 
0.9𝐴ℎ∗3.8𝑣∗3

11.4𝑤
 

= 0.9hr 

= 1 hrs testing 

Where: 

𝐵𝑑(𝐴/𝐵) = battery duration for Hub (A or B); 𝐶𝑐 = 

camera battery capacity; 𝐶𝑏𝑣 = camera battery 

voltage capacity; 𝑁𝑏𝑠
 = number of batteries 

connected in series; 𝐿𝑐 = load connected in watts  

B. Image compression 

The Lossless compression algorithm is 

performed for the redundant processing of image 

information. Additionally, the image dataset is 

simulated without noise for better performance 

verification. 

C. Image calibration 

Other camera information including but not 
limited to intrinsic and extrinsic camera properties 
are important during the camera calibration. 
However, they are deemed to be camera-specific. 

Moreover, the information about the focal length 
(𝑓𝑥,𝑓𝑦) and optical center (𝐶𝑥, 𝐶𝑦) is critical. The 

focal length and optical center are then used to create 
the camera matrix, which is used to remove the 
distortion due to the lenses, which are camera-
specific. 

The camera matrix is then calculated utilising the 
focal length and the optical centers for the reuse of 
images that are captured utilising a specific camera 
model as follows: 

𝐶𝑚 = 𝑓𝑥 0 𝑐𝑥 0 𝑓𝑦 𝑐𝑦 0 0 1    

         (5) 

Where: 𝐶𝑚 = camera matrix, (𝐶𝑥, 𝐶𝑦) = optical 

centres, (𝑓𝑥,𝑓𝑦) = focal length 

The system setup approach makes use of the 
chess pattern for the camera calibration setup. Some 
calibration methods in the literature rely on 3D 
objects.  

The camera calibration process is as follows: 

● capture 20 chessboard images from 
different poses; 

● find the chessboard corners; 
● find the intrinsic matrix, distortion 

coefficients, rotation vectors, and the 
translation vector; and 

● store the .xml file. 
Following the process completion, OpenCV for 

the Python library is utilised to compute the results 
stored in the .xml file.  

The black-and-white squared pattern match-
finding is outlined as indicated in Figure 4. 

 

Figure 4. Black-and-white test match on a chessboard 

Figure 4 depicts the black-and-white match-

finding test on a chessboard utilising an intrinsic 
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matrix for the reduction of image biasing. This 

model was deemed less complicated in matching the 

images utilising the Kd-tree approach. However, it 

was noted that the CasHash based approach can 

have a faster computational time as compared to Kd-

tree-based image matching, depending on the 

number and size of the datasets. However, the Kd-

tree-based approach was used since this project was 

based on few datasets. 

D. Application of Structure from 

Motion Model 

The basic operation of the Structure from Motion 
Model in this research follows the following 
pipeline: 

● Detection of 2D features on every image; 

 

Figure 5. Detecting the image feature using SIFT algorithm 

 

Figure 5 depicts the captured image scene with 
the application of feature detection utilising the 
SIFT feature detection algorithms. This is obtained 
by creating an orientation histogram with 36 bins 
that cover 3600 of the captured image. As a result, 
this creates the key points with the same location and 
scale but with different directions. 

Table II depicts the SIFT feature detection 
algorithm that is utilised for the detection of the 
image scene outlined in Figure 5. These detected 
image features are detected from a .JPEG image 
format. 

 

 

 

 

 

 

 

 

 

 

TABLE II. SIFT ALGORITHM FOR FEATURE DETECTION 

Algorithm: sift.detect() 

Function: Begin() 

Import cv2 

Import numpy as np 

     img = cv2.imread(‘cam1Image.JPG’) 

 

gray=cv2.cvtColor(img,cv2.COLOR_BRG2GRA

Y) 

    sift = cv2.SIFT() 

    kP = sift.detect(gray, NONE) 

    img = cv2.drawKeypoints(gray,kP) 

    cv2.imwrite(‘sift_keypoints.jpg’, img) 

    END 

 

The use of the sift.detect() function is to find the 
keypoints, which are outlined in Figure 6. 
Furthermore, the cv2.drawKeyPoints() function is 
utilised to draw the small circles concurrently with 
the sift.detect() function . During this process, it was 
noted that the keypoint structure has many features 
for example the (X, Y) coordinates, size of 
neighbours, and keypoints strength. 

● Matching of the 2D points between images: 

Upon feature identification, the key points are 
matched by applying the Fast Library Approximate 
Nearest Neighbour (FLANN) as indicated in Figure 
6. 

 

 

Figure 6. Matching of 2D points using the FLANN library 

 

During the image matching process, the flag is 
passed using the match flag function. The image 
match function in the context of this application was 
used with reference to the chessboard intrinsic 
matrix and was computed after the track 
construction was obtained as follows: 

detIMG=cv2.drawKeyPoints(gray,kP,flags=c

v2.DRAW_MATCHES_FLAGS_DRAW_RICH_

KEYPOINTS) 

cv2.imwrite (‘sift_keypoints.jpg’, detIMG) 
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Under normal circumstances mainly utilising 
exhaustive matching, the computation is usually 
time-consuming and complex. Hence, the need to 
utilise the FLANN algorithm in this application. The 
FLANN algorithm utilised a tree-based approach by 
storing the image datasets within efficient data 
structures and utilising the Kd-tree approach. The 
Kd-tree approach was selected based on [88] [89]. 

● Construction of the tracks for the matches: 
In track construction, the essential and 

fundamental matrices of a camera are computed. 
These matrices specify the camera motion in terms 
of rotational and translational components. This 
function is called in OpenCV to find the 
fundamental camera matrix as indicated: 

cv2.findFundamentalMat(self.match_pts1,self

.match_pts2, cv2.FM_RANSAC, 0.1, 0.99). 

For essential matrix, the solve for structure 
library is called. 

● Solving of the Structure from Motion from 

2D tracks. 

At this stage, the triangulation is performed for 
determining the point in a 3D space given its 
projection onto two or more images [15]. In a direct 
linear transformation, P3P, the algorithm is used for 
triangulation. 

● Refine the SFM model using bundle 

adjustment algorithm; 

At this stage, the Bundle Adjustment (BA) is 
performed. However, the problem relating to the BA 
is the simultaneous refining of the 3D coordinates 
describing the scene geometry. The parameters of 
the relative motion and the optical characteristics of 
the camera (s) are employed to attain the images. 
However, in this paper, the CERES algorithm is 
utilised.  

I. Results 

The technique of combining Street View 
imagery with other known image datasets makes the 
experience of using panoramic view mainly in the 
virtual world even richer. The use of Street View is 
essential as it is used as a tool to ease the livelihood 
with the ability to convert it into an application tool 
for directions while driving. In the process of 
acquiring such results, the feature detection and 
matching utilising the Structure From Motion 
(SFM) technique are important. 

Another element outlined in Figure 7 depicts the 
point of cloud where all the feature tracks are visible 
in the image. The incremental SFM points are then 
used in the reconstruction of the scene and result in 
the formulation of the points of cloud. The output 
results are derived based on the camera position. 

 

Figure 7. Point cloud and camera position reconstruction 

 

Figure 8 depicts the dense geometry 
reconstruction of the scene. This is achieved by 
performing the multi-view stereo algorithm. The 
application of the multi-view stereo produces the 
depth maps and dense point cloud and with this, the 
algorithm can perform the map recovery. Once this 
process is complete, a mesh of a scene is 
reconstructed by fusing depth maps and dense cloud 
as indicated in Figure 8. 

 

Figure 8. Denser point of cloud with Multiview stereo 

 

Following the creation of the mesh output, the 
texture was then generated by taking models, 
images, and the camera position (this was achieved 
using the GPS coordinates). Furthermore, 
meshroom function selecting 8192 texture slides 
was unwrapped. 

The depth map restoration and colour images 
were paired up to create the application of texture to 
the 3D mesh model and warp to the new viewpoint. 
Furthermore, the depth map model was extracted 
from the 3D mesh, and the shortcomings were 
observed to be the delay since the mesh update 
duration is long, and as a result it affects the depth 
map extraction. 

The final output that is represented in Figure 9 
depicts the rendered view of the panoramic street 
views. The depicted images are shown in a rendered 
street view from a top view perspective. This is 
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achieved and projected from a horizontal street view 
in an omnidirectional manner.  

These results are outlined to provide the freedom 
of movement. The views that were not captured by 
the camera but through rendering the uncaptured 
scene can be viewed as indicated in Figure 9. 

 

 

Figure 9. Rendered bidirectional 3D scenery view 

 

The panoramic street view can be viewed in 
multiple viewing angles as depicted in Figure 9. 
Furthermore, the depicted image outlines a rendered 
street view from a top view perspective with the 
bidirectional capability of scenes that were 
originally not captured. 

IV.  Conclusion 

The result and outcome of this paper 
demonstrate the application of the use of Street 
View and image rendering in a real-life environment 
based on the hexagon camera configuration. 
Furthermore, it was established that the IBR 
technique can easily allow for faster processing of 
multiple datasets based on the Kd-tree approach. 
Additionally, these techniques can allow for the 
movement and view of the uncaptured scene without 
the need for any extra application or tools. 
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Abstract – The introduction of Google Street View has 

brought to the surface a method for roof-mounted 

mobile cameras on vehicles. This method is regarded as 

one of the highly known and adopted methodologies for 

capturing street-level images. This article contributes 

to the development and implementation of Image-

Based Rendering techniques by presenting a technique 

that makes use of hexagon-based camera configuration 

for image capturing. Upon the image capturing, each 

segmented image is stored in a specific folder relative 

to the camera number (i.e camera 1 = folder 1). 

Subsequently, the optimal image rendering process of 

each image blending takes place inside Blender3D 

software where image datasets are rendered for 

utilisation in the simulator. Utilising the Structure 

from Motion algorithm, the dense point image, and its 

features, match detection is obtained. The article 

further contributed to the results process that allows 

for free movement within the 3D-rendered scene by 

permitting for back and forward movement as 

compared to a slide show that only allows for 

forwarding motion.  

 

Keywords – Image-Based Rendering; Blender3D, 

Simulation, Datasets; Google Street View; Smart City 

I. Introduction 

Over the years different techniques have been 

proposed for image data collection and image 

rendering. However, in the past few years, the 

Image-Based Rendering (IBR) technique has gained 

much attention mainly in image processing, 

computer vision, and the computer graphics 

community. In addition to IBR's interest in 

communities and spatial knowledge, which is 

regarded as an essential subject that makes use of 

geospatial statistics such as geoscience, geography 

has  shown growth with regards to multi-functional 

ecosystems.  

Street View has debilitated previous 

restrictions on the availability of data sources for 

evaluating streets [1]-[2]. Furthermore, Model-

Based Rendering (MBR) is classified as an easy 

method for reconstructing virtual view from any 

arbitrary viewpoint by using explicit 3D geometric 

and model and texture information about the scene, 

while IBR is a method that constructs virtual view by 

using several images captured beforehand [3].  

The captured images can provide valuable 

information about the incident, e.g. location. The 

location has the exact Global Positioning System 

(GPS) coordinates, which can also be an estimation 

of the location. Figure 1 presents the graphical 

representation of inquiring a query image to the 

reference database to find the match between a stored 

image and the query image [4]. 

 

 

 
Figure 1: Street-view to overhead view image matching 

II. Problem statement 

The 3D data acquisition process provides the 

probe position and orientation that remain in static 

order to produce accurate datasets. A single 3D 
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capacity is not able to support the translational 

motion of the simulated probes, thus the need to 

develop a methodology for recording and capturing 

single 2D images and amalgamating the images into 

multiple 3D images within a single unit.  

Furthermore, the issue of emulating street-view 

images for multiple image transitions for application 

in geolocalisation and utilisation in a simulator needs 

to be investigated.   

III. Aims and objectives 

This study seeks to develop a 3D-rendered 

model from 2D captured images. 

 

I. The objective of this study is therefore to: 

 

● Identify datasets with capabilities such as 

frame position, frame elevation, and frame 

indexing. 

● Incorporate the system into the simulation 

system in real-time for increasing the 

reality of the simulation system in different 

geographical locations.  

 

J. Original contributions of this research 

article 

 

This research article has produced the following 

contributions in furthering the knowledge 

contribution in the field of computer vision as 

follows: 

● six degrees of freedom where the user can 

move in any direction as opposed to the use 

of a single slide show that allows for one-

directional movement in a street view 

scene. 

● The ability of the application to use 

multiple cameras between three to six 

inputs as opposed to the use of single 

omnidirectional camera feedback and still 

obtain the same output rendered panoramic 

and simulated results. 

IV. Literature review 

Quintessentially, massive amounts of image 

collections are presented as slideshows, which are 

arguably the practical way, but with the current 

technological advancement these methodological 

approaches are deemed not engaging.  

The change in scenery due to technological 

improvements has led to a wide study pool which 

also cites the research conducted by Sivic. Sivic et 

al.., [91] highlight the connection of clustering 

visually similar images together to create a virtual 

space in which the users are free to change position 

from one image to another. This virtual space 

modelling can be obtained by utilising intuitive 3D 

control objects such as move left/right, zoom in/out 

and rotate.  

Sivic further outlines that the displayed images 

in a correct geometric and photometric alignment 

concerning the current photo result in a smooth 

transition between multiple images. In addition, 

Kopf et al. [92] present a method of combining 

images in the Street View system by stitching the 

image side views. This approach means that it is as 

if one is standing on the street and looking in either 

the left or right direction of a certain street together. 

This generates a long street slide for users to quickly 

browse whether a street is feasible. 

Despite the excellent way of viewing the side 

scene of a certain street from Kopf`s methodology, 

the practicality of that method is not always the case 

while driving or walking.  

Kopf et al. [93] present street slide methodology 

which combines the nature of bubbles provided by 

perspective stripe panoramas. Kopf further presents 

integrated annotations and a mini-map within the 

user interface to provide geographic information as 

well as the additional affordances for navigation.  

However, Kopf`s work relates to Gortler et al. 

[8] due to their classic approaches of image-based 

rendering such as Lumigraph. Kopf's work is further 

supported by Agarwala et al. [9], emphasising the 

utilising of the correlation alignment techniques for 

aligning adjacent vertical strips instead of modeling 

the full 3D geometric proxies. 

Subsequent to these approaches, rendering 

displacement in maps requires the surface to be 

adaptively retesselated [10].  
 

The synthentic environments for the extraction 

of the depth information during the rendering 

process. The geometric construction relates to both 

implicit and explicit construction [94]. This is as a 

result of the view dependency, which means that the 

explicit geometric rendering relies much on the 

known approximate environment [12]. The use of 

the explicit rendering becomes much tricky in an 

informal environment/settlement due to the tiring 

exercise of data collection, which is skewed since 

residents can build on the road and mountains. 
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V. Methodology 

The simulator model design is developed for a 

driver or person riding a bicycle inside the simulator 

following a track in either forward or reverse 

direction. With this said, the initial thought design 

was to develop the Spatial Image Datasets (SID) 

based on the nonagon (9) camera configuration 

model. 

However, with the current technological 

capabilities, an omnidirectional camera could have 

been utilised to conduct this activity. The reason for 

not utilising the omnidirectional camera is because 

the rendering construction specifically for this 

research article requires individual camera feeds as 

opposed to one 3600 feed. 

The system development was then initiated 

based on the model layout as indicated in Figure 2. 

Figure 2 depicts the technical approach for the design 

and development of the simulator utilising the 

Hexagon Camera Configuration Model as follows:  

 

Figure 2: System model layout 

 

A. Image capturing and collection 

 

The image capture section consists of the 

following apparatus: camera, images, and GPS 

coordinates. The six (6) Mounted Camera 

Configuration Model is used for image capturing 

while the vehicle is in motion, and each image is 

treated as a frame. During the image capturing 

process, each camera image dataset is stored in its 

specific folder, i.e. camera 1 = folder 1. 

 

B. Image compression 

 

The scene depiction utilising multiple depth 

images in a dataset format is compressed. The image 

samples are then captured and obtained from the 

camera capture by delaying the camera switching 

algorithm between multiple cameras by 3ms (the 

delay period was based on the trial and error test 

conducted between 1ms – 5ms switching). 

Furthermore, the Lossy compression algorithm 

is performed for the redundant processing of image 

information. Additionally, the image dataset is 

simulated without noise for better performance 

verification as outlined in Figure 3 utilising the 

Lossy compression algorithm. 

 

 

Figure 3: image compression on a JPE file 

Figure 3 depicts the image types for the 

captured images, subsequently showing the 

timestamp and the GPS coordinates for the image 

dataset created. Additionally, the image compression 

framework is used to obtain the results output 

outlined in Figure 4. 

 

Figure 4: Compression structure 

Figure 4 depicts the compression structure that 

utilised the input image datasets for the network 

training sample. This is obtained by specifically 

setting the image dataset for image recognition 

where the compressed image datasets are compared 

against the raw image datasets. 

 Additionally, the image compression bit 

allocation is then used to calculate the compression 

alterations. However, the alterations depend on the 

size of the dataset. Notably, each image in the dataset 

is compressed individually to retain the image 

quality. However, this is deemed as a tedious 

process, especially for huge datasets. 
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C. Image calibration 

 

The data collection and image compression 

process are determined by the reduction in the image 

size whilst keeping the image resolutions intact. The 

image calibration model utilises the pinhole camera 

model that introduces some image distortions. These 

image distortions that are seen in this process are 

classified as radical image distortion. The radical 

image distortion was calculated as follows: 

𝑋𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟2 + 𝑘3𝑟6)       (1) 

𝑌𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟2 + 𝑘3𝑟6)       (2) 

Where: x = original; x location on the imager 

y = original y location on the imager 

k = radical distortion coefficient 

r = radical distortion form Taylor series 

 

The system setup approach makes use of the 

chess pattern for camera calibration setup. Some 

calibration methods in the literature rely on 3D 

objects. However, through the tests conducted, the 

flat chessboard pattern approach is deemed 

appropriate for this research study due to the method 

been less complex and easily understood even by 

non-technical individuals.  

The camera calibration process is as follows: 

● capture 20 chessboard images from 

different poses; 

● find the chessboard corners; 

● find the intrinsic matrix, distortion 

coefficients, rotation vectors, and the 

translation vector; and 

● store the .xml file. 

 

Following the process completion, OpenCV for 

the Python library is utilised to compute the results 

from the .xml file. This, therefore, allows for the 

reuse of the code for multiple cameras, which is 

relevant for this study which uses a Hexagon Camera 

Configuration Model with a rotational image 

capturing technique. 

The black-and-white squared pattern match-

finding is outlined as indicated in Figure 5. 

  

Figure 5: Black-and-white test match on a chessboard 

A. Image rendering procedure 

 

The image rendering technique in the context of 

this research article focuses on the known camera 

parameters and undistorted images for the rendering 

of the scenes. These images are reconstructed, and 

the texture is applied to their structure before 

rendering simulation can be executed.  

  

B. Structure from Motion 

 

The basic operation of the Structure from 

Motion Model in this research  follows the Detection 

of 2D features on every image. In this step, a 2D 

feature is detected using the Scale-Invariant Feature 

Transform (SIFT)  algorithm as indicated in Figure 

6. Figure 6 depicts the original image captured with 

one of the mounted cameras from the Hexagon 

Configuration Model. 

 

Figure 6: Detecting the image feature using SIFT 
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C. Multiview stereo 

 

The camera parameters are captured, and the 

patch-based stereo and semi-global matching are 

used to generate point tracks, depth-maps as well as 

the points cloud. Upon successful generation of these 

variables, a mesh of the scene is created as indicated 

in Figure 7. Finally, all the refined depth maps are 

merged to get the final reconstruction. 

 

 

Figure 7: Mesh output from the Multiview stereo 

 

The multi-view stereo algorithm is further used 

as a Semi Global Matching algorithm (SGM), where 

it consists of calculation, aggregated costs, disparity 

computation, and the extension for multi-baseline 

matching. 

D. Texturing 

 

Patches are formed onto the faces of the model, 

and the texture patches colours are adjusted. This is 

achieved by adjusting colour between adjacent 

patches. This results in seamless texture across the 

model.  

 

E. Data simulation 

 

The model with texture consists of the path/road 

and environment (trees and buildings). Lighting, 

camera, and collides are added. Lighting is added to 

illuminate the model to simulate the light from the 

sun.  

The movement of the camera simulates a vehicle 

moving through the path/road created with the 

model. The movement gets its inputs from the 

keyboard. Colliders are Blender3D objects that 

provide physics attributes to the model, and they are 

added to prevent the user from moving beyond the 

required space within the simulator. 

VI. Results 

The results outlined in this section depict the 

image rendering framework for the 364 .JPEG 

images that were captured on each camera at a total 

dataset worth 2184 JPEG images at a high resolution 

of 1280X720 pixels at a total size of 39.8MB. The 

system required a dynamic scene with six. A 2D arc 

was arranged at a spanning of approximately 600cm 

apart from each other. 

 Additionally, each camera frame comprised of 

364 JPEG images captured from the real scene, and 

only then the process of image matching and 

texturing was applied using “depth maps resulting” 

with the output textured PNG image of 25.2 MB of 

8192X9192 pixels resolution.  

 

A. Rendering simulation outcomes 

 

 

Figure 8: Denser point of cloud with Multiview stereo 

 

Following the creation of the mesh output, the 

texture was then generated by taking models, 

images, and the camera position (this was achieved 

through the use of the GPS coordinates). This was 

accomplished in the meshroom function by selecting 

8192 texture slides and by unwrapping this method 

as indicated in Figure 8. 

 

 

Figure 9: Generated texture 

 

Figure 9 depicts the depth map restoration, and 

colour images were paired up to create the 
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application of texture to the 3D mesh model and 

warp to the new viewpoint. Furthermore, the 

extraction of the depth map model from the 3D mesh 

and the shortcomings were observed to be the delay 

by which the mesh update duration is long and as a 

result, affects the depth map extraction. 

The final output that is represented in Figure 10 

depicts the rendered view of the panoramic street 

views. The panoramic street view can be viewed in 

multiple viewing angles as indicated in Figure 10. 

This is achieved and projected from a horizontal 

street view in an omnidirectional manner. These 

results are outlined to provide the freedom of 

movement, and the views which were not captured 

by the camera but through rendering the uncaptured 

scene can be viewed. 

 

 

Figure 10: Rendered image horizontal view 

VII. Conclusion 

The feature detection and matching technique 

was observed as the best technique in detecting and 

matching the images from multiple image datasets. 

As a result, the use of the image-based rendering 

technique utilising the Hexagon Camera 

Configuration Model was proposed as an ideal 

method in this study. 

The objectives looking into the integration of 
IBR and the simulator were achieved as indicated:  

● The incorporation of the system into the 

simulation system in real time for 

increasing the reality of the simulation 

system in different geographical locations.  

● To simulate a rendering technique for 

improvement of visual, spatial, and quality 

of the panoramic images for location 

identification.  
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Annexure E: Modelling Input 
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Annexure F: Feature Detection 
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Annexure G: Rendered output 
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Annexure H: Image Calibration Code 
 

import cv2 

import numpy as np 

import glob 

from tqdm import tqdm 

import PIL.ExifTags 

import PIL.Image 

 

chessboard_size = (9,6) 

obj_points = []  

img_points = []  

 

objp = np.zeros((np.prod(chessboard_size),3),dtype=np.float32) 

objp[:,:2] = np.mgrid[0:chessboard_size[0], 

             0:chessboard_size[1]].T.reshape(-1,2) 

calibration_paths = glob.glob('calibration_images/Front_center/*')#Iterate 

over images to find intrinsic matrix 

for image_path in tqdm(calibration_paths):#Load image 

 image = cv2.imread(image_path) 

 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 print("Image loaded, Analizying...") 

 #find chessboard corners 

 ret,corners = cv2.findChessboardCorners(gray_image, chessboard_size, None) 

if ret == True: 

 print("Chessboard detected!") 

 print(image_path) 

 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) 

 cv2.cornerSubPix(gray_image, corners, (5,5), (-1,-1), criteria) 

 obj_points.append(objp) 

 img_points.append(corners) 

  # Calibrate camera 

ret, K, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, 

gray_image.shape[::-1], None,None) 

  # Save parameters into numpy file 

np.save("camera_params/ret", ret) 

np.save("camera_params/K", K) 

np.save("camera_params/dist", dist) 

np.save("camera_params/rvecs", rvecs) 

np.save("camera_params/tvecs", tvecs) 

#Get exif data in order to get focal length. 

exif_img = PIL.Image.open(calibration_paths[0]) 

exif_data = { 

 PIL.ExifTags.TAGS[k]:v 

 for k, v in exif_img._getexif().items() 

 if k in PIL.ExifTags.TAGS} 

focal_length_exif = exif_data['FocalLength'] 

focal_length = focal_length_exif[0]/focal_length_exif[1] 

np.save("./camera_params/FocalLength", focal_length) 
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