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ABSTRACT 

The daily and weekly energy consumption patterns at the Transnet Port Terminal 

(TPT) in East London varies stochastically. This is as a result of the transient 

weather patterns that exist at the harbor.  It has therefore become imperative to 

wisely manage this load in order to save electricity costs and for future 

infrastructure development. Hence the ongoing supply of electricity to port 

consumers requires an accurate and adequate short-term load forecast (STLF) for 

quality, quantity, and efficient management. 

Many researchers have recently proposed Artificial Neural Networks for short-term 

load prediction. However, most of the studies have not considered the quickly 

changing weather patterns that exist at the port. Therefore, the objective of this 

study is to establish a supervised short-term load prediction using ANN models, and 

to verify the effectiveness of such predictions by using the real load data from the 

TPT. The suggested system architecture uses open- loop training with real load and 

weather information, and then a closed-loop network is used to produce a prediction 

with the predicted load as its feedback data. 

Data collection points were set up in the ring network of the port by installing new 

power measuring meters, and weather data obtained from local meteorology offices 

in order to build a suitable alternative of localised data management (data base) for 

saving all data gathered. Hence, profiling of the load in the TPT was done and load 

forecasting was carried out, leading to improved load management strategies for the 
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harbor terminal. ANN short-term load prediction (STLP) models were developed 

utilising its own performance to improve precision by essentially implementing a 

load feedback loop that is less reliant on external data. To ensure that the timeseries 

data recorded at the port were well modeled, the Nonlinear autoregressive 

exogenous model (NARX) for load prediction were developed using mean squared 

error (MSE) as a performance metric.  

Furthermore, to show the efficacy of the proposed model for STLP, the adaptive 

neuro-fuzzy inference system (ANFIS) was used with the same data for short-term 

predictions. The minimum mean squared errors obtained for both NARX and ANFIS 

models were 0.0010939 and 0.0032 respectively, indicating that the NARX model is 

more accurate during the forecast of departmental loads. The results of the 

predictions using the hourly timeseries indicated a close match between the 

forecasted and actual load demand at the port terminal. The effects of the load 

forecast could be used as a guide for implementing management plans for internal 

load, such as the generation of urgent electricity and the programme of 

implementation for demand-side management policies.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

As electrical system networks grow steadily and their complexity increases, many elements 

have played a vital role in the generation, demand, and administration of electrical energy 

[1]. Load prediction is one of the critical factors for economic operation of electrical systems. 

Hence, for network planning and infrastructural development, the future prediction of 

loads is critical. However, the forecasts of power loads are two-dimensional: customer and 

utility forecasting. Thus, the importance of each prediction may be treated in a disjointed 

manner. Consumer-based predictions are used to provide inputs on improving network 

scheduling and expenditure, improved risk management and lower cost of operation.  

For simple power plant operations, forecasting is aimed to assist planners make informed 

decisions on unit involvement, hydrothermal coordination, interchange reviews and safety 

assessments, etc. 

Nevertheless, load forecasts for electrical systems can be classified as short-term, medium-

term and long-term forecasts in three categories. In a variety of literary documents, the 

periods for these categories are also not clearly specified. Different studies therefore use 

different timelines to describe these categories. Short-term load forecasts mostly cover 

weekly predictions to every hour. Often these predictions are important for daily power 

plant economic activities.  

Forecast for medium-term loads runs from weeks to a year. In such predictions the 

preparation and maintenance of plants and networks are also covered. 
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On the other hand, a long-term forecast deals with predictions for more than one year. It is 

intended primarily for the advancement of capacity planning, equity and corporate 

budgeting. Such predictions are intricate in nature because of potential uncertainties such 

as policy trends, conditions of the economy, growth of capital, etc. New planning and 

extensions for both utilities and customers to existing power system networks include 

forecasts in the long-term. 

The precision of predictions is a key function in the forecasting of electrical system load. A 

bad load prediction deludes planners and typically leads to incorrect and costly 

construction plans. Accurate forecasting of loads is critical for investments in the 

distribution system, for the management of electric load. This is also one of the topics for 

load rationing, such as load shedding, DSM (demand side management) strategies, etc. The 

short-term load forecasts are an important function in everyday operations, especially for 

utility sectors, without replicating them. An error that is negative in the forecast could 

seriously influence the production levels of consumers, particularly for larger power users. 

For power system protection and their overall reliability, therefore, accurate forecasts are 

required.  

One compelling way to predict loads on a short-term basis which vary constantly is to 

restrict to several minutes or hours load sampling point. This method is regarded in this 

work as a short-term load prediction.  

There is no question that it is difficult for both utilities and customers to correctly predict 

their own loads. For decades this was a challenge, so different methods of load prediction 

strategies have been created and illustrated in a range of studies from classical to intelligent 

systems. The final difference between these methods can be drawn from the prediction 

accuracy.  
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A significant number of forecast models are using statistical methods or artificial 

intelligence algorithms, such as expert system, Fuzzy Logic, neural networks, and 

regression [2-5]. 

In generalisation and mastery of non-linear relationships between variables, ANNs 

(Artificial Neural Network) have proven to be successful, and therefore ANN-based 

strategies are frequently preferred for Short-terminal Load Forecast (STLF) problems [6].  

The other significant characteristic of ANNs is their potential to adjust synoptic weights 

between layers iteratively. Traditional methods require, on the other side, static, complex 

mathematical equations and still do not work well as intelligent methods.  

Another leading method of forecasting the load is Fuzzy Logic. Its load forecast application 

is formed on periodic correlation of electricity demand where the input variables, the 

output variables and the rules of governing are the main elements. The focus of this 

research incorporates these modern technologies and will be discussed in the following 

chapters. 

 

1.2 Problem statement 

The load demand patterns for the  Transnet Port Terminal (TPT) power system network are 

very cumbersome and stochastic in nature. This may be attributed to the lack of available 

data due to some areas in the ring network not having properly functioning meters, 

weather variations caused by changing temperatures, humidity, high windy conditions 

around the harbour and finally, varying human behaviour towards electrical load 

utilisation. This daily affects short-term planning and provisioning of electricity at the port. 
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1.3 Objective of the study 

The purpose of the research is to design ANN-based STLP models for end users at the TPT 

in order to improve monitoring of their load to enhance or strengthen the power generation 

efforts at the harbor. 

The aim is to design ANN models for short-term load prediction (STLP) that is supervised 

to assess the results of these models by using the real load data from the Transnet Port 

Terminal to predict the load up to one week ahead.  

The following goals were set in order to achieve this objective: 

• The load forecasting method requires a time series of historical data; thus, historical 

load data needed to be collected on the Transnet Port Terminal reticulation network. 

• Climatic conditions, particularly in areas around the port, can greatly affect the load.  

This work thus, considers the weather effects on the load. To implement this 

function, it is necessary to collect and monitor climate data such as humidity, low 

and high temperatures, wind speed, which must be provided as inputs to the 

network. 

• A convenient local database system for the storage of all collected data is to be 

developed and set up.  

• To design various Artificial Neural Networks models that are using short-term 

prediction approaches, and to test them using the mean squared error (MSE) as a 

performance metric.  

• To evaluate some other strategies of prediction by descriptive mechanisms. 

• Training of advanced models in the MATLAB software and forecasting of total 

loads for Transnet Port Terminal and loads of selected departments within the short 

term.  
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1.4 Research methodology 

The following methodology will apply to this research: 

• Literature analysis: Currently several load forecasting methods have been 

proposed. Therefore, the evaluation of various documented predictive approaches 

and associated disadvantages will require a detailed literature review. There are 

several literature reports that intelligent model systems, and particularly ANN-

based models, are more advanced and attractive than traditional approaches to 

dynamic systems. In addition, the proposed prediction techniques will be 

thoroughly analysed. 

 

• Data collection: The process of collecting the data is an exercise that is convoluted, 

whilst identifying a combination of research methodologies. In this research project, 

a quantitative method of research is used to collect the necessary data. Among other 

research methods, some data are obtained through questionnaires, personal 

interviews and numerical data measurement equipment (power meters).  

Modelling – The input data used for selection were interpreted carefully and 

standardised to prevent overfitting and input duplication before being displayed as 

model inputs.  

 

• Data preprocessing: Historic load data of the port terminal have been acquired by 

measurements (i.e. using Landis+gyr E 650 meters). Weather data from a local 

weather office have been collected. For the model, weather-related data are relevant. 

The collected data were then, interpreted, analyzed, standardised, and in a simpler 

way, applied to the model. Other variables have also been considered such as 

seasonal change. 
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• Forecasting of load: Data were collected over a period of two years (both historical 

and current). 70% of data were used for training the network, 30% for testing and  

validation. 

 
 

1.5 Hypothesis 

Short-term load forecasting at the port terminal is made possible by developing prediction 

methods with multi-variable exogenous input and a local data management system in 

order to curb the stochastic and cumbersome nature of patterns in load demand. A 

custom-designed ANN technique based on the regular algorithm of error back 

propagation using a suitable learning approach will further better the average forecast 

error. 

 

1.6 Limitation of the study 

The work is focused solely on the ANN and Fuzzy Logic techniques and the results of 

performance comparisons are only carried out using ANN and models based on ANFIS. 

Nonetheless, some traditional common methods of load prediction are discussed and 

analysed with descriptive methods. The measure of performance for these methods are 

restricted to the real/actual load data of Transnet Port Terminal East London, but the same 

models with minor adjustments can be universalised to be used by utility companies. This 

research work only models and analyses short-term load forecasts. While the differences 

in seasonal loads (winter and summer) are taken into consideration, the models do not 

easily detect significant sudden load changes. Prediction of load for special days or 

holidays is not part of this project. The training data used for the work have been limited 

to nine months a year for historical load formats. In this study, both medium- and long-

term load forecasts are not included.  
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1.7 Scope of the thesis 

This thesis focuses on a particular area of short-term load forecasting. The predictions are 

accomplished by using Artificial Neural Network (ANN) and Fuzzy Logic-based models, 

i.e. NARX and ANFIS developed in MATLAB and Simulink environments. The models 

are then used to predict what is also known as "consumer own forecasting," using real 

load data from the Transnet Port Terminal in East London. The models will only be used 

as a case study for validating the method of application to actual data. Figure 1.1 below 

attempts to clarify the focus of this research. 

 

 
Figure 1.1: Types of load forecasting and focus of the research  

 

1.8 Research outputs 

The following outputs emanated from this research: 

1. Figlan, Mncedisi, and Markus, Elisha. “Short-term Load Demand Forecasting for 

Transnet Port Terminal (TPT) in East London Using Artificial Neural Network.” 

2020. International Journal of Simulation Systems Science & Technology 

doi:10.5013/ijssst.a.21.02.26.  

2. Figlan, Mncedisi, and Markus, Elisha “An overview of load classification and 

prediction methods: Case study of South Africa” Accepted at 5th International 

Conference on ICT for Intelligent Systems (ICTIS – 2021) to be held at Ahmedabad, 

India, April 23-24 2021. 

Power System Load  
Forecasting  

Very short term  
  

Short term  Medium term  Long term  

Area of interest  
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1.9 Dissertation outline  

Chapter 1 discusses the background; intention of the work and context of the work 

breakdown.  

Chapter 2 presents the literature review of the study. This includes an overview of the 

techniques that are used for predicting the load, comparisons of different articles, results 

and comments. In this chapter, deficiencies of various prediction methods are also 

highlighted. The use of genetic algorithms to STLF are also addressed exclusively in this 

chapter.  

Chapter 3 covers data definition, methods of data gathering and pre-processing. This 

section also explains how the chosen data were compiled into the database system and then 

into the workspace of MATLAB. The definition of the data collected is also clearly explained 

in this chapter.  

Chapter 4 discusses the results of the simulations performed in the study. Some detailed 

discussions on various STLP models are also addressed. Thus, this part of the document 

includes actual project implementation, i.e. transfer of dual models of short-term load 

prediction using the real load data of the East London Transnet Port Terminal as a study 

case. 

Chapter 5 The final thesis chapter summarizes the end of the project and future 

perspectives.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

For decades, the topic of load prediction existed, and various approaches were created. 

Such techniques are based on a traditional or contemporary method. In order to 

determine the statistical relevance of the proposed research project, this section of the 

research is important for purposes of defining the general research question, to analyse 

current methods and to assess fields of potential advancements. Included also in this 

chapter is the review of different current load prediction methods, and a relative 

examination of the updated articles, results and observations. 

 

2.2 Background knowledge of load prediction   

Load predictions have been one of the most critical aspects of electricity planning. 

Enhanced load forecasting methods have had an economic effect and contributed to the 

development of alternative and more reliable electricity analysis algorithms [7]. Many 

researchers have therefore drawn alarming attention to the relevance of the topic in power 

systems, and so far several approaches for load prediction have been developed. 

Moghaddam et al. [8] applied pre-processing to improve noisy and missing data, then 

considered the time of day, the day of the week, the heating degree of the day (HDD) and 

cooling degree of the day (CDD) as ANFIS inputs, whereas historical electricity load was 

the target, and output was the forecasted load to predict STLF. Boudjema et al. [9] 

forecasted STL using half-hour weekly load data rearranged in multi-input single output 

by ANFIS. Their ANFIS input and output structures are shown in Figure 2.1 below:   
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Figure 2.1: Input and output vectors to ANFIS [10] 

 

However, it is not clearly indicated what their variable 𝑥𝑥(𝑡𝑡) is. Li et al. [11] forecasted electric 

load and price using input variables such as date, time, humidity and previous data sets 

taken from the various power corporations and obtained an overall accuracy of 76.8%. 

Ebteha et al. [12] employed population, GDP, export and import data to predict the annual 

energy consumption in Iran using three patterns of a hybrid ARIMA–ANFIS model. Tan et 

al. [13] suggested a different form of FNN (Feedforward Neural Network), taking as inputs 

to the neural network the fuzzy membership values of the load and other weather variables, 

and the membership values of the forecasted load as outputs.  

Multi-layer perceptron ANN (ANN-MLP), ANN with radial base functions (ANN-RBF) 

and multivariate ordinary least squares (OLS), seasonal autoregressive integrated moving 

average model with exogenous inputs (SARIMAX) were analysed through various 

methods to forecast regular gas consumption [14]. A preliminary research project on the 

implementation of Fuzzy Cognitive Maps (FCMs) with ANNs for Natural Gas (NG) 

forecasting was conducted by [15], demonstrating the skills of evolving FCMs in this field 

for the first time. Poczeta and Papageorgiou [16] recently conducted a time series analysis 

study dedicated to the prediction of NG demand in three cities of Greek, applying an 

ancient entity prediction method by integrating ANN, real coded genetic algorithm 

(RCGA)-FCM, SOGA-FCM, and hybrid FCM-ANN. 
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This chapter addresses some of the more common techniques. Typical models of load 

prediction can be divided into two main groups: dynamic and time-of-day models. A non-

dynamic approach is the time-of-day model, expressing the load as a specific time series 

which consists of the predicted value for each hour of the forecast period. The second 

category is the dynamic model that acknowledges that the load does not only depend on 

the time of day, but also on the load's recent actions.  

 The load forecast by the conceptual approach includes weighted inputs that are 

transmitted by nonlinear transfers. Thus, a combination of additive and multiplicative 

methodologies is somehow used by the proposed method to forecast the needed load 

values. 

    

2.3 Classification of prediction methods 

The approaches used for load prediction are the same day approach, models of 

regression, time series, neural networks, expert systems, Fuzzy Logic, and statistical 

learning algorithms [17]. Such approaches can be categorised according to their statistical 

analytical levels in the forecast models. 

While historical data is in most cases inadequate or not at all usable, planners are still 

required to accurately predict and thus typically use qualitative forecasting methods. 

Such methods include, among other things:- Delphi method [18], curve fitting and 

technological comparisons [19]. Other forecasting techniques such as decomposition 

methods [20], regression analysis [21], exponential smoothing [22], and the Box Jenkins 

approach [23] are quantitative methods. These techniques are considered in the 

dissertation.  
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The next load prediction approaches are analysed and are compared in the document:  

▪ Regression methods 

▪ Series of time 

▪ Day time techniques  

▪ Similar day method  

▪ Stochastic time series structures  

▪ Intelligent network-based systems (using GA and ANN)  

 

2.3.1  Regression methods 

This is one of the mostly used techniques for electrical load forecasting. By defining a 

mathematical equation, regression methods attempt to model the connection between the 

influencing factors such as changes in climate, day form, etc. and electricity load 

frequency. Regression is one of the most popular statistical methods and is generally easy 

to implement. Regression is usually used to model the connection between electricity 

usage and other influences, such as climatic conditions, day types and customer 

categories. This approach assumes that a standard pattern based on loads and a design 

can be divided linearly depending on such load-influencing factors [24]. The regression-

based algorithms, with a high computational load and lengthy computational time, are 

of high complexity [25]. A regression analysis is used by [26] to forecast a day ahead 

hourly electricity loads using real building and Campus data obtained from the 

Kensington Campus and Tyree Energy Technologies Building (TETB) at the University 

of New South Wales (UNSW). 

 

2.3.1.1  Regression based on linearity  

The most popular technique is linear regression, mostly used in the prediction of load 

affected by a  number of factors such as weather, per capital growth, energy prices, 
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economic growth and so on. Recognisable strategies like linear regression and ordinary 

least square regression are parametric in that the function of regression is described as a 

finite number of unknown data-estimated parameters [27]. Manca et al. [28] used a linear 

regression design to investigate the electrical consumption behaviour of a supermarket 

situated 100 miles north-northwest of Houston, Texas, on hourly and daily basis. Claridge 

et al. [29] compared  Gaussian Processes' multiple linear regression on energy usage of 

data from 2008 to 2010 to forecast values in Norway over the next 24 hours. 

 

Al-Hawani et al. [30] proposed a high-precision approach that involved multiple linear 

regression and simple regression models, along with other strategies, to forecast India’s 

total energy consumption. 

 

2.3.2 Series of time 

Electric load forecasting has in recent times received great and increasing attention, as it 

is seen as a vital component of power generation and management systems, in cities and 

countries with a fast growing rate of infrastructural development [31].  

Accurate load forecasting will aid both the electricity generation companies and the 

distribution companies to make unit commitment decisions with regards to energy, load 

switching, voltage control, network reconfiguration, and infrastructure development 

[32]. The time series strategy can be described as a successive collection of data, such as 

hourly,  or weekly loads, calculated over time. The fundamental principle of forecasting 

is to first establish as accurately as possible a format recognition of available data, and to 

then obtain the forecast value using the approved model [33] with respect to time. Box et 

al. [34] provides a pragmatic approach which can be used to build models for electric 

power load forecasting as a reference. This approach is primarily focused on the time 

series of load decomposition and segmentation.   
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A consolidated fuzzy structure, data extraction and the framework of time series were 

proposed in the work of [35] to evaluate and forecast electricity demand for seasonal and 

monthly changes in electricity use, especially in developing countries such as China and 

Iran, using non-stationary data. In [36], the Auto Regressive Integrated Moving Average 

(ARIMA) approach was used to predict greenhouse gas emissions and energy 

consumption in a pig iron manufacturing organisation in India.  

 

In the case of [37], who studied household electrical consumption, the Autoregressive 

Moving Average (ARMA) and ARIMA models were used. Methods of time series assume 

that the data have an internal structure like autocorrelation, pattern or seasonal change 

[38].  

 

2.3.3  Day time techniques 

The simplest type of load prediction is this method. The model uses the real load pattern 

of the previous week to forecast the load of the current week.  Additionally, a sequence 

of load patterns with various weather conditions is stored for typical weeks. To establish 

the prediction, they are then integrated computationally [39,40]. The duration of daylight 

as a variable is also presented in [41,42] as part of a thorough analysis of the modeling of 

France and Germany’s load. The French research dismisses the use of daylight variables 

due to its high correlation with temperature. Nevertheless, the German study does find 

the variable significant. However, as both of them use duration of daylight as variables.  

 

2.3.4  Similar days method 

Autoregressive Moving Average (ARMA), Autoregressive Integrated Moving Average 

(ARIMA) [43], Autoregressive Moving Average Model with Exogenous Inputs [44], Time 

Series Analysis, Exponential Smoothing, Adaptive Filtering, Similar Day Lookup 

Approach, Regression Method and Probabilistic Approaches, as illustrated in [45], can be 
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used to achieve statistical-based LF. The evaluation defined by the Euclidean norm is 

useful to utilise. It allows us to comprehend the similarities by using a norm-based 

expression definition. The reduced Euclidean norm leads to an effective assessment of 

similar days [46]. Rae-Jun et al. [47] used similar days approach to forecast historical total 

load of Korean power systems and the weather information for the Korean peninsula. The 

historical total load was provided by the Korea Power Exchange, which is the national 

service of the Republic of Korea. It controls the operation of Korea’s electricity market and 

power systems, the execution of real-time dispatch, and the establishment of the basic 

plan for supply and demand.  

 

The "similar day" method takes into account a "similar" day in the historical data to the 

one predicted. It is routinely implemented in industrial applications due to its simplicity. 

The similarities are typically based on the patterns of calendars and weather. A linear 

combination or regression method that involves many similar days can be the forecast. 

The creation of this concept was implemented in [48] in a climatic-based prediction 

approach defined by [49] . 

 

2.3.5  Stochastic time series structures 

The methods of stochastic time series assume that data have an internal structure such as 

trends or autocorrelation [50-51]. The methodology for time series techniques is created 

on the basis of the past load data. The future load is then forecast based on the developed 

model [51]. Tao et al. [52] stated that one of the very popular LF models is the stochastic 

time series method. Page et al. [53] assessed the weaknesses of stochastic integer multi-

stage programming and suggested an improved method based on stochastic dual 

dynamic integer programming. The writers modified the problem and combined 

Lagrangian cuts with decomposition algorithms. Narayan et al. [54] suggested a small 
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successive stochastic convex approximation technique for solving non-convex problems. 

Nijhuis et al. [55] developed a method to face problems with stochastic composition 

optimisation with two expected value functions. An inner goal function was incorporated 

into an outer one by the approach [56].  Ayob and Amat [57] used Stochastic Forecasting 

Discharge Level Time Series Data to  analyse the Water Use Trend at Universiti Tekologi 

Malaysia. 

 

In relation to its previous value, the method of the stochastic time series presents the 

existing load linearly, and the zero mean and variance white noise sequence, contrasting 

with the classic forecasting techniques. 

 

The backshift operator is introduced by this representation and enables the technique to 

partially control the difficulty of complex load prediction.  

 

2.3.6  Intelligent network- based systems    

“The thread that unifies so many different concepts are woven from the interpretation of 

the intelligent system. Practically speaking, an intelligent system is one which employs 

Artificial Intelligence (AI) to fulfil some or all of its computation requirements” [58] . 

Many studies have shown that intelligent system methods are superior to load forecast 

models. Some of the widely used artificial intelligence strategies are now discussed briefly 

in the following section.  

 

 

2.3.6.1 Artificial Neural Networks 

A computer model inspired by the biological nervous system is an artificial neural 

network (ANN). The network comprises interconnected memories and arranges data 

using a generative computing technique. Neuron-distributed simulation results in 
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intelligent outcomes. The ANN structure learns to complete the required function using 

specialised training principles directly from examples.  Figure 2.2 illustrates the basic 

structure of an ANN process. This technique is mostly seen as an integrated approach 

that adjusts its design on the basis of external or internal network data during training.  

 

 

 

 

 

 

 

 

Figure 2.2: A simple structure of ANN 

 

2.3.6.1.1 Approximation tool for neural network modelling  

Neuronic networks are basically non-linear circuits that have shown ability to match non-

linear curve. The method is also reliable to analyse complex structures. Any numerical 

mechanism that are linear or non-linear with their inputs are the outputs of an artificial 

neural network.  

Inputs may be the output of other elements of the network and the real inputs of the 

network. In reality, parts of the network are grouped between network inputs and 

outputs into a relatively small number of connected element layers. By adjusting the 

weights of neurons in a perceptron multilayer, the target output is achieved.  

 

2.3.6.1.2 Proposed ANN-based models 

There have been many ANN-based architectures developed [59,60,61]. Radial based, 

recurrent and feed-forward forms of ANN are the three main ANN family models. The 
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proposed research project analyses efficiency and precision directly of a recurrent and a 

feed-forward model using ANN [62]. 

 

 

2.3.6.1.3 A Multilayer perceptron  

A network set up of a three-layered feed-forward network is shown in Figure 2.3. The 

inputs are fed and multiplied by interconnection weights into the input layer, before 

moving to the next layer, and then passed through an activation function. 

 

 
Figure 2.3: A single hidden layer and multi-output Feedforward neural network [63] 

 

 

2.3.6.2  Expert (Methods) Systems  

This approach is using high-level machine learning. It is built by computer programmers 

and specialists by means of close interactions and experience [64]. The scientific objective 
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of AI is to grasp intelligence by designing software applications that show inventive 

behaviour. The ideas and techniques for computer reasoning or symbolic inference are 

addressed and how the information used to generate these results is depicted inside the 

machine.  

  

The basic principle here is the manipulation and encapsulation of high-level information to 

emulate an expert's behaviour [65].  

Expert Systems or Knowledge-Based Expert Systems (KBES) as pointed out by [66] are 

recent heuristic techniques resulting from progress in the artificial intelligence (AI) field. 

No specific technique structure or historic pattern is needed for the expert system.   

The prediction operation is more or less embedded in rules from professional interviews. 

When these regulations are explicitly and accurately established, the inconsistencies that 

could have an impact on the load will hopefully be resolved, so that this technique could 

be effective. Christodoulou et al. [67] used as a knowledge-based load-forecasting approach 

that combines existing system knowledge, load growth patterns, and horizon year data to 

develop multiple load growth scenarios. Weron et al. [68] led to the establishment of expert 

systems on the basis that once the load and the factors influencing it are identified and 

extracted, a parameter-based rule can be applied. This rule is of the form “if-then”, plus 

some mathematical expressions. This rule can be used on a daily basis to generate the 

forecasts. 

 

2.3.6.3 Fuzzy approach 

In the growth of the fuzzy set theory that Dr. L.A. Zadeh championed in the mid-1960s, the 

word "Fuzzy Logic" emerged. A Fuzzy Logic model is a logical-mathematical mechanism 
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that imitates the human viewpoint in the simple machine form based on an "if-then" rule 

structure. There are typically four modules in a fuzzy rule structure [69]: 

a. Input fuzzification – which converts the "crisp" into a fuzzy input method. 

b. Fuzzy rules  – logic  if-then statement that links the input to the output variables. 

c. Fuzzy inference  – a system that illustrates and incorporates the effects of rules. 

d. Output defuzzification – the tool that converts the fuzzification into a fuzzy output 

number.  

Since its introduction, such approach has received broad acceptance, and a number of 

articles have been produced in this regard, though there was an initial perception of 

pessimism in the Western World. The goods range from air conditioners, washing 

machines, medical instrumentation, cameras to industrial process control, signal processing 

and speech recognition. 

Particularly, fuzzy rules based on demand forecasts need to be formed in load prediction 

to supply domain-specific data to improve non-linear models. Using linguistic descriptions, 

the technical expertise  created in the model can easily be integrated into high-quality data 

for load forecasting [70]. 

 2.3.6.4 Developmental computing 

Recent STLF literature indicates that one of the appropriate methods is the Genetic 

Algorithm (GA), particularly for optimising the network model of load prediction [71]. 

The dependency on earliest conditions, lengthy preparation, routing protocol 

configuration, etc. are most of the disadvantages associated with conventional experts 

computing and can be easily solved using this method [72]. 

It was deemed appropriate to provide a brief introduction to the theory behind the 

method due to the expected dominance of GAs in STLF.  

© Central University of Technology, Free State



21 
 

 

2.3.6.5 Optimization based on genetics 

A number of straightforward optimisation problems can be solved using the basic 

regulations based on back propagation rules. Nonetheless, their efficiency falls quickly as 

problem complexity increases. Other disadvantages include problems such as lengthy 

instruction time, one-point quest, weighing, reliance on earliest conditions, etc. The 

genetic algorithm ( GA) is, however, seen as a back-up solution. 

The first discovery of this method was by John Holland at Michigan University in the 

mid-1970s. The key concept was to develop artificial systems that maintain natural 

systems' robustness and adoption properties. Since the beginning, other researchers have 

enhanced these methodologies, and in various fields (business, research, engineering, 

etc.) they are now commonly used to resolve a spectrum of problem maximisation outside 

the reach of conventional Toolbox multiplication.   

In a given N-dimensional potential number of solutions, GA emulates physiological 

mechanisms to run a selection of mechanisms. Through a given search space for an 

optimisation problem, one must try to determine the right answer. Darwin's evolutionary 

theory (survival of the fittest)  inspires the idea behind the GA concept. 

 

2.3.6.5.1 How does a GA operate?  

The quest for space that contains a number of solutions (or chromosomes) called populace 

is started with the algorithm. Chromatids from one group are selected based on strength 

and then merged to create a new grouping, like their counterpart in nature. In the next 

generation, it is more likely that the best fit people will be found and ultimately be 

reproduced. This strategy is supported by the wish that the young populace would be 

stronger compared to the old population. These processes are repeated until certain  

pre-defined conditions to stop (e.g. time limits, generation) are fulfilled. This method, 
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similar to its biological co-partner, requires certain genetic operators such as 

recombination, crossover, and mutation [73]. 

The objective function to be optimised must be specified in order to implement a genetic-

based search. The objective function, strictly speaking, can be interpreted as the input to 

the equation. This role’s intention is to supply an estimate on how people do in the trouble 

spot. Most fit elements will preferably have the highest integer data in the event of 

optimisation problems, depending on the maximisation target.  

 

2.3.6.5.2 Standard simulation versus GA 

GA varies greatly from regular methods of simulation exploring. The four key differences 

discussed previously and established in the work of [74] are:  

1. GA does not need derivative data or other supporting information but uses an 

analytical function.  

2. In a population, GAs perform a search that is parallel, not a singular point.  

3. Probable transitional rules are used by GA, not deterministic ones.  

4. GAs work on encoding the parameter set instead of the parameters themselves, except 

in real-value representations.  

Even though GA-based rules would not be used to train the proposed models, this brief 

background to GA may be useful for general knowledge. Therefore, the next part  

provides a performance comparison of several prediction models using ANN.  

 

 

2.3.6.6 Relative review of current existing prediction models using ANN  

Different papers had to be compared in order to ascertain the shortcomings and to assess 

the efficiency of current approaches.  

The comparisons were made on the basis of the following: 
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 Problem statement 

 Objective of the project 

 Proposed or used method 

 Results or findings 

 Drawbacks and possibilities for improvement 

 

2.3.6.6.1 Comparison of literature 

 The papers  that are viewed show a number of solutions that are based on load prediction 

problems related to different approaches, specifically for short-term load predictions. 

Therefore, a global boundary has been made between the limitations of different 

techniques, and the approach proposed may be an ideal attempt. 

 

TABLE 2.1  RELATIVE REVIEW OF SOME CURRENT PREDICTION MODELS USING ANN  

PAPER  PROBLEM STATEMENT  OBJECTIVE  MODEL  CONSTRAINTS  

Sharif and Taylor, 2005  “Short-term load 
forecasting by Feed forward neural  
networks”  [75] 

Having the Average  
Feed-forward neural network 
-based error prediction and a 
typical time series kit.  

Using both 
methods to 
forecast a one-day 
hourly load ahead 
and measure the 
resulting 
performance 
index and error of 
forecast. 

For STLP 
purposes, a built 
neural network 
of multi-layer 
feed-forward 
was used.   

The accuracy of load 
forecasting depends 
primarily on the 
training and the 
selected forecast time 
period.    

Feifei, et al. 2019 “A Hybrid Short-Term 
Load Forecasting Model Based on 
Variational Mode Decomposition and 
Long Short-Term Memory Networks 
Considering Relevant Factors with 
Bayesian Optimization Algorithm.” [76] 

The effect of electricity pricing 
in a short-term load 
prediction model. 

To incorporate the 
pricing of 
electricity into the 
model and create 
influences.   

The popular 
ANN-based 
multi-layer feed 
forward model 
was recognised.   

The relation between 
load and price is 
highly nonlinear and 
difficult to model.   

Adepoju, Ogunjuyigbe, and Alowode, 
2007 “Application of Neural Network to 
load forecasting in Nigerian  Power 
System” [77] 

A power utility company's 
operation and planning 
require a precise model for 
electric power load 
forecasting.  

Incorporate and 
submit to the 
Nigerian electric 
energy grid a 
forecast for short-
term load using 
neural networks 
that are artificial.   

To obtain the 
forecasts, a 
supervised 
artificial neural 
network model 
was used.    

It is important to 
carefully select the 
number of neurons in 
the hidden layer, as 
too many neurons 
can lead to 
overspecialisation 
and eventual loss of    
generalising 
capability.   
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Lauret,Fock,Randrianarivony,Manicom-
Ramsamy,2007 “Bayesian neural network 
approach to short-term  load forecasting” 
[78] 

Optimal structure of the 
Neural Network for load 
prediction. 

Usage of the 
ANN-based 
model to optimise 
the accuracy of  
Bayesian 
methodology.  

A probabilistic 
model was 
presented using 
the Bayesian 
Neural Network 
technique.   

It is important to 
establish uncertainty 
in model inputs.   

Rashid and Kechadi, 2005 “A practical 
approach for electricity load forecasting” 
[79] 

The impact on prediction 
accuracy of the values of 
absolute and changes in 
climate components and 
past load. 

Instead of 
absolute values, 
using the change 
in meteorological 
elements and/or 
previous load 
data.   

The paper 
presented a 
model using 
exogenous and 
endogenous 
variables called 
feed forward 
and feedback 
multi-context 
artificial neural 
network (FFFB-
MCANN).   

Recurrent ANN 
models are difficult 
and often need 
excellent training.  

Al-Saba,  and El- Amin, 1999 “Artificial 
neural networks as applied to long-term  
forecasting”  [80] 

Forecasting of the yearly peak 
demand for the Middle  East 
utility.     
   

To search 
different 
prediction 
methods and 
match the 
predictions with 
the method 
suggested. 

The paper 
presented 
various models 
of time-series 
load forecasting 
and the 
approach 
focused on 
ANN.  

The uncertainty of 
the future allows 
long-term load 
forecasting and 
forecasting  
exceptionally 
complex 
computational 
problems.   

Sun, Chao, et al. 2016 “Nonlinear 
Predictive Energy Management of 
Residential Buildings with 
Photovoltaics & Batteries.” [81] 

Prediction of energy 
consumption in buildings. 

To present an 
approach with 
high precision for 
load forecasting.   

A model for 
feedback based 
on ANN was 
introduced. The 
ANN training 
was carried out 
using hybrid 
algorithms. 

Only limited load 
variables were 
considered.   

Li, Junfang, et al. 2015 “Forecasting 
Method for Urban Rail Transit 
Ridership at the Station-Level Using a 
Weighted Population Variable and 
Genetic Algorithm Back Propagation 
Neural Network.” [82] 

Shortcomings of commonly 
used back propagation ANN-
based models.    

To improve the 
BP-based ANN 
model, eliminate 
the drawbacks, 
and establish an 
optimal network 
structure for 
better forecast.   

A three-layered 
feedback  
propagation 
network trained 
by genetic 
algorithm (GA) 
was developed.   

The model did not 
have the ability to 
detect sudden load 
changes.   

Madal, Senjyu, Urasaki, and Funabashi, 
2006 “A neural network based on several-
hour-ahead electric load forecasting using  
similar days approach” [83] 

Linking traditional load 
forecasting techniques with 
an intelligent ANN-based 
network.    

To unite similar 
days approach 
load forecasting 
methods with an 
ANN-based 
network.  

In order to 
predict one to 
six hours ahead 
of the forecast, a 
variation of a 
model based on 
ANN and a 
classical 
approach has 
been used.  The 
model used a 
basic algorithm 
with the 
Euclidean norm 
and weighted 
factors. 

A great variation in 
weather conditions 
may influence the  
forecast accuracy.   
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Topalli, Erkme, and Topalli, 2006 
“Intelligent short-term load forecasting in  
Turkey” [84] 

Inaccuracy in load forecasting 
and numerical volatility in 
forecasting methods for time 
series.  

To present a new 
technique of 
intelligent 
prediction.   

They used an 
Elman recurrent 
neural network 
model with 
embedded 
dynamic testing 
to enable the 
framework to 
incorporate 
actual load 
forecasting and 
actual current 
training.  

The potential of the 
proposed method to 
create an efficient 
network structure 
and suitable learning 
algorithms.   

Kandil, Wamkeue, Saad, and Georges, 
2006 ”An efficient approach for short-term 
load forecasting using neural networks” 
[85] 

The effect on load forecasting 
of expected values (historical 
load data).  

The potential with 
small input data 
to predict the load 
to demonstrate 
neural networks 
(i.e.  
just the 
temperature )  

 The common 
multi-layered 
feed forward 
ANN-based 
model was 
utilised for a 
localised 
prediction. The 
design of 
the algorithms of 
Levenberg 
Marguardt were 
used in training.   

The study addressed 
only preliminary 
outcomes.  

Xiao, Ye, Zhong and Sun, 2007 “BP 
neural network with rough set for short-term 
load forecasting” [86] 

Disadvantages of ANN-based 
models for load forecasting.   

Assessing the 
relationship for 
both outputs and 
inputs in a 
complex setting.   

 A neural 
network 
technique of 
rough back 
propagation  and 
a moment 
approach were 
used to enhance 
training.  

The development of 
an optimum attribute 
deduction threshold 
was never achieved. 
Further historical 
data is necessary.    

 

2.4 Discussion of findings 

Different academics show that the literature use various techniques to respond to a load 

forecast. Taylor et al. [75] introduced a feed-forward, multilayer  neural network model 

to compare the  accuracy of prediction of ANN using a time series model. The model 

based on ANN gave fair results. The accuracy of load forecasting depends primarily on 

the training and the chosen forecast time period.   
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In [76], in a load forecasting model, the authors evaluated the influence of electricity 

prices. For areas with sudden adjustments in the energy tariff, this evaluation would 

typically be ideal because it greatly affects the predictive accuracy. The relation between 

load and price is highly nonlinear and difficult to model. And more so, a supervised 

model based on the neurotic network was used to predict the load in the Nigerian 

national grid in [77]. However, due to environmental conditions, the analysis did not 

consider the impact of climate, so the accuracy could be enhanced. It is important to 

carefully select the number of neurons in the hidden layer, as too many neurons can lead 

to overspecialisation and consequently loss of generalising ability. However, in [78] a 

model was built with regard to the weight-space probability distribution (pdf) function. 

This formation solves a few of the modelling instabilities, so further progress could thus 

improve forecast model efficiency. It is important to establish inconsistency in model 

inputs.  

 

In addition a multi-context artificial neural network feed forward and feedback (FFFB-

MCANN) as a realistic load forecasting approach was proposed in [79]. In order to 

achieve improved accuracy, they suggested using the rate values rather than the absolute. 

Recurrent ANN models are difficult and often need excellent training. However, in [80] 

the application of ANN to the forecast of long-term loads was highlighted. The model 

forecasted a Middle Eastern utility 's annual peak demand using a time-series form and 

doing it all over again. The research showed that the model based on ANN generates 

better prediction than traditional approaches (ARMA, etc.). Long-term load forecasting is 

an exceedingly difficult computational problem because of future uncertainty.    
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The authors used an ANN-based feedback model in [81] to forecast energy consumption in 

high-precision buildings. A hybrid algorithm was used to train the model. Evidently, the 

optimal network structure was not achieved. Only small variables of load were considered. 

In an attempt to establish the optimal neural network model, authors used the structure of 

ANN and the genetic algorithm to dominate back propagation in [82]. Aside from the fact 

that sudden load changes cannot be identified by the approach, this technique is strong, 

but the method still needs further development. The model did not have the ability to detect 

sudden load changes, whereas, in [83] a comparative analysis of the modern load prediction 

approach using actual load data, was provided using artificial neural networks. The models 

have been used to predict loads of 1-6 hours. The Moving Average Percentage Error 

(MAPE) has shown that the ANN model produces precise outcomes. Once more the 

optimum network architecture was never achieved for a good forecasting. A great variation 

in weather conditions may influence the forecast accuracy. Meanwhile the authors in [84] 

used a recurrent neural network technique to forecast Turkey's total load one day in 

advance using combination training methods to offline real-time training. The study 

revealed that a mean deviation of 1.6% was recorded. Good network implementation can 

be used to obtain accurate prediction, which is the ability to create an efficient networking 

structure with appropriate learning algorithmic rules. Also, the authors in [85] examined 

the ability of ANN to forecast load, but only temperature without the use of the background 

load pattern. The finding notes that the use of projected  values of the load can result in a 

high level of forecast inaccuracy, so only the temperature was used as an input. This 

method may be successful because of the input-output mapping power of the ANN. 

However, other important input variables and better network training parameters may be 

selected to produce better performance. The study addressed only preliminary outcomes.  

The authors eventually implemented the rough array and their ability to investigate and to 

remember the input-output relationship in [86]. A multilayer back network for neural 
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transfer was used in the analysis to reduce the selectivity of local sections of the deviation 

curve surface by a pulsed approach. This method needs to be upgraded in order to allocate 

the baseline for deduction. The development of an optimal threshold for attribute omission 

has never been rendered. Furthermore, historical load data are needed. 

The major goal of this study is believed to enrich the current  electric load forecasting 

literature for non-domestic customers, in this case the Port Terminal, with the main focus 

on complementing the explanation provided in field review papers already written. The 

study shows that despite the relative simplicity of all models examined, regression analysis 

is still commonly used and effective for long-term forecasting. As for short-term 

predictions, machine learning or artificial intelligence-based models such as Artificial 

Neural Networks (ANN), Support Vector Machines (SVM), and Fuzzy Logic are favoured. 

 

2.5  Conclusion 

A comprehensive literature review was conducted on current load prediction methods. In 

addition to  this chapter there has been a comparative analysis of some specific models. 

Research reports on comparisons of intelligent system-based structures with traditional 

methods of load forecasting were compared. Ideally, such evaluations are meant to show 

the strengths of classical ANN-based models and  pay less interest to the limitations of 

modern devices. A majority of papers analysed have not specifically highlighted the 

emphasis on network model optimisation, therefore it is immense that similar model 

network groups are evaluated and network optimisation for load prediction is explored. 

Research also stated that intelligent system-based models outperform classical methods, so 

an ANN method is used for  this project proposal.  

In comparison, a number of artificial neural network models have some disadvantages. 

Long training times, reliance on input values and the design of an optimised system 
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architecture for better load prediction are the three main problems encountered. The use of 

good network training using suitable training algorithmic rules (customised back 

propagation algorithms, rough set theory, genetic algorithm, etc.) will definitely enhance 

ANN-based load forecasting models, and therefore this subject needs to be explored.  

Because this study concentrated on predicting the load of an electricity grid, general criteria 

for a good system of forecasting and factors influencing the load at various time spheres 

need to be addressed. The next chapter of this manuscript therefore shortly addresses the 

above-mentioned problems.  
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

This chapter’s main objective is to discuss the design of the Nonlinear Autoregressive 

Exogenous Inputs (NARX) neural network and the Adaptive Network-based Fuzzy 

Inference System (ANFIS) model, its structures and outputs for the suggested prediction 

models and methods of collecting data used in the analysis. The chapter also deals with 

the significance of data analysis, load profiling and, in particular, data pre-processing 

prior to forecasting.  

 

3.2 Data description 

The collection of data is an essential feature of any form of research study. Inaccurate or 

inadequate data may have an effect on the results of the analysis and eventually lead to 

invalid or distorted results [87]. In this section, various methods of data collection were 

used to ensure adequate historical load samples. A variety of variables, including 

exogenous and endogenous variables, influence the load of the power system. Variables 

that have a strong correlation with the load need a good forecasting method. The following 

inputs are therefore presented to the developed models: weather and load data to predict 

the load at various timeframes. The picking of initial parameters is done randomly, on the 

basis of  quantitative variables, and often on the basis of suggestions made in recent tasks 

and encounters. Literature states that temperature, among all climatic condition factors, has 

the most important dependence on load variance [88].  

To test the efficacy of the model, the actual load data for the  Transnet Port Terminal (TPT) 

was used. Eight substations and five mini-substations, primarily feeding elevators, 

workshops, poles, mast lights, offices, the car terminal, clinic and a fuel depot from the 

terminal 11kV ring linked reticulation network were studied. The network has 2 x 
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1.25MVA,11kV/420V and 1 x 1.6MVA,11kV/3.3kV distribution transformers. In Figure 3.1, 

Appendix A, this network's single line layout is shown. There were two types of loads 

measured: departmental and total loads. At different points in the network, the 

departmental loads’ measurements were taken using Landis & Gyre meters. Data at the 

main intake of the substation (labelled 'B' supply from Municipality in Fig.3.1) were 

measured for the total load. Figure 3.1, Appendix A, also demonstrates the spatial layout 

of these substations, as well as some measuring points. Power meters were installed at 

specified substations during the data collection process to measure out energy 

consumption at various installation times, i.e. sub-hourly, hourly and on a quarterly basis 

during the measurement process. A local meteorological office collected weather data on 

our behalf.  

 

3.3 Data collection methods 

Different quantitative data collection methods have been used. Some of them include 

gathering of relevant information as presented below: 

Measuring: (departmental loads and real load for the entire port);  well-defined observation 

and documentation of load patterns (special events, abnormal days, recess break times, etc.)  

Management information systems (maximum demand threshold-2 MW announced by 

Buffalo City Metro Municipality (BCMM) were used to obtain true data.  

Daily interaction (questionnaires, face-to-face and telephone interviews) with network 

operators, Electrical Technicians and Electricians took place.  

Several initiative meetings with communities or partners were held on the basis of the 

measurable (CARS) rule of community, attitude, requirements and standard goals. Inter 

alia, a commonly used approach, namely interactions, were initiated one-on-one with 

stakeholders,  network technicians, TPT managerial staff and service providers, with a view 
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of developing a partnership and likely obtaining their support. Compared to the 

aforementioned technique, phone calls have also been used, not just to allow enough  use 

of services, but mostly because lesser time was needed for this interaction approach. The 

collection of data is an exercise that is demanding and sometimes devours many resources 

and time. Table 3.1 shows a sequential data collection plan for this document. Data on 

historical load can be observed, in particular total load and different departments loads. 

The total load reflects the combined actual load recorded by the statistical or power meter 

at the main intake substation for the entire port. This instrument was designed to measure 

the load using an interface time of thirty minutes, as per the Eskom maximum demand 

metering requirements. As a result, the research on this topic was expanded to document 

energy usage for various departments and buildings inside the port terminal premises at a 

lower integrating test cycle for departmental loads. Landis & Gyre power meters recorded 

this data for a duration of two weeks per location.  

Table 3.1  A standard combined timetable – for data collection model 

Data type  Data source  Recording  
integration  
period  

Parameter   Location/building   Mobility  Duration  

Total load   Main substation 30 mins  MW  Main Intake  
substation  

Stationary  7 months  

Departmental 
loads  

Landis & Gyre meters 30 mins  kW  Admin. BLD,   
Elec. workshop, lifts, 
Millwright Workshop, 
car terminal, Saddle 
Carrier Workshop and 
fuel depot 

Stationary   7 months   

Weather   

 

 

 

 

SA weather 30 mins Min, max  
temp (°C),  
wind speed,  
humidity, and  
cloud rate    

Nearest weather 
service   point (East 
London)  

Stationary March – 
September 
2018. Daily 
records   
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Table 3.2 An example of load data obtained from building offices  

GRAIN ELEVATOR 11 kV SUBSTATION 

FEEDING CONVEYER BELTS, LIFTS AND OFFICES 

 
Recorder 

 
Date 

 
Time 

 
kW 

 
KVAR 

LGZ97816730 2/3/2018 030 5,4 16,1 

LGZ97816730 2/3/2018 100 11,9 3,5 

LGZ97816730 2/3/2018 130 14,9 2,4 

LGZ97816730 2/3/2018 200 5,9 15,3 

LGZ97816730 2/3/2018 230 5,3 18,4 

LGZ97816730 2/3/2018 300 4,8 16,9 

LGZ97816730 2/3/2018 330 12,7 4,6 

LGZ97816730 2/3/2018 400 18,9 0,5 

LGZ97816730 2/3/2018 430 25,3 0,0 

LGZ97816730 2/3/2018 500 25,6 0,0 

LGZ97816730 2/3/2018 530 21,4 0,0 

LGZ97816730 2/3/2018 600 20,5 0,0 

LGZ97816730 2/3/2018 630 17,1 0,0 

LGZ97816730 2/3/2018 700 17,2 0,0 

LGZ97816730 2/3/2018 730 0,1 14,9 

LGZ97816730 2/3/2018 800 2,0 8,0 

LGZ97816730 2/3/2018 830 4,9 0,6 

LGZ97816730 2/3/2018 900 7,4 1,1 

 

3.4 Data analysis of the load profile for the lifts 

3.4.1 Load curve characteristic, departmental load – Lifts, conveyer belts and offices 

Individual loads for various departments were also measured according to the 

measurement schedule shown in Table 3.1. A typical daily load profile for the conveyer 

belts, lifts and offices (for a non-holiday period) is shown in Figure 3.2. 

Departmental load demand data for the second day of March 2018 is shown in Table 3.2. 

The reliability and credibility of the March data were initially graphically analysed, 
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comparing each hour of the same day of each week with the data collected from the second 

day of June 2018 and the second day of July 2018, etc.  

Example of electrical expenditure in March 2018 in Fig. 3.2 

Figure 3.2: Departmental load profile for March 2nd2018 

The load starts to pick up to 25 kW at about 10 hours on Friday, which indicates many 

activities at the port terminal. A large drop in the curve is seen during 20 to 40 hours 

indicating no electricity consumption in this period to 0kW. Energy demand reaches 

minimum levels during this time. This shows the end of the shift on Friday and the start of 

the weekend, which indicates little or no activity at the port terminal. An increase is shown 

in the curve again during 40 to 48 hours, indicating an increase to above 10 kW of electricity 

consumption. This is as a result of a late shift for the receiving department starting on 

Saturday, with a limited number of staff. 

From this load profile, the following hourly variance can be seen: 

• A maximal consumption of 25 kW around 10 hours. 

• A consumption of 15 kW during 15 and 48 hours. 

• A consumption above 5kW and below 5kW during 18 and 42 hours. 

• A minimum or no consumption of 0 kW during 20 to 40 hours. 
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Electric load data time series plots were generated and visually examined for common 

patterns, such as averages, hourly elements, and sudden shifts in peak and valley 

magnitudes.  

3.4.2 Load curve characteristic, departmental load – Admin Blog 

The first measurement was taken on Friday, 1st June for a duration of seven days. Figure 

3.3 indicates that the load reaches its height (approx. 12.5 kW) at around 09:30 on Friday, 

and drops to 1.3 kW - a reduction of about 90% at 17:30 the same day. Usually, these offices 

are occupied on weekdays from about 08:30 to 16:30. Therefore, beginning from Monday 

to Thursday, a peak average of 18 kW and a drop average of 1.3 kW is observed. As for 

weekend load profiles, an average of 1.3 kW has been recorded and, technically speaking, 

since the building will presumably be unoccupied on weekends, this substantial reduction 

in power usage seems to be valid.  

Figure 3.3: The load for the Administration Building over the period June 01 - 14, 2018  
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One can clearly distinguish two different load formats during the daylight and after hours, 

as seen in Figure 3.3 above. During the day the load reaches its height and then decreases 

steadily immediately after hours. 

3.4.3 Load  characteristic, departmental load – Electrical Workshop 

The highest peak of more than 85 kW was observed from Friday to Saturday at the 

workshop. The lowest peak was recorded on Sunday to below 2.5 kW, indicating no work 

being carried out on this day. 

 

3.4.4 Load characteristic, departmental load – Millwright Workshop 

The load profile for the Millwright workshop was recorded for almost a month, period (12th 

till 31st August 2018). Electricity consumption reaches low levels of 0.1 kW at the end of 

week 1, Saturday at 11:00, and reaches high levels of 3.1 kW at the beginning of week 2, 

Monday at 11:00. 

3.4.5 Load characteristic, departmental load – car terminal 

The highest recording of electricity consumption for April is observed on Friday the 13th 

about 10:00 AM. The highest recording of energy consumption is about 381 kW for the 

departmental load. This is attributed to the fact that this is one of the busiest car terminals 

in the southern hemisphere, which carries out export and import duties for Mercedes Benz 

South Africa (MBSA), big revenue for the port. Pictures of a car terminal at Transnet Port 

Terminal (TPT) in East London are shown in Figure A3.4 and Figure A3.5 in Appendix A. 

3.4.6 Load consumption, departmental load – fuel depot 

The lowest levels of electricity consumption of about 0.1 kW was recorded starting from 

Monday around 2:30 AM, and it continued throughout the week on days like Tuesday, 

Saturday and Sunday. If the fuel depot in this harbour is compared to other departmental 
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loads, this one records the lowest electricity consumption in the port, indicating less 

activity in terms of energy usage.   

 

3.4.7 Load consumption, departmental load – Saddle Carrier Workshop 

The load for the Saddle Carrier Workshop was recorded for almost a two-week period (3rd 

till 16th September 2018). The data were generated and visually checked in time series for 

common patterns, e.g. averages, hourly components and sudden shifts in peak and valley 

scale. 

This load presented an hourly energy demand variation which can be observed as: 

• An average consumption of about (8.9-18.8) kW of power mostly a week. 

• A maximum consumption of 22.5 kW of electricity at 12:00 PM Saturday. 

• A minimum consumption of 3.1 kW of energy at 11:00 AM on Sunday.  

 

3.5 Data analysis of the load profile for total consumption 

3.5.1 Load curve characteristic of the total load 

As described before, the accumulated load data were recorded for the duration of four 

months per season at the main intake substation of the TPT. Since seasonal variations 

significantly affect the load, the set of data were divided into two groups (seasons) for the 

total load used: winter and summer. The subsequent seasons were then defined: summer-

February to May window season, and winter- June to September window season.  

The highest and lowest load curves recorded in the summer are shown in Figure 3.6.  
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Figure 3.6: Load profiles – for combined load in summer 2018 

The complete load depiction, excluding outages due to load shedding by ESKOM, for the 

total load is illustrated in Figure 3.7 for the chosen winter period. Figure 3.7 displays the 

peaks and valleys as normal electricity usage during days of the week and weekends. It 

also shows the load profile of the Port for different seasons of the year specifically for 

summer and winter periods. It is extremely important to evaluate the load data of the past 

to assess the input-output data structure. 

 
Figure 3.7: Time series for the chosen summer and winter period load pattern 
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A load profile typical for the chosen winter period (June – August), which bears 

resemblance to the one in Figure 3.7, shows high levels of electricity usage on the 16th June 

2018 which is the mid-term period. 

 

 

Figure 3.8: Annual load profile used from January 2018 to December 2018 
 
In the winter, electricity demand increases. Based on the winter season, it may be May, 

June or July during the specific year under observation. As time shifts around October, the 

load falls in the spring as observed, which is quickly down to below 1 MW.  

From this load profile, the following seasonal variation is observed:  
 

• Maximum consumption during the summer and autumn seasons of less than 
1.42 MW. 
 

• Maximum consumption of over 1.42 MW in winter and early spring. 
 

• The base load level is just marginally lower than 0.5 MW throughout the year.  
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Anomalous data sets or deviations were verified and removed where possible. The purpose 

of the initial analysis of data were to give the data a " feel ". The seasonal months meet the 

sequence of Eastern Cape in South Africa shown in Figure 3.9. 

 

 
 

Figure 3.9: Months segment in the various seasons of the year 
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Table 3.3 A standard presentation of created tables for different seasons 
 

 
 

 
The annual peak during the winter season is usually maximum because of the high use of 

electricity. In addition, widespread load shedding is applied in the months of May, June 

and July to save the substantial penalties caused when exceeding the notified maximum 

demand (NMD). Weather data for temperature, wind, rain, and humidity supplied by SA 

Weather offices in East London is shown in Table 3.3 above. 

 

3.6 Data storage for the entire port terminal 

Utilising previous load data and climate prediction, stored data in a central database, the 

suggested ANN using forecasting models will be taught offline. The standard procedure 

for a good prediction application is that the applicable data source is automatically 

obtained by the design structure.   

d time (Hr) temp (deg) wind (m/s) rain(mm) humidity(%)
18 00:00 12,5 58 0,0 79
18 00:30 12,5 58 0,0 79
18 01:00 12,2 46 0,0 73
18 01:30 12,2 46 0,0 73
18 02:00 14,2 65 0,0 69
18 02:30 14,2 65 0,0 69
18 03:00 14,0 70 0,0 68
18 03:30 14,0 70 0,0 68
18 04:00 14,1 74 0,0 69
18 04:30 14,1 74 0,0 69
18 05:00 13,4 75 0,0 68
18 05:30 13,4 75 0,0 68
18 06:00 13,5 69 0,0 67
18 06:30 13,5 69 0,0 67
18 07:00 14,0 65 0,0 68
18 07:30 14,0 65 0,0 68
18 08:00 15,8 61 0,0 64
18 08:30 15,8 61 0,0 64
18 09:00 17,5 81 0,0 57
18 09:30 17,5 81 0,0 57
18 10:00 19,1 92 0,0 47
18 10:30 19,1 92 0,0 47
18 11:00 20,6 92 0,0 43
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For this setup, the necessary database must be established and then installed properly on 

a localised desktop (PC).  

There are plenty of free software base systems available for storage of data, including: 

Microsoft Access, Microsoft SQL Server, DB2, IBM, Microsoft Excel, Informix, MySQL, 

Oracle, PostgreSQL, etc. If one wants to use the MATLAB Database Toolbox though, it is 

important to pick an appropriate data management application, since this toolbox mainly 

supports systems compatible with the ODBC/JDBC protocol.  

In this work as in Figure 3.10, all historical data are stored in the Landis+Gyr.MAP110 

Service Tool, and then imported into MS Excel for data standardisation and for enhanced 

diagnostic functions. Once the data is standardised, it can be imported into MATLAB via 

ODBC communication protocol. This is primarily designed for research purposes.   

 

 
Figure 3.10: The Landis+Gyr.MAP110 Service Tool supports services 

 

Figure 3.11 gives a general layout of Landis+Gyr.MAP110 Service Tool. 

Landis+Gyr.MAP110 Service Tool Software permits one or more databases and tables to be 

generated by a user. One database ('combined load data') on the grounds of this research, 

was developed, and then calibrated. Inside this database, different record storage tables 
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were developed for various models. Figure 3.12 displays some of the tables set up in the 

Database. Using Standard Query Language (SQL) MATLAB functions, the required data 

were then extracted from these tables into the MATLAB workspace.   

 

 
Figure 3.11: A general overview of MAPE 110 Service Tool for the load 

 
 

 
 
 

Figure 3.12: A standard format of some of the tables created 
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3.6.1  Importing data into MS Excel 

The Landis+Gyr.MAP110 Service Tool can upload, make structured data exportation to and 

from the recognised data warehouse, as shown in Figure 3.13. Depending on the pattern 

and layout of the information needed, the importing wizard for the MAP 110 Service 

Software Tool can be used to upload a file from Landis+Gyr devices (meters and USB or 

COM port) into PC with MS Excel Database. 

  

 

 

 

 
 
 
 
 
 

Figure 3.13: Importing data from Landis+Gyr metre into an Excel spread sheet 
 

 

   Table 3.4 A typical layout of load profile 1 
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3.7  Pre-processing of data  

As shown in Table 3.5, the database  stores load data and climate data that are pre-

processed or raw. Therefore, before the presentation of data to a training model or other 

predictive method, the data should be standardised.  

Data scaling is important, because neural networks are also prone to data that are raw. To 

prevent convergence issues, it is extremely important that data are scaled (typically values 

between 0 and 1, or -1 and 1). There are many techniques that can be used as described in 

Equation (3.1) to (3.4) for data standardisation.      

Table 3.5 Raw load and weather data stored in MS Excel 

 

 

 

 

 

 

 

d time (Hr) temp (deg) wind (m/s) rain(mm) humidity(%) M1 (kW) M2 (kW) M4 (kW) M6 (kW) M7 (kW) M8 (kW) M9 (kW)
18 00:00 12,5 58 0,0 79 29,9 0,50 2,60 0,00 2,55 324,60 11,37
18 00:30 12,5 58 0,0 79 25,2 0,40 2,80 0,10 2,56 323,90 8,65
18 01:00 12,2 46 0,0 73 26,5 0,40 2,60 0,00 2,57 326,20 8,60
18 01:30 12,2 46 0,0 73 25,9 0,40 2,70 0,00 2,57 327,30 8,60
18 02:00 14,2 47 0,0 69 26,8 0,40 2,60 0,00 2,56 326,30 8,58
18 02:30 14,2 48 0,0 69 25,7 0,50 2,60 0,10 2,56 328,00 8,58
18 03:00 14,0 49 0,0 68 26,5 0,40 2,60 0,00 2,56 327,20 8,60
18 03:30 14,0 50 0,0 68 23,6 0,40 2,70 0,00 2,57 325,40 8,60
18 04:00 14,1 51 0,0 69 25,7 0,40 2,60 0,10 2,55 323,20 8,58
18 04:30 14,1 52 0,0 69 31,0 0,40 2,60 0,00 2,54 323,20 8,56
18 05:00 13,4 53 0,0 68 37,2 0,40 2,70 0,00 2,59 330,00 8,63
18 05:30 13,4 54 0,0 68 23,7 0,40 2,60 0,00 2,58 328,20 8,62
18 06:00 13,5 55 0,0 67 20,9 0,50 2,60 0,10 2,55 327,00 8,59
18 06:30 13,5 56 0,0 67 18,9 0,40 2,80 0,00 2,54 264,60 8,52
18 07:00 14,0 57 0,0 68 4,2 0,40 54,40 0,00 2,56 387,80 4,51
18 07:30 14,0 58 0,0 68 0,0 0,40 86,10 0,00 0,23 223,10 0,00
18 08:00 15,8 59 0,0 64 0,0 0,40 85,30 0,10 0,00 303,40 0,00
18 08:30 15,8 60 0,0 64 16,5 0,40 83,20 0,00 0,00 326,50 0,00
18 09:00 17,5 61 0,0 57 35,4 0,40 83,20 0,00 0,00 326,40 0,00
18 09:30 17,5 62 0,0 57 36,9 0,40 83,20 0,10 0,00 302,60 0,00
18 10:00 19,1 63 0,0 47 30,9 0,40 84,20 0,00 0,00 281,50 0,00
18 10:30 19,1 64 0,0 47 10,7 0,40 83,70 0,00 0,00 281,20 0,00
18 11:00 20,6 65 0,0 43 0,0 0,40 84,60 0,00 0,00 281,80 0,00
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3.7.1  Methods of scaling the data 

Using one of the following equations in [89], data can be standardised:  

true value−minimal value 

Standardised value =  

maximal value−minimal value 

  

       
(3.1)  

 

true value 

Standardised value =  

             total of each day 

  

         
(3.2)  

 

true value 

Standardised value =  

maximal value 

  

       
(3.3)  

 

 true value− medium value 

Standardised value =  

maximal value− medium value 

      (3.4)  

 

 

3.8 Proposed framework description 

This section describes the solution proposed: a design of the NARX neural network which 

uses exogenous inputs, such as weather and time variables and endogenous input 

(electricity) to generate a 168-hour forecast. The study also involves the application of 

© Central University of Technology, Free State



47 
 

Adaptive Neuro Fuzzy Inference System (ANFIS) to predict the electrical load for 24 hours 

to a week in advance. This forms the part of comparative analysis for the models to establish 

a better performing one in terms of load forecasting. Firstly, time is dedicated to explaining 

how to arrive to the proposed networks, which will facilitate the implementation explained 

later on. 

 

3.8.1 NARX Model 

Its input-output relationship can describe the dynamics of ANN using NARX. [90-91]. 

 

y(t) = F[x(t), x(t − ∆t), . . . , x(t − n∆t), y(t), y(t − ∆t), . . . , y(t − m∆t)]    (3.5) 

 
where n is the number of steps to delay input time, m is the number of time delays 

to feedback(output), and F is usually a nonlinear function. Note that the delayed y 

output is included in equation (3.5) alongside the exogenous x variables. The 

weather and time variables are exogenous x-t input, with load 𝑦𝑦𝑦𝑦 being the input 

of the endogenous. Using the actual load, 𝑦𝑦𝑖𝑖 values, the network was trained and used 

at a closed loop to provide the next 168-hour prediction for every one-hour phase 

of the load𝑦𝑦𝑖𝑖. Using a Levenberg–Marquardt backpropagation technique, the 

network is developed utilising 365 previous consecutive days of open-loop data. 

The design of the proposed neural network starts with the structure of a feedforward 

perceptron network, in order to learn the behaviour of the output (target) 𝑦𝑦 at time t (𝑦𝑦𝑦𝑦), 

by using inputs 𝑦𝑦𝑦𝑦 and modelled as a nonlinear functional type of a regression 

model for y (output layer):  

 

𝑦𝑦𝑡𝑡= Φ[𝛽𝛽𝑜𝑜 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1  ℎ𝑖𝑖𝑖𝑖]   (3.6) 
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where (hidden layer) 

           ℎ𝑖𝑖𝑖𝑖= Ψ[𝛾𝛾𝑖𝑖0 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1  𝑥𝑥𝑗𝑗𝑗𝑗]    (3.7) 

 

Φ is the output activation function, where Φ(x) = x is the linear function; Ψ are the hidden 

neurons activation function - in our case, the form's logistic function which is: 

          Ψ(𝑡𝑡) = 1
1+ 𝑒𝑒−𝑡𝑡      (3.8) 

 

that is used to flatten the neural weights or restrict them; the output bias is 𝛽𝛽𝑜𝑜; the 

output layer weights are 𝛽𝛽𝑖𝑖, 𝛾𝛾𝑖𝑖0  is the input bias; and 𝛾𝛾𝑖𝑖𝑖𝑖 are the weights for the 

input layer. The sub-index of the q neurons is i, and the sub-index of the n inputs is 

j. A combination of equations (3.5) and (3.7), (3.9) was generated: 

𝑦𝑦𝑡𝑡= Φ{𝛽𝛽o + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 Ψ[𝛾𝛾𝑖𝑖0 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖

𝑛𝑛
𝑗𝑗=1 𝑥𝑥𝑗𝑗𝑗𝑗]}   (3.9) 

 

The dynamic term, an autoregression on the output, was then added to describe a 

recurring network in which the hidden layers are represented by: 

ℎ𝑖𝑖𝑖𝑖 = Ψ[𝛾𝛾𝑖𝑖0 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 𝑥𝑥𝑗𝑗𝑗𝑗 + ∑ 𝛿𝛿𝑖𝑖𝑖𝑖

𝑞𝑞
𝑟𝑟=1 ℎ𝑟𝑟,𝑡𝑡−1]     (3.10) 

 

where, 𝛿𝛿𝑖𝑖𝑖𝑖 is the delayed weight, ℎ𝑟𝑟,𝑡𝑡−1 is the term for the feedback. By substituting 

(3.11) for (3.7), we get: 

𝑦𝑦𝑡𝑡 = Φ{𝛽𝛽O+∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 Ψ[𝛾𝛾𝑖𝑖0+∑ 𝛾𝛾𝑖𝑖𝑖𝑖

𝑛𝑛
𝑗𝑗=1 𝑥𝑥𝑗𝑗𝑗𝑗+ ∑ 𝛿𝛿𝑖𝑖𝑖𝑖

𝑞𝑞
𝑟𝑟=1 ℎ𝑟𝑟,𝑡𝑡−1]}   (3.11) 

 

Equation (3.11) represents network dynamics: past output values and multiple inputs. 

However, our structure  is responsible for only one hidden neural layer to date. By adding 

index l and the multi-dimensional existence of the t outputs, we must expand the 

definition to N layers by adding index k to produce: 
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𝑦𝑦𝑡𝑡
𝑘𝑘= Φ{𝛽𝛽𝑂𝑂

𝑘𝑘 + ∑ ∑ 𝛽𝛽0
𝑘𝑘𝑞𝑞

𝑖𝑖=1
𝑁𝑁
𝑙𝑙=1 Ψ[𝛾𝛾𝑖𝑖0

𝑙𝑙  + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖
𝑙𝑙𝑛𝑛

𝑗𝑗=1 𝑥𝑥𝑗𝑗𝑗𝑗 + ∑ 𝛿𝛿𝑖𝑖𝑖𝑖
𝑞𝑞
𝑟𝑟=1 ℎ𝑟𝑟,𝑡𝑡−1]}   (3.12) 

k =1⋯ 𝜏𝜏 

 

The NARX Neural Network implemented in this research is described in equation (3.8). 

Open- and closed-loop networks are the same, with the exception of the delayed output 

value. The open-loop network gets the 𝑦𝑦 value from the previous known output 

values and is thus a regular network input; and the closed-loop model obtains the 

value from the forecasted output value. For an example of the implementation of NARX, 

see [92]. 

 

3.8.2 ANFIS Model 

Adaptive neuro fuzzy inference system (ANFIS) is a hybrid system from adaptive neural 

network and fuzzy logic. The adaptive neural network method provides the capability of 

learning and adapting the parameters of the fuzzy rule base. Adaptive neural network can 

eliminate the deficiency of a conventional fuzzy system, where the researcher must set up 

a membership function value for both input and output membership function. 

 

 

Figure 3.14: ANFIS structure  
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Figure 3.14 shows an ANFIS structure as adapted from [93], composed of five layers with 

two inputs weather and load, and one output power. Each layer contains several nodes 

which describe the node function. Square node indicates an adaptive network, while circle 

node indicates a fixed node. In layer 1, all the nodes are adaptive network. There are two 

fuzzy parameters A1-A2, and B1-B2. The output of layer 1, which is called the fuzzification 

layer, is given by: 

𝑂𝑂1.𝑖𝑖= 𝜇𝜇𝜇𝜇𝜇𝜇 (weather),𝑖𝑖=1,2     ( 3.13) 

𝑂𝑂1.𝑖𝑖= 𝜇𝜇𝜇𝜇𝜇𝜇−2 (load),𝑖𝑖=3,4              (3.14) 

whilst weather and load values are the input for each node. The membership function for 

A and B describes by type of membership function.  

In layer 2, each node is a fixed node which computes the strengths of the rules. Output of 

layer 2 is given by: 

𝑂𝑂2,𝑖𝑖=𝑤𝑤𝑖𝑖=𝜇𝜇𝐴𝐴𝐴𝐴(weather)Δ𝜇𝜇𝐵𝐵𝐵𝐵(load), 𝑖𝑖=1,2   (3.15) 

or, 

𝑤𝑤1=𝜇𝜇𝐴𝐴1(weather)𝐴𝐴𝐴𝐴𝐴𝐴𝜇𝜇𝐵𝐵1(load)     (3.16) 

𝑤𝑤2=𝜇𝜇𝐴𝐴2(weather)𝐴𝐴𝐴𝐴𝐴𝐴𝜇𝜇𝐵𝐵2(load)     (3.17) 

In layer 3, each node labelled N is also a fixed node. The output of this layer is called a 

normalised firing level. The outputs are given by: 

𝑂𝑂3,𝑖𝑖  = 𝑤𝑤𝑤𝑤��� = 
𝑤𝑤𝑤𝑤

𝑤𝑤1+𝑤𝑤2
, 𝑖𝑖=1,2      (3.18) 

In layer 4, each node is an adaptive network which computes the contribution of each rule. 

The outputs of this layer are given by: 

𝑜𝑜4,𝑖𝑖= 𝑤𝑤𝑤𝑤 output power 𝑖𝑖 = 𝑤𝑤𝑤𝑤(𝑝𝑝𝑝𝑝 weather + 𝑞𝑞𝑞𝑞 load + 𝑟𝑟𝑟𝑟)  (3.19) 
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In layer 5, which is the last layer, is the summation of all incoming signals from the previous 

layer, the output is given by: 

𝑜𝑜5,𝑖𝑖= ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖  output power I = ∑ 𝑤𝑤𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

    (3.20) 

In this study, ANFIS is trained by a hybrid learning algorithm, which combined the least 

squares method and the gradient descent method [94]. Each membership functions type in 

this study is compared to find the best type of membership function that generates the 

better MSE. 

3.9 Membership function 

Different types of membership function were used to find the best forecasting result. The 

membership function types used in this section are trimf, trapmf, gbellmf, gaussmf, 

gauss2mf, and dsigmf.  

Each membership function has a different equation that is used in the fuzzification process 

at layer 1. The equation for each membership function is defined as follows: 

1. Triangular-shaped membership function (trimf) 

𝑓𝑓(𝑥𝑥;𝑎𝑎,𝑏𝑏,𝑐𝑐)=

⎩
⎪
⎨

⎪
⎧

0, 𝑥𝑥 ≪ 𝑎𝑎
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

, 𝑎𝑎 ≪ 𝑥𝑥 ≪ 𝑏𝑏
𝑐𝑐−𝑥𝑥
𝑐𝑐−𝑏𝑏

, 𝑏𝑏 ≪ 𝑥𝑥 ≪ 𝑐𝑐
0,           𝑐𝑐 ≪ 𝑥𝑥⎭

⎪
⎬

⎪
⎫

       (3.21) 

2. Trapezoidal-shaped membership function (Trapmf) 

 

𝑓𝑓(𝑥𝑥;𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑)=

⎩
⎪
⎨

⎪
⎧

0, 𝑥𝑥 ≪ 𝑎𝑎
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

, 𝑎𝑎 ≪ 𝑥𝑥 ≪ 𝑏𝑏
1, 𝑏𝑏 ≪ 𝑥𝑥 ≪ 𝑐𝑐

𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐

, 𝑐𝑐 ≪ 𝑥𝑥 ≪ 𝑑𝑑
0, 𝑑𝑑 ≪ 𝑥𝑥 ⎭

⎪
⎬

⎪
⎫

    (3.22) 

3. Generalised bell-shaped membership function (Gbellmf) 
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𝑓𝑓(𝑥𝑥;𝑎𝑎,𝑏𝑏,𝑐𝑐) = 
1

1+�𝑥𝑥−𝑐𝑐
𝑎𝑎 �

2𝑏𝑏     (3.23) 

4. Gaussian curve membership function (Gaussmf) 

𝑓𝑓(𝑥𝑥;𝑎𝑎,𝑐𝑐) = 𝑒𝑒
−(𝑥𝑥−𝑐𝑐)2

2𝑎𝑎2         (3.24) 

5. Difference between two sigmoidal function membership functions (Dsigmf) 

𝑓𝑓(𝑥𝑥;𝑎𝑎,𝑐𝑐) = 1
1+𝑒𝑒−𝑎𝑎(𝑥𝑥−𝑐𝑐)      (3.25) 

 

3.10 Model accuracy 

There are other accuracy measuring methods in terms of errors that obtain good prediction 

results of the load. Examples are Mean Absolute Percentage Error (MAPE),Mean Absolute 

Error (MAE) and Root Mean Squares Error (RSME), but MSE is the best preferred accuracy 

measuring method, as it presents the smallest error between the actual data and the 

forecasting data. 

The accuracy of short-term electrical load forecasting results computed with mean squared 

error (MSE) is defined as follows: 

MSE = 1
n

 ∑ �𝑎𝑎𝑒𝑒,𝑖𝑖 − 𝑎𝑎𝑝𝑝,𝑖𝑖�2𝑛𝑛
𝑖𝑖=1                                   (3.26) 

where n is the number of experimental data, 𝑎𝑎𝑝𝑝,𝑖𝑖 is the predicted values, 𝑎𝑎𝑒𝑒,𝑖𝑖 is the 

experimental values, and i is the number of input variables. The smallest value of MSE 

indicates the best forecasting method. 
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3.11 Conclusion 

The methods used to collect the required data and the reasons for such data are listed in 

this chapter, and the chapter also provides some information on the storage of input data 

and results. Moreover, the mathematical modelling of the selected neural network and the 

other model have also been presented in this chapter.  

The next chapter discusses results obtained by using neural networks to generate a 168-hour 

ahead forecast. As will be seen in Chapter 4, NARX ANNs and ANFIS forecasting outcomes 

are explained. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter presents the simulation results of NARX and ANFIS forecasting models 

discussed in the previous chapter. The first section of this chapter discusses departmental 

load forecasts, and the second part encapsulates the combined/total load forecast. Many 

discussions related  to specific forecasting error results were also included in the form of 

mean squared error (MSE) as a performance measure function to evaluate the 

performance of the models. 

 

4.2 Results of load forecasting for Transnet Port Terminal 

In the development, testing and use of the ANN forecasting solution based on Nonlinear 

Autoregressive with External Exogenous Input (NARX) and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) models, an Intel i3-5005u central processing unit with 4 GB of 

850 MHz running at 2.0 GHz, DDR3 dual channel, and a 5500 HD graphics card were used 

as a hardware configuration. The software architecture used includes the operating system 

of Educational Edition 1903 of Windows 10 and the application program of MATLAB 

R2016a. 

 

4.3  Forecasting the departmental loads  

Consequently, the preceding topic specifically addresses forecasts obtained from the 

predictive model created. 

The evolved NARX model was gradually trained in both seasons (winter and summer) to 

forecast the load. Exogenous and endogenous inputs were added to the networks in all 

cases to predict the load with a forecast period of 168 hours.   
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4.3.1  Predicting the load for the Lift Department   

The Lift Department's load measurements at Transnet Port Terminal in East London were 

taken from 12th March – 25th March 2018. The data set were therefore described as training 

data (18th March – 24th March) and target data (11th – 17th March) respectively. 

4.3.1.1 Results with respect to the ANN prediction solution developed based on the NARX 
Model, climate and time used as exogenous variables 
 

In keeping with the method mentioned above and using the exogenous variables 

meteorological and time dataset, the forecasting approach was integrated on the basis of 

the NARX artificial neural networks that synthesised the collected findings, the MSE values 

and the coefficient of correlation (R), i.e. between targets of the network and the outputs of 

the network, for the entire dataset per database contained (see Table 4.1).  

While testing the results, it was noticed that the architectural LM training algorithm consists 

of the delay parameter 3, which ensures the optimal hourly forecast accuracy of the hidden 

layer with 5 neurons, since it has the lowest mean squared error value, (0.0014156) and the 

measured correlation coefficient for the entire dataset quite close to 1 (0.9452). In 

comparison, the network developed using 20 neurons in the hidden layer and the delay 

parameter 40 has the worst hourly predictability, as it provides the highest value of the 

mean squared error (0.0052285) and the correlation coefficient calculated from 1 (0.95691) 

for the entire dataset. This network provides the highest hourly forecast accuracy of the 15 

LM-based algorithms network trained, as simulation results show good hourly predictive 

accuracy for March 2018. 
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Table 4.1 Results developed using the weather and time stamp for lift 

The Levenberg-Marquardt Training Algorithm 
n d 3 5 10 20 40 

     5         MSE 0.0014156 0.0017939       0.0025668 0.0026711 0.0026441 

                  R 0.9452 0.95494 0.94224 0.96657 0.96461 

    10         MSE 0.002562 0.0025346      0.0024407 0.0035346 0.004226 

                 R        0.9535 0.96052 0.95989 0.96446 0.94427 

    20     MSE 0.0029508 0.0032255       0.0026358 0.0040899 0.0052285 

                 R 0.9635 0.96512 0.94781 0.9572 0.95691 
 

  

The results indicated that the best hourly forecasting accuracy is generated when the LM 

delay parameter is at 3. It has been seen that ANN, developed using the NARX model LM 

Algorithm, uses the exogenous variables weather and time stamp data has the best hourly 

forecast accuracy, with n = 5 neurons in the hidden layer and a delay parameter of d = 3 

entitled NARX_ANN_LM_ALL (see Figure 4.1). 

 

Figure 4.1: The structure of NARX_ANN_LM_ALL 

To evaluate the training efficiency of electricity forecast for a week in March 2018 on an 

hourly basis, and using the ANN developed on the basis of the LM algorithm and the 

NARX model, using climate and time stamp data as exogenous variables, the training, 

validation, and testing curves were plotted first. In this case, the best validation 
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performance at the fourth epoch was registered when the mean squared error had the 

value of 0.0014156. By analysis, the devised prediction solution remains stable, no overfit 

process is occurring, and the neural network NARX_ANN_LM_ALL offers a high level of  

performance and accuracy (see Figure 4.2). 

 

Figure 4.2: The best validation results for NARX_ ANN _LM _ALL  

 

After that, in predicting electricity usage for the week of March, the error histogram 

using the above-mentioned forecasting ANN was presented (see Figure 4.3).  
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Figure 4.3: The error histogram in the week of March, using the NARX 

 

Analysing the plot, it has been noticed that most of the errors fall between −0.02005 

and 0.01816, a short range. There are only a few training points on observation that fall 

outside the range of errors. In this case, the error histogram shows good results. 

Eventually the system represented another important plot, the regressions between 

network targets and outputs, in order to analyse the predictive accuracy. The values 

indicating correlation coefficient R are close to 1, all of them being equal to 0.9452. 

Therefore, a conclusion was reached that a good fit was obtained (see Figure 4.4). 
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Figure 4.4: The regression plots using the NARX_ANN 

To validate the output of the network, the way in which the prediction errors are related in 

time through the autocorrelation function was also analysed. In this situation the rest fall 

in the 95 % confidence limit above zero, except for a few including zero-lag correlation, and 
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Figure 4.5: The error autocorrelation function, using the NARX_ANN 

 

 

Figure 4.6: Forecast using Levenberg-Marquardt for lift 
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4.3.2  Forecasting the load for the Administrative Building 

The Administrative Building's load measurements at Transnet Port Terminal in East 

London were taken from 1st June – 14th June 2018. The data set were therefore described as 

training data (7th June – 13th June) and target data (31st May – 6th June) respectively. 

4.3.2.1 Results with respect to the ANN prediction solution developed based on the NARX 
Model, climate and time used as exogenous variables, contained in Table 4.2 

 
Table 4.2 Results developed using the weather and time stamp for Admin Building 

The Levenberg-Marquardt Training Algorithm 
n d 3 5 10 20 40 

     5         MSE 0.0058598 0.0040027       0.0041171 0.0043699 0.0057633 

                  R 0.95204 0.87445 0.93506 0.96062 0.96614 

    10         MSE 0.0021875 0.0030078      0.0052888 0.0057832 0.0048998 

                 R        0.94365 0.93247 0.93242 0.97203 0.95592 

    20     MSE 0.0041747 0.0031809       0.0050763 0.0053925 0.0085429 

                 R 0.939 0.92816 0.92183 0.96799 0.94783 
 

Lowest MSE is 0.0021875 and R value is 0.94365. Figure 4.7 shows two graphs of actual and 

forecast load for one week ahead forecast for the Administrative Building which emerged 

from the NARX Weather Sensitive Model. 

 
Figure 4.7: Forecast using the Levenberg-Marquardt for Admin Building 
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4.3.3  Forecasting the load for the Electrical W/s   

The Electrical Workshop’s   load measurements at Transnet Port Terminal in East London 

were taken from the 15th June – 28th June 2018. The data set were therefore described as 

training data (21st June – 27th June) and target data (14th – 20th June) respectively. 

4.3.3.1 Results with respect to the ANN prediction solution developed based on the NARX 
Model, with climate and time used as exogenous variables, as contained in Table 4.3 

 
Table 4.3 Results developed using the weather and time stamp for Electrical W/s 

The Levenberg-Marquardt Training Algorithm 
n d 3 5 10 20 40 

     5         MSE 0.0046049 0.0049389       0.0040172 0.0034581 0.0043945 

                  R 0.93455 0.89279 0.94593 0.88623 0.97786 

    10         MSE 0.0069446 0.0036845      0.0066709 0.0042037 0.003925 

                 R        0.93167 0.96286 0.9047 0.95716 0.97358 

    20     MSE 0.00369 0.0052294       0.0065786 0.0036141 0.0064274 

                 R 0.92622 0.9308 0.89997 0.95506 0.96064 
 

Lowest MSE is 0.0034581 and R value is 0.88623. Figure 4.8 shows two graphs of actual and 

forecast load for one week ahead for the Electrical W/s which emerged from the NARX 

Weather Sensitive Model.  

 

Figure 4.8: Forecast using Levenberg-Marquardt for electrical W/s 
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4.3.4  Forecasting the load for the Millwright W/S Department   

The Millwright W/S Department’s load measurements at Transnet Port Terminal in East 

London were taken from 12th August – 31st August 2018. The data set were therefore 

described as training data (24th August – 30th August) and target data (16th – 22ndAugust) 

respectively. 

4.3.4.1 Results with respect to the ANN prediction solution developed based on the NARX 
Model, with climate and time used as exogenous variables, as indicated in Table 4.4 

 
Table 4.4 Results developed using the weather and time stamp for Millwright W/s 

The Levenberg-Marquardt Training Algorithm 
n d 3 5 10 20 40 

     5         MSE 0.0037685 0.0016794       0.0035046 0.0047702 0.0021919 

                  R 0.94566 0.93693 0.94892 0.89219 0.98186 

    10         MSE 0.0020914 0.002507      0.0016728 0.0038385 0.0018174 

                 R        0.94074 0.93853 0.95559 0.96774 0.96785 

    20     MSE 0.0022072 0.0035929       0.0022821 0.0033704 0.0040651 

                 R 0.94018 0.95642 0.94501 0.96854 0.96142 
 

Lowest MSE is 0.0016728 and R value is 0.95559. Figure 4.9 shows two graphs of actual and 

forecast load for one week ahead forecast for the Millwright W/s which emerged from the 

NARX Weather Sensitive Model.  

 

Figure 4.9: Forecast using Levenberg-Marquardt for Millwright W/s 
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4.3.5  Forecasting the load for Car Terminal Department   

The load measurements of the Car Terminal Department at Transnet Port Terminal in East 

London were taken from the 2nd April – 15th April 2018. The data set were therefore 

described as training data (8th April – 14th April) and target data (1st – 7thApril) respectively. 

4.3.5.1  Results with climate and time used as exogenous variables, as contained in Table 4.5 
 

Table 4.5 Results developed using the weather and time stamp for car terminal 

The Levenberg-Marquardt Training Algorithm 
n d 3 5 10 20 40 

     5         MSE 0.0017243 0.0041164       0.0020794 0.0043838 0.0014852 

                  R 0.91424 0.93034 0.95188 0.94992 0.97296 

    10         MSE 0.00233 0.004583      0.0014868 0.0025163 0.0063421 

                 R        0.91394 0.93713 0.93431 0.97227 0.94389 

    20     MSE 0.0061674 0.0021524       0.0058691 0.0050561 0.0035644 

                 R 0.9325 0.93887 0.93478 0.95471 0.96081 
      

Lowest MSE is 0.0014852 and R value is 0.97296. Figure 4.10 shows two graphs of actual 

and forecast load for one week ahead forecast for the Car Terminal Department which 

emerged from the NARX Weather Sensitive Model.  

 

Figure 4.10: Forecast using Levenberg-Marquardt for car terminal 
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4.3.6  Forecasting the load for the Fuel Depot Department   

The load measurements of the Fuel Depot Department at Transnet Port Terminal in East 

London were taken from 15th May – 28th May 2018. The data set were therefore described 

as training data (22nd May – 28th May) and target data (15th – 21stMay) respectively. 

4.3.6.1 Results with respect to the ANN prediction solution developed based on the NARX 
Model, climate and time used as exogenous variables, as contained in Table 4.6 

 
Table 4.6 Results developed using the weather and time stamp for fuel depot 

The Levenberg-Marquardt Training Algorithm 
n d 3 5 10 20 40 

     5         MSE 0.0024623 0.0048173       0.004182 0.0068079 0.0023822 

                  R 0.93228 0.93653 0.9293 0.94921 0.98173 

    10         MSE 0.0025314 0.0071958      0.0092482 0.0061181 0.0043989 

                 R        0.93037 0.93839 0.9182 0.93574 0.96972 

    20     MSE 0.0051813 0.00413       0.012275 0.0066628 0.0046532 

                 R 0.93087 0.92182 0.89447 0.94368 0.9597 
 

Lowest MSE is 0.0023822 and R value is 0.98173. Figure 4.11 shows two graphs of actual 

and forecast load for one week ahead forecast for the Fuel Depot Department which 

emerged from the NARX Weather Sensitive Model.  

 

Figure 4.11: Forecast using Levenberg-Marquardt for fuel depot 
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4.3.7  Forecasting the load for Saddle Carrier W/s   

The load measurements of the Saddle Carrier W/s  at Transnet Port Terminal in East 

London were taken from the 3rd September – 16th September 2018. The data set were 

therefore described as training data (9th September – 15th September) and target data (2nd – 

8th September) respectively. 

4.3.7.1 Results with respect to the ANN prediction solution developed based on the NARX 
Model, with climate and time used as exogenous variables, as contained in Table 4.7 

 
Table 4.7 Results developed using the weather and time stamp for Saddle Carrier W/s 

The Levenberg-Marquardt Training Algorithm 
n d 3 5 10 20 40 

     5         MSE 0.0026051 0.0010939       0.0013999 0.0018192 0.0022018 

                  R 0.96643 0.97299 0.97035 0.97484 0.98477 

    10         MSE 0.0024205 0.0014813      0.0013784 0.0026876 0.0026122 

                 R        0.97259 0.9545 0.97606 0.98001 0.97474 

    20     MSE 0.0018696 0.0021341       0.0015637 0.0014362 0.0051963 

                 R 0.97556 0.97906 0.97765 0.98075 0.96491 
Lowest MSE is 0.0010939 and R value is 0.97299. Figure 4.12 shows two graphs of actual 

and forecast load for one week ahead forecast for the Saddle Carrier W/S  which emerged 

from the NARX Weather Sensitive Model.  

 

Figure 4.12: Forecast using Levenberg-Marquardt for Saddle Carrier W/s 
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4.4 Forecasting the total/combined loads  

4.4.1 Forecasting the total/combined load for summer 

The load measurements of the total/combined load for summer at Transnet Port Terminal 

in East London were taken from the 12th March – 25th March 2018. The data set were 

therefore described as training data (18th March – 24th March) and target data (11th – 17th 

March) respectively. 

Lowest MSE is 0.0023122 and R value is 0.97549. Figure 4.13 shows two graphs of actual 

and forecast load for one week ahead prediction for the summer load  which emerged from 

the NARX Weather Sensitive Model.  

4.4.1.1 Results with respect to the ANN prediction solution developed based on the NARX 
Model, climate and time used as exogenous variables, as contained in Table 4.8  
 

Table 4.8 Results developed using the weather and time stamp for summer 

The Levenberg-Marquardt Training 
Algorithm 

n d 3 5 10 20 40 

     5         MSE 0.0033876 0.0035343     0.0030013 0.0027362 0.0044843 

                  R 0.89001 0.95293 0.96464 0.96199 0.96961 

    10         MSE 0.0030221 0.0023122     0.0045779 0.0035201 0.0057965 

                 R        0.96433 0.97549 0.96314 0.9699 0.95937 

    20     MSE 0.0025454 0.0028651     0.0015637 0.0087932 0.0054254 

                 R 0.96048 0.96501 0.95695 0.94156 0.9426 
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Figure 4.13: Forecast using Levenberg-Marquardt for total load summer 

 

4.4.2 Forecasting the total/combined load for winter 

The load measurements of the total/combined load for winter at Transnet Port Terminal in 

East London were taken from the 15th June – 28th June 2018. The data set were therefore 

described as training data (21st June – 27th June) and target data (14th – 20th June) respectively. 

4.4.2.1 Results with respect to the ANN prediction solution developed based on the NARX 
Model, with climate and time used as exogenous variables, contained in Table 4.9 
 

 
Table 4.9 Results developed using the weather and time stamp for winter 

The Levenberg-Marquardt Training Algorithm 
n d 3 5 10 20 40 

     5         MSE 0.0015996 0.0016605       0.0030271 0.0014461 0.00117 

                  R 0.96995 0.98127 0.97561 0.98712 0.97279 

    10         MSE 0.0020415 0.0017202      0.0035917 0.00267 0.0027768 

                 R        0.97895 0.96489 0.95655 0.98194 0.96998 

    20     MSE 0.0017988 0.0032385       0.0057617 0.0053734 0.0035842 

                 R 0.97301 0.97536 0.95881 0.96937 0.98014 
 

Lowest MSE is 0.00117 and R value is 0.97279. Figure 4.14 shows two graphs of actual and 

forecast load for one week ahead prediction for the  winter load which emerged from the 

NARX Weather Sensitive Model. 
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Figure 4.14: Forecast using Levenberg-Marquardt for total load winter 
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TABLE 4.10 
Comparative MSE results 

 
Day 

MSE 
trimf trapmf gbellmf gaussmf gauss2f dsigmf 

Sunday 0.0497 6.2645 0.2100 0.1659 0.5906 0.4770 
Monday 0.1659 8.6914 0.5681 0.4141 1.2314 0.9497 
Tuesday 0.0128 7.0265 0.1838 0.1156 1.7218 1.1067 
Wednesday 0.0062 5.4196 0.1913 0.0832 1.2537 1.0305 
Thursday 0.0367 5.0711 0.3811 0.2530 1.865 1.2688 
Friday 0.0126 9.2435 0.1713 0.1203 1.6614 0.6449 
Saturday 0.1417 5.4911 0.2874 0.1132 1.9730 0.9228 
Average 0.4256 47.2077 1.993 1.2653 10.2969 6.3998 

 

From Table 4.10 it can be seen that triangular-shaped membership function (trimf) has the 

smallest average error value 0.4256, while trapezoidal-shaped membership function 

(trapmf) has the largest average error value 47.2077. From this data it can be stated that 

trimf is the best type of membership function for electrical load forecasting in this research. 

Triangular-shaped membership function (trimf) was considered for input and constant 

membership function was considered for output parameters. Hybrid algorithm was used 

to define the optimum number of parameters to describe the FIS. 

Training data for the 18th of March 2018  consisted of 75% of the data, while 25% of the data 

were assigned for testing in ANFIS. MSE was found as 0.0497 for both training and testing 

with 3 epochs (see Figure 4.15 below). 
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Figure 4.15: Plot for FIS output with 3 epochs on Sunday 
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Figure 4.16: The regression plot using ANFIS on Sunday 

The values indicating correlation coefficient R is 0.96942 away from 1, as shown in the 

figure above. This shows that there is almost an exact relationship between the output 

obtained from the network and the targets, and a good fit of the data points being used. 

Figure 4.17 below explains the relationship between the actual load and the predicted load 

graphically using the NARX and ANFIS models. 
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Figure 4.17: Forecast using LM and ANFIS for the 18th March 2018  

 

TABLE 4.11 Error comparison for Sunday 

Day Department Model MSE R 

 
18th March 

2018 

 
Lifts 

NARX 0.0014156 0.9452 

ANFIS 0.0497 0.96942 

 

• The results demonstrate the optimal structure of both the NARX and ANFIS 

methods achieved with minimum forecasting error. The parameters of models were 

finalised after several trials and error efforts to give the optimum performance. 

 

• The NARX Model has less MSE than the ANFIS Model. This represents a high degree 

of accuracy in the ability of neural networks to forecast electric load. 

 

• It was observed during the case study that NARX is fast in comparison to ANFIS. 

NARX does not require the optimisation of numbers of neurons and layers in the 

network. 
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4.5.2 Results for Administration Building 

TABLE 4.12 
 MSE results for Admin. Building on Monday 

 
Day 

MSE  
trimf trapmf gbellmf gaussmf gauss2mf dsigmf 

Thursday 0.0124 0.5467 0.0210 0.0128 0.5245 0.4906 
Friday 0.0028 0.5434 0.0234 0.0095 0.5258 0.4932 
Saturday 5.3891 7.4264 5.7233 5.5695 6.3406 6.3176 
Sunday 0.0215 4.4153 0.0560 0.0328 0.5107 0.4503 
Monday 0.0032 3.1391 0.0820 0.0555 0.4909 0.4501 
Tuesday 0.0624 4.1878 0.1365 0.1237 0.5010 0.4575 
Wednesday 0.0012 5.8328 0.0824 0.0331 0.4745 0.4431 
Average 5.4926 26.0915 6.3352 5.8369 9.368 9.1324 

 

 
Figure 4.18: Forecast using LM and ANFIS for the 11th June 2018 

 

TABLE 4.13 Error comparison for Monday 

Day Department Model MSE R 

 
11th June 2018 

 
Administration 

Building 

NARX 0.0021875 0.94365 

ANFIS 0.0032 0.7558 
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4.5.3 Results for Electrical W/s 

TABLE 4.14 
 MSE results for Electrical W/s on Tuesday 

 
Day 

MSE  
trimf trapmf gbellmf gaussmf gauss2f dsigmf 

Thursday 0.0301 9.5773 0.1118 0.0738 2.0116 0.8542 
Friday 0.1016 7.2058 0.3350 0.3189 1.9054 1.1056 
Saturday 0.0084 3.6197 0.2764 0.1513 0.7878 0.5906 
Sunday 0.0364 3.6197 0.1730 01118 0.9205 0.6467 
Monday 0.0177 12.6078 0.1947 0.1233 1.4841 0.6265 
Tuesday 0.0578 10.2775 0.2175 0.1421 2.5344 1.3970 
Wednesday 6.3622 22.1385 8.0377 6.8707 5.4523 5.9457 
Average 6.6142 69.0401 9.3461 7.7919 15.0961 11.166 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Forecast using LM and ANFIS for the 26th June 2018 

 

TABLE 4.15 Error comparison for Tuesday 

Day Department Model MSE R 

 
26th June 2018 

 
Electrical W/S 

NARX 0.0034581 0.88623 

ANFIS 0.0578 0.99166 
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4.5.4 Results for Millwright W/s 

TABLE 4.16 
MSE results for Millwright W/s on Wednesday 

 
Day 

MSE  
trimf trapmf gbellmf gaussmf gauss2f dsigmf 

Friday 0.0997 20.3642 0.5633 0.5444 3.5478 1.1688 
Saturday 0.1243 25.7268 0.9278 0.8422 3.8433 1.7368 
Sunday 1.1967 16.6266 1.3903 0.8316 4.4426 2.8761 
Monday 0.0600 11.822 0.6777 0.3888 5.6346 1.6624 
Tuesday 0.4536 12.5244 0.7897 0.7238 10.1033 0.5188 
Wednesday 0.1549 23.8314 0.4386 0.4619 5.9330 0.7061 
Thursday 0.1321 22.5955 0.4480 0.3775 5.6563 0.4944 
Average 1.2213 133.40 5.2354 4.1702 39.1609 8.164 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Forecast using LM and ANFIS for the 29th August 2018 

 

TABLE 4.17 Error comparison for Wednesday 

Day Department Model MSE R 

 
29th August 2018 

 
Millwright W/S 

NARX 0.0016728 0.95559 

ANFIS 0.1549 0.99219 
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4.5.5 Car Terminal Department 

TABLE 4.18 
 MSE results for Car Terminal on Thursday 

 
Day 

MSE  
trimf trapmf gbellmf gaussmf gauss2f dsigmf 

Sunday 0.0036 0.5237 0.0404 0.0128 0.5106 0.4861 
Monday 0.0030 0.5264 0.0250 0.0123 0.5110 0.4780 
Tuesday 0.0038 2.9718 0.0359 0.0130 0.5117 0.4813 
Wednesday 0.0084 5.0941 0.0418 0.0157 0.5295 0.5151 
Thursday 0.0270 9.8084 0.2073 0.1087 0.6356 0.5243 
Friday 0.0757 13.0594 0.4151 0.2894 0.5040 0.4988 
Saturday 0.0597 17.8124 0.1500 0.0748 2.5206 1.0365 
Average 0.1812 49.7962 0.9155 0.5267 5.723 4.0201 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Forecast using LM and ANFIS for the 12th April 2018 

 

TABLE 4.19 Error comparison for Thursday 

Day Department Model MSE R 

 
12th April 2018 

 
Car Terminal 

NARX 0.0014852 0.97295 

ANFIS 0.0270 0.5611 
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4.5.6 Fuel Depot 

TABLE 4.20 
 MSE results for Fuel Depot on Friday 

 
Day 

MSE 
trimf trapmf gbellmf gaussmf gauss2f dsigmf 

Tuesday 0.0084 5.4189 0.1490 0.0872 0.5498 0.4493 
Wednesday 0.0476 11.6758 0.2254 0.1065 0.7912 0.5814 
Thursday 0.0060 5.2369 0.1470 0.0868 0.7327 0.4399 
Friday 0.0112 10.6812 0.1405 0.0842 1.8092 0.6264 
Saturday 0.0195 11.1724 0.1665 0.1046 1.7628 0.6307 
Sunday 0.0292 6.3783 0.2243 0.1577 1.5430 0.7357 
Monday 0.0620 12.06 0.0918 0.0555 0.9283 0.5062 
Average 0.1839 62.6235 1.1445 0.6825 8.117 3.9696 

 

 

 

 
 

 
 

 

 

 

 

Figure 4.22: Forecast using LM and ANFIS for the 25th May 2018 

 

TABLE 4.21 Error comparison for Friday 

Day Department Model MSE R 

 
25th May 2018 

 
Fuel Depot 

NARX 0.0023822 0.98173 

ANFIS 0.0112 0.92506 
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4.5.7 Saddle Carrier W/s 

TABLE 4.22 
MSE results for Saddle Carrier W/s on Saturday 

 
Day 

MSE  
trimf trapmf gbellmf gaussmf gauss2f dsigmf 

Sunday 0.3686 31.9659 1.2178 0.7221 8.4387 0.7963 
Monday 0.2378 36.7322 0.8043 0.4908 9.1556 0.5208 
Tuesday 0.4258 40.0709 0.4349 0.4394 8.9270 0.6853 
Wednesday 0.5331 40.8288 0.5634 0.5190 9.0431 0.5719 
Thursday 0.1390 44.5995 0.8690 0.6198 10.9788 0.9268 
Friday 0.1958 47.9835 0.6220 0.4433 8.3274 0.9355 
Saturday 0.1982 50.8006 1.0571 0.4986 13.103 0.5260 
Average 2.0989 292.984 5.5685 3.733 67.9736 4.9626 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Forecast using LM and ANFIS for the 15th September 2018 

 

TABLE 4.23 Error comparison for Saturday 

Day Department Model MSE R 

 
15th September 

2018 

 
Saddle Carrier 

W/S 

NARX 0.0010939 0.97299 

ANFIS 0.01982 0.93792 
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4.5.8 Total summer 

TABLE 4.24 
 MSE results for total summer on Sunday 

 
Day 

MSE  
trimf trapmf gbellmf gaussmf gaussmf dsigmf 

Sunday 0.1513 5.3526 0.2328 0.2223 1.1535 0.6593 
Monday 0.1481 7.8020 0.4667 0.3973 1.6135 1.2287 
Tuesday 0.2143 6.1399 0.7503 0.7028 2.9032 1.5845 
Wednesday 0.3380 4.7682 0.6492 0.6333 3.0615 1.1506 
Thursday 0.0741 4.9879 0.3333 0.2270 1.8861 1.2320 
Friday 0.0945 7.9879 0.1878 0.1831 2.8461 1.0221 
Saturday 0.5445 5.1934 1.4267 1.0986 4.0089 1.7476 
Average 1.5648 42.2272 4.0468 3.4644 17.4728 8.6248 

 

 

Figure 4.24: Forecast using LM and ANFIS for the summer 

 

TABLE 4.25 Error comparison for a summer day Sunday 

Day Department Model MSE R 

 
18th March 

2018 

 
Total Summer 

NARX 0.0023122 0.97549 

ANFIS 0.1513 0.96942 
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4.5.9 Total winter period 

TABLE 4.26 
 MSE results for total winter on Monday 

Day 
MSE 

trimf trapmf gbellmf gaussmf gauss2mf dsigmf 
Thursday 0.0565 8.5605 0.1816 0.1535 3.3271 2.0783 
Friday 0.3296 6.8328 0.6616 0.6146 2.3233 1.1923 
Saturday 0.1108 5.8813 0.2702 0.2431 1.7655 0.7511 
Sunday 0.1927 6.3367 0.4390 0.1790 4.5845 1.6194 
Monday 0.0652 10.7233 0.2034 0.1120 2.0138 1.1659 
Tuesday 0.5924 9.2321 0.5588 0.5423 2.5605 1.3665 
Wednesday 5.5419 18.2162 6.0887 5.3253 4.2035 4.5964 
Average 6.8887 65.7829 8.4033 7.1698 20.7782 12.769 

Figure 4.25: Forecast using LM and ANFIS for winter 

TABLE 4.27 Error comparison for a winter day Monday 

Day Department Model MSE R 

25th June 2018 Total Winter 
NARX 0.00117 0.97279 

ANFIS 0.0652 0.95774 
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TABLE 4.28 NARX and ANFIS prediction models using different types of departments in the port 

Day Department Model MSE R 
 

18th March 2018 
 

Lifts 
NARX 0.0014156 0.9452 

ANFIS 0.0497 0.96942 
 

11th June 2018 
 

Administration 
Building 

NARX 0.0021875 0.94365 

ANFIS 0.0032 0.7558 

 
26th June 2018 

 
Electrical W/s 

NARX 0.0034581 0.88623 

ANFIS 0.0578 0.99166 
 

29th August 
2018 

 
Millwright W/s 

NARX 0.0016728 0.95559 

ANFIS 0.1549 0.99219 

 
12th April 2018 

 
Car Terminal 

NARX 0.0014852 0.97295 

ANFIS 0.0270 0.5611 
 

25th May 2018 
 

Fuel Depot 
NARX 0.0023822 0.98173 

ANFIS 0.0112 0.92506 
 

15th September 
2018 

 
Saddle Carrier 

W/s 

NARX 0.0010939 0.97299 

ANFIS 0.01982 0.93792 

 
18th March 2018 

 
Total summer 

NARX 0.0023122 0.97549 

ANFIS 0.1513 0.96942 
 

25th June 2018 
 

Total winter 
NARX 0.00117 0.97279 

ANFIS 0.0652 0.95774 
 

 

 

4.6 Significance of the results and discussions 

The forecasts achieved can also be used as reference for the formulation of internal 

management policies of the Transnet Port Terminal loads, such as the generation of 

electricity and the application of demand-side management initiatives. The fluctuating load 

curves, seasonal variations, weather drifts, and operational standards of the Transnet Port 

Terminal have resulted in stochastic energy demands. The forecasting results have assisted 

to develop a port terminal load demand pattern to be modelled as a stochastically time-
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dependent process with various data samples d, such as d = 3, d = 5, and d = 10. Every time-

varying event in the harbour is stochastic, such as load demand and utility perturbation 

revenues. These prediction models’ results will estimate present and future utilities 

revenue outcomes from the random load demand patterns of the Transnet Port Terminal. 

The findings also have helped to establish an accurate prediction solution that uses 

comprehensive data on consumption of energy obtained from the following departmental 

list of equipment in the harbour: air conditioners, lifts and conveyer belts, pumps, grinding 

and cutting machines, drill press, welding machines and office machines,  making it 

possible for the port terminal to develop a tailored, productive consumption plan that better 

fits their needs, achieving substantial savings in electricity costs. This will guarantee the 

provision of stable electricity throughout the port on a yearly basis, and a smooth running 

of export and import operations of cargo at the terminal. 

The development of  hourly and weekly consumption forecasting solutions will also help 

to enhance energy management, which benefits both the port terminal (in order to choose 

the right billing plan that corresponds to their actual consumption trends and to formulate 

an appropriate business strategy), and the electricity suppliers (in order to implement the 

best possible market strategies suited to the needs of the customer). The optimal operation 

can be planned by applying these techniques, depending on the versatility of the consumer. 

As a further step, the port can submit the day-ahead consumption schedule to the supplier 

(his forecast) and obtain the optimal schedule (considering a certain objective function) 

based on its versatility that would improve energy efficiency.  

A precise forecast for grid operations such as ESKOM, with its continuous economic growth 

and the company facing power deficiencies would assist  it to deal more effectively with 

the problem of load shedding. The accuracy of the forecast would help ESKOM to save 

money by not committing costly, independently operated coal generation units. This can 
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ease the government's burden by regulating the subsidised amount on the current energy 

tariff.   

4.7 Conclusion 

Applying Artificial Neural Networks to a problem of short-term load prediction is clearly 

seen in this chapter, as well as being able to discover and classify a faster algorithm such as 

Levenberg-Marquardt. The results of the simulation obtained from the NARX-LM and 

ANFIS models are self-explanatory.  

All in all, for both NARX and ANFIS cases, the error analysis comparison results (MSE) 

show that the built hour-by-hour models are accurate, effective and also have high accuracy 

levels, as these models adapted very well unconditionally to the test data provided. 

Table 4.28 shown above presents the best performance for both NARX and ANFIS models 

in terms of Mean Squared Error (MSE), which recorded the smallest errors between the 

actual and forecasting data in their respective departments, namely the Saddle Carrier W/s 

and the Administration Building, which read 0.0010939 for NARX and 0.0032 for ANFIS on 

the 15th September 2018 and 11th June 2018 respectively.  

In contrast to the ANFIS Model, the results obtained using the NARX Model indicate a clear 

relationship between exogenous variables and electricity consumption, making the 

proposed forecasting approach a feasible alternative to other models.  
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CHAPTER 5 

CONCLUSION AND FUTURE STUDIES 

5.1  Application of the model 

During the time of training with customer load data, such models can be slightly changed 

so that the total load of an energy utility business can be accurately predicted. As is the case 

with South Africa, the first step in making certain that there is steady consistent availability 

of electricity in this region is to get a  good forecasting structure that can provide accurate, 

effective predictions that are reliable in an environment with predominant power 

shortages.  

This will allow the economic operation of complex power system networks by power 

system planners and operators by taking good strategic decisions to perform key 

engineering duties such as power distribution planning, effective sharing and risk 

evaluation of electrical systems. A company is well aware that a basic thermoelectric 

synchronisation decision or an energy import / export schedule could cost  millions of 

dollars if miscalculated. Most of these policy choices rely upon good forecasts, so 

undoubtedly, accurate forecasting techniques are critical.   

As for power consumers, in particular LPUs, it is of the utmost importance to control their 

load in order to improve customer demand management strategies implemented by utility 

organisations in the South African region. This means that the estimation of load 

specifically helps to accelerate the process of power demand management. This practice 

also eliminates the risk of penalties that are charged for going above the maximum reported 

demand payable by customers. In particular, the forecasts obtained for the Port Terminal 

can basically be used to guide the parastatal on issues pertaining the development of 

internal load management schemes, such as urgent electrical distribution and the creation 

of a plan for the demand-side management policies.  
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These models that have been  built could be applied in soft computing and further research 

into ANN, forecasting and control as part of the postgraduate course materials.  

 

5.2 Conclusion 

In order to predict the departmental loads and the total load of the Transnet Port Terminal 

in East London on an hourly to daily basis, various forecasting models (NARX and ANFIS) 

have been created. 

A nonlinear autoregressive neural network with exogenous input (NARX) implementation 

has been presented. The method shows that by using all available endogenous and 

exogenous inputs, an ANN can be trained in an open loop. As the endogenous variable, 

electric load was used, and time and weather were used as exogenous inputs. The network 

is a recursive ANN, connecting the output, hidden and input layers. A Levenberg–

Marquardt backpropagation algorithm was used to train the network. 

The load input is disconnected, and the forecast (predicted) value of the output is fed back 

to the input after the neural weights have been calculated. It isolates the network and 

decreases the necessity for retraining to generate each instance of performance (predicted 

load) and increases the accuracy of the traditional ANN network to a forecast MSE of 

0.0010939 for NARX, as compared to 0.0032 for ANFIS. The accuracy in the forecast is 

particularly important because the reduced forecasting error could save the port millions 

of dollars a year, from energy cost savings. 
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5.3 Suggestion for further studies 

In particular, the focus of the project was limited to off-line training. However, certain 

problems need to be dealt with during the model creation process for real-time applications. 

The fact that the historical load curve and the weather data have bad data (outliers) can 

adversely influence the accuracy of the prediction.  

 

A manually based approach was used to detect and replace bad data. However, this 

method is inadequate for applying the input variable curve in real time, and must therefore 

be automated with a mechanism to detect and replace irregular data. Building a genetic 

model for a detailed model structure performance analysis would be a smart idea, as well 

as comparing the following errors and network performance indices for further evaluation 

or for benchmarking purposes.  
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APPENDIX A 
 

 

Figure A3.1: Transnet Port Terminal's single line diagram-11kV network reticulation  

© Central University of Technology, Free State



96 
 

 

 

Figure A3.4: Car Terminal 
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Figure A3.5: Transnet Port Terminal in East London 
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APPENDIX B 
Screen shots of neural network design process using the NN TIME SERIES 
TOOL. 
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CREATING A NEW NARX NETWORK 
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IMPORTING DATA INTO THE NETWORK 
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 NETWORK ARCHITECTURE VIEW 
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TRAINING THE NETWORK USING LEVENBERG-MARQUARDT 
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TRAINING SESSION 
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REGRESSION ANALYSIS 
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