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ABSTRACT 

According to the Inter-Governmental Panel on Climate Change (IPCC), the 

Southern African region is regarded as one of the most vulnerable regions in Africa. 

The Zambezi River Basin (ZRB), the largest basin in Southern Africa is 

characterised by spatial and temporal rainfall variability, and in some cases, scarce 

water resources. Climate change is likely to affect nearly every aspect of human 

well-being; from agricultural productivity and energy use to flood control, municipal 

and industrial water supply to wildlife management.  There are few studies focussed 

on hydrology and climate change at a local catchment scale in the ZRB, therefore, 

this research sought to investigate the severity of the impacts of climate change on 

hydrology and water resources for the purposes of evaluation for sustainable 

planning and management of the resources. The review of water resources linkage 

to climate variability showed occurrences of floods,droughts,uneven distribution of 

water resources,rising temperatures and high evapotranspiration rates. The 

technology of using Climate Forecasting System Reanalysis (CFSR) data to 

estimate water resources in data scarce regions such as Southern Africa showed 

results that were satisfactory. Providing Regional Climate Impact Studies (PRECIS) 

model results proved to be reliable with a sufficient model skill that predicted an 

increase in rainfall and temperature while predicting a decrease in other areas within 

the same basin. The results from six downscaled bias-corrected Global Climate 

Models (GCM) were focussed on 2020-2050.The results under RCP4.5 climate 

scenario, predicted a seasonal increase in rainfall,runoff and water yield in 

December, January and February (DJF) while the changes in the rest of the seasons 

were generally insignificant. The annual rainfall was predicted to decrease by 0.7% 

while water yield and runoff would increase by 5% and 6%, respectively. The results 

© Central University of Technology, Free State



iv 

 

under RCP8.5 climate scenario predicted seasonal increases of runoff at 211% and 

rainfall at 35% indicating a strong likelyhood of occurrence of an extreme flood 

event. Annual statistics show a significant increase of 65%, 40% and 19% in runoff, 

water yield and rainfall, respectively. The basin under RCP4.5 climate scenario is 

predicted with insignificant changes with baseline in monthly, seasonal and annual 

flow regime. The majority of GCMs under RCP8.5 climate scenario indicate 4-8% 

increase in streamflow while the intra-annual and inter-annual streamflow variability 

will increase by a considerable margin. There is also a significant increase in 

seasonal streamflow that ranges between 34 - 134%. The future climate change 

impact studies need to focus on RCP4.5 and RCP8.5 for 2050-2100 in order  to 

assess and evaluate any possible future impact on hydrology and water resources.  
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Chapter 1 

1 

   

 : INTRODUCTION 

1.1 Background 

The impact of climate change on hydrology and water resources is a topical issue 

in the scientific world that has attracted a substantial body of research (Zhang & 

Wurbs, 2018; Kusangaya et al. 2014; Kaluarachchi & Smakhtin 2008; Inter-

Governmental Panel on Climate Change (IPCC), 2007). Climate change affects 

temperature and precipitation, subsequently altering the water resources and 

hydrology cycle (Djebou & Singh, 2017; Trenberth, 2011). There is a huge 

complexity of the impact of climate change on the livelihood of the global population. 

There is also a strong likelihood that the occurrence of extreme events such as 

floods and droughts will increase under the climate change phenomena (IPCC, 

2013).  The changing climate in the African continent has made the continent 

particularly vulnerable because of its low adaptive capacity and vulnerability (Niang 

et al. 2014; Naidoo, 2013; Callaway, 2004). 

 

According to the IPCC (2007), the Southern African region is regarded as one of the 

most vulnerable regions in Africa. The region is characterised by spatial and 

temporal rainfall variability and in some cases, also scarce water resources. The 

Zambezi River Basin (ZRB) in Southern Africa is one such example with the most 

variable climates of any major river basin in the world, which includes an extreme 

range of conditions across the basin and through time (Hamududu & Killingtveit, 

2016; Beilfuss, 2012). The Mean Annual Precipitation (MAP) ranges from 100mm in 

the west to 1500mm in the northern and eastern parts (Water Research Commission 
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(WRC), 2011).  Climate change is likely to affect nearly every aspect of human well-

being, from agricultural productivity and energy use to flood control, municipal and 

industrial water supply to wildlife management (River et al. 2016; Niekerk Van et al. 

2010). 

 

Southern Africa has continued to experience variable climates, which has now been 

exacerbated by climate change effects (Naidoo, 2013). Temperatures in Africa are 

projected to increase at a rate of 1.5 to 2 times the global average (Council for 

Scientific and Industrial Research (CSIR), 2017). The setting in of climate change 

impacts has worsened the situation in the ZRB as availability of water resources in 

time and space has been drastically affected due to the high frequency of extreme 

events such as floods and droughts. 

 

Further more the changing climate has also altered the hydrology of the region to 

the extent where all water dependent sectors such as energy, agriculture, mining, 

municipal water supply, tourism and environment are experiencing shortages, which 

affect the productivity and overall performance of the economy. The major river 

basins in the region have already formed the governmental transboundary river 

basin organisations through the Southern Africa Development Community (SADC) 

in order to enhance cooperation and benefit-sharing. The existence of these 

structures provides the region with an opportunity to address the challenges of 

climate change effectively and in an integrated manner. 

 

Some of the worst-hit sectors include energy and agriculture. Energy sectors where 

most of the hydropower dams were operating with low levels of water, led to the low 
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production of electricity and eventually power rationing programmes such as load 

shedding had to be implemented. This has been the case for Kariba dam in the ZRB, 

which has shared benefits between Zambia and Zimbabwe. Agriculture is also 

adversely affected leading to food insecurity as both irrigated and rain-fed 

agriculture was not undertaken at expected capacities and thus reduced production. 

The situation culminates into food shortages in the region. The wildlife in the 

Okavango River Basin was equally affected as many sources of water had dried up, 

forcing the wildlife to walk long distances in search of water and in the process died. 

 

The temporal and spatial variability of water resources in the region is a source of 

concern to many countries whose rural population entirely depend on water 

resources for their livelihood. The economies in the region have also been affected 

negatively due to climate change effects (i.e. droughts, floods and heatwaves).  

 

Many institutions have already begun research studies, although there has not yet 

been a conclusion and detailed analysis on climate change impact studies for the 

region (World Bank, 2010; Southern African Research and Documentation Centre 

(SARDC), 2007). There is, therefore, a need for more research in the field of climate 

change and water resources in the region and on local level (basin-scale) to 

understand the detailed climatic variables and hydrological interactions (Schulze, 

2000). Therefore, this study was undertaken as a response to the prevailing situation 

in the ZRB with a focus on Kabompo River Basin (KRB). It is envisaged that the 

knowledge generated from such studies, would greatly contribute to the body of 

knowledge and help to address the situation through adaptation and mitigation 

strategies.. 
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1.2 Problem Statement 

The land surface temperatures across the ZRB and the rest of Southern Africa have 

increased by 0.5°C during the last 50-100 years, while the global sea level has risen 

by 19cm between 1901 and 2010 (IPCC, 2014). The IPCC (2007) has categorised 

the Zambezi as the river basin exhibiting the “worst” potential effects of climate 

change among 11 major African basins, due to the resonating effect of an increase 

in temperature and a decrease in rainfall.  According to Zambezi Watercourse 

Commission (ZAMCOM)  et al. (2015), an increased incidence of malaria in parts of 

the basin and a shift in farming practices, for example, can be attributed to changes 

in temperature, rainfall and a rise in sea level. 

 

The ZRB is home to about 40 million people that depend on water resources for 

agriculture, mining, industrial and domestic water supply, thus hydro-electricity 

generation and tourism makes a significant contribution to the economies of the 

riparian states. Lately, this basin has been experiencing periodic effects of climate 

change (e.g., floods and droughts). 

 

These effects are often devastating and worsen the poverty levels of the people, 

especially in rural communities where alternatives for livelihood are few. In the ZRB, 

the demands on water, energy and food have become more pronounced during the 

past few years. With the impressive socio-economic development in riparian states, 

the pressure on water, energy and food security resources has increased. 

Challenges such as climate change consequences put additional pressure on the 

river and its resources. There is a paucity of data and limited knowledge on climate 

change impacts in the ZRB, which makes it difficult for governments and stakeholder 
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participation to adapt and mitigate these negative impacts. The following research 

gaps were identified: 

 The recent studies in ZRB, emphasise that more research is needed for

assessing the impact of climate change (Hamududu & Killingtveit, 2016;

Niang et al. 2014; World Bank, 2010a).

 There is research and knowledge gaps on climate change impacts in

hydrology and water resources for the ZRB (Kusangaya et al. 2014; Niang et

al. 2014).

 Climate change impact studies have mostly been undertaken in developed

countries while few studies have been conducted in developing countries,

particularly Africa (Amede et al, 2014; Manase, 2010).

 No focused studies on the severity of climate change impacts in the ZRB

have yet been concluded (SARDC, 2007).

 Most assessments of climate change impacts have been primarily

undertaken at macro and regional scales, masking the complex hydrological

interactions at the local catchment scale (Schulze, 2000).

In view of the research gaps highlighted above, a case study focussed on KRB was 

designed to investigate the impacts of climate change on hydrology and water 

resources in the ZRB. The research would generate new knowledge for adaptation 

and mitigation and provide baseline information to governments and stakeholders 

for policy review. 
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1.3 Aim and Objectives 

Climate change impacts on hydrology and water resources were explored in this 

study to assess the complex hydrological interactions at a local scale in detail and  

generate new knowledge. The hydrological responses of the KRB to climate change 

was analysed, while trends in annual and seasonal temperature, precipitation and 

streamflow was identified. The severity of impacts of climate change at KRB scale 

was analysed and the results would be shared and transfered to other sub-basins 

within the ZRB. In order to investigate the impact of climate change on hydrology 

and water resources for adaptation and mitigation strategies, the following 

objectives were considered: 

 Assessment of the hydrology and water resources in the KRB using 

alternative  technology to conventional methods of using ground observed 

data which is scarce in the region. 

 Conducting experiments for Regional Climate Modelling, using Providing 

Regional Climate Impact Studies (PRECIS) model to generate high-

resolution climate scenarios for climate change impact studies on a local 

scale.  

 Investigating hydrological responses to climate change using six downscaled 

bias-corrected Global Climate Models (GCMs) which involved the analysis of 

the catchment’s water balance. 

 Evaluating streamflow regime based on the six downscaled bias-corrected 

GCMs through hydrological modelling in the KRB. 
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1.4 Scope of Study 

The study analysed a wide range of interrelated impacts of climate change on 

hydrology and water resources at a local catchment scale.This was in response to 

the research gaps identified in section 1.2. The study reviewed the assessments 

done on water resources with its linkage to climate variability in the basin; applied 

alternative technology for estimation of water resources in a data scarce region; 

Conducted four experiments for generation of a high resolution climate scenario 

through Regional Climate Modelling and analysed six statistically downscaled bias-

corrected, GCMs for impact studies on  streamflow regime and other water balance 

components in KRB. 

 

Some of the limitations of the study included scarcity of the observed data within the 

KRB to use for model parameterisation,calibration and validation, the uncertainity in 

regional climate modelling and the statistically downscaled bias-corrected GCM 

results in impact assessments made it difficult to strongly conclude.  

 

It is envisaged that the research results, will enhance capacity building, information 

sharing, decision-making, policy direction and provide baseline information for future 

research.  

1.5 Structure of the Thesis 

The structure of the thesis consists of Chapter one being a general introduction to 

the study while Chapter two is about the review of relevant literature used in the 

thesis. Chapters three provided the general methodology used in the research and 
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chapters four to eight include, specific introductions to the chapters, detailed 

materials and methods used in the chapters, results and discussions, as well as 

conclusions and Chapter nine is about a general conclusion of the research, as 

discussed in all the chapters. Several references are made to different appendices, 

which are included at the end of the document.  

 

Chapter one is a general introduction that highlighted details on the background and 

analysed the problems in the ZRB and Southern Africa at large. Furthermore, the 

research gaps present in the area of study have also been highlighted while 

indicating the significance of the research. This chapter also elaborates on the 

overall and specific objectives of the thesis itself. 

 

Chapter two provides a review of the relevant literature concerning factors that 

impacts climate change on hydrology and water resources. It includes; a review on 

flood frequency analysis, flow duration curves, hydrological modelling,hydrological 

models,gridded climate data, including Regional Climate Modelling in Southern 

Africa, downscaling techniques, bias correction and water resources management. 

 

Chapter three encompasses the general research methodology used in the study 

and provides an overview of the materials and methods used for the entire research. 

Each chapter contains a detailed description of the materials and methods used.The 

chapter has also shown the study area in the Southern Africa. 

 

Chapter four provides an overview of the status of water resources of the ZRB, with 

climate, hydrology, geological and geomorphology of the basin. It shows the 
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linkages of climate and water resources, land use and land cover, as well as the 

socio-economic aspects. 

 

Chapter five involves the use of gridded climate data for hydrological modelling in 

data-scarce regions such as the KRB. The chapter demonstrates the practical 

solution and introduces an alternative to conventional methods of assessment of 

water resources using ground observed data. The chapter also displays the spatial 

distribution of water resources through the created maps in GIS. 

 

Chapter six provides a discussion about the procedures for the four experiments 

undertaken with regional climate modelling through the PRECIS model for Southern 

Africa and further evaluation of the generated data for climate change impact 

studies. Regional climate modelling focussed on the application of the PRECIS 

Model, downscaling techniques and analysis of climate variables such as 

precipitation and temperature for the region. 

 

Chapter seven deals with modelling climate change impact on catchment water 

balance components specifically rainfall, runoff and water yield and elaborates on 

particular details concerning the preparation of input model data, SWAT model 

application on the study area, analysis of hydrological variables and temporal and 

spatial variability of water resources. 

 

Chapter eight involves evaluation of climate change impact on streamflow regime 

for the historical and future periods. Hydrological modelling is performed by using a 
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SWAT calibrated model and streamflow is simulated based on the six bias-corrected 

and downscaled GCMs projections. 

 

Lastly, the thesis concludes with a ninth chapter that encompasses a conclusion, as 

well as recommendations.  It also includes a summary of all the major findings and 

the newly generated knowledge is highlighted. These findings and other related 

information, including major opinions and recommendations are available for public 

consumption. A proposition of future research areas has also been made 

 

 

 

 

.
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 : LITERATURE REVIEW 

2.1 Climate Change 

Climate change is an alteration in the mean climate and or climate variability that 

perseveres for a prolonged  period (Sivaramanan, 2015; Adedeji at al. 2014; Riedy, 

2011). Climate change and global warming, refers to the rise in average surface 

temperatures on earth due to natural and anthropogenic activities (Sivaramanan, 

2015; IPCC, 2014). An overwhelming scientific consensus maintains that climate 

change is due primarily to the human use of fossil fuels, which releases carbon 

dioxide and other greenhouse gases into the atmosphere. The gases trap heat 

within the atmosphere, which can have a range of effects on ecosystems, including 

rising sea levels, severe weather events and droughts that render landscapes more 

susceptible to wildfires (Davis-Reddy & Vincent, 2017; Handmer et al. 2012). 

In order to anticipate future climate change, it is necessary to project how 

greenhouse gases will change in the future. A range of emission scenarios have 

been developed in the IPCC Special Report on Emissions Scenarios (SRES) that 

reflect several different ways in which the world might develop and the 

consequences for population, economic growth, energy use and technology 

(Thorpe, 2005; Jones et al. 2004). 

The recent anthropogenic emissions of greenhouse gases into the atmosphere are 

the highest in history because of evidenced human influence on the climate system 

(IPCC, 2014). This has led to widespread impacts of climate change on human and 
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natural systems. The climate system has warmed up undeniably since the 1950s 

and there are unprecedented observed changes over decades, centuries to 

millennia. The sea levels have risen; snow and ice have continued to melt while the 

atmosphere and ocean have warmed up tremendously (Davis et al. 2017; IPCC, 

2014). The frequency of occurrence of extreme events such as droughts, floods and 

cyclone activity has increased and also been cited as evidence of a changing climate 

(Bell et al. 2018; Kusangaya et al. 2013).  

 

According to the African Climate Policy Centre (ACPC) (2011), climate variability is 

one of the causes of the prevailing poverty, food insecurity and the weak economic 

growth in Africa today. The African continent has been identified as particularly 

vulnerable to the changing climate due to its envisaged low adaptive capacity and 

vulnerability (Callaway, 2004). 

2.1.1 Climate Sensitivity 

Climate sensitivity is defined as the level of warming that corresponds to increases 

in carbon dioxide (CO2) from the atmosphere. It is widely known as the stable global 

average surface temperature alteration following a multiplying CO2  concentration in 

the atmosphere (Cain et al. 2019; Yu & Boer, 2014;  Randall et al. 2007). There is 

a linear relationship between radiactive forcing and climate response that permits 

some components of climate change to be assessed from radiactive forcing 

estimates alone, minus the use of GCM simulations (Yu & Boer, 2014). According 

to Yu & Boer (2014), Climate sensitivity and response can be explored through three 

components listed as follows: 

(i) The ratio amongst global mean forcing and global mean temperature response 

which is not dependant on the nature of the forcing and its geographical array. 

© Central University of Technology, Free State



Chapter 2 

13 

   

(ii) The absence of a relationship between Geographical array of forcing and 

geographical array of temperature response and  

(iii) The significant summation of response arrays whereby the addition of the 

temperature response arrays for a number of various forcings is almost the response 

array of the addition of the forcings. The energy budget of the system is used to 

analyse the climate sensitivity resulting from local contributions. 

2.1.2  Climate Change Modelling 

Climate models are defined as a mathematical representation of physical, biological 

and chemical fundamentals of the climate system (Gettelman & Rood, 2016; 

Goosse et al. 2010). These laws are complex; the equations derived from them must 

be solved numerically. Therefore, climate models are used to provide spatial and 

temporal solutions that are discretised. The results obtained from the models are 

averages over regions, whose coverage rely on specific times and the resolution of 

the model (Flato et al. 2013; Goosse et al. 2010). Climate change modelling is 

achieved through two major methods and these are Global climate modelling and 

Regional climate modelling. 

 

Estimating the effect of green house emissions on the global climate, requires  

GCMs to be employed. GCMs consist of a scale, which is typically a few hundred 

kilometres in resolution. In order to study the impact of climate change, however, it 

is necessary to predict changes on much finer scales (Gettelman & Rood, 2016; 

White, 2014). One such technique entails the use of Regional Climate Models 

(RCMs), which have the potential to improve the representation of the climate 

information; this is important for assessing a country’s vulnerability to climate 

change (Trzaska & Schnarr, 2014; Keller, 2007; Jones et al. 2004). 
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2.1.3 Methodologies for Climate Change Impact Assessments 

Several methods have been devised to assess the impact of climate change on 

global or regional scale.The most widely used method is the Change Factor 

Methodology (CFM) also known as delta change factor methodology (Vavrus et al. 

2015; Trzaska & Schnarr, 2014; Hamududu, 2012; Anandhi et al., 2011a). More 

complex methods also exist but they are not commonly used. Even though change 

factor methodologies are widely used, to determine the future climate 

scenarios,there are no procedures available in the literature that can be used to 

select the most appropriate methodology for various application (Anandhi et al. 

2011a). According to Hamududu, (2012) and Anandhi et al. (2011a), the CFMs 

commonly used include: Temporal scale,temporal resolution, mathematical 

formulation and or number of change factors which may be categorised as follows: 

 

(i) The temporal scale and domain are the first type of CFM upon which calculations 

are based. The temporal scale is about timescales such as daily,monthly,seasonal, 

bi-annual and annual values that are used in the analysis. Whilst temporal domain 

denotes the both time of the year i.e January,winter or annual and the start and end 

date of a climate period (also known as time slice) such as observed 

historical,simulated historical and simulated future time series are used in the 

analysis. For example a simulated historical or observed historical period 1975-2005 

can be compared with a simulated future time slice of 2020-2050. Overall, GCMs 

produce dependable results at reduced frequency temporal scales than at higher 

frequency temporal scales e.g the monthly, seasonal, and annual means of climate 

variable are better simulated than daily or hourly values (Anandhi et al., 2011a). 
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(ii) The arithmetic procedure is second type of CFM which is additive or 

multiplicative. The CFM in additive is calculated by finding the change of a GCM 

variable resulting from a recent climate simulation and a future climate scenario 

based on the identical GCM grid position. The calculated change (also sometimes 

called delta change) is then added to observed data to find the simulated future time 

series. The additive and multiplicative CFs involves estimation of means for baseline 

and future scenarios using equation (2.1) and (2.2) respectively. 

 

𝐺𝐶𝑀𝑏
̅̅ ̅̅ ̅̅ ̅̅ = ∑

𝐺𝐶𝑀𝑏𝑖

𝑁𝑏

𝑁𝑏

𝑖=1

 

     

     𝐺𝐶𝑀𝑓
̅̅ ̅̅ ̅̅ ̅̅ = ∑

𝐺𝐶𝑀𝑓𝑖

𝑁𝑓

𝑁𝑓

𝑖=1
 

 

where  

𝐺𝐶𝑀𝑓𝑖     𝑎𝑛𝑑 𝐺𝐶𝑀𝑏𝑖     Represent values from future and baseline scenarios for a  

   temporal domain 

 

𝐺𝐶𝑀𝑓
̅̅ ̅̅ ̅̅ ̅̅   𝑎𝑛𝑑    , 𝐺𝐶𝑀𝑏

̅̅ ̅̅ ̅̅ ̅̅ ̅     Mean values of the future and baseline climate 

 

To calculate the CF for additive and multiplicative the following equation (2.3) and 

(2.4) are used 

𝐶𝐹𝑎𝑑𝑑 = 𝐺𝐶𝑀𝑓
̅̅ ̅̅ ̅̅ ̅̅ − 𝐺𝐶𝑀𝑏

̅̅ ̅̅ ̅̅ ̅̅  

 

𝐶𝐹𝑚𝑢𝑙 =
𝐺𝐶𝑀𝑓

𝐺𝐶𝑀𝑏
 

2.1 

2.2 

2.3 

2.4 
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To calculate local scaled futures values (LSFmul,i  and LSFadd,i) by applying CFadd and 

CFmul the following equations (2.5) and (2.6); 

 

𝐋𝐒𝐅𝑎𝑑𝑑 𝑖 = 𝐋𝐎𝐛𝐢 + 𝐂𝐅𝑎𝑑𝑑 

     

𝐋𝐒𝐅𝑚𝑢𝑙 𝑖 = 𝐋𝐎𝐛𝐢 𝑥 𝐂𝐅𝑚𝑢𝑙 

 

Where 

 LObi  are observed values of the climate variable (at the ith time step) at an identical 

weather station, or are the averaged climate variables of a catchment for the 

selected temporal domain. 

 LSf add,i and LSf mul,i are time series of future climate scenarios of the variable 

obtained using additive and multiplicative CFM. 

 

The method is mostly used for climate variables such as temperature 

(Hundecha et al., 2016; Anandhi et al., 2011a; Akhtar et al. 2008 ; Hay et al. 2000). 

it also adopts that the GCM gives a realistic approximation of the complete 

difference in the value of a specific variable irrespective of the GCM’s current climate 

simulation accuracy. 

 

Change Factor (CF) with a multiplicative factor is comparable to CF with additive 

factor. However the major difference is that multiplicative factor uses ther ratio 

instead of calculating arithmetic change, between the future and current GCM 

simulations; the CF ratio is then used to multiply observed values (instead of additing 

2.5 

2.6 
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to). The method also makes an assumption that the GCM gives a realistic 

approximation of the relative difference in the value of a variable, and mostly applied 

for rainfall (Hundecha et al., 2016; Akhtar et al., 2008 ). Literature available does not 

show clear standards on when to use the additive CF or multiplicative CF for some 

meteorological variables such as wind speed and solar radiation. 

 

(iii) The classification of the third CFMs is based on number of change factors such 

as single and multiple CFs. All values of the variable in Single CFs are computed 

individually, irrespective of scale (Anandhi et al., 2011a; Akhtar et al. 2008). Whilst 

multiple CFs are computed independently for various scales of the variable 

(Hundecha et al., 2016) e.g, computation of independent CFs for percentile such as 

0-15,15-30 etc corresponding to a particular climate. Literature doesnot show clear 

procedures on suitable number of CF identity. 

 

(iv) Detailed assessment is the fouth guidelines that involve the menthods described 

above and use downscalled,bias corrected data. Downscalling is done from GCM 

to produce recent climate and future climate ensembles which are then used in 

hydrological modelling for hydrology and water resources studies. Investigating a 

variety of possible impacts of climate change on hydrology and water resources in 

detail requires step by step approach. The steps of evaluation of ensemble 

simulations are imperative for reasonable future climate scenarios for impact 

studies. This detailed approach with the use of ensembles reduces uncertainity and 

the results may be more acceptable. 
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2.1.4 Dynamical and Statistical Downscaling Techniques 

Dynamical downscaling is a comprehensive methodology that uses physical models 

of the climate system, which enables modelling of the dynamics of the physical 

systems that characterise the climate of a region (Mancosu, 2015). The two main 

modelling techniques employed are the Atmospheric General Circulation Model 

(AGCM) and RCM. Statistical downscaling, on the other hand, refers to a statistical 

approach based on formulated relationships between the large-scale and local-

scale climate scenarios calibrated with historical data (Jacobeit et al. 2014; Katz et 

al. 2002). These statistical relationships are then applied to the large-scale climate 

variables from an Atmospheric Oceanic General Circulation Model (AOGCM) 

projection to estimate the corresponding local and regional characteristics. 

Statistical downscaling is based on the assumption that the statistical relationship 

between large scale GCM outputs and fine-scale observational data for the current 

climate will remain constant in the future climate (Farzan et al. 2013; Katz et al. 

2002). 

 

Statistical/dynamical is a combined approach that uses statistical methods for a 

large-scale climate scenario and RCM high-resolution climate scenarios. The 

approach has been developed with two variants. The first variant uses a RCM driven 

by observed boundary conditions from certain well-defined large-scale weather 

situations. The AGCM simulation is the second variant that is then decomposed into 

a sequence of these weather situations and the high-resolution surface climate is 

inferred from the corresponding RCM simulations (Lopes, 2009; Fuentes & 

Heimann, 2000). 

2.1.5 Model Validation and Evaluation 
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Evaluation is the practice of recognising a model and its capabilities for a specific 

purpose. It is the process of establishing the value of a model and the objective is 

really to find out what value a model has (by evaluation). Whilst validation is the 

means of determining or examining reality of a model (Gettelman & Rood, 2016b). 

A climate model is evaluated by simulating the climate of a specific period in the 

system with a model and then making comparisons of that simulation against a set 

of observations. Model evaluation also entails comparison of various models. 

The guideline to model valuation is to collect,understand and analyse observations 

and their uncertainty, and then match the model as thoroughly as possible to the 

observations. Obtaining various statistics (mean, variability) right is important. 

Which statistics are important will depend on the application (Gettelman & Rood, 

2016b). 

 

Prediction of a future climate based on the model results can be either accurate or 

inaccurate. Climate change impact study results can be sensitive to the 

meteorological data used and therefore evaluation of RCM results is essential for 

interpretation of the results (Schoetter & Hoffmann, 2012). 

 

This applies to both weather prediction and climate prediction. It is therefore 

important to critically analyse the model. Weather forecasts are made for a couple 

of days or weeks and can quickly and easily be evaluated with observed weather 

and it can be based on the length of time; statistics can be gathered about the 

performance of a particular model or a forecast system (Wiston & Km, 2018). 
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However, in climate change simulations, models are used to make projections of 

possible future changes over different time scales such as decades, generations or 

centuries. Such periods will have no precise previous similarities.  It is, therefore, 

necessary to build confidence in a model by analysing its performance of the 

simulations of the historical record; such opportunities are much more limited than 

those available for weather prediction (Randall et al. 2007; WMO, 2000). 

2.1.6 Downscaling GCM Projections to Regional Scale 

The most advanced tools for projecting future climate change scenarios are 

considered to be GCMs that have been used extensively in the studies of climate 

change. However, GCMs have coarse spatial resolutions, which require 

downscaling to regional or local scales (Trzaska & Schnarr, 2014; Kusangaya et al. 

2014; Jones et al. 2004). Normally, downscaling is based on spatial and temporal 

climate projections. Spatial downscaling is performed when extracting finer-

resolution spatial aspects of the climate projection from a course resolution GCM 

output such as 1000km grid cell to GCM output to a 100km resolution. 

 

Temporal downscaling is performed when fine-scale temporal information is 

extracted from a course-scale temporal resolution GCM output such as daily rainfall 

time series from a monthly rainfall time series (Trzaska & Schnarr, 2014). Figure 2.1 

represents the spatial downscaling. 
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Figure 2.1 The concept of spatial downscaling (Source:Viner,2012) 

Downscaling GCM outputs is achieved through dynamic and statistical downscaling. 

It is computationally expensive to undertake dynamic downscaling and may not be 

practical to use, especially for predictions from several models required at a 

particular spatial resolution. Furthermore, the outputs from RCMs may still have 

some biases which will need to be removed especially if the data will be used for 

hydrological modelling (Giorgi et al. 2001; Chen & Roads, 1999). 
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It is computationally efficient to undertake statistical downscaling and feasible for 

spatial downscaling and bias correction for multiple GCM outputs. Several studies 

have shown that both dynamic and statistical downscaling techniques have similar 

skills. Statistical downscaling is based on observed relationships between the 

current climate and future climate for a specific GCM; the result can be used to 

validate the results of the RCMs (Kusangaya et al. 2014; Giorgi et al. 2001). 

 

In Southern Africa, downscaled climate change data is available with the 

Coordinated Regional Downscaling Experiment (CORDEX) programme, which was 

founded by the World Climate Research Programme (WCRP). This initiative 

emanated from the need for downscaled climate data. The objective of the 

CORDEX-Africa is to develop a coordinated framework for improved regional 

climate projections that will meet the growing demand for high resolution 

downscaled projections. Thus, the generated data is used by the scientific 

community for impact and adaptation studies (Dosio & Jürgen, 2016; Kusangaya et 

al. 2014). 

2.1.7 Representative Concentration Pathways  

Representative Concetration Pathways (RCP) is a set of scenarios that have been 

adopted by climate researchers to provide possible future scenarios for the 

evaluation of the atmospheric composition  (Meinshausen et al. 2011; Moss et al. 

2010). Scenarios are detailed descriptions of how the future is likely to unfold in 

social, economic, technological and environmental, emissions of greenhouse gases 

and aerosols, and climate (Moss et al. 2010; Zhang et al. 2007). 
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The earlier scenario-based projections of the atmospheric composition have been 

complimented by RCPs and in some cases superseded, for example the SRES. The 

RCPs are used to drive the climate model simulations planned as part of the World 

Climate Research Programme’s Fifth Coupled Model Intercomparison (CMIP5) 

(Meinshausen et al. 2010). There are four RCPs that have been developed as 

climate scenarios and these include RCP2.6 as the lowest range, RCP4.5 and 

RCP6.0 as the middle range and RCP8.5 as the highest range. The global mean 

surface temperature has been projected to range from 1.5°C for the lowest range of 

the four RCPs to 4.5°C for the highest RCP up to 2100 (Vuuren, 2011; Meinshausen 

et al. 2010). 

 

These four RCPs describe various possible future climates that largely depend on 

future greenhouse gases emissions into the atmosphere. The four RCPs are 

numbered based on the possible range of climate forcing values for the future year 

of 2100 (2.6, 4.5, 6.0, and 8.5 W/m2, respectively) (Vuuren et al. 2011). Figure 2.2 

illustrates the four RCPs trajectories. 
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Figure 2.2 IPCC AR5 Greenhouse Gas Concentration Pathways  

(Source: IPCC, 2013 – WikiCommons) 
 
(All forcing agents' atmospheric CO2-equivalent concentrations (in parts-per-million-
by-volume (ppmv)) according to the four RCPs used by the fifth IPCC Assessment 
Report to make predictions). 
 

The RCP4.5 is a middle pathway scenario that correlates well with the recently 

released guidelines of lower greenhouse gas emission by the international 

community. It is, therefore, a good case sensitive scenario in light of the new 

guidelines. RCP 8.5 is a high emission scenario, which provides possibly the highest 

impact on climate change. In view of the above-mentioned factors, RCP 4.5 and 

RCP 8.5 are mostly selected to provide a possible complete range of impacts (Khan 

et al. 2018). 

2.1.8 Bias Corrections 

The study of climate change and its impact is mostly based on the simulated outputs 

from the GCM and the RCM driven by greenhouse gases and aerosol emission 
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scenarios such as the RCP4.5 and RCP8.5. There are, however, limitations in the 

studies of climate change, especially pertaining to hydrological modelling because 

of the scale mismatches between the climate model output and the spatial scale at 

which the hydrological models operate (Baimoung et al. 2014). 

 

Though regional climate models are reliable tools for simulating regional and local 

finer-scale climate conditions, they still have systematic errors, particularly the 

small-scale patterns of daily precipitations that mostly rely on model resolution and 

selected parameters. Considering the above, RCMs are found to be inadequate for 

direct use in climate change impact and adaptation assessment studies (Fowler et 

al. 2007).  

 

However, this challenge is no longer an issue because of the use of various bias-

correction techniques to RCM outputs to render them suitable for the impact studies 

(Baimoung et al. 2014). Among the most applied techniques, Quantile Mapping 

(QM) is a technique that alters the value of a model by mapping quantile of the 

distribution of the model to the quantile of the observed data (Casanueva et al. 2019; 

Feigenwinter et al. 2018). 

 

Another technique used is known as Cumulative Distribution Function transform 

(CDF-t), which undertakes that the baseline (historical) plot linking the model and 

observed cumulative distribution functions applies to the future period. The 

intermediate quantile matching, which preserves the GCM, predicted change at 

each quantile estimated in which the future minus the baseline is used as the basis 

for calculation (Jo et al. 2019; Lian-yi et al. 2018; Pierce et al. 2015).  
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2.1.9 Uncertainty 

The GCM projections of future climate scenarios are dependent on uncertainties 

emanating from various sources (Hosseinzadehtalaei, 2017). The future projections 

of climate extremes have larger uncertainties because of the complexities of 

simulating extremes. Climate change uncertainty is better quantified with a larger 

ensemble size of independent climate models (Hosseinzadehtalaei, 2017). 

 

Comparisons between many models have shown that averaged near-surface 

temperatures will increase in the next two decades in response to increased 

greenhouse gas emissions. Nevertheless, the magnitude of the increase will differ 

from one model to another. Furthermore, various models project opposite changes 

in climate variables such as rainfall in certain regions indicating uncertainty of the 

future climate change projections even when advanced models are utilised (Trzaska 

& Schnarr, 2014).  According to Trzaska & Schnarr (2014), the following are the four 

major uncertainties present in climate projections: 

  

 The future levels of emissions emanating from human activities and natural 

forcings, such as volcanic eruptions.  

 Uncertainty arising from model errors due to imperfect model 

representations of climate processes.  

 Uncertainty due to inaccurate knowledge of the prevailing climate conditions 

that are used as initial conditions for projections.  

 Uncertainty due to the complexity of representing inter-annual and decadal 

variability in long-term projections.  
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The future greenhouse gas emissions evolution has a high level of uncertainty due 

to demographic, technological and socio-economic dynamics. GCMs are driven by 

alternatives of greenhouse gas emission scenarios with a view of obtaining a variety 

of possible future outcomes and models need initial conditions not perfectly known 

to start projections.  

 

Adjusted initial conditions are used as a starting point to perform projections for 

obtaining a series of simulations, also known as an “ensemble.” There is no model 

that perfectly simulate all climate processes. Simulations from several models are 

produced and a multi-model ensemble mean is considered as the most probable 

future climate path. The variability of GCM individual simulations in a multi-model 

ensemble indicates a degree of uncertainty (Hosseinzadehtalaei, 2017). 

2.2 Hydrology and Water Resources 

Current research in most of the hydrological studies seeks to enhance our ability to 

understand and predict the impacts of climate change and land use on the water 

balance, groundwater levels, streamflows variability and the water quality ranges 

from hillslopes to catchments. Many applications in hydrology to practical problems 

of design and forecasting need the use of hydrological models (Fatichi et al. 2016; 

Dingman, 2002).  

 

Catchment hydrology is being altered by climate change through variations of 

extreme events such as floods, droughts, heatwaves and windstorms. The 

complexity of river catchments with dynamic systems requires the development of 

© Central University of Technology, Free State



Chapter 2 

28 

   

a better understanding of how these systems will be altered with climate change 

impacts (Pletterbauer et al. 2018; Murthy, 2012). 

2.2.1 Gridded Climate Data 

Gridded climate data (GCD) is the data developed from simulated and satellite 

remotely sensed data sources. The data has potential to be an alternative of the 

observed climate data (conventional climate data) for streamflow simulation and 

other uses (Mou et al. 2017). It is also defined as a multiple year global gridded 

representations known as reanalysis datasets (Tomy & Sumam, 2016).  

 

Gridded climate data also referred to as reanalysis products which combine 

available measured data with a current atmospheric (or more recently) model to 

develop the finest approximation of the condition of the atmosphere and land surface 

(Decker et al. 2012). Gridded climate data are mainly used for different applications 

in the global community due to paucity of complete direct observation e.g using 

gridded climate data to drive land surface models,explore the climate 

system,through boundary conditions and regional modelling (Decker et al. 2012). 

Some of reanalysis datasets (gridded climate data) used in different parts of the 

world include:  

 

(i) Asian Precipitation Highly-Resolved Observational Data Integration towards   

Evaluation of Water Resources (APHRODITE). It was produced by the Research 

Institute for Humanity and the Meteorological Research Institute of the Japan 

Meteorological Agency. APHRODITE is a long-term daily precipitation product that 

covers the period 1951 to 2007, and is based on observed data collected from 

thousands of gauge stations in different countries and government agencies. 
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APHRODITE is located into the following regions; Middle East, Russia, Monsoon 

Asia and Japan. For example, APHRODITE V1101 (Monsoon Asia) utilises a 

resolution of 0.25° (Mou Leong Tan et al. 2017). 

 

To overcome the challenge of data scarcity, the CFSR of the NCEP and  

APHRODITE are readily accessible for any geographical location on earth at a daily 

time-scale for periods 1979-2014 (Mou et al. 2017; Decker et al. 2012) 

 

(ii) National Centers for Environmental Prediction Climate Forecast System       

Reanalysis (NCEP-CFSR). The CFSR is the latest dataset from NCEP that span 

from 1979 to the current, and the period 2001/02 is used for this analysis. The 

CFSR is the third generation reanalysis data that can be accessed at 

https://globalweather.tamu.edu. The analysis utilises the Global Forecast System 

(GFS) as its atmospheric model with a horizontal resolution of T382 ( ̴ 38km) with 

64 vertical layers (Saha et al. 2010).  

 

The CFSR uses the NOAH land surface model with four vertical layers while the 

rest of  reanalyses utilise observed seas surface temperatures to force the 

atmospheric CFSR incorporates a complete coupled ocean model, the 

Geophysical Fluid Dynamics Laboratory Modular Ocean Model (GFDL MOM) 

version 4 (Decker et al. 2012) . The atmospheric analysis has a cycle of 6 hour 

and applies the gridpoint numerical interpolation method such as in MERRA. The 

assimilation of land surface happens has a cycle 24 hours and utilises observed 

precipitation. The CFSR products are founded on a sprectral model which includes 
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the parametrisation of all main physical processes as elaborated in depth by 

(Worqlul et al., 2017; Kistler et al. 2001; Kalnay et al. 1995). 

 

(iii) Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Network-Climate Data Record (PERSIANN-CDR). PERSIANN-CDR was 

developed from the PERSIANN algorithm using Gridded Satellite Infrared Data 

(GridSat-B1), a standardised and mapped geostationary satellite dataset (Mou et al. 

2017). PERSIANN-CDR makes available daily precipitation data spanning from 

1983 to the current for coverage area lying within latitudes 60° S–60° N at a spatial 

resolution of 0.25°. The artificial neural network was trained  using the NCEP phase 

four hourly precipitation information. The Global Precipitation Climatology Project 

(GPCP) monthly version 2.2 modifies the product (Mou Leong Tan et al. 2017). 

 

 (iv) Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) 

is second-generation reanalysis product designed to update retrospective analysis 

of the whole era of satellite from NASA beginning from 1979 to present (Bosilovich 

et al. 2015). In general MERRA-2 incorporates many updates of the global 

simulation and assimilation of data systems. The major difference between MERRA 

and other products lies in the size of coverage area and the time scale of the 

documented information. MERRA-2 documents most of the results of the model at 

its built in coverage scale per hour (Molod et al. 2015; Rienecker et al. 2008). 

 

(v) ERA 40 is the reanalysis for second generation of meteorological data spanning 

from September 1957 to August 2002 with 1991-2001 used in the current study.The 

ERA-40 was established by the European Centre for Medium-Range Weather 
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Forecasts (ECMWF) in conjuction with many other institutions and organisations 

(Uppala et al. 2005). ERA-40 datasets may be accessed from http://dss.ucar.edu/ 

pub/era40. ERA-40 uses dynamical model version cycle 23R4 from ECMWF, with 

60 vertical levels at a horizontal resolution of T159 (125 km).  

 

The data for both the atmosphere and the land surface was assimilated into the 

system using a 3DVar methodology analysed at 6 hours per cycle. It uses data 

comparable to those utilised by MERRA and other reanalyses but with difference is 

that ERA-40 does not comprise observed 2-m air temperature (and relative 

humidity) from weather observation stations throughout  the analysis cycle (six-

hourly) of the land surface (Decker et al. 2012; Uppala et al. 2005). 

 

(vi) The current ECMWF reanalysis is ERA-Interim which spans from 1989 to 

present (upto 2002 is used in the present work). ERA-Interim uses modernised 

version of the ECMWF forecasting model with a horizontal resolution of T213 (80 

km) (Decker et al. 2012). Despite this higher resolution than ERA-40, ERA-Interim 

is the only reanalysis product that integrates the whole four-dimensional variational 

data assimilation (4DVar) (Decker et al. 2012; Simmons et al. 2006). 

 

(vii) Global Land Data Assimilation System (GLDAS) was  produced through 

corroborative efforts by scientists from National Aeronautics and Space 

Administration (NASA) Goddard Space Flight Centre (GSFC) and the National 

Oceanic and Atmospheric Administration (NOAA) National Centres for 

Environmental Prediction (NCEP) (Rodell et al. 2004). The GLDAS utilises the new 

generation of ground and space based observation systems which make available 
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data to force the simulated land surface states. Several different datasets may be 

accessed from http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings that are 

available for use in weather and climate research (Decker et al., 2012; Rodell et al. 

2004).  

 

(viii) NCEP–NCAR. The NCEP–NCAR reanalysis (NCEP) is a regularly used 

dataset that spans from 1948 to 2009 with the present period used as 1991-2006 

and is the oldest gridded climate product included in this research.Data is accessible  

at http://dss.ucar.edu/pub/reanalysis/. The NCEP global atmospheric spectral model 

is used as the dynamical atmospheric model which became operational in 1995 with 

28 vertical levels and a horizontal resolution estimated to be 210km (Kalnay et 

al.1995). The NCEP–NCAR uses the Oregon State University land surface model 

which has two vertical layers and a 3DVar approach is utilised to assimilate the 

observations into the model just like with the process in MERRA (Decker et al. 

2012). 

2.2.2 Flood Frequency Analysis 

Flood frequency analysis is an important statistical technique in hydrology that is 

used to determine the nature and magnitude of the peak streamflow (Ganamala & 

Pitta, 2017). The purpose of flood frequency analysis is to relate the peak flood with 

a probability of exceedance. Many methods have been developed for this purpose 

and range from statistical distribution fitting to simulation approaches  (Odry, 2017).  

 

Some of the basic reasonable distributions suitable for modelling include Lognormal 

(LGIII), Extreme Value Type 1 (EV 1 or Gumbel), Extreme Value Type II, Pearson 

type II and Log Pearson Type III (LPIII) distributions (Alias & Takara, 2012). Most 
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studies have focused on fitting a probability distribution such as Generalised 

Extreme Value (GEV) from the Annual Maximum Series (AMS) to the hydrological 

sample data (Katz et al. 2002). Although the distribution fitting technique is widely 

used, the availability and amount of historical discharge data at a specific location 

of interest remains a challenge (Odry, 2017). The extrapolation of flood frequency 

curves in hydrological processes is also a well-known problem (Katz et al. 2002). 

2.2.3 Flow Duration Curves 

Flow Duration Curves (FDC) are determined and plotted to analyse streamflow 

regime and percentage flow exceedances (Mülle & Thompson, 2015; Ngongondo 

et al. 2013). FDC is important in hydrology as it reveals much of the stream 

flow temporal variability and its shape is a function of different factors.  

 

An FDC with a steep slope throughout shows variability of streamflow, which is 

mostly caused by rainfall producing quick runoff to the stream. A curve with a flat 

slope indicates a significant contribution of base flow to the streamflow originating 

from springs or diffuse inflow along the stream. Policy and regulation of streamflow 

through management of discharge from reservoirs can also result in a flat curve of 

the FDC. High stream flows are caused by quick runoff of the rainfall and will have 

a steep slope at the upper end of the stream.  Nevertheless, the high flows can also 

be reduced by riverbanks consisting of permeable alluvium.  

 

The topography and geology of the basin are the major causes of the distribution of 

low flows in the middle part of the FDC. The lowest flows can also be strongly 

influenced by the uptake of water by riparian forests such as phreatophytes along 

the riverbanks to produce a sharp dip at the lower end of an FDC. The shape of 
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FDC has continued to be a matter of research because of the many factors that 

influence it (http://www.dunnhydrogeo.com/home/flow-duration-curves-nt). 

2.2.4 Hydrological Modelling 

Developments in integrated hydrological modelling in the modern years has brought 

innovations in calibration, validation and uncertainty analysis tools and the presence 

of grid technology for model performance, which leads to the construction of more, 

detailed, robust and complete models (Christos et al. 2016; Abbaspour et al. 2010). 

 

These models account for processes such as water quantity and quality, soil, 

climate, land use, agricultural management and nutrient cycling in a coupled single 

package (Rouholahnejad et al. 2014; Loliyana & Patel, 2014). Climate system is a 

principle driving force of the hydrological cycle because it is the source of 

precipitation, maximum/minimum air temperature, solar radiation, wind speed and 

relative humidity, which control the water balance.  

 

Therefore, hydrological modelling targets simulation of hydrological processes that 

include canopy storage, surface runoff and infiltration. While in the subsurface, the 

processes include lateral flow from the soil, return flow from shallow aquifers, tile 

drainage, shallow aquifer recharge, capillary rise from shallow aquifer into the root 

zone and deep aquifer recharge (Abbaspour et al. 2015).  

 

The other processes include moisture redistribution in the soil profile and 

evapotranspiration. Vegetation growth must be considered in the hydrological 

model, as evapotranspiration is imperative in water balance and management 
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operations of irrigation system (Faramarzi et al. 2009). Hydrology and water quality 

is largely affected by fertilisation.  

2.2.5 Model Calibration and Validation 

The objective of the calibration process is to reduce the error sources until they 

become insignificant (Loliyana & Patel, 2014; Andréassian et al. 2012; Refsgaard & 

Storm, 1996). According to Refsgaard and Storm (1996), the various sources of 

errors in hydrological simulation may arise from the following factors: 

 Systematic errors from input data such as rainfall, temperature and 

evapotranspiration. 

 Systematic errors in recorded or observed data such as river water levels, 

discharge data, groundwater levels or other data used in  simulation. 

 Errors originating from non-optimum values. 

 Errors from an incomplete or bias model structure. 

A calibrated model can be deemed valid if it is tested against data different from  

those used during calibration. Therefore, model validation entails confirming that a  

site-specific model can produce simulation results within the acceptable limits of  

accuracy specified in the performance criteria for a particular study (Andréassian et 

al., 2012; Refsgaard & Storm, 1996). 

2.2.6 Hydrological models commonly used in climate change   
 Impact studies. 

Hydrological models are deemed to be an essential, required tool for water and 

environment resources management (Christos et al. 2016; Devia et al. 2015; 

Wheater, 2008) They are principally utilised for predicting the behaviour of  a natural 
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or artificial systems and enhance understanding of different  hydrological processes. 
Every hydrological model has its own individual  features and specific applications. 

Some of them are comprehensive and utilise dynamics of fundalmental hydrological 

processes and are a function of space and time (Devia et al. 2015; Wheater, 2008; 

Gupta et al. 1998).  

 

The most important inputs needed for each hydrological model are precipitation data 

and catchment area. Besides these inputs a model would also require, catchment 

characteristics such as catchment topography, soil moisture content, vegetation 

cover, soil properties and characteristics of ground water aquifer may also be 

considered. The hydrological model that gives results close to reality with the use of 

least parameters and model complexity is considered to be the best model (Devia 

et al.  2015; Wheater, 2008). Hydrological models are categorised based on model 

input parameters and the level of physical principles utilised in the model. Models 

may be categorised as lumped and distributed subject to the model parameters as 

a role of space and time and deterministic and stochastic models based on the other 

principles.  

 

Hydrological models are widely and significantly categorised as empirical model, 

conceptual models and physically based models (Devia et al. 2015; Wheater, 2008). 

An empirical model is described as observation oriented models that only extract 

information from the existing dataset without regarding the characteristics and 

processes of hydrological system and therefore these models are also known as 

data driven models. Conceptual models describe every element of hydrological 

processes. It comprises a number of interconnected reservoirs that symbolises the 
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physical components in a watershed in which they are recharged by precipitation, 

infiltration and percolation and are drained by evaporation, runoff, drainage etc.  

 

Whilst physically based models are mathematically idealized representation of the 

reality also known as deterministic models that include the principles of physical 

processes. It uses state variables which are measurable and are functions of both 

time and space. The hydrological processes of flow of water are symbolised by finite 

difference equations at doesn’t need extensive hydrological and meteorological data 

for their calibration (Farmer & Richard, 2016; Devia et al. 2015; Wheater, 2008) 

 

An effective hydrological modelling process depends on availability of quality data 

which require evaluation for setting up,calibrating,validating of a hydrological model. 

Availability of continuous quality data is mostly a challenge in Southern Africa and 

that hinders the use of many different hydrological models which largely rely on such 

data. Most hydrological models used in climate change impact studies require 

comprehensive data sets to be used for optimisation of a model. Table 2.1 shows 

some hydrological models commonly used in climate change impact studies. 
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Table 2.1 Some hydrological models used in climate change studies 

Hydrological 

Model 

Description of a 

Model 

Time 

Resolution 

References 

TOPMODEL It is a semi distributed, 
conceptual rainfall runoff 
model, has advantage of 
topographic information 
related to runoff 
generation, considered as 
a physically based model, 
main aim is to compute 
storage deficit or water 
table depth at any 
location. Can be used in 

catchments with shallow 
soil and moderate 
topography. 

Hourly,Daily (Jeziorska & 
Niedzielski, 

2018; Devia et 
al. 2015) 

 

Hydrologiska 
Byrans 
Vattenavdelning 
model (HBV)  

It is a semi distributed, 
conceptual,hydrological 
model. Can simulate 
snow accumulation and 
snow melt.Groundwater 
recharge ,runoff and 
actual evaporation are 
simulated as functions of 
actual water storage 

Daily, 
monthly 

(Bergström, 

2006; 

Johansson et al. 

2003; 

Bergström et al. 

2001) 

 

Soil Water 
Assessment 
Tool (SWAT) 
Model 

Complex,physically 

based model, efficient in 

performing long term 

simulations and is able to 

describe water and 

sediment circulation, 

vegetation growth and 

nutrients circulation. 

Hourly,Daily

, 

monthly 

(Guzman et al. 
2015;Arnold et 

al. 2012; 
Neitsch et al. 

2005;Arnold et 
al. 2012) 

MIKE Systeme 
Hydrologique 
European (SHE) 

It is a physically based 
model,requires extensive 
model data and physical 
parameters, can simulate 
surface and ground water 
movement, interactions, 
sediment, nutrient and 
pesticide transport. 

 

Hourly (Sandu & Virsta, 

2015) (Butts & 

Graham, 2005; 

Zhang et al. 

2008) 
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2.2.7 Water Resources Management 

Thornthwaite 
Monthly water 
balance model 

It is a numerical, 
Conceptual model,It’s a 
water balance model,It 
undertakes water 
budgeting.Its driven by 
graphical user 
interface.One of the 
oldest models 

Monthly (Westenbroek et 
al. 2010; 

McCabe & 
Markstrom, 

2007) 

Variable 
Infiltration 
Capacity(VIC) 
model 

A semi distributed, grid 

based, hydrology model, 

uses both energy and 

water balance equations 

performs well in moist 

areas 

Daily (Devia et al. 

2015; Gao et al. 

2010) 

 

 

Water 
Resources 
Simulation 
Model 
WRSM/Pitman 
Model 

Conceptual lumped 
monthly rainfall-runoff, 
semi distributed model. 

Monthly (Kapangaziwiri 

et al. 2013; 

Ndiritu, 2009; 

Pitman & Bailey, 

2005) 

 
HSPF model 
Hydrological 
Simulation 
Program-
FORTRAN 
(HSPF) 

A semi distributed 
deterministic, continuous 
and physically based 
model 

Hourly (Javan et al. 

2013) 

 

 

 

WBM (Water 
Balance – 
Monthly Global 
model 
(uncoupled to 
GCM) 

Spatially distributed, 
hydrology model. 
Originally designed for 
more temperate climates 

Monthly (Fekete et al. 
2002) 

Identification of 
unit 
Hydrographs 
And Component 
flows from 
Rainfall,Evapora
tion and 
Streamflow data 
(IHACRES) 

It a metric conceptual, 
Parameterically efficient 
rainfall-runoff model,uses 
a transfer function/Unit 
hydrograph method for 
catchment 
scale,continuous 
simulation. 

Daily (Dye and Croke, 
2003;Croke & 

Littlewood, 
2005) 
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Millions of people in Southern African depend on water resources from 14 

transboundary river basins for their livelihoods. The region already faces numerous 

challenges that range from water-stressed river basins emanating from inadequate 

rainfall, water management challenges, population growth, lack of adequate 

infrastructure and water storage, as well as poor institutional capacity.  

 

Furthermore, renewable freshwater is unevenly distributed across rivers, lakes and 

groundwater. Climate change occurring with higher temperatures, decreased 

precipitations, rising frequency and intensity of extreme events and sea-level rise is 

already worsening the impacts on water supply and shortages in the region. 

Decreasing rainfall may lead to reduced runoff and eventually result in some rivers, 

streams, reservoirs drying up. The communities that depend on these water 

resources may be more vulnerable and will need adaptation and mitigation 

strategies (USAID, 2011). Scarce water resources require enhanced Integrated 

Water Resources Management (IWRM) (Sukereman, 2015; Claassen, 2013; 

MEWD, 2008). 

 

A conceptual advancement of IWRM that seeks to incorporate land use is important 

in emphasising Integrated Land and Water Resources Management (ILWRM). A 

water decision is also a land-use decision, thus highlighting their interdependence.  

 

IWRM plans are currently executed at a national (country) scale and in some cases 

at a basin scale, in response to the World Summit for Sustainable Development 

(WSSD) operation strategy of Johannesburg in 2002. It has been emphasised that 
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L in IWRM be included in the operation strategies of water resources for sustainable 

development (Rockstrom & Falkenmark, 2006). 
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 : RESEARCH METHODOLOGY 

3.1 Description of the Zambezi River Basin 

The four largest river basins in Africa are Congo, Nile, Niger and Zambezi. The 

ZRB located in Southern Africa is the fourth largest among the four basins found in 

Africa. It has a surface area of 1,390,000km2, which represents about 4.5% of the 

area of the African continent and is shared by eight countries 

(http://www.fao.org/3/W4347E/w4347e0o.htm).  

 

The Zambezi River stretches through  a distance of 3000km from Kalene Hills in 

Northwestern Zambia at an elevation of 1500m above sea level to the delta in the 

lower Zambezi in Mozambique (Teodoru et al. 2015). 

 

The ZRB has 42.5% surface area on Zambian territory, which is the largest among 

the eight countries and therefore this research will focus on the Kabompo River 

Basin (KRB), one of the 13 sub-basins of the ZRB found in Zambia. KRB is located 

on the Upper ZRB and will be used as a case study in the analysis of climate change 

and impacts on hydrology and water resources for the entire ZRB. Figure 3.1 

illustrates the location of ZRB and KRB in Southern African region. 
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Figure 3.1 Location of Zambezi River Basin and Kabompo River Basin 

 (Source: http://cridf.net/why-we-work-in-southern-africa). 

 

The temporal and spatial variability of water resources in the ZRB is a function of 

rainfall and temperature climate variables. The basin experiences variable average 

annual rainfall ranging from 1500mm to 100mm, from northern to southwestern parts 

respectively (WRC, 2011). 

 

The time series data for temperatures across the ZRB show variations in 

accordance with elevation. July is the coldest month with Mean monthly 
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temperatures of less than 14oC for higher elevation areas in the south of the basin 

to more than 22°C for the low elevation areas around the delta in Mozambique. 

October and November are the warmest months with mean daily temperatures 

varying from 23°C in the highest elevation areas to 31°C in the lower parts of the 

Zambezi valley (ZAMCOM et al. 2015). 

3.1.1 Description and Location of Kabompo River Basin  

Figure 3.1 also shows the KRB with a delineated surface area of 72 082km2  and 

part of the UZRB located between 14O 15” 07.29’S, 23O 08’ 27.44” E and 17O 36’ 

17.21’S, 25O 48’ 28.39”E. KRB has the highest MAP of 1200mm, high Mean Annual 

Runoff (MAR) and high river flows that makes a significant contribution of surface 

and ground water resources in the entire UZRB. KRB is one of the six basins in the 

UZRB which has deep, well-drained Kalahari sands covering the entire region 

(Beilfuss, 2012). The basin has wooded savannahs as the predominant land use.  

 

The basin has high potential for both rain-fed and irrigated agriculture productivity 

and important sites for hydro electric power generation such as Chikata falls in 

Kabompo district, Kabompo gorge (under construction), Nyamwezi falls, Muzhila 

falls in Mwinilunga district. The basin is also a home of West Lunga National Park 

and big mines such as Lumwana mine, one of the largest mines in Africa, Kalumbila 

mine and Zabesha mine.  

 

The estimated population based on Zambia 2010 census of the basin stands at 

700,000 people with high poverty levels who rely on water resources for their 

liveliwood.There are seven rural towns (Districts) found in the basin namely: 

Mwinilunga,Ikelengi, Kabompo, Mufumbwe, Zambezi, Solwezi and Kasempa. 
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In view of the hydrological and social economical factors mentioned above,the KRB 

was identified to be strategic and hence chosen as  a case study to demonstrate the 

impact of climate change on hydrology and water resources in the UZRB. 

3.2 Biophysical Data 

The research involved the collection of biophysical data such as land use/land cover, 

vegetation,Hydrological soils, topographical, climate and river discharge. Gridded 

climate data (Reanalysis data) such as Climate Forecasting System Reanalysis 

(CFSR) and other variables were also used in the studies for the KRB basin. CFSR 

data was selected for modelling because it is a third generation reanalysis dataset 

(newest among NCAP) and had the highest horizontal resolution of approximately 

38km among the reviewed hydrological models in chapter two.The CFSR data set 

was also readily available in a SWAT format with adequate coverage of the study 

area. Detailed specific data for Regional Climate modelling, and Hydrological 

Modelling may be found in the subsequent chapters.  

 

The Soil Water Assessment Tool (SWAT) model was selected for hydrological 

modelling because of its capability of long term simulations and wide aplication in 

climate change impact studies (Abbaspour et al. 2019; Gassman et al. 2007). It was 

therefore used in the simulation of hydrological processes for the catchment to 

estimate water resources using gridded climate data. The model was further used 

with downscaled, bias-corrected GCM projections to analyse hydrological 

responses for climate change. SWAT model results were calibrated and validated 
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with observed data obtained from the Zambia Meteorological Department (ZMD) 

and Water Resources Management Authority (WARMA).  

3.3 Climate Change Modelling 

The first approach was based on four experiments using the PRECIS model, which 

is a regional climate model that provides historical and future climate scenarios. 

The first approach involved the use of PRECIS, a regional climate model to generate 

a high-resolution climate scenario over the study area in order to identify and 

quantify the climate change impact in precipitation, temperature and other variables 

important for climate change impact studies. 

 

The second approach to climate change modelling was based on six 

downscaled,bias-corrected,GCM projections based on the historical period 1975- 

2005 while the future period under RCP4.5 and RCP8.5 covered 2020-2050 for the 

KRB. The historical period 1975-2005 was chosen to be the baseline period (The 

recent past climate) because of availability of the required climate data. Further 

more Many climate change impact studies are conducted using a recent baseline 

period such as 1961-1990 and 1975-2005 (Krinner et al. 2013; Ferrise et al. 2011). 

The 19th centuary is mostly preferred baseline period due to insignificant 

anthropogenic effects on global climate. 

 

The climatic variables from the two climate scenarios (RCP4.5 and RCP8.5) were 

used differently to quantify the impact of climate change for the KRB. The second 

approach involved the use of six downscaled and bias-corrected GCM outputs for 

hydrological modelling using the SWAT model. The GCM projections were used as 
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input data in the SWAT model in order to determine the impact on hydrology and 

water resources management.  

3.3.1 Regional Climate modelling using PRECIS Model  

PRECIS is a land surface and atmospheric model of limited area with a high-

resolution that can be performed on any part of the earth. Dynamic downscaling was 

performed with the PRECIS model from Hadley Centre Global Environment Model 

version 2-Earth System (HadGEM2-ES) GCM over the historical (baseline) and 

future climate periods (Bodas-salcedo et al. 2014). The Hadley centre, UK 

developed the PRECIS model, which is the current version of the RCM with 

HadRMP3 based on HadAM3P, an updated version of the atmospheric component 

of the newest Hadley centre, coupled with the Atmosphere Ocean Global Circulation 

Model (AOGCM), HadCM3 (Macadam & Janes, 2017; Nandozi et al. 2012). 

Therefore, HadRM3P is a PRECIS, RCM based on the UK Met Office's HadCM3 

GCM. Dynamic downscaling was achieved through the method of nesting 

HadRM3P into the HadGEM2-ES GCM to represent the atmospheric physics with a 

high-resolution grid box of a limited area (Brienen et al. 2010). 

 

The model is developed on the dynamical flow, clouds, precipitation, radiative 

processes and the atmospheric sulphur cycle, the land surface and the deep soil. 

The hydrostatic version of the PRECIS model is the atmospheric component, which 

is based on the full primitive equations. The atmosphere consists of 19 vertical levels 

with the lowest at ~50m and the highest at 0.5hPa while the horizontal resolution is 

0.44° × 0.44° with a time step of 5 minutes to maintain numerical stability (Judit et 

al. 2008; Jones et al. 2004). Solar radiation provides remote processes with external 

forcing that determines the climate of a particular local region. The composition of 
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the atmosphere affects radiation and various responsive processes within the global 

climate system. A regional climate model requires boundary conditions as inputs to 

provide the remote forcing of the regional climate and coherent information on 

atmospheric composition (Simon et al. 2015). 

 

Regional Climate Modelling through PRECIS was conducted over the study area in 

order to provide high-resolution climate scenarios for a historical and future period 

under RCP4.5 and RCP8.5 with a focus on 2020-2050. The generated recent 

climate simulation was compared with observed values to validate the model and 

used as a baseline to provide climate change projections for the study area.  

 

Four experiments were conducted to generate high-resolution climate scenarios, 

namely Reanalysis, Historical (baseline), RCP4.5 and RCP8.5 climate scenarios. 

The experiment results provided data specific to the study area to help generate 

new knowledge from the climate impact studies. 

 

Figure 3.2 illustrates climate change modelling process as a methodological 

approach followed in the research. 
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Figure 3.2 Climate change modelling process 

 

Figure 3.2 illustrates the climate change modelling process with PRECIS model 

followed during the experiments. The process involved dynamic downscaling of the 

HadRM3P, RCM which was nested to HadGEM2-ES GCM. Both RCM and GCM 

were sourced from CMIP5, IPCC. The PRECIS model outputs included 

precipitation, temperature, pressure, soil moisture and wind speed.However in this 

research focus was on precipitation and temperature model outputs. 

 

The research focused on the assessment of generated RCM projections from the 

PRECIS model experiments and the six downscaled and bias-corrected GCMs 
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projections. The forcing data generated covered the entire ZRB in Southern Africa 

and is therefore useful for further research in other areas within the basin to explore 

the impact of climate change.  

3.4 Hydrological Modelling Using SWAT Model 

SWAT model is a physically based and semi-distributed model that operates on a 

continuous daily time step and it was designed to predict the impact of management 

on water, sediment and agricultural chemical yields in ungauged catchments 

(Gassman et al. 2007;Neitsch et al. 2005). The Soil and Water Assessment Tool 

(SWAT) model, is well recommended and the most widely used hydrological model 

in the world (Abbaspour et al. 2019; Wang et al. 2019; Mehan et al. 2017). The 

SWAT model is considered user-friendly and easy to access, as it is readily 

available(Habte et al. 2013). 

 

In the SWAT model, surface runoff volume is estimated with the modified Soil 

Conservation Service (SCS) Curve Number (CN) method (Mohammad, 2016). Peak 

runoff indicates the erosive power of a storm and is used in the prediction of 

sediments loss (Rostamian, 2010). The peak runoff rate is calculated in the SWAT 

model by using the modified rational method (Chow et al. 1988). Whilst the 

Kinematic Storage model is used to simulate lateral flow. The return flow is 

approximated by creating a shallow aquifer (Arnold et al. 1998). The Muskingum 

method is used to predict channel flood routing. 

 

The water balance (Neitsch et al. 2005) equation that comprises the hydrological 

components in the SWAT model is described in Equation (3.1). 
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𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 −𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)
𝑡

𝑖=1
                               3.1 

 

Where:  SW t  final soil water content (mm); SW 0, initial soil water content on day i 

(mm); R day, amount of precipitation on day i (mm); Q surf, amount of surface runoff 

on day i (mm). Whilst E a., amount of evapotranspiration (ET) on day i (mm); W seep, 

amount of water entering the vadose zone from the soil profile on day i (mm); Qgw, 

amount of return flow on day i (mm). 

3.4.1 Estimation of Water Yield  

Water yield is one of the most important parameters used in the evaluation of water 

resources management in the basin under study. It is the summation of water 

leaving the HRU and entering the main channel during a time step (Arnold et al. 

2011). Water yield of a sub-basin is evaluated by the SWAT model using the 

following Equation (3.2): 

 

Wyld = Qsurf + Qgw + Qlat - Qloss           3.2 

 

Where: Wyld is the measure of the water yield (mm), Qsurf is the surface runoff 

(mm), Qgw is the groundwater contribution to streamflow (mm), Qlat is the lateral 

flow contribution to stream (mm) and Qloss is the transmission losses (mm) from 

the tributary in HRU by means of transmission through the bed (Fredrick & Manoj, 

2018). 

3.4.2 Calibration, uncertainty and sensitivity analysis 
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Calibration and uncertainty analysis is conducted using different methods, which 

include Parameter Solution (PARASOL), Adaptive Clustering Covering (ACCO), 

General Algorithm (GA), multi-start (M_Simplex), SWAT-CUP (Includes GLUE, 

SUFI2, MCMC, PARASOL and PSO). The uncertainty analysis is based on local 

errors and clustering. Calibration of models brings about some uncertainty in 

predictions, which can be categorised as conceptual model uncertainty, input 

uncertainty and parameter uncertainty (Abbaspour, 2015).  

 

The most widely used method of the uncertainty estimation is the Sequential 

Uncertainty Fitting 2 (SUFI-2) together with the SWAT Calibration Uncertainty 

Programme (SWAT-CUP). The method is used to carry out parameterisation, 

sensitivity analysis, uncertainty analysis, calibration and validation of hydrological 

variables on daily and monthly time steps. The calibration process is made easier in 

SUFI-2 as it is semi-automated and can be conducted within a short period of time 

(Mehan et al. 2017).  

 

The performance of the model for simulating streamflow based on monthly and daily 

measured flows has been classified into four categories, which depend on the 

threshold of the Modified Nash Sutcliff Efficiency (MNE) and Percent Bias (PBIAS) 

values (Moriasi et al. 2007). Table 3.1 shows the general performance ratings and 

the recommended statistics. 
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Table 3.1 Performance rating for recommended statistics (Moriasi et al.2007) 
 

 

 

 

 

 

 

Besides 

the quantitative statistics in Table 3.1, hydrographs for observed and simulated flows 

are plotted to compare and enhance understanding of the base flow recession and 

other hydrograph characteristics (Daggupati et al. 2015). Figure 3.3 illustrates the 

hydrological modelling process using SWAT. 

 

 
Category of MN Category of PBIAS Class 

 
0.75 < MN ≤ 1.0 

 
PBIAS < ±10 
 
 

Very Good 

0.65 < MN ≤ 0.75 ±10 ≤ PBIAS < ±15 Good 

0.5 < MN ≤ 0.65 ±15 ≤ PBIAS < ±25 Satisfactory 
 
 

MN ≤ 0.5 PBIAS ≥ ±25 Unsatisfactory 
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Figure 3.3 Overview of the SWAT process 

 

Figure 3.3 illustrates the SWAT modelling process. The prevailing philosophy of 

modelling demands that models be described in a transparent manner that show 

the routine performance of calibration, validation, sensitivity and uncertainty 

analysis. Calibration is based on the model structure, model inputs, analyst’s 

assumptions, calibration algorithm and calibration data while uncertainty analysis is 

used to evaluate the strength of the calibrated model (Abbaspour et al. 2015). 

3.5 Evaluation of climate change impact on hydrology and water 

 resources  

The hydrological model results for the current water resources and the projected 

future water resources were analysed and integrated. A review of the current 

hydrology and water resources and its linkage to climate variability was undertaken 
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to establish a baseline. The current water resource was simulated with the use of 

the SWAT model and based on CFRS climate data. The future water resources 

were simulated using the calibrated SWAT model for all the GCM data. 

 

Change Factor Methodology (CFM) a widely used method as described in chapter 

two was applied for climate change quantification (Trzaska & Schnarr, 2014; 

Hamududu, 2012; Anandhi et al.; Chen et al, 2011) in order to evaluate the changes 

in hydrology as simulated by SWAT based on the six GCMs. Impact assessments 

were done for the catchment water balance on temporal and spatial resolution, 

catchment streamflow variability and other climate and hydrological variables. 

 

The PRECIS model outputs were used to identify climate change signals and the 

quantification based on monthly, seasonal and annual time scales. The major 

climate variables evaluated included precipitation and temperature. The PRECIS 

experiments generated data for the entire ZRB in Southern Africa.  

 

The data generated under PRECIS experiments were for the period 1960-2009 for 

historical scenario while reanalysis scenario was from 1980-2009 and the future 

period under RCP4.5 and RCP8.5 covered 2020-2100.  However the studies only 

focussed on the future period of 2020-2050. The PRECIS model utilised pressure, 

temperature, vapour, sea and ice as boundary conditions for Regional Climate 

modelling. The generated results were compared and validated with observed data 

from the same KRB over the same period. 
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 :STATUS OF HYDROLOGY, WATER 

RESOURCES AND CLIMATE VARIABILITY 

4.1 Introduction 

The assessment of the current status of water resources in ZRB and its linkage to 

climate variability is the first step in understanding the basin challenges,gaps and 

creates a baseline for studies. In view of climate change in the region, the need to 

assess the impact begins with a knowing the status of the hydrology and water 

resources by reviewing the available information for the region. Climate variability 

affect hydrology and water resources differently depending on time scale. The basin 

hydrology and water resources need to be continuously assessed in order to 

determine the availability and quality in a changing climate. This leads to formulation 

of adaptation and mitigation strategies. 

 

In this chapter, an attempt is made to review the status of hydrology and water 

resources situation in the ZRB in order to identify linkages and gaps for future 

interventions. The overview of the changing climate is also heighted with evidence 

of climate change presented for most of riparian states. 

 

In a bid to jointly manage the Zambezi transboundary river basin, the riparian states 

formed the Zambezi Water Course Commission (ZAMCOM), following the 

ratification of SADC protocol on water in June 2011 (ZEO-Zambezi-environment 

Outlook, 2012). 
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The ZRB is normally split into three distinct major river reaches. The first river reach 

is the upper ZRB that starts from the source at Kalene Hills up to the Victoria Falls. 

The second reach is the middle ZRB, which starts from the Victoria Falls to Cahora 

Bassa Gorge and the third reach is the lower ZRB, starting from Cahora Bassa 

Gorge to the Zambezi Delta and ending into the Indian Ocean. 

 

The basin has two largest man-made reservoirs in the world and these are namely 

Kariba and Cahora Bassa. Lake Malawi (a natural lake) and Victoria Falls which is 

one of the seven wonders in the world are also sites for a hydroelectric power 

generation and irrigated agriculture. Figure 4.1 shows Lake Malawi, Victoria Falls, 

Kariba and Cahora Bassa reservoirs in the ZRB. 

 

Figure 4.1 Location of the largest man-made reservoirs in the world 

 

The variable climate in the basin directly affects the temporal and spatial variability 

of water resources in the region and therefore requires constant monitoring and 

evaluation in order to enhance integrated water resources management. The effects 
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of climate change are exacerbating the already poor water resources situation in 

ZRB. The previous decade has seen the availability of water resources in time and 

space drastically affected due to the high frequency of extreme events such as 

floods and droughts.  

 

The challenges of extreme events are well known and include loss of lives, 

displacement of people, low agricultural productivity, low hydropower generation, 

increased malaria incidence cases, poor ecosystems and increased environmental 

problems. These challenges have adversely affected the performance of some 

economies in the SADC (SARDC, 2007). 

 

Specific information on the climate change impact can be obtained through Regional 

Climate Modelling, which provides enhanced understanding of adaptive water 

resources management. Understanding the status of hydrology and water resources 

in ZRB and its linkage to climate variability is the necessary step in modelling and 

projection of future scenarios of water availability. 

4.2 Materials and Methods 

The methods used in this chapter included both quantitative and qualitative 

approaches.  The methods applied involved a review of relevant literature such as 

books,written reports,research articles, conference proceedings and other 

periodicles and data collection from various sources within and outside the basin; 

validation and verification of the water resources in the basin. The data collected 

included time series data such as rainfall, temperature,water use statistics, river 

discharges and water levels. The other data included decadal temperature change, 
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areas affected by floods. While qualitative data included areas affected by floods, 

droughts, indications and evidence of climate change. 

4.3  Climate Variability in the Zambezi River Basin  

The MAP varies from 1200mm to 800mm in the Upper ZRB,1050mm to 700mm in 

the middle ZRB and about 1100mm to 900mm in the lower ZRB. The temperature  

differs significantly across the basin in accordance with Topography. The codest 

month is July with mean monthly temperatures of less than 14oC while October is 

the hottest month with mean daily temperatures of 31°C in the lower parts of the 

Zambezi valley (ZAMCOM et al. 2015). 

 

The Potential Evapotranspiration (PET) also varies considerably across the basin 

from more than 1700mm per year in the Middle ZRB to less than 1400mm per year 

in the Upper ZRB. The Potential Evapotranspiration in many parts of the ZRB is 

twice as high as the Precipitation totals and this affects the overall basin water 

balance (ZAMCOM et al. 2015; World Bank, 2010). 

 

The Upper ZRB has six sub-basins while the Middle ZRB has four and the lower 

ZRB has three. Figures 4.2, 4.3 and 4.4 illustrate the distribution of the Mean Annual 

Precipitation (MAP) and the Potential Evapotranspiration (PET) for the three main 

river reaches. The data covered a period of about 50 years up until 2006 (Data 

source: World Bank, 2010; Builfuss & Santos,  2001). 
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Figure 4.2 Comparisons of MAP and PET in the Upper ZRB 

 

 

Figure 4.3 Comparisons of MAP and PET in the Middle ZRB 
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Figure 4.4 Comparisons of MAP and PET in the Lower ZRB 

4.4 Hydrology of the Zambezi River Basin 

The magnitude of the Zambezi River with all its tributaries has an average discharge 

of 2,600 m3/s of water into the Indian Ocean; the same range as the Nile at 2,830 

m3/s and the Rhine at 2,200 m3/s (Beck ; Bernauer, 2011). Rainfall is the principal 

source of all the available ground and surface water resources in the basin. The 

runoff coefficient is very low in the basin and averages less than 10% of the MAP 

(Beilfuss, 2012; World Bank, 2010). The basin experiences droughts and floods with 

a frequency of a decade. 

Figure 4.4 shows less than 10% of the precipitation in the basin contributing to the 

natural (unregulated) flow of the Zambezi River into the Indian Ocean. The MAP and 

Mean Annual Runoff (MAR) indicate significant differences and thus more than 90% 

of the MAP in the basin evaporates and returns to the earth’s atmosphere. 
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Therefore, the temporal and spacial variability of the available water resources in 

the basin is very significant (ZAMCOM et al. 2015). 

 

Figure 4.5 Comparisons of MAP and MAR in the ZRB 

 

 

Figure 4.6 Mean Sub-Basin Flows in the ZRB (Data source: World Bank,2010) 
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Figure 4.6 illustrates  that the highest flows were recorded in Tete sub-basin, which 

is found in the Lower ZRB while the Cuando/Chobe and Barotse contributed 

negligible flows to the entire basin. The flow regime of the basin also shows a higher 

contribution in the Upper and Lower ZRB than the Middle. The highest flow 

contribution to the river emanates from the Lower ZRB, leading to high potential for 

flooding because of general lower elevations (low lying areas that are prone to 

flooding). 

4.5 Water Resources in the Zambezi River Basin 

Water resources have become more vulnerable to climate change effects than ever 

before.The level of vulnerability varies in time and space throughout the basin. 

Vulnerability of water resources is mostly caused by floods, droughts, pollution 

sources such as on site sanitation,effluent discharges from waste water treatment 

plants in urban areas, industrial and mining effluents and agricultural 

pesticides,hebicides and other anthropogenic activities.  

 

Surface water resources such as rivers, streams, reservoirs and lakes are more 

vulnerable than groundwater resources. The ZRB has more surface water resources 

in the lower ZRB and Upper ZRB than in the Middle ZRB. Botha & Cloot (2004), 

estimates that 75% of the fresh water on earth is frozen in glaciers, while 

approximately 0.33% is held in rivers, streams, reservoirs, lakes and the remaining 

24.67% is groundwater. Therefore, groundwater needs to be further explored to 

augment surface water for mostly municipal water supply. 
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The largest water user in the basin has remained Hydro-Electricity Power (HEP) 

generation through evaporation from reservoirs. About 5000MW hydropower 

generation capacity is installed on the ZRB and an additional 13000MW of 

hydropower potential has been identified (World Bank, 2010). Table 4.1 illustrates 

the water use in the ZRB.  

Table 4.1 Water use/consumption in ZRB 

 

 

  

 

 

(Source: Euroconsult Mott MacDonald, 2008) 

4.6 Land Use/Cover of the ZRB 

The anticipated development in energy and agriculture in a bid to increase HEP and 

agricultural production poses a challenge of changing land use and land cover 

significantly and may come at a cost of conservation of ecosystems and wildlife. 

When land use changes, hydrology is changed with its ecosystem.  

 

Woyessa et al.  (2011) argue that the impact of land use changes on water resources 

have multiple agents that directly or indirectly influence the land use decision-

making process. Therefore, the ZRB should consider all factors at play in the land 

use decision-making process to ensure a balance is found between the 

development of energy, agriculture and the conservation of the ecosystem that will 

help to achieve poverty alleviation and contribute to economic development.  

 
Consumptive Water 
Uses/Sector 

Percentage (%) 

HEP (evaporation) 83 

Environmental/flood releases 6 

Irrigated agriculture 7 

Mining 1 

Urban domestic consumption 1 
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The other major land use has been the Miombo woodlands, which are the most 

extensive dry deciduous forests in the world, covering a substantial area of the KRB 

(Naidoo et al. 2013). However, the land use has been altered with the developments 

on the river systems such as changes in land use in the flood plains. 

4.7 Climate Change and Water Resources in the ZRB 

Studies carried out in Southern Africa on water resource management and climate 

change, indicated that hydrological systems and water resources would be altered 

resulting in the reduced availability of water (Cessford & Burke, 2005). Climate 

change in the basin has already begun to increase the variability of rainfall, as well 

as the occurrence of extreme events such as droughts, floods and heat waves.  

 

Figure 4.7 illustrates the evidence of climate change recorded in the riparian 

countries. 
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Figure 4.7 Mean decadal temperature rise (Source:Young et al. 2010) 

 

Figure 4.7 illustrates that the observed trend in some Southern African countries 

between 1960 and 2006 with an increase in the mean annual temperature. Figure 

4.7 also shows that Angola’s mean annual temperature has increased with an 

average rate of 0.33oC per decade, while Malawi’s average increase rate was 

0.21oC per decade in the same period (SADC, 2014; Beilfuss, 2012; Young et al. 

2010).  

4.7.1 Drought 

Droughts and floods drastically affect the availability of water resources. The climate 

change induced droughts has affected nearly all water consumption/uses in the 

basin such as energy, agriculture, municipal water supply, tourism, environment and 

mining. The biggest water use in the basin is in HEP generation through evaporation 
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from reservoirs. The water levels in reservoirs for hydropower generation become 

low in the basin to an extent where power generation is reduced, triggering 

shortages and affecting the economies adversely. The climate change induced 

drought between 2000-2009 killed about 500 people in Malawi and 58 people in 

Angola and affected about 30 million people in the riparian states (ZAMCOM et al. 

2015). Figure 4.8 illustrates the distribution of people affected by country. 

 

 

Figure 4.8 Total number of people affected in the Zambezi riparian states 

 (Source: ZAMCOM et al. 2015) 

 

The recent droughts in 2015/2016 affected the power generation at Kariba North 

and South banks where generation was reduced from 540MW to 305MW translating 
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into about 43% (Ipsos, 2015).This is due to the entire basin largely depending on 

hydropower with very few alternatives.  The agricultural sector was equally affected, 

as most of the riparian states could not grow enough food, which led to food 

insecurity and famine. Tourism was also affected by the reduced flow as the Victoria 

Falls could not flow as required and wildlife in Namibia, Botswana and Zimbabwe 

were all affected due to the drought conditions. The drought also affected the 

groundwater levels where most of the boreholes and wells in rural areas dried up, 

forcing communities to walk long distances to fetch water for domestic purposes. 

4.7.2 Floods 

When above normal rains are experienced in the basin, floods occur; has a 

frequency of about once every 10 years. The climate change induced floods 

between 2000 and 2009 have killed 1,885 people while those affected were 12.1 

million. Table 4.2 illustrates  the magnitude of the problem in the basin by country. 

 

Table 4.2 Impact of climate change induced floods 2000-2009 

Source: ZAMCOM et al. 2015 

 

Country People Killed Total Affected 

Angola 297 591509 

Botswana 3 148392 

Malawi 91 1223435 

Mozambique 1012 6225126 

Namibia 148 474300 

Tanzania 162 96750 

Zambia 60 3024633 

Zimbabwe 112 331000 

Total 1885 12115145 
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Floods also destroy the public infrastructure such as roads, bridges, buildings and 

settlements in the region, which worsens the poverty levels. The agricultural sector 

is also adversely affected as most of the crop fields tend to be destroyed by floods 

reducing the yield and thus creating food insecurity.  

 

Furthermore, the malaria prevalence tends to increase during floods, affecting a 

large population and leading to death. Water quality is also affected for both ground 

and surface water resources across the basin as much of the runoff transports 

pollutants, debris and faecal matter, from most of the shallow deposit sites. The 

populations face considerable challenges to find potable water during the season. 

4.8 Conclusion 

The variability of water resources across the basin is a matter of concern and 

requires concerted efforts to establish linkages of cooperation at a regional basin 

level. The energy sector are the most affected, as hydropower generation was 

drastically reduced by about 40%; in Zambia at Kariba North Bank the reduction was 

from 540MW to 305MW. The trend was the same with Zimbabwe at Kariba South 

Bank (Ipsos, 2015).  

 

The situation has been exacerbated by the effects of climate change. There is 

inadequate knowledge coupled with research gaps on climate change impact on a 

local sub-basin scale as the most scientific information is on a global scale. There 

is, therefore a need to localise the research on climate change in an attempt to 

understand the complex hydrological processes.  
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The ZRB like other basins in Southern Africa also lacks hydro-meteorological data 

to accurately assess the water resources due to few, poorly maintained, hydro-

meteorological observation networks.  Therefore, there is a need for more research 

to explore other alternatives of assessing water resources in data scarce regions in 

order to be able to accurately quantify the available water resources. 

 

More research is also needed in groundwater resources for the region as there is 

little knowledge, but a lot of potential. Review of relevant literature has shown that 

there is more fresh water on earth frozen in glaciers, than what is held in rivers, 

streams, reservoirs, lakes and groundwater. The largest percentage of water held 

is groundwater and therefore needs to be further explored to augment surface water 

for municipal water supply. 

 

Therefore Chapter five explores the possibilities of using alternatives other than 

using the conventional (traditional observed data) in estimating water resources in 

data scarce regions. More research and a detailed analysis of the technologies used 

is presented in an attempt to accurately quantify the water resources in the ZRB and 

enhance a policy review of adaptation and mitigation strategies.     
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 : HYDROLOGICAL MODELLING USING             

GRIDDED CLIMATE DATA 

5.1. Introduction 

The hydro-meteorological stations of many river basins in Southern Africa are 

inadequate, low resolution and a poorly maintained (Botai et al. 2015; Hughes, 2013; 

Euroconsult Mott MacDonald, 2008; Walker & Road, 2000; Desmond et al. 1997). 

This culminates into inadequate and scarcity of hydrological data sets leading to 

challenges of inaccurate estimation of water resources (Tan et al. 2017). Water 

resources assessments are key to the planning and development of water resources 

in any given river basin (World Bank Group, 2018). The effective assessment of 

water resources is achieved through a well-maintained hydro-meteorological 

observational network in a given river basin.  

 

In view of the affore mentioned challenges, gridded climate data as alternative 

technology to the conventional ground observed data was explored in assessing the 

hydrology and water resources of the KRB. 

 

Gridded climate data selected was Climate Forecast System Reanalysis (CFSR) as 

it is a high resolution,global reanalysis climate data set, captured through satellite 

imagery. The use of CFSR for the hydrological simulation in the ZRB has not been 

adequately investigated . Therefore the main objective of this chapter is to determine 

the suitability of CFSR in data scarce regions for hydrological modelling and  

estimation of water resources of the KRB. 
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The CFSR was used as input data in SWAT model to simulate hydrological 

processes in the basin. Calibration and validation of the model for observed and 

simulated flows were performed using the SWAT-CUP.  

 

The statistics showed NS at 0.73, while R2 was 0.73. The uncertainty analysis 

showed the P-factor at 0.75 and the R-factor at 0.75. The simulation results also 

indicate that there is adequate water yield at present across the KRB with potential 

to harness and utilise more than half of the water yield that is distributed across the 

basin. 

 

Overall, this chapter confirms that the use of CFSR for hydrological modelling in 

data-scarce regions could be a useful tool to estimate the main hydrological 

parameters and water resources of an area with satisfactory accuracy. 

5.2 Materials and Methods 

5.2.1 Data sets 

The datasets used included the gridded climate data, global land use and land cover 

processed from remotely sensed imagery and global soil classification data. These 

data were used as input into a SWAT hydrological model in conjunction with GIS. 

Gridded climate data 

Soil and land cover data are more reliable and accessible because of modern 

technological advancement in remote sensing. However, hydro-meteorological 

networks are still rarely available and inconsistent in data capturing. In this chapter, 

© Central University of Technology, Free State



Chapter 5 

73 

   

The gridded climate data sources such as CFSR are readily available from the 

National Centre for Environmental Prediction (NCEP) and ECMWF Re-Analysis 

ERAs from the European Centre for Medium-Range Weather (ECMWF) is explored 

to find lasting solutions. The CFSR, which covered the entire basin was downloaded 

from Texas A & M University Global Weather database 

(https://globalweather.tamu.edu). 

 

The data included Precipitation (mm), Temperature (oC), Relative Humidity 

(Fraction), Solar Radiation (MJ/m2) and Wind Speed (m/s). The CFSR was captured 

from 55 stations within the basin and covered a period of 34 years (1979 to 2013).  

The CFSR was compared with ground observed rainfall data from five stations 

covering a period of 34 years (1979 to 2013) in order to determine the relationship 

between the two data sets.  

Land use /land Cover  

Land use types and various vegetation affect the overland flow of water in different 

ways. Evapotranspiration (ET) and runoff are mainly affected by vegetation, while 

land use types for different slopes with varying crop types result in varying runoff 

volumes (Woyessa et al. 2011). The activities of land use/land cover and water 

resources management are co-dependent. Land erosion in a catchment leads to 

sedimentation in water resources and on-site nutrient loss and nutrient enrichment 

of water resources (Rahul et al. 2012).  

 

The land use/land cover data sets were obtained from USGS 

(https://landcover.usgs.gov/global_climatology.php), which is a Moderate 

Resolution Imaging Spectroradiometer (MODIS) land cover type with a resolution of 
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500m x 500m. MODIS-based global land cover types are widely used in hydro-

meteorological modelling. It was found that the Collection 5.1 (MCD12Q1) product 

has a substantial amount of inter-annual variability, with 40% of land pixels showing 

land cover change one or more times from 2001 to 2010 

(https://landcover.usgs.gov). 

The Basin Soils 

The basin soil map was prepared in ArcGIS based on the United Nations Food and 

Agriculture Organisation (FAO) soil classification obtained from Ministry of Lands, 

Government of the Republic of Zambia (GRZ). The soil identification for the basin 

was performed using the FAO/United Nations Scientific Council (UNESCO) soil 

scientific description based on the pixels. 

The Digital Elevation Model (DEM) 

The DEM was obtained from the Shuttle Radar Topographical Mission (SRTM) with 

a resolution of 30m (https://earthexplorer.usgs.gov/), which is also the most widely 

used elevation data in the world. The basin DEM, which was masked from the pro-

mosaic DEM has the highest elevation of 1568m while the lowest point is 1020m 

above sea level. Figure 5.1 illustrates the delineated KRB DEM with an area of 

72 082km2.  
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Figure 5.1 Digital elevation model of the KRB 

 

Figure 5.1 illustrates the KRB with a delineated surface area of 72082km2. It also 

shows the Watopa gauge station where observation flow data is captured. 

5.2.2 SWAT Model set up 

The model was set up and parameterised within ArcGIS interface (Arc SWAT 2012). 

A DEM of 30m resolution was used to delineate KRB with an area of 72 087km2. 

The DEM was overlaid with soil and land use data, producing 102 sub-basins and 

255 hydrological response units (HRUs). The HRUs are not spatially continuous but 
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are considered homogenous units with similar slope range, soil type and land use 

types and are the basic units for hydrological simulations.  

 

The model simulations were undertaken for a period of 1979 to 2013. The first three 

years of simulations are used for initialising or warming up the model. Due to 

insufficient and unreliable flow measured data, only one gauging station with 

observed streamflow data was used for calibration and validation. About two-thirds 

of monthly flows (data points) from 1982 to 1997 of the observed data from this 

station (Watopa) was used for calibration and the remaining one-third from 1998 to 

2005 was used for validation of the model. Figure 5.2 illustrates the subdivided KRB 

and the created HRUs. 
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Figure 5.2 The sub-basins of the KRB 

 

Figure 5.2 illustrates the 102 sub-basins with their numbers, which were further 

divided into 255 HRUs. Observed flow data were obtained from Watopa gauge 

station (shown on figure 5.2) on sub-basin number 98 for calibration and validation 

purposes. The sub basin areas are listed  in, Appendix A, Table A1. 

5.2.3 Performance Indices 

The study considered four performance indices to evaluate the model performance, 

namely P-factor, R-factor, R2 and NS. The R2 and NS were used as a likelihood 

measure for the rainfall-runoff model (SWAT model) in the SUFI-2 approach 
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between the simulated and observed streamflow. The NS was calculated using the 

following Equation (5.1): 

 

NS = 1 − 
∑ [yi − xi]2n

i=1

∑ [xi − x]̅2n
i=1

                                                                                                  (5.1) 

        

Where: xi is the ground-based measurements; yi is the model predicted data; 𝑥̅  is 

the mean of the ground-based measurements. 

 

The P-factor, which is the percentage of measured data bracketed by the 95% 

prediction boundary, also referred to as 95PPU, was used to quantify all the 

uncertainties associated with the SWAT model. The P-factor and R-factor are linked 

to each other; a larger P-factor can only be obtained at the expense of a higher R-

factor. The R-factor is calculated by the following Equation (5.2): 

 

R-factor = 

1
n

∑   (y
ti,97.5%, 
M  -yi

ti,2.5%

M )  n
i=1

σobs

                                                               (5.2) 

 

Where:  y_ (ti, 97.5 %,) ^M is the upper boundary of the 95UB; y_ (ti, 2.5%) ^M is 

the lower boundary of the 95UB and σ_obs is the standard deviation of the observed 

data. 
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5.3 Results and Discussion 

5.3.1 Comparison of observed and CFSR rainfall data 

Long-term gridded climate data are reliable data sets that can be used in the 

determination of climate change and in the development of adaptation and mitigation 

strategies in a river basin (Tan et al, 2017). Recent investigations revealed that the 

use of gridded climate data in the SWAT model produced streamflow simulations 

that are comparable to when conventional weather stations were used (Fuka et al. 

2014; Grusson, 2017). 

 

In addition, (Dile & Srinivasan, 2014) found that the application of CFSR data is 

comparable to conventional weather stations and that in data scarce regions CFSR 

could be recommended. CFSR data set covered the entire basin with a ground 

resolution of approximately 38km and Figure 5.3 illustrates  the distribution of the 

CFSR precipitation locations and ground weather stations. 
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Figure 5.3 Distribution of CFSR and ground weather stations 

 

As indicated in Figure 5.3, there are 55 CFSR stations (represented by pink 

triangles) while there are five ground weather stations (represented by green 

circles), with a ground resolution of approximately 150km.The observed flows were 

recorded at Watopa GS (Indicated in blue pentagon-shaped symbols). 

 

The CFSR data is based on both historical and operational records of observations 

and newly reprocessed sets of observations produced at meteorological research 

centres around the world. CFSR assimilates observations from upper air balloon 

observations, aircraft observations and satellite observations. Since 1978, several 

records were combined for CFSR assimilation from National Centres for 
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Environmental Prediction (NCEP) and the European Centre for Medium Climate 

data (https://www.ecmwf.int/en/about). 

 

Figures 5.4 (a) and (b) illustrates the spatial distribution of the annual rainfall based 

on sub-basins and HRUs for CFSR rainfall and ground observed rainfall, 

respectively. 

 

Figure 5.4 Spatial distribution of annual rainfall for CFSR (a) and observed (b) 

 

The spatial distribution of CFSR rainfall in Figure 5.4 (a) clearly illustrates that more 

rainfall is received in the northern part of the basin and less in the southern part, 

which is confirmed by the observed spatial distribution of annual rainfall in Figure 

5.4 (b) during the same period. The observed spatial distribution of annual rainfall 

was derived from five meteorological stations.  

 

The CFSR data was further subjected to a trend analysis in order to determine its 

suitability for use in the SWAT model. A correlation coefficient was determined 
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between the observed monthly rainfall data considered suitable from ZMD for the 

basin area and the CFSR monthly rainfall data. Gridded rainfall data from CFRS is 

listed on Appendix D,Table D1. 

 

The results shown in Figure 5.5 indicate a correlation efficiency of 97%, which 

confirms the reliability of the CFSR data for use in hydrological modelling.  

 

Figure 5.5 Relationship between CFSR and observed mean monthly rainfall 

 

The mean monthly rainfall for both CFSR and observed rainfall is illustrated in Figure 

5.6 and the graphical comparison indicates a strong correlation. The rainfall starts 

in September and increases every month until January when peak rainfall is 

recorded while there is no rainfall recorded between May and August for both data 

sets. However, the differences are also eminent in magnitude where CFSR data is 

slightly overestimating monthly rainfall for some months. 
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Figure 5.6 Comparison of average monthly CFSR and observed rainfall 

 

The mean annual rainfall for both datasets is illustrated in Figure 5.7 with the mean 

annual rainfall from both datasets have similar patterns and trends with minor 

differences between the two curves. The available observed data was from 1982-

2013 and hence only that period was obtained for CFSR annual rainfall to enable 

comparisons.There is however, a wide separation between 2007 and 2013 of the 
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curves perhaps due to some inherent errors in the observed data or a change in the 

rainfall regime. 

 

Figure 5.7 CFSR and observed annual rainfall (1982-2013) 

 

Further analysis was performed to determine the Coefficient of Variation (CV) for 

the annual, monthly and seasonal rainfall for the two data sets. The CV was 

calculated for each period of analysis to measure the relative variability of datasets 

on a ratio scale and was used to study quality assurance by measuring the 

dispersion of rainfall data of a frequency distribution. Table 5.1 shows the results. 
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Table 5.1 Estimated Coefficient of Variation 

 

The calculated annual, monthly and seasonal CV for CFSR and observed rainfall 

are comparable as seen in Table 5.1. The year is divided into four seasons, namely  

December, January and February (DJF) which is the typical rain season,  March, 

April and May (MAM) which is the autumn, June, July and August (JJA), the winter 

season and September, October and November (SON) which is the summer 

season. DJF and MAM are rainy seasons in the basin that have matched well. The 

highest rainfall is recorded in DJF, followed by MAM, which forms the end season 

of rainfall. 

 

Figure 5.8 shows a comparison of CVs for the CFSR and the observed rainfall 

datasets. The correlation coefficient of 97% shows that the gridded climate data are 

good enough to be used in hydrological modelling. 

Parameter Observed  CFSR 

Annual CV 0.115 0.262 

Monthly CV 1.159 1.173 

Seasonal CV   

DJF CV 0.195 0.103 

MAM CV 1.393 1.362 
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Figure 5.8 Comparison of CV of observed and CFSR seasonal rainfall 1982-2013 

5.3.2  Calibration, uncertainty and sensitivity analysis 

Model calibration and uncertainty analysis were performed with the SUFI-2 

algorithm (Abbaspour et al. 2004; 2007) using the SWAT CUP software package. 

The results of the SWAT-CUP were useful in calibrating the model and estimating 

uncertainties and related assumptions in water resources modelling (Narsimlu et al.  

2015). The algorithm calculates all the uncertainties of the parameters, conceptual 

model and other inputs in the form of a graph expressed as uniform distributions or 

ranges. Much of the observed data is captured within a threshold of 95% prediction 

uncertainty (95PPU) through the model iteration process. Latin hypercube sampling 

is used to calculate the 95PPU at 2.5% and 97.5% levels of cumulative distributions 

of an output variable. 

 

Two indices, referred to as P-factor and R-factor (Abbaspour et al. 2004), were 

calculated in order to determine the Goodness-of-Fit (GOF). The P-factor represents 

the 95PPU for model simulation and the R-factor is the band representing observed 
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data including its error. The fraction of the observed data error, bracketed by the 

95PPU band, is the P-factor and ranges from 0 to 1, where 1 is 100% bracketing of 

the observed data within the prediction uncertainty; the model simulation is perfect. 

A P-factor value of > 0.7 is often recommended to be adequate for simulation 

purposes, but the recommended values are largely dependent on the quality of the 

input parameters, calibration and validation data. While the R-factor is simply the 

ratio of the mean width of the 95PPU band and standard deviation of the measured 

variable, the preferred value is less than 1.5 based on the scale of the study 

(Abbaspour et al. 2015).  

 

The P-factor and R-factor indices indicate the strength and performance of the 

calibration and validation. A bigger P-factor value can be obtained at the expense 

of a bigger R-factor value and, therefore, there must be a balance between the two. 

When acceptable R-factor and P-factor values are reached through iteration, the 

parameter ranges are considered calibrated parameters. 

 

The sensitivity analysis was performed for 18 input parameters for KRB in the SWAT 

model. The large number of input parameters, representing various processes in the 

objective function of SUFI-2, improves enveloping of the observations in the model 

(Habte et al. 2013; Mehan et al. 2017). The parameters were selected and ranked 

through the global and local sensitivity analysis (Abbaspour et al. 2015). Global 

sensitivity analysis was determined by calculating the multiple regression of the 

Latin hypercube generated parameters against the objective function values.   
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The sensitivity of parameters in SUFI-2 is the estimate of the average changes in 

the objective function resulting from changes in each parameter when all other 

parameters are changing (Khalid et al. 2016). Table 5.2 indicates the sensitivity of 

parameters based on the global sensitivity analysis. 
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Table 5.2 Global Sensitivity of Parameters 

 

Table 5.2 is the assessment of the sensitivity of parameters in SUFI-2 which was 

measured with the t-stat values and P-values. The parameters with larger absolute 

t-stat values are more sensitive while the P-values are used to determine the 

Parameter Name Description t-Stat P-Value 

R__SOL_AWC 
(.).sol 

Available water capacity of 
the soil layer (mm H2O 
/mm soil) 

-7.615 0.000 

R__HRU_SLP.hru Average slope steepness 
(fraction) 

-2.171 0.030 

R__SOL_BD (.).sol Soil Bulk Density -2.126 0.033 

R__SOL_K (.).sol Saturated  hydraulic 
conductivity (mm/hour) 

-2.032 0.042 

V__GW_DELAY.gw Groundwater delay (days) -1.812 0.071 

V__CH_K2.rte Manning’s n value for the 
main channel 

-1.239 0.215 

R__SLSUBBSN.hru Average slope length (m) 1.057 0.291 

R__OV_N.hru Manning's n value for 
overland flow 

-1.031 0.303 

V__ALPHA_BNK.rte Base flow alpha factor for 
bank storage (days) 

-0.822 0.411 

V__ALPHA_BF.gw Base flow alpha factor 
(days) 

-0.777 0.437 

V__GWQMN.gw Threshold depth of water 
in the shallow aquifer 
required for return flow to 
occur (mm) 

0.5636 0.573 

R__CN2.mgt SCS runoff curve number 0.525 0.599 

V__CH_N2.rte Manning’s n value for the 
main channel 

-0.382 0.703 

V__SURLAG.bsn Surface runoff lag time 
(days) 

-0.340 0.734 

V__REVAPMN.gw Threshold depth of water 
in the shallow aquifer for 
"revap" to occur (mm) 

-0.314 0.753 

R__SOL_ZMX.sol Max depth from soil 
surface to rooting depth 
(mm) 

-0.182 0.856 

V__ESCO.hru Plant uptake 
compensation factor 

0.122 0.903 

V__GW_REVAP.gw Groundwater "revap" 
coefficient 

0.036 0.971 
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significance of the sensitivity. When the P-value is close to zero the parameters are 

classified to have significance of the sensitivity. 

 

SUFI-2 has 10 different objective functions, some of which include mean square 

error (MSE), Nash Sutcliff (NS), R2 and Br2. The most widely used statistics in 

calibration and validation are R2 and NS. The R2 ranges from 0 to 1, where 0 shows 

non-correlation while 1 indicates a perfect correlation and provides an estimate of 

how well the variance of observed values are replicated by the model predictions 

(Krause et al. 2005). 

 

The regression slope and intercept are equal to 1 and 0 respectively, although most 

of the published SWAT studies do not show the slope and intercept as a perfect fit. 

The NS values range from -∞ to 1 and provide a measure of how well the simulated 

output matches the observed data along a 1:1 line (regression line with slope equal 

to 1). The NS value of 1 shows a perfect fit between observed and simulated data. 

NS values ≤ 0 indicate that the observed data mean is a more accurate predictor 

than the simulated output. Both NS and R2 are biased towards high flows (Arnold et 

al. 2012). In this study, Nash-Sutcliff (NS) was used as the objective function for 

discharge. 

5.3.3 Land use/cover 

The classification of land use for the basin was based on MODIS land cover type 

with a resolution of 500m x 500m. Figure 5.9 shows the land use/land cover for KRB. 
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Figure 5.9 KRB land-use/land cover for 2010 

 

The KRB land-use was grouped into 12 classes, with the woody savannahs being 

the predominant feature, which covers more than 90%, followed by evergreen 

broadleaf forest at 3.2% and the rest of the area is covered by landuse of less than 

0.5%.Therefore the major influencing land use is woody savannahs. Table 5.3 

shows land use/land cover for the basin based on 2010. 
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Table 5.3 Land use types according to the SWAT classification 

 

The KRB is divided into sub-basins, which are further subdivided into HRUs in order 

to classify the watershed conditions. The SWAT model reflects differences in 

evapotranspiration for various crops and soils based on the subdivision of the 

watersheds. The land use is, therefore an important data input into the SWAT model. 

Data sets with land use use types that account for more than 20% of the area in 

HRU are included in order to help address differences between the resolution of 

data sets (Coutu & Vega, 2007). 

5.3.4 Soil 

The KRB has eight identified soil types according to FAO/UNESCO soil 

classification of which arenosols are predominant with 30% basin coverage. The 

arenosols are commonly Kalahari sands, extending up to one-metre depth with sand 

Value Description Landuse Area(%) 

2 Evergreen Broadleaf Forest FRBE 3.235 

4 Deciduous Broadleaf Forest FRBD 0.07 

5 Forest-Mixed FRST 0.051 

6 Closed Shrub-lands RNGC 0.002 

7 Range Brush RNGB 0.001 

8 Woody Savannahs WETW 95.624 

9 Savannahs WETS 0.355 

10 Range-Grasses RNGE 0.085 

11 Wetlands-Mixed WETL 0.04 

12 Agricultural Land-Generic AGRL 0.038 

13 Urban and Built-Up URHD 0.005 

14 Agriculture Land-Close grown AGRC 0.493 

Total   100% 
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content of more than 70%, a clay and silt content of less than 10%, low nutrient 

content and low water retention capacity. Figure 5.10 illustrates the soil distribution 

across the basin.  

Figure 5.10 Spatial distribution of soil in KRB 
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Table 5.4 Basin soil coverage percentage 

 

 

 

 

 

 

 

 

 

 

Source: (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/) 

5.3.5 Calibration and validation 

The SWAT model outputs were subjected to calibration by using SWAT_CUP with 

SUFI2. The model calibration was performed for the period 1979-1997, with an initial 

three years being used as a warm-up. The model was validated with the flow data 

from 1998-2005.The performance of the model calibration was found to be good 

with R2 at 0.73 while NS was 0.73. Figures 5.11 and 5.12 show the graph with 

95PPU for the calibration and validation, respectively. 

Soil Name Texture Basin Coverege (%) 

Luvisols Loam 1.77 

Leptosols Clay-Loam 0.0 

Vertisols High clay content 0.53 

Gleysols Loam 27.12 

Acrisols Loam 14.80 

Cambisols Loam 1.86 

Arenosols Sands 29.57 

Ferralsols Clayey soils 24.35 

Luvisols Loam 1.77 
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Figure 5.11 Calibrated of SWAT Model 

 

Figure 5.12 Validated of SWAT model 

 

The comparisons of the calibrated and validated results are shown in Figure 5.13. 

The data for calibration and validation is listed in Appendix C,Table C1 and C2. 
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Figure 5.13 Comparisons of calibrated and validated of SWAT model 

5.3.6 Uncertainty Analysis 

Monthly time steps data were used to determine the performance indices for the 

model parameters.  The calibration results in Figure 5.11 revealed that there were 

consistency and a close match between observed and simulated flows between 

1982 to 1997. While the validated results in Figure 5.12 indicated a consistency in 

simulation of the stream flows between 1998 and 2005, the observed and simulated 

peak flow showed some mismatches probably due to the large area of the basin 

with limited gauging stations.  

 

Figures 5.11 and 5.12 also show that the 95PPU was well bracketed during the 

calibration period from 1982 to 1997, with a P-factor of 0.75 and the R-factor at 0.75 

while during the validation period from 1998 to 2005, the values changed to 0.73 

and 0.55, respectively. The P-factor of 0.75 obtained during calibration and 0.73 

during validation indicate that most of the observed and simulated data are 

bracketed with 95PPU. The slight decrease in P-factor from 0.75 to 0.73 during 

validation indicates the level of uncertainties in input variables, such as rainfall. The 
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measured data used for calibration and validation of model predictions is widely 

accepted with uncertainty inherent.  

 

However, the model performance evaluation seldom includes the measurement 

uncertainty inherent due to data paucity on uncertainty inherent on measured input 

data (Harmel & Smith, 2007). 

5.3.7 Goodness-of-Fit  

The Goodness-of-Fit (GOF) was measured using R2 and NS (Nash & Sutcliffe, 

1970) between observed and simulated flow. The NS values, after calibration and 

validation, were found to be 0.73 and 0.64, respectively, which indicate that the 

results are good.  A value of 0.6 is considered good for hydrologic evaluations 

performed on a monthly time step.  

 

The coefficient of determination (R2), after calibration and validation, was found to 

be 0.73 and 0.70, respectively, which indicate that the results are good since it 

exceeds 0.6 (Moriasi et al. 2007; Arnold et al. 2012; Tan et al. 2017). Table 5.5 

shows the fitted parameter values. 
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Table 5.5 Fitted parameter values 

 

The most sensitive parameters were CN2 and Soil-AWC, while parameters such as 

R-soil _BD, were less sensitive. Robust calibration was performed with 500 

iterations per simulation. Global sensitivity analysis was used in order to determine 

Par No Parameter Name Fitted Value Min_Value Max_Value 

1 R__CN2.mgt -0.515517 -0.549675 -0.485105 

2 V__ALPHA_BF.gw -0.135606 -0.190592 -0.132034 

3 V__GW_DELAY.gw 482.561829 478.066803 488.693329 

4 V__GWQMN.gw 3.649851 3.511368 3.82972 

5 R__SOL_AWC (...).sol 0.165577 -1.988471 0.496013 

6 R__HRU_SLP.hru 0.443559 0.338701 0.524949 

7 V__GW_REVAP.gw 0.105361 0.098434 0.11652 

8 V__ESCO.hru 0.495606 0.489305 0.518885 

9 R__OV_N.hru 19.204071 19.126938 27.697338 

10 V__CH_N2.rte 0.267918 0.246142 0.268896 

11 R__SOL_K (...).sol 0.074562 0.020596 0.159326 

12 R__SLSUBBSN.hru 0.624561 0.565059 0.660875 

13 V__SURLAG.bsn 26.83889 26.71983 27.194176 

14 V__ALPHA_BNK.rte 0.032703 0.022104 0.051628 

15 R__SOL_ZMX.sol 0.054973 0.024473 0.057517 

16 V__REVAPMN.gw 487.243347 479.313232 496.294189 

17 V__CH_K2.rte 4.76998 4.463252 7.561514 

18 R__SOL_BD (...).sol -0.579658 -0.595719 -0.486459 
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the sensitivity of the parameters in SUFF-2. The statistics of GOF are summarised 

in Table 5.6. 

Table 5.6 Statistical index for calibration (1982-1997) and validation (1998-2005) 

 

 

 

 

 

 

The statistics in Table 5.6 indicate a good model performance at calibration with NS 

of 0.73 and R2 of 0.73 while for validation the parameter values were 0.64 and 0.70, 

respectively. Sensitivity analysis also indicates that most of the observed and 

simulated data were bracketed by the 95PPU (P-factor) at 0.75 during calibration.  

 

However, at the validation phase a slightly lower value of 0.73 was obtained 

probably due to the inherent uncertainty of measured data. Good results were also 

obtained for calibration with R-factor of 0.75 and validation with R-factor of 0.55. 

This shows that the thickness of uncertainty band was reduced and provided more 

confidence in the produced results (see Figures 5.11 and 5.12). The results also 

show that the use of CFSR in data scarce regions could be reliable and effective. 

5.3.8 Simulation of stream flow and water yield 

Simulation of streamflow for any river basin is an important result in hydrological 

modelling as it is used in water resources management. The simulated flows in KRB 

were graphically compared with the observed flow during and after the calibration 

period in order to determine their suitability for use in water resources management.  

 

Index Calibration Validation 

Coefficient of determination (R2) 0.73 0.70 

Nash and Sutcliffe Coefficient (NS) 0.73 0.64 

P-factor 0.75 0.73 

R-factor 0.75 0.55 
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Figure 5.14. illustrates the rainfall with simulated and observed flows. 

 

Figure 5.14 Monthly simulated and observed flow versus monthly rainfall 

 

The simulated flows compare well with observed flows, as indicated in Figure 5.14. 

The trend and streamflow regime are the same for monthly and seasonal time 

scales. The simulated peak and low flows agree well with observed peak and low 

flows. However, variations exist in flow magnitude at the peak and low flows. The 

simulated flows underpredict the peak and low flows in some months. In general, 

the simulated flows are well accepted and reliable based on the graphical 

comparisons and the statistics obtained in Table 5.7. 

 

Further comparisons were done with simulated and observed flows against the 

average monthly rainfall. The comparisons in Figure 5.14 illustrate that the rainfall 

peaks for each month also corresponds to the simulated and observed peak flows 
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while periods of lowest and or no rainfall also correspond to low simulated and 

observed flows. The matching of the rainfall and simulated peaks further shows the 

rainfall-runoff relationship and the KRB response time to a rainfall input event. The 

simulated flows are therefore reliable and suitable for use in hydrology and water 

resources management. 

 

The SWAT model simulated water yield for the period of 1982-2013 compares 

relatively well and Figure 5.15 illustrates the CFSR annual rainfall and annual water 

yield across the basin. 

 

Figure 5.15 Comparison of annual water yield and CFSR annual rainfall  

 

As illustrated in Figure 5.15, the water yield varies with corresponding variability of 

rainfall in the basin. There has been sufficient water yield over the years with the 

lowest being 200mm recorded in 1992 and the highest being 1400mm recorded in 

1982. The year 1992 was characterised by drought while floods occurred in 1982. 
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Figure 5.16 illustrates CFSR monthly rainfall and water yield obtained after analysis. 

 

Figure 5.16 Average monthly CFSR rainfall and water yield (1982-2013) 

 

Figure 5.16 shows the mean monthly water yield that follows the rainfall trend, which 

is high between January and March, recedes between April to June and dry between 

June and September. The rainfall begins to rise sharply from October to December, 

which is a rainy season in the basin. The water yield hydrograph is a delayed 

response to rainfall input in the basin and from January to June and October to 

December there is adequate yield. However, from May to October, there is almost 

zero water yield and during this time the river flow in the basin is at its lowest.  

 

Water yield was further analysed based on its spatial distribution in the basin and 

the water yield variability map was created as shown in Figure 5.17. 
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Figure 5.17 Water yield variability map (1982-2013) 

Figure 5.17 indicates the spatial variability of the Mean Annual Water Yield 

(MAWYLD) across the entire basin. The northern part of the KRB has the highest 

water yield ranging from 820 to 1011 mm while the lowest is found in the southern 

part of the KRB ranging from 363 to 413mm. 

Water resources are analysed in the context of blue and green water flows in a basin 

and its spatial variability across the basin. The blue water is the estimated water 

yield and the deep aquifer recharge while green water storage is soil moisture, which 
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has been broadly identified as very important for water resources management 

(Schuol et al. 2008; Rockstrom & Falkenmark, 2006). 

 

The green water can better be used to boost agricultural production in the KRB 

because nearly all seasons have sufficient green water, except for the winter and 

spring season (July-September). There is also good rainfall in the KRB that is 

normally converted to runoff and can further be harnessed through construction of 

water conservation structures that can serve as a source of water for winter and 

spring farming. 

5.4 Conclusion 

The use of gridded climate data (CFSR) has proved to be reliable and perhaps an 

appropriate alternative in data scarce regions. Automatic calibration and validation 

with SWAT-CUP SUFI-2 have proved effective in producing calibrated parameters. 

The southern African region has particularly been a data scarce region, which has 

hampered research on a large scale, but with the use of alternative technology, 

water resources would be well-assessed and effective management can be 

envisaged. 

 

The simulated results with NS as the objective function showed that calibrated 

results were good at 0.73 and R2 was found to be good at 0.73 while the uncertainty 

analysis was obtained with a P-factor (95PPU) at 0.75 and the R-factor of 0.75 

values which were very good within the accepted standard. The quantitative 

statistics show that the model results are satisfactory and may be used in basins 

with similar characteristics. 
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The spatial distribution of water yield showed uneven distribution with some areas 

experiencing water stress while other areas have excess water, which tends to flow 

out of the basin due to underutilisation and limited water conservation structures. 

The estimated water resources provide insight into the water balance of the basin 

where various water demands from different water use sectors can be assessed. 

The mean annual water yield ranging from 362 to 1011mm across the sub-basin 

forms part of the green water that can be used to enhance agricultural productivity. 

 

The basin has potential of water resources to be harnessed where more than half 

of the generated runoff appears to flow out of the basin without any form of 

conservation. Furthermore, these water resources could be used to boost irrigated 

agriculture, which can improve the livelihood and reduce poverty levels. 

 

The water resources in the ZRB have already begun to be altered by climate change 

impact, as highlighted in Chapter three while the basin is poorly informed because 

of inadequate knowledge at the local basin scale. In order to investigate, analyse 

and quantify climate change impact at a basin, scale experiments were conducted 

through Regional Climate Modelling by using the PRECIS model. Therefore, chapter 

six deals with Regional Climate modelling that was performed to generate a high-

resolution climate scenario for climate change impact studies. 
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 : REGIONAL CLIMATE MODELLING 

6.1 Introduction 

The study of the impact of climate change utilises data and information generated 

by GCM (Raghavan et al. 2014). The GCMs currently in use are very course and as 

a result, are unable to adequately deal with local forcings. The GCM with coarse 

resolution can only produce results that may be considered as a rough estimate of 

climate change consequences at the local scale (Judit et al. 2008). Generating 

future climate scenarios using GCMs for local regions of interests does not produce 

realistic results due to large horizontal resolution of 150km-500km (Baimoung et al. 

2014; Brienen et al. 2010; Zhang et al. 2006; Jones et al. 2004). There are also 

difficulties in computational capacities and representations of local physical 

processes (Giorgi, 1990). 

RCMs at a higher resolution (10–50 km) are widely used in climate research 

(Raghavan et al. 2014; Marengo et al. 2009). Better estimations of the future climate 

scenarios may be achieved by nesting RCM in GCMs since the horizontal resolution 

of the models is much finer than GCM (Judit et al. 2008). 

This chapter aims at demonstrating the usefulness of downscaling large-scale 

climates over the Southern African region from which one can study possible future 

climate change and also utilise the outputs of the regional climate model for impact 

assessment on hydrology and water resources at a local catchment scale.  
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The output of RCMs is then commonly used as input data for hydrological models 

in order to analyse the hydrological processes of the study area. Similar studies 

have been carried out (Kling et al. 2014; Kim et al. 2013). Results from high-

resolution Regional Climate Models such as PRECIS, MM5, WRF have also shown 

to be credible (Zhang et al. 2006; Tadross et al. 2005). 

 

Regional Climate Modelling was, therefore conducted through experiments to 

investigate and predict the climate change impact on a local scale. Four experiments 

were performed using the PRECIS model, which is a Regional Climate Model for 

generating high-resolution climate scenarios. Experiments were undertaken on a 

defined domain of KRB within the ZRB.  

 

PRECIS model was used to downscale the GCM HadGEM2-ES over the baseline 

and future climate periods. The evaluation of the model was performed using the 

Era-Interim Reanalyses (1980-2010). While the historical simulations of the GCM 

were performed from 1960-2005, future simulations spanned the period 2020-2021, 

using both RCP 4.5 and RCP 8.5 scenarios.However the focus time slice for this 

study was 2020-2050. 

 

The results generated indicate that the PRECIS model was able to simulate the 

climate of the region well. The climatic variables such as precipitation and 

temperatures were particularly analysed climate change impact in terms of coverage 

area and magnitude, which hold strong implications for adaptive measures over this 

region. 
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6.2 Domain area 

The target area in Figure 6.1 is the domain area excluding the rim thickness of eight 

grids where the experiment was conducted and it was designed to capture the entire 

ZRB, Eswatini and some parts of South Africa. The region of interest was also the 

Region of Validation (ROV) and the focus geographical area for the research where 

the KRB is situated with surrounding areas in the northern parts of Zambia. 

 

 

Figure 6.1 Domain area used in PRECIS experiment  

(Source:Zambezi River Authority, 2000 - Zambezi River Basin) 

6.3 Materials and Methods 

Four experiments were conducted using the PRECIS RCM for the defined domain 

in Southern Africa covering the KRB. The lateral boundary conditions included 

surface pressure, winds, relative humidity and temperature while surface boundary 
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conditions included sea surface temperature (SST) and sea ice, which were all 

defined for the domain area. 

 

The RCM and GCM used in the experiments are part of the Coupled Model 

Intercomparison Project (CMIP5). The CMIP5 is an international data bank for 

climate model outputs established to facilitate assessments of future climate 

projections and to evaluate performance of the climate models. The collection of 

model outputs is also used to improve the people’s understanding of the climate 

process and responses (Sheffield et al. 2013). 

 

The evaluation of the model was performed on the ROV using the Era-Interim 

Reanalyses for the period 1980-2009. While the historical simulations of the GCM 

were performed over the period 1960-2005 with a focus on 1975-2005,future 

simulations spanned the period 2020-2050, under both RCP4.5 and RCP8.5 

scenarios. Figure 6.2 illustrates  detailed climate change modelling process used in 

the generation of high-resolution climate scenarios. 
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Figure 6.2 Climate change modelling process with PRECIS  

6.3.1 Precis Experiment Set Up 

The PRECIS model was set up to create high-resolution climate scenarios for 

Southern Africa that included the study area in the ZRB. The experiment was 

performed on a defined domain area, which was large enough to completely include 

the ZRB and other geographical features such as mountains, which could influence 

the weather and climate system on the local scale. The experiment was defined with 

surface and lateral boundary conditions of the domain area. Lateral boundary 

conditions (LBCs) consisted of surface pressure, temperature, water vapour and 

wind while surface boundary conditions included the sea and ice. 
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The experiment was conducted with the Linux operating system and took seven 

months (September 2017 to April 2018) to be completed because the domain was 

large and the computational capacity was inadequate and low. The experiments 

were set up with a high resolution of 0.22o x 0.22o (25km x 25km) under reanalysis, 

historical and future climate scenarios. The major outputs of the experiments 

included daily surface and upper-air data plus climate meaning. Each experiment 

was identified with a unique Run Identifier (Run ID). Several national and 

international projects in Europe have used RCMs to better estimate regional climate 

change and project climate scenarios for climate change impacts studies (Marengo 

et al. 2009).  

 Experiment one under Reanalysis Scenario 

Experiment one was conducted to evaluate the model output in order to have 

confidence in its performance for predicting the future climate scenarios (Macadam 

and Janes, 2017).  According to Gettelman & Rood, (2016b), the purpose of a model 

evaluation is to determine how well it represents the present climate before it can 

be used to make projections for the future. The experiment was, therefore, 

performed for validation of the results with observed climate variables.  The 

experiment ran under the Gregorian calendar that covered the period 1979-2009 

(32 years, 1 month and 0 days) with RCM as HadRM3P while the GCM was ERA-

Interim (erain). 

 Experiment two under Historical Scenario 

Experiment two was conducted to generate baseline scenario that could be used as 

a reference for determining change in climate variables with future climate 
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scenarios. The experiment was driven by CMIP5 historical scenarios covering the 

period 1959-2010 (50 years, 1 month and 0 days) with RCM as HadRM3P while the 

GCM was HadGEM2-ES (akwss). 

 Experiment three under RCP4.5 Scenario 

Experiment three was conducted to generate a future climate scenario under 

RCP4.5, which is a medium emission scenario. The experiment was driven by 

CMIP5 RCP4.5 scenario covering a period of 94 years, 1 month and 0 days (2005-

2099) with RCM as HadRM3P while the GCM was HadGEM2-ES (akwsl). 

 Experiment four under RCP8.5 Scenario 

Experiment four was conducted to generate a future climate scenario under RCP8.5, 

which is a high emission scenario. The experiment was driven by CMIP5 RCP8.5 

scenario covering a period of 95 years, 1 month, 0 days (2005-2100) with RCM as 

HadRM3P while the GCM was HadGEM2-ES (akwsx). 

6.3.2 Procedure for Estimation of Climate Change Impact 

The estimation of climate change impact is based on the change factor methodology 

elaborated in chapter two. 

 

(a) CRU observed climates were obtained for 1975-2005 as a historical period 

 (baseline). 

(b) PRECIS baseline climate generated from historical experiment for 1975-2005       

 using the HadGEM2-ES (akwss) GCM as driving boundary condition. 

(c) PRECIS future climate covered 2020-2050 using RCP4.5 and RCP8.5 climate    

 scenarios as driving condition and HadGEM2-ES providing lateral boundary 

 data. 

(d)  The future climate scenario for impact study was therefore calculated as: 
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    Value of observed climate (a) plus (Value of PRECIS future climate(c) minus 

 value  of PRECIS baseline climate(b). 

 

The impact of the future climate scenario was assessed by comparing the impact of 

baseline climate against the impact of the future climate scenario and 

mathematically it can be written as: 

• Baseline climate impact = Impact model run using baseline climate 

 (a - above)………………………………………………………………..(X) 

• Future climate impact = Impact model run using future climate scenario 

 (d-above)…………………………………………………………….…….(Y) 

 Future impact …………………………………………………………… X - Y 

6.4 Results and Discussion 

The experiments conducted over the entire PRECIS domain area over Southern 

Africa generated results and future time series data such as precipitation, 

temperature, wind speed, pressure and soil moisture covering the period 2020-

2100. However, for this research, the focus was on KRB (study area) within the 

region of interest with a time slice of 2020-2050. 

 

The generated data and results from the four experiments were analysed and 

plotted for the region of interest encompassing the study area with a spatial 

variability of climate variables. The major climate variables analysed were average 

precipitation (mm) and average temperature (oC). The results were validated with 

the observed data from Climate Research Unit (CRU) of East Anglia for the same 

length of period. 
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In general, the results indicate that precipitation will slightly increase under the 

RCP4.5 while there will be a large increase under RCP8.5 with a considerable 

temporal and spatial variability for the future period. Temperature also shows a rising 

trend with temporal and spatial variability under both future climate scenarios. The 

results were analysed based on KRB seasonal climatology defined as follows: 

December, January, February (DJF) which is a typical rainy season, March, April, 

May (MAM), which is the autumn season, June, July, August (JJA) being the winter 

season and September, October, November (SON), which is the summer season. 

6.4.1 Validation of PRECIS Experiment Results 

The model results must be compared with observations in the ROV (Macadam and 

Janes, 2017; Gettelman & Rood, 2016b). Such comparisons can highlight problems 

which may be hidden by the complexity of a model (Randall et al. 2007). All the 

figures for comparisons are based on the ROV, which was the region of interest.  

The PRECIS model results for re-analysis covered the period from 1980-2009 and 

was compared to the observed data from CRU to validate the experiment results 

(Macadam and Janes, 2017; Jones et al. 2004). The CRU observed data was 

downloaded from http://www.cru.uea.ac.uk/cru/data/hrg/cru_ts_2.10 and processed 

for comparisons with the PRECIS generated results. The graphical comparisons 

between PRECIS reanalysis and baseline period are listed on Appendix G and H. 

Validation of Rainfall Results 

The results from the PRECIS model under reanalysis were plotted for seasonal 

rainfall and compared with CRU observed rainfall based on the same season and 

length of period. Figure 6.3 illustrates the comparisons based on the four seasons. 
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 Figure 6.3 Comparison of PRECIS model and observed rainfall in mm/day. 

 

The graphical comparisons in Figure 6.3 illustrates that MAM has a very close match 

of magnitude of rainfall with its temporal and spatial variability across the defined 

region of the interest. The PRECIS model simulates more rainfall in the northern 

part than in the southern part and this is confirmed by the CRU observed rainfall, 

which also show that the northern part of the domain area receives more rainfall 
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than the southern part. However, there are minor variations shown between the 

model and the observed, which are between -1 and 1mm/day; thus it is considered 

insignificant. 

 

The PRECIS model simulates nearly no rain in JJA, which is winter season; a time 

in which the basin does not receive any rainfall. The results from the model agree 

very well with CRU observed and, therefore the differences were considered 

insignificant because they were between -1 and 1mm/day. 

 

The SON season is usually characterised by high temperatures, beginning of rain 

season and the PRECIS model closely matched the observed data with the pattern 

and variability of rainfall. However, differences noticed ranged between -1 and 

2mm/day. 

The season of DJF indicates some significant differences between PRECIS model 

and CRU observed because this is the wet season and highest rainfalls are recorded 

in the same season. The absolute differences show strong biases of up to 3mm/day. 

The differences may be attributed to errors in the model or observed data. 

Validation of Temperature Results 

The results from the PRECIS model were plotted for seasonal average temperature 

and compared with CRU observed temperature based on the same season and 

length of period. Figure 6.5 illustrates the comparisons based on the four seasons. 
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Figure 6.4 Comparison of PRECIS and observed temperature in oC  

 

The PRECIS model also performed relatively well in simulating average 

temperatures in MAM with absolute differences ranging between -2 to 2 oC. The two 

plots match well even though minor differences exist. 
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The JJA season is equally well simulated as it is winter and has the lowest average 

temperature compared to the other three seasons. There are minor differences as 

the season shows some colder and warmer biases. 

 

The SON and DJF are well-matched too, with minor differences that range between 

0 and 2oC. In general, PRECIS model can be concluded to simulate well and has 

demonstrated rear skill of modelling. However, there are some minor cold and warm 

biases that exist and in some cases they are more pronounced and requiring model 

bias estimation. The biases may be attributed to errors in either model outputs or 

observed data sets. 

6.4.2 Time Series of Future Climate 

Further analysis of the PRECIS model outputs was performed in order to determine 

the precipitation and temperature anomalies for only land points with reference to 

the (1975-2005) baseline monthly mean. The analysis was based on the 2020-2050 

monthly time series under RCP4.5 and RCP8.5 future climate scenarios. 

Precipitation and Temperature Anomalies 

Precipitation and temperature anomalies were determined by firstly calculating the 

model baseline (1975-2005) multi-annual monthly means and subtracting this from 

the projected future monthly time series using Climatic Data Operators (CDO) 

commands in the Linux operating system. 

Identification of Model Bias 

Dynamic downscaling may include model biases that need to be identified and 

estimated (Baimoung et al. 2014). The PRECIS baseline temperature and 

precipitation time series were compared with the CRU observed time series for the 
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same period and further analysed for identification of the temperature and 

precipitation model biases. The operation was carried out with climate data 

operators in the Linux operating system with the assumption that the model biases 

were systematic. Figure 6.5 illustrates the monthly comparisons of PRECIS baseline 

and CRU observed temperature. 

 

Figure 6.5 Monthly comparison of PRECIS baseline and CRU observed temperature 

 

Figure 6.5 illustrates monthly comparisons of PRECIS baseline and CRU observed 

temperature which are similar in trend throughout the year with the lowest 

temperatures occurring in June and July as is the case in winter season for KRB 

and the highest temperatures occurring in September and October, which is the 

summer season of the basin. 

 However, the minor differences can be noticed in the magnitude between January 

and April where the PRECIS over-estimate temperatures while May to July indicate 
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a clear match in maximum, mean and minimum temperatures. The maximum 

temperatures also match very well from August to October except for December 

where the model tends to overestimate temperatures while the mean and minimum 

temperature have mismatches from August to December. In general, the PRECIS 

model significantly shows a similar trend with the CRU observed temperature except 

the magnitude where the model tends to over-estimate at the beginning and end of 

the year. 

Similar comparisons were made for monthly PRECIS baseline precipitation and 

CRU observed precipitation and the results of the monthly comparisons are 

illustrated in Figure 6.6. 

 

Figure 6.6 Comparison of PRECIS and CRU observed baseline monthly rainfall 
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Further comparisons were made for daily mean PRECIS baseline precipitation and 

CRU observed precipitation and the results of the daily mean comparisons are 

illustrated in Figure 6.7. 

 

Figure 6.7 Comparison of daily PRECIS baseline and CRU rainfall in a month 

 

The monthly mean and daily mean rainfall in Figure 6.6  and 6.7 respectively 

illustrates similar trend between the PRECIS baseline and CRU observed rainfall 

throughout the year. The differences are seen in the magnitudes where the model 

overestimates the maximum, mean and minimum daily rainfall for January to April 

and September to December while simulating no rainfall in May to August. In 

general, the model simulates rainfall with a similar trend with CRU observed when 

compared while overestimating the magnitude of rainfall in DJF and MAM.  

 

In both cases of comparisons of PRECIS baseline and CRU observed temperature 

and precipitation, the model results agree well with observed results, especially in 
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trends with some minor biases that need to be identified. Further graphical 

comparison of climate variables for observed & model are listed on Appendix L. 

 

Therefore, further analysis was performed in order to determine the monthly and 

daily PRECIS model biases for the baseline period and Figure 6.8 illustrates the 

Monthly precipitation model biases. 

 

Figure 6.8 Monthly PRECIS Precipitation model biases 

 

The positive biases in Figure 6.8 illustrates that the model was underestimating 

while negative biases show the model overestimation. The model overestimated in 

January, February, September, October, November and December while it 

underestimated in March and April. The period from May to August, the model 

biases are negligible as they are close to zero. 
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Similarly, the temperature monthly model biases were also determined for the same 

period and the results of monthly model biases are illustrated in Figure 6.9. 

 

Figure 6.9 Monthly temperature PRECIS model biases  

 

Figure 6.9 illustrates positive biases in January to April and October to December 

indicate that the model was underestimating temperatures while the negative biases 

in May to September indicate that the model was slightly overestimating the 

temperatures.  

 

The model biases in Precipitation and temperature could be attributed to model 

physics such as convective schemes,topography,land surface and lateral boundary 

conditions. More over some biases may have also been inheried from the GCM. Its 

also important to acknowledge that the CRU observed data used for model 

evaluation may equally not be perfect because of the possible missing data and the 

few largely spaced stations within the study area. 
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The model performance in simulating precipitation and temperature was therefore 

found to be acceptable as the validation results and further graphical comparisons 

between the baseline for the model and observed results showed very similar trends 

despite minor biases in magnitude. In general, the results are evaluated to be useful 

for climate change impact studies. The PRECIS model average climate data are 

listed on Appendix E ,Table E1 and E2 and CRU observed average climate data is 

listed on Appendix F,Table F1 and F2. 

6.4.3 Future Climate Change under RCP4.5 (2020-2050) 

Analysis of the experiments for baseline and RCP4.5 climate scenarios were made 

with CFM a widely used method in climate change impact studies as described in 

section 2.1.2 and 6.2.3. The method was applied and impact change was quantified 

for the entire KRB. The future change in temperature and percentage change in 

rainfall were performed with Climate Data Operators (CDO) commands in the Linux 

operating system and plotted in ArcGIS in order to show spatial and temporal 

variability of precipitation and temperature based on the four seasons. 

Prediction of Future Seasonal Rainfall 

The seasonal rainfall change was analysed with reference to the RCM historical 

period, which was taken as baseline period and future period and the results are 

shown in Figure 6.10. 
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Figure 6.10 Predicted future seasonal rainfall based on RCP4.5 

Figure 6.10 (a) shows a rainfall increase of 71% coverage area in DJF with the 

magnitude of 0<65%. Rainfall is predicted to increase in the middle part of the KRB 

and towards the south while reducing by 29% coverage area on the western and 

eastern parts of the basin. Figure 6.10 (b) shows a rainfall increase of 33% coverage 

area towards the north of the KRB while the rest of the 67% KRB area shows a 

significant reduction in the rainfall with the magnitude of -25% < 0. Figure 6.10 (c) 

shows an increase in rainfall with a magnitude of 65% > 0 and 77% coverage area 
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in the middle and towards the south of the basin while 23% coverage area in the 

northern parts and the southeast shows a decrease in rainfall with a magnitude of -

25% < 0. Figure 6.10 (d) shows 37% coverage area of KRB will receive less rainfall 

with magnitude of -25% > 0 while the other 63% will receive slightly more rainfall 

with the magnitude of 65% > 0. 

In general, 33-77% coverage area of the KRB will have a seasonal rainfall increase 

with the magnitude of 65% > 0 while 23-67% coverage area of the KRB will have a 

seasonal rainfall decrease with a magnitude of -25% > 0. Therefore, the future 

seasonal rainfall will have more coverage area for the increased rainfall than the 

decreased rainfall. However, its magnitude will vary depending on the monthly, 

seasonal and annual time scales. There is considerable spatial and temporal 

variability across the basin, which needs to be considered when planning for water 

resources. 

Prediction of Future Seasonal Temperature 

The temperature change was analysed with reference to the RCM historical period, 

which was the baseline period and future period and the results are shown in Figure 

6.11. 
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Figure 6.11 Predicted future seasonal temperature based on RCP4.5 

Figure 6.11 (a) shows a considerable increase in temperatures towards the north of 

the KRB while a small increase in temperatures is predicted in the southern parts 

for the season of DJF. The MAM season in Figure 6.11 (b) is predicted with a small 

increase in temperature towards the north while the southern parts of the basin are 

predicted with a considerable temperature increase. Figure 6.11(c) shows a small 

increase in temperature in the western part of the basin while maintaining a 

considerable increase in all parts of the basin.  
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Figure 6.11 (d) shows a different pattern in SON where the northeastern part of the 

basin has a small increase in temperature while the rest of the basin has a 

considerable increase in temperature. In general, there is an increase in 

temperatures across the KRB in all the seasons. The increase varies from 1.4 oC to 

2.5oC across the basin with the highest increase predicted in SON. 

6.4.4 Future Climate Change under RCP8.5 (2020-2050) 

Analysis of the experiments for baseline and RCP8.5 climate scenarios were made 

with CFM as described in section 2.1.2 and 6.2.3. The method was applied and 

impact change quantified for the entire KRB. The future absolute change in 

temperature and percentage change in rainfall were then plotted to show temporal 

and spatial viability based on the seasons. 

Prediction of Future Rainfall 

The rainfall change was analysed for the historical period, which was the baseline 

period and future period and the results are shown in Figure 6.12. 
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Figure 6.12 Predicted future seasonal rainfall based on RCP8.5 

 

Figure 6.12 (a) shows a seasonal increase in rainfall towards the south and a 

considerable reduction towards the north of the KRB for DJF. The coverage area of 

KRB with increased rainfall is 58% with a magnitude of 0 < 37% while the area with 

reduced rainfall is 42% with the magnitude of -18% < 0.  

 

Figure 6.12 (b) for MAM shows a rainfall reduction with a magnitude of -18% < 0 in 

the northern and eastern parts with 47% coverage area of the basin while 53% of 
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coverage area in the southern and western parts show an increase in rainfall with 

the magnitude of 0 < 37%. Figure 6.12 (c) shows JJA with a significant reduction in 

rainfall magnitude of -18% < 0 towards the north and the south end with 51% 

coverage area of the KRB while the rest of the 49% coverage area indicates an 

increase in rainfall with a magnitude of 0 < 37%. Figure 6.12 (d) shows SON 

reduction of rainfall with 48% coverage area and a magnitude of -18% < 0  in the 

northern, western and southern parts while the 52% coverage area in the eastern 

part and a few isolated areas show a rainfall increase with a magnitude of 0 < 37%. 

The PRECIS model predicts that rainfall is likely to significantly increase in 

magnitude and coverage area in the season of DJF. The general rise in rainfall is 

predicted to increase coverage varying from 49% to 58% while the coverage area 

under decreased rainfall will vary from 51% to 42%. The increase of rainfall in DJF 

may cause flooding in some of the flood-prone areas and thus adaptation and 

mitigation strategies may be required. 

Prediction of Future Temperature 

The temperature change factor was determined with reference to the baseline 

period and the results are shown in Figure 6.13. 
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Figure 6.13 Predicted future seasonal temperature based on RCP8.5 

 

Figure 6.13 (a) shows a similar pattern with climate scenarios under RCP4.5 with a 

considerable increase in temperature towards the north of the KRB while a small 

increase in temperatures is predicted in the southern parts for the season of DJF. 

The MAM season in Figure 6.13 (b) is predicted with a small increase in temperature 

towards the west while the southeast parts of the basin are predicted with a 

considerable temperature increase.  
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Figure 6.13 (c) shows a small increase in temperature in the western part of the 

basin while maintaining a considerable increase in all other parts of the basin. Figure 

6.13 (d) shows a different pattern in SON where the northern part of the KRB has a 

small increase in temperature, with the rest of the basin having a considerable 

increase in temperature. 

 

In general, there is an increase in temperatures across the KRB in all the seasons. 

The increase varies from 1.6oC to 2.4oC with the highest increase predicted in SON. 

6.5 Conclusions 

The PRECIS model has shown to be reliable as most of the results obtained are 

credible and comparable to the CRU observed climate data. The model skill is 

therefore, suitable to apply in climate change impact quantification. The prediction 

of future rainfall under RCP4.5 scenario indicate that rainfall will slightly increase in 

coverage area varying from 33% to 77% with magnitude varying from 65% to 0 while 

coverage areas with a decrease in rainfall will vary from 67% to 23% with magnitude 

varying from -25% to 0 in the four seasons of the KRB.  

 

Therefore, much of the KRB will be under increased rainfall and less under 

decreased rainfall. There is a general rise in temperature for all seasons varying 

from 1.4oc to 2.5oc across the KRB and the season of SON is predicted to have the 

highest temperatures. 

 

The PRECIS model predicts that rainfall under RCP8.5 is likely to significantly 

increase in magnitude and coverage area in the season of DJF. The general 
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increase in rainfall is predicted to increase by coverage area varying from 49% to 

58% and magnitude varying from 0 to 37% while the coverage area under 

decreased rainfall will vary from 51% to 42% and magnitude will vary from 0 to -

18%. The increase of rainfall in DJF may cause flooding in some of the flood-prone 

areas and adaptation and mitigation strategies may be required.  

 

Further results under the same scenario also show increased temperatures ranging 

from 1.6oc to 2.4oc across the KRB, which may require appropriate  design of 

adaptation and mitigation strategies. The results are in agreement and within the 

global temperature projections (Vuuren, 2014, 2011; Meinshausen et al. 2010). 

 

It was, however, noticed that some model biases were apparent at validation for 

DJF and MAM seasons and monthly comparisons. The PRECIS model results 

would, therefore, need to be bias-corrected in order to improve accuracy before it  

can be used in hydrological modelling.  

 

Further studies need to be done to include the use of more regional climate models 

for downscaling a more comprehensive set of HadCM3-based future scenarios for 

the creation of an ensemble. The RCM outputs will need to be bias corrected before 

their they can be used as in puts for hydrological modelling. The PRECIS model 

results were therefore only used for quantification of climate change impact in 

precipitation and temperature across the KRB in this chapter. 

 

In order to determine PRECIS model’s performance, the results were subjected to 

further analysis in chapter seven with six statistically downscaled bias-corrected 
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GCMs acquired for the same study area and time slice. Investigations and modelling 

of climate change impacts were performed in Chapter seven, with a specific focus 

on catchment water balance. 
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 : MODELLING IMPACT OF CLIMATE 

CHANGE ON CATCHMENT WATER BALANCE  

7.1 Introduction 

Hydrology and Water resources in catchments are already being affected by climate 

change in many forms that include rising spacial temporal variability,water balance 

changes which have implications on water and food security among many (Uniyal 

et al. 2015). Catchment water management seeks to optimise catchment water 

balance in order to secure water supplies for human health and human socio-

economic development based on hydrological science (Zhang & Wurbs, 2018; Zhou 

et al. 2015). Management options can be developmed from Water balance 

modelling coupled with field experiments as it hences understanding of the 

hydrological cycle components (Zhang, 2002).  

 

In order to evaluate and assess climate change impact on water balance 

components for KRB, six statistically downscaled bias-corrected GCM projections 

were acquired and used as inputs in SWAT model for hydrological modelling to 

determine the impact under RCP4.5 and RCP8.5 climate scenarios.  

 

The assessment of the impact of climate change on hydrology and water resources 

in the KRB was performed to enhance integrated water resources management.  

Therefore, this chapter is focused on evaluating the impact of climate change on the 

catchment water balance, more specifically rainfall, water yield and runoff variables 

for different time scales in the  KRB. 
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7.2 Materials and Methods 

7.2.1 Description of the GCMs 

ACCESS1-0 

The Australian Community Climate and Earth System Simulator (ACCESS) is a 

coupled climate model, developed at the Centre for Australian Weather and Climate 

Research (CAWCR), which is a partnership of the Australian Bureau of Meteorology 

(BoM) and the Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) working with different universities in Australia (Lewis & Karoly, 2014). It is 

a coupled Model Intercomparison Project Phase 5 (CMIP5) of the historical 

extension experiment and ensemble of r2i1p1(model realisation). The ACCESS1-0 

is the atmosphere-only version with a grid spacing of 3.75◦Lon x 2.5◦ Lat 

horizontally and 38 vertical levels. The model represents physical processes that 

include: Precipitation, surface energy exchange, clouds, boundary layer processes 

and radiation (Ackerley & Dommenget, 2016). 

CNRM-CM5 

Centre National de Recherches Météorologiques (CNRM-CM5) is a Coupled 

Atmosphere, Ocean General Circulation Model (AOGCMs) which includes the 

atmospheric model ARPEGE-Climat (v5.2), the ocean model NEMO (v3.2), the land 

surface scheme and the sea ice model GELATO (v5) coupled through the OASIS 

(v3) system. The former version of the model, CNRM-CM3, was used in Phase 3 of 

the CMIP project and the released simulations are found on the CMIP3 database. 

Several studies undertaken on CMIP3 database were analysed with CNRM-CM3 

and the results on a large scale circulation were considered reasonable (Decharme 

& Se, 2013). 
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IPCL-CM5A-LR 

The IPSL-CM4 is a general circulation model developed at the Institute Pierre Simon 

Laplace (IPSL) and contributed to CMIP3. The model couples the atmosphere, land 

surface model to an ocean–sea ice mode (Denvil et al. 2013). The IPCL-CM5A-LR 

model used for CMIP5 projects constitutes the pre-industrial control simulations with 

boundary conditions of tropospheric greenhouse gases and aerosol concentrations 

(Persechino et al. 2013). 

MIROC5 

Model for Interdisciplinary Research on Climate (MIROC) is the latest version of the 

atmosphere-ocean general circulation model developed in partnership with the 

research community in Japan. MIROC5 is a newer version produced based on 

MIROC3.2 with many of the schemes replaced in atmospheric, ocean, land, sea ice 

components and control experiment (Masahiro et al. 2010). 

MPI-ESM-MR 

Max-Planck-Institute Earth System Model (MPI-ESM) comprises the coupled 

general circulation models for the atmosphere, ocean and the subsystem models 

for the land and vegetation and the marine biogeochemistry. MPI-ESM-MR model 

contributes to several climate change experiments through the coupled Model 

Intercomparison Project Phase 5 (CMIP5). The experiments are mostly based on 

the representative pathways (RCP) scenarios and/or the conceptualised forcing of 

CO2 only or the forcings dependant of observations (Giorgetta et al. 2013). 

MRI-CGCM3 

Meteorological Research Institute Coupled Global Climate Model (MRI-CGCM3) is 

a new and upgraded Meteorological Research Institute (MRI), previously climate 
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model MRI-CGCM2 series. The model forms part of the MRI’s earth system model 

MRI-ESM1 and consists of atmosphere, land, aerosol and ocean-ice components. 

The model is used to perform basic experiments for pre-industrial control, historical 

and climate responsiveness (Yukimoto et al. 2012). Table 7.1 shows the summary 

of GCMs used in the study. 

 

Table 7.1 Summary of GCMs used in the study 

7.2.2 GCM Projections and Data Source 

The six GCMs in Table 7.1 were obtained from the NASA Earth Exchange (NEX) 

Global Daily Downscaled Projections (NEX-GDDP).  The NEX-GDDP dataset 

consist of downscaled global climate scenarios produced from the General 

Circulation Model (GCM) runs performed through the Coupled Model 

GCM 
No GCM Name Developer 

Resolution 
Lon x Lat 
degrees 

1 ACCESS 1-0 
 
 
 

Commonwealth Scientific and Industrial 
Research Organisation–Bureau of 
Meteorology, Australia 
 

1.9 x 1.2 
 
 
 

2 CNRM-CM5 
 
 

Centre National de Recherches 
Météorologiques, Centre, France. 
 

1.4 x 1.4 
 
 

3 
IPCL-CM5A-LR Institute Pierre Simon Laplace, France 3.7 x 1.9 

 
4 MIROC5 

 
 
 
 
 

Centre for climate research system(The 
University of Tokyo), National Institute 
for Environmental Studies and Frontier 
Research Center for Global Change 
(JAMSTEC), Japan 

 
1.4 x 1.4 

 
 
 
 
 
 

5 MPI-ESM-MR 
 

Max Planck Institute for Meteorology, 
Germany 

1.9 x 1.9 

 
6 
 

MRI-CGCM3 
 

Meteorological Research Institute, Japan 

 
1.4 x 1.4 
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Intercomparison Project Phase 5 (CMIP5) (Taylor et al. 2012). The GCM runs were 

conducted over two representative concentration pathways (RCPs), namely RCP4.5 

and RCP8.5 (Meinshausen et al. 2010).  The CMIP5 GCM runs were produced to 

support the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC AR5).  The datasets were chosen because they provide a set of 

global, high resolution, bias-corrected climate change projections that can be used 

to evaluate climate change impacts on processes that are sensitive to finer-scale 

climate gradients and the effects of local topography on climate conditions (Thrasher 

et al. 2015). 

 

The six GCMs covered the period 2020 to 2050 and the historical experiment that 

was conducted from 1975-2005 for each model.  The historical run was taken as 

baseline because it was found to be reasonably accurate to replicate the main 

current climate effects in the KRB. 

 

 Every climate projection was downscaled at a spatial resolution of 0.25o x 0.25o 

(about 25km x 25km) (Thrasher et al. 2015).. The analysis of rainfall, water yield 

and runoff changes in the entire river basin was done at different time scales. An 

ensemble mean of six GCMs was used due to the significant benefits of relying on 

the many model outputs (Liu et al. 2012; Wilby & Harris, 2006). 

7.2.3 Prediction of Changes in Hydrology & Water Resources   

In order to predict changes in hydrology and water resources, the GCMs outputs on 

the global scale require downscaling into inputs of hydrological model on a regional 

or local scale (River et al.  2016; Farzan et al. 2013). This is done to improve the 

accuracy of the results because all model outputs may have biases that need 
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corrections. In view of the aforementioned, spatial downscaling and bias correction 

of GCM, outputs are a requirement prior to their use in regional impact studies 

(Farzan et al. 2013). Downscaling GCM outputs are widely performed through 

dynamic and statistical methods. The six GCMs under analysis in this study were 

statistically downscaled and bias-corrected for hydrological modelling at a regional 

scale. 

7.2.4 Modelling Climate Change Impact Using SWAT 

The GCM outputs were statistically downscaled to the region and used as input data 

to SWAT hydrological model. Statistical downscaling is mostly used as a conduit for 

linking GCM outputs with hydrological models due to insignificant computing 

resources required and can incorporate observations into method. 

 

However, there is uncertainty in modelling impact of climate change on water 

resources, which starts with socio-economic storylines, future climate scenarios and 

actual impact modelling (Murphy & Ro, 2006). Hydrological models, therefore, 

provide the means for relating climate change to water resources by simulating the 

hydrological processes in river basins. SWAT is a hydrological model commonly 

used in simulating climate change effects (Wang et al. 2012; Arnold et al. 2009). 

SWAT simulates major components of the hydrological processes on a daily time 

step and a continuous watershed scale (Neitsch et al. 2005). 

 

Daily solar radiation, relative humidity and wind speed were generated with the 

SWAT weather generator based on statistical information. The calibrated SWAT 

model (Described in chapter 5) was then used to simulate rainfall, water yield and 
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runoff water balance components for the KRB. The simulation was based on  three 

climate scenarios namely;baseline period, RCP4.5 and RCP8.5. 

 

In this study, land use and land cover were kept constant during SWAT simulations 

for future periods under RCP4.5 and RCP8.5, and therefore, climate change impact 

was the only factor considered to influence catchment water balance. 

7.3 Results and Discussion 

7.3.1 Comparisons of Means for PRECIS, CRU,GCM Ensemble and  
Observed Climate Data 

The GCMs ensemble were further averaged and used to compare with observed 

data, for the same historical period for validation. The focus was rainfall and 

temperature data obtained from the Zambia Meteorological Department (ZMD), 

which was observed from five weather stations in the KRB for the same period 

(1975-2005).  

 

Figure 7.1 indicates the location of weather stations in the basin where temperature 

and rainfall data were observed. 
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Figure 7.1 Location of weather stations 

 

Figure 7.1 indicates location of weather stations that are sparsely distributed with a 

ground resolution of approximately 150km. The basin has an inadequate number of 

stations to represent the weather or climate of the area effectively. Some stations 

such as Zambezi, Kasempa and Solwezi may not have direct influence because 

they are slightly outside the basin. 

 

The ground observed climate data,averaged GCM ensemble results and CRU data 

were then compared with PRECIS validation results from chapter six. The 
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comparison was made to confirm if the dynamic downscaled results (through 

PRECIS) and the statistically downscaled (GCM ensemble) match and to check the 

performance of the model. The climate variables compared and analysed were 

temperature and precipitation based on the same period.  

 

Figure 7.2 illustrates the comparisons of temperature from PRECIS,CRU,GCM 

Ensemble and ground observed data. 

 

Figure 7.2 Comparisons of average monthly temperature 

 

Figure 7.2 illustrates a very similar trend of average monthly temperatures from 

PRECIS, CRU,ground observed and GCM ensemble. The average temperatures 

range from 20 oC to 23 oC between January to April before falling to between 16 oC 

to 18 oC in June and July which are the coldest months and thereafter rise in 

September and October to between 24 oC to 26 oC which is the summer in the basin. 

However there is a slight mismatch between PRECIS and the other three at the 
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beginning and the end of the year. This could be attributed to some biases in the 

model. 

 

Figure 7.3 illustrates the comparisons of rainfall from PRECIS,CRU,GCM Ensemble 

and ground observed data. 

 

Figure 7.3 Comparisons of average monthly rainfall 

 

Figure 7.3 illustrates similar trend of the average monthly rainfall from 

PRECIS,CRU,ground observed and GCM ensemble. There is however an over 

estimation of rainfall by PRECIS between January to February and September to 

December which are typically rain season months. The model matches very well in 

the rest of the months. The over estimation could be attributed to model biases.  

 

In general PRECIS model results can be described to have a very similar trend with 

other data sources and matched relatively well for temperature while rainfall showed 

some mismatches. The PRECIS model results for RCP4.5 and RCP8.5 could not 
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be used for hydrological modelling because they need accuracy improvement. The 

PRECIS output were only used for Quantifying climate change impact in terms of 

coverage area and magnitude as described in chapter six. Therefore only GCM 

ensemble data was analysed in the subsequent sections. 

The temperature and rainfall from GCM ensemble and ground observed was then 

plotted on the same graph to show the temporal variability across the basin. Figure 

7.4 illustrates temporal variability of rainfall and temperature across the basin  

Figure 7.4 Comparisons of temp and rainfall for observed and ensemble means 

Figure 7.4 illustrates a good match between GCM ensemble means and observed 

rainfall except for October and November, where there is a notable mismatch. The 

baseline temperature is slightly overestimated when compared to the observed 

temperature for maximum, minimum and average temperatures. However, the 

baseline was still found suitable for determining the change factor for future 
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temperatures because the regime is the same and the differences show only some 

uncertainties in GCMs. 

 

The rainfall ensemble was further subjected to a trend analysis to determine its 

suitability for hydrological impact studies. A correlation efficiency was determined 

between the observed and the ensemble mean rainfall data sets. The results in 

Figure 7.5 illustrates a correlation efficiency of 96%, which confirmed the reliability 

of the average ensemble mean for use in hydrological impact studies. 

 

Figure 7.5 Monthly observed Vs ensemble baseline rainfall 

 

The graph in Figure 7.5 shows a good correlation efficiency at 96% and therefore it 

can be used confidently to determine the ensemble mean for climate change 

analysis. The baseline ensemble mean was used as the baseline in the current 

research for climate change impact analysis. 
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7.3.2 Impact of Climate Change on Catchment Water Balance 

The results from six GCM projections that were simulated by SWAT highlighted 

variations in increased and decreased water balance components in all the months 

under review for the KRB.  The variations were also reflected in all the seasons 

except for June, July and August (JJA) season where no rainfall was simulated. 

However, the increases in rainfall, water yield and runoff were larger under RCP8.5 

than the RCP4.5 climate scenarios, perhaps because RCP8.5 is a high Greenhouse 

Gas (GHG) emission scenario compared to RCP4.5, which is a medium GHG 

emission scenario. 

 

The highest rainfall increases were simulated by Access1-0 under RCP8.5 when 

compared to any of the remaining five GCMs while the same GCM also simulated 

the lowest rainfall under RCP4.5 amongst the six GCMs. This could be due to 

different responses of various GCMs to the same climate scenarios and therefore 

creates fundamental uncertainties in climate change projections (Li & Jin, 2017; 

Stone et al. 2003). Thus, models have various baseline climates when compared 

and have different sensitivities to changes in emission scenarios (Carolina et al. 

2003). The SWAT model was analysed for sensitivity to the two scenarios 

representing the climate change at two various spatial scales that are physically 

related. 

 

SWAT model results are summarised for the baseline period 1975-2005,  RCP4.5 

and RCP8.5 for the period 2020-2050. The rainfall, water yield and runoff are 

investigated at monthly, seasonal and annual time scales.  
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Further evaluation of the SWAT simulated GCMs ensemble was performed and the 

mean was determined. The results are illustrated in Figure 7.6 as a simulation 

ensemble. 

. 

 

Figure 7.6 Simulated ensemble and the mean for baseline rainfall and water yield 

 

The SWAT simulated ensemble and the mean for baseline rainfall (P) and water 

yield (WYLD) in Figure 7.6 show minor variations and indicates the highest rainfall 

of 200-250mm occuring in January and December with P_ISPL-CM5A-LR showing 

the highest rainfall in January exceeding the remaining five. The simulations also 

show that rainfall for February, March and April occurs in a decreasing order before 

finally ending in May where there is insignificant rainfall. Figure 7.6 further indicates 

no simulation for rainfall in June and July but insignificant rainfall is simulated in 

August and September while for October, November and December rainfall is 

simulated in an increasing order. 

© Central University of Technology, Free State



Chapter 7 

151 

   

 

The water yield is a direct response to the rainfall in the basin and the SWAT model 

simulates the highest water yield in January and December with 55-60mm from the 

ensemble GCMs. The water yield decreases as rainfall reduces but maintains above 

15mm in May to September when there is either no rainfall or negligible. The Water 

yield rises again from October to December due to rainfall increase. In general, the 

SWAT simulated rainfall and water yield based on six GCMs show a consensus with 

insignificant uncertainties. 

 

The ensemble runoff simulations and their calculated mean were also plotted with 

ensemble rainfall to further compare it between the individual GCMs and analyse 

the impact and uncertainty. The results are illustrated in Figure 7.7. 

 

 

Figure 7.7 Simulated ensemble and the mean for baseline rainfall and runoff 
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The SWAT simulated ensemble and the mean for baseline rainfall (P) and runoff 

(RO) in Figure 7.7 show minor variations in the rain season indicating uncertainty 

and differences in model skill. The ensemble runoff is slightly higher in January, 

February, March, November and December when rainfall is also high and tend to 

decrease with decreasing rainfall occurring in April, September and October. The 

model simulates no runoff from May to the end of August, which is when rainfall is 

also absent. The streamflow is composed of base flow mainly coming from the water 

yield shown in Figure 7.6. Runoff also rises from September to December as a direct 

response to rainfall. The runoff simulated from CNRM-CM5 output gives the highest 

runoff of 29mm in January while ISPL-CM5A-LR output gave the lowest runoff of 

12mm in the same period. Generally, SWAT simulated runoff based on six GCMs 

shows a consensus with insignificant uncertainties and variations.  

 

Further comparisons were made between monthly rainfall and actual 

evapotranspiration (ET) of the SWAT simulated ensemble with their calculated 

mean. The results are illustrated in Figure 7.8. 
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Figure 7.8 Simulated ensemble and the mean for baseline monthly ET 

 

The SWAT simulated ensemble and the mean for baseline evapotranspiration (ET) 

in Figure 7.8 indicate no variation and ET ranged from 87-74mm for the period 

January to April, which is also the rain season. Furthermore, temperatures are 

generally low as shown in Figure 7.4, while from April to May and June there is a 

sharp decrease. ET further decreases to zero or insignificant between June to 

September before gently rising to 81mm in December; this is as a result of the rise 

in temperature. The June, July and August (JJA) season is characterised with low 

temperatures as it is winter and temperatures begin to rise in September. In general, 

the SWAT simulated ET based on six GCMs and shows a consensus with 

insignificant variations. 

7.3.3 Baseline Seasonal Catchment Water Balance  

The seasons for the Kabompo River Basin are defined as December, January and 

February (DJF), which is the typical rain season, March, April and May (MAM) is the 
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autumn, June, July and August (JJA) is the winter season and September, October 

and November (SON) is the summer season. Seasonal changes in catchment water 

balance are useful for planning of agricultural production, tourism, environmental 

flow concessions, water supply, industrial development and hydropower generation. 

The baseline seasonal changes of the catchment water balance were plotted to 

show variability. Figure 7.9 illustrates the results of a seasonal water balance. 

 

Figure 7.9 Seasonal water balance of the baseline period 

 

Figure 7.9 shows the highest seasonal rainfall (620mm) and the highest runoff 

(58mm) recorded in DJF while the highest water yield of 256mm was recorded in 

SON. The SON season receives the second-largest rainfall followed by MAM and 

JJA when no rain is recorded. DJF shows the second-highest water yield followed 

by MAM and the lowest is recorded in JJA. SON and MAM show 18mm and 16mm 

runoff, respectively, with JJA having no rainfall and runoff, although it has a 

considerable water yield. This is the baseline flow regime analysed for a 31-year-
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period (1975-2005) and a control period that shall be used for analysing change with 

future scenarios. 

7.3.4 Future Changes in Catchment Water Balance under RCP4.5 

The GCM ensemble was analysed under the RCP4.5 for the period 2020-2050 in 

order to detect the change signal and to quantify the magnitude of change for the 

catchment water balance components. The study focused on rainfall and water yield 

with runoff. Runoff was separated to show its contribution in water yield and its 

relationship with rainfall.  Different time scales were considered under this emission 

scenario, which included annual, monthly and seasonal across the basin. This was 

done to understand the occurrences of the changes with their magnitude. 

Monthly Changes 

Figure 7.10 shows the individual GCM monthly changes in water balance as 

simulated by SWAT. Figure 7.10 also indicates the individual GCM monthly changes 

in water balance as simulated by SWAT. 
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Figure 7.10 Monthly changes in catchment water balance under RCP4.5 

 

Figures 7.10 (a) and (f) illustrate the predicted decrease of rainfall, water yield and 

runoff in all the months except for January and April. The highest decrease (30%) is 

predicted in November, as shown in Figure 7.10 (a). Figure 7.10 (d) shows a 

moderate increase in rainfall and water yield in all the months except October. 

Figures 7.10 (e), (c) and (b) indicate moderate decreases and increases of rainfall 

and water yield. The results of GCM ensemble show uncertainty because various 

GCMs responded differently to external forcing. 
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In order to obtain an overview of the average change for the entire basin, further 

analysis using a Change Factor Methodology (CFM), one of the most widely used 

methods in climate change impact studies (Trzaska & Schnarr, 2014; Anandhi et al. 

2011), was performed between the GCM ensemble mean under RCP4.5 and the 

baseline ensemble mean. Figure 7.11 illustrates the results of the average monthly 

changes in rainfall,water yield and runoff under RCP4.5. 

 

Figure 7.11 Average monthly changes under RCP4.5 

 

The GCM ensemble mean, shown in Figure 7.11, indicates a slight increase in the 

monthly rainfall for December, January, February and March while October and 

November show a significant decrease. The water yield and runoff when compared 

with a baseline ensemble also show a slight increase. 

 

The results clearly show that monthly rainfall, water yield and runoff have increased 

in December, January, February and March while rainfall decreased by 19% and 

4% in October and November, respectively. The high rainfall increase of 3% is 
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predicted in January, followed by 2% in February and December. The highest 

monthly water yield is predicted to be 10% and 8% in March and January, 

respectively, while the highest runoff is predicted to be 13% in December followed 

by 9% in January and February. There is a slight increase in water yield between 

April and September. 

Seasonal Changes 

The seasons have also been altered with changes in catchment water balance. 

Figure 7.12 illustrates  the seasonal changes in rainfall, water yield and runoff. 

 
Figure 7.12 Seasonal changes under RCP4.5 

 

Figure 7.12 illustrates that rainfall in DJF will increase by 2% across the basin while 

water yield will increase by 7% and runoff by 11%. Rainfall and water yield will 

increase in MAM by 1% and 6%, respectively, while runoff increases by 5%. In JJA 

no rainfall and runoff are predicted while water yield is predicted to increase by 2%. 

The SON season is predicted with a rainfall decrease of 8% while runoff also 
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decreases by 5% and water yield will slightly increase by 1%. This decrease may 

lead to seasonal drought requiring major interventions. In general, the Figure shows 

that there will be insignificant changes in rainfall while keeping runoff with 

considerable changes. 

Annual Changes 

The annual changes under RCP4.5 for the next period (2020-2050) indicate that 

rainfall will decrease by 1%, while water yield and runoff will increase by 5% and 

6%, respectively. Table 7.2 shows the summary of results for the changes in the 

ensemble mean.  

 

Table 7.2 Annual changes under RCP 4.5 

 

 

 

 

 

The results under RCP4.5 predict that runoff in DJF will have a considerable 

increase of 11% while the changes in the rest of the seasons in rainfall and other 

hydrological variables are generally insignificant throughout the period. The annual 

rainfall shows an insignificant reduction of 1% and a small increase of 5% in water 

yield while runoff increased by 6%. The results also show that the RCP4.5 and 

baseline periods are almost the same with only a few minor differences. 

7.3.5 Future Changes in Catchment Water Balance under RCP8.5 

Further analysis was perfomed on GCM ensemble under the RCP8.5 for the period 

2020-2050 to evaluate the change through quantification of change in the water 

balance components. The SWAT simulations were considered under monthly, 

Water Balance 

Component 
Future Annual 

Variable(mm) 
Baseline Annual 

Parameter(mm) 
Change 

(mm) 
Change 

(%) 

Rainfall 1175 1184 -8. -1 

Water Yield 381 362 18 5 

Runoff 99 93 6 6 
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seasonal and annual time scales across the basin in order to analyse the variability 

of changes with their magnitude. 

Monthly Changes 

Figure 7.13 illustrates the monthly changes in catchment water balance for individual 

GCMs as simulated by SWAT. 

 

 Figure 7.13 Monthly changes in catchment water balance under RCP8.5 
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Figure 7.13 (a) shows the P- Access 1-0 with the highest increase in rainfall, water 

yield and runoff in January, February, March, November and December when 

compared with the other five GCMs. The increase in rainfall ranges from 3-180% 

while water yield and runoff range from 83-534% and 153-1628%, respectively. The 

results show significant differences with the remaining five GCMs. Figure 7.13 (b) 

indicates P-CNRM-CM5 with a decrease in rainfall, water yield and runoff for 

January and March while showing a moderate increase in the water balance 

components in February, November, December and April. The largest runoff 

increase of 416% is predicted in October and the remaining months of May, June, 

July, August and September have insignificant rainfall and water yield, with no runoff 

predictions. 

 

Figure 7.13 (c) shows P-IPSL-CM5A-LR with a moderate increase in the water 

balance for January, February, March and December while October and November 

shows a decrease. The increase in rainfall and runoff ranges from 8-50% and 12-

80%, respectively, while water yield ranges from 4-31%; predicting the largest 

decrease in rainfall and runoff in October at 39% and 99%, respectively. There is a 

reasonable water yield increase of 10% from May to September but without rainfall 

and runoff, perhaps due to a contribution of baseflow. Figure 7.13 (d) shows P-

MIROC5 with a similar trend to Figure 7.13 (c) where there is a moderate increase 

in water balance for the same months while April and October have a decrease. 

There is also a slight increase in water yield from May to August. Figure 7.13 (e) 

shows P-MPI-ESM-MR with March, September, October and November to have a 

decrease of 3-36% in rainfall while January, February and April show an increase in 
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rainfall, water yield and runoff. The Figure also shows an increase in water yield and 

runoff for March, November and December while also showing a notable decrease 

in water yield from May to September. Figure 7.13 (f) shows P-MRI-CGCM3 with a 

considerable decrease of rainfall in April, December, November and February in the 

order of 25%, 16%, 13% and 7%. Furthermore, the Figure shows that January, 

March, September and October have an increase in rainfall, water yield and runoff 

while May to August has a decrease in water yield and no rainfall and runoff is 

predicted. 

There are considerable differences in GCM results, which can be attributed to 

uncertainty emanating from external forcing, downscaling and modelling processes. 

The results from GCM P-Access1-0 show a significant increase in catchment water 

balance, which is far above the remaining five GCMs for the future period. There are 

also wide variations in the five GCMs and this could be due to uncertainties 

regarding the aforementioned. Therefore, six GCM results show no consensus 

when compared to Figure 7.13. 

In order to obtain an overview of the average change for the entire basin, further 

analysis was performed between the GCM ensemble mean under RCP8.5 and the 

baseline ensemble mean.  Figure 7.14 illustrates the results of average monthly 

changes in rainfall,water yield and runoff under RCP8.5. 
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Figure 7.14 Average monthly changes under RCP8.5 

 

The results in Figure 7.14 clearly show that the monthly water balance will 

significantly increase in November, December, January, February and March. 

Rainfall and runoff will increase between 9% and 39% and 31% and 232%, 

respectively. Rainfall is expected to decrease in October, September, May and April 

by approximately 1-13%. The highest rainfall increase is 39%, predicted in February, 

followed by 31% in December and January. A total of 27% is predicted in March and 

9% predicted in November. The highest monthly water yield and runoff is predicted 

to be 106% and 232% in February. The lowest decrease in runoff is predicted in 

April, with 27%. In May, June, July, August and September no runoff is predicted, 

although an increase of 23-26% in water yield might occur. 

© Central University of Technology, Free State



Chapter 7 

164 

   

Seasonal Changes 

The seasonal water balance varies from season to season. The DJF season is 

predicted to have the highest water balance followed by MAM, SON and JJA. Figure 

7.15 illustrates  the seasonal changes in rainfall, water yield and runoff. 

 

Figure 7.15 Seasonal changes under RCP8.5 

 

Figure 7.15 shows a significant increase of runoff in DJF at 211% while predicting 

174% rise in MAM and 105% in SON, with no runoff in JJA. The figure also shows 

a 98% increase in water yield for DJF followed by 58% in MAM, 23% in JJA and 

14% in SON. The increase in rainfall is predicted at 36% in DJF followed by 20% in 

MAM and 5% in SON. The JJA season is predicted with no rain, as is the case with 

the current basin scenario. 

Annual Changes 

The annual changes under RCP8.5 for the period 2020-2050 show that the annual 

water balance will increase in general. Rainfall will increase by 19% and the water 
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yield and runoff will increase by 40% and 65%, respectively. Table 7.3 shows the 

annual changes. 

 

Table 7.3 Annual changes under RCP 8.5 

 

 

 

 

 

The results under RCP8.5 predict a general increase in the annual water balance. 

Annual rainfall and runoff will increase by 19% and 65%, respectively while the 

annual water yield will increase by 40%. The general annual increase in the water 

balance may be attributed to the high emission scenarios under RCP8.5. The 

general rise in the annual water balance may culminate into floods and high storage 

of groundwater. 

7.3.6 Analysis of Water Balance under RCP4.5 and RCP8.5 

Comparisons and summary were made for the catchment water balance under the 

two climate scenarios. Figure 7.16 illustrates the results of the seasonal water 

balance under RCP4.5 and RCP8.5. 

Water Balance 

Component 
Future Annual 

Variable (mm) 
Baseline Annual 

Parameter (mm) 
Change 

(mm) 
Change 

(%) 

Rainfall 1466 1184 282 19 

Water Yield 604 362 241 40 

Runoff 264 93 171 65 
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Figure 7.16 Comparisons of seasonal water balance under RCP4.5 and RCP8.5. 

The comparison of the seasonal water balance in Figure 7.16 shows no consensus 

between the two future climate scenarios. The water balance components analysed 

under RCP8.5 is much more than that of the RCP4.5. The seasonal rainfall changes 

under RCP8.5 range between 5% and 35%, while RCP4.5 does not show any 

significant seasonal changes except for an 8% decrease in SON. The Figure also 

shows that the catchment water balance under RCP4.5 will have insignificant 

variations with the baseline catchment water balance. Another analysis was 

performed to compare and contrast the annual catchment water balance. The 

results are shown in Table 7.4. 

 

 

 

 

 

© Central University of Technology, Free State



Chapter 7 

167 

   

Table 7.4 Annual water balance changes 

 

Table 7.4 shows that the annual changes in the water balance under RCP4.5 are 

insignificant and therefore, unlikely to alter the current water balance. The changes 

under RCP8.5 are significant and likely to increase the catchment water balance to 

unprecedented levels. Nevertheless, the scenario under RCP8.5 are characterised 

with high uncertainty due to non-consensus of the SWAT simulations that are based 

on the six GCMs. The data for simulated rainfall, runoff and water yield based on 

baseline,RCP4.5 and RCP8.5 is listed on Appendix I,J and K. 

 

Therefore, in general, the future is predicted with two scenarios: The future 

catchment water balance without changes from the baseline but with increased 

water demand and the future water balance with a significant increase above the 

baseline with an excessive surplus. 

7.4 Conclusion 

The impact of climate change on the catchment water balance based on GCMs is 

different and depends on a temporal resolution and the climate scenarios.  The 

monthly changes under RCP4.5 indicate a slight increase in monthly rainfall for 

December, January, February and March while October and November show a 

significant decrease. The water yield and runoff when compared with a baseline, 

Water Balance 
Component 

RCP4.5 Annual Change (%) RCP8.5 Annual 
Change(%) 

Rainfall -1 19 

Water Yield 5 40 

Runoff 6 65 
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also show a slight increase. The results clearly show that monthly rainfall, water 

yield and runoff has increased in December, January, February and March while 

rainfall decreased by 19% and 4% in October and November, respectively. The 

highest rainfall increase of 3% is predicted in January, followed by 2% in February 

and December. The highest monthly water yield is predicted at 10% and 8% in 

March and January, respectively. The highest and lowest runoff is predicted at 13% 

in December and 50% in October. There is a slight increase in water yield between 

April and September. The overall changes in the monthly water balance are not 

significant in this scenario. The monthly changes under RCP8.5 show that the 

monthly water balance will significantly increase in November, December, January, 

February and March. Rainfall and runoff will increase between 9% and 39% and 

31% and 232%, respectively. Rainfall is expected to decrease between 1% and 13% 

in October, September, May and April. The highest rainfall increase is 39%, 

predicted in February, followed by 31% in December and January. This is followed 

by 27% predicted in March and 9% in November. The highest monthly water yield 

and runoff is predicted at 106% and 232% in February, respectively. The lowest 

decrease in runoff is predicted in April with 27% while there is a no runoff prediction 

for May, June, July, August and September, although a 23-26% increase in water 

yield is possible. 

The seasonal changes under RCP4.5 predict 11% seasonal runoff increase in DJF 

while the changes in the rest of the seasons in rainfall and water yield are generally 

insignificant throughout the period. The annual rainfall will reduce by 1% while water 

yield and runoff will increase by 5% and 6%, respectively. The individual GCM 

results show insignificant variations and a good overall consensus. 
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The catchment water balance under this scenario will not deviate considerably from 

the baseline and therefore the major concern would be to enhance the management 

of water resources due to the demand, which is likely to double by the end of the 

31-year period for municipal water supply, environmental, industrial, agricultural, 

energy and mining sector. The evaluated impact under this scenario illustrates a 

status quo of water resources with the baseline period.  

 

The seasonal changes under RCP8.5 scenario predict significant increases in water 

balance that has a strong likelihood of increasing catchment water balance. The 

seasonal increases of runoff at 211%, rainfall at 35% may indicate the occurrence 

of an excessive catchment water balance. The comparison of seasonal water 

balance under the two RCPs shows no consensus of the future climate scenarios. 

The water balance analysed under RCP8.5 is much more than that of the RCP4.5. 

The seasonal rainfall changes under RCP8.5 range from 5%-35% while RCP4.5 

does not show any significant seasonal changes except for an 8% decrease in SON. 

The catchment water balance under RCP4.5 will have insignificant variations with 

the baseline catchment water balance. 

 

Annual statistics under RCP8.5 show a significant increase of 65%, 40% and 19% 

in runoff, water yield and rainfall, respectively, while under RCP4.5 there is an 

annual reduction in rainfall of 1% and an increase in runoff and water yield of 6% 

and 5%, respectively. Generally, the RCP8.5 climate scenario shows high 

uncertainties of GCM simulations compared to the RCP4.5 climate scenario in the 
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KRB. The variability of individual GCMs is also wide and shows no good consensus 

under RCP8.5 as compared to the RCP4.5 results.  

 

The six GCMs have demonstrated a rare skill in modelling climate change for KRB. 

There is a significant increase under RCP8.5 in the catchment water balance at 

monthly, seasonal and annual time scales. The prediction may call for preparedness 

in disaster mitigation and adaptation, review of policies, review of designs of 

hydraulic structures, flood mapping and awareness campaigns. Meanwhile, under 

RCP4.5, the evaluated catchment water balance at monthly, seasonal and annual 

time scales may also call for integrated water resources management of available 

water resources against a growing water demand in the KRB. 

 

Further analysis on the evaluation of the impact of climate change on streamflow in 

order to inform the adaptation and mitigation strategies were performed in Chapter 

eight.  
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 : ASSESSMENT OF IMPACT OF CLIMATE 

CHANGE ON STREAMFLOW 

8.1 Introduction 

Assessment of the impact of climate change on the future streamflow regime is a 

prerequisite for water resources planning (Arnell et al. 2015; Kusangaya et al. 2014). 

Adequate and accurate information on temporal and spatial variability of streamflow 

is required, especially concerning water availability, quality and maintenance of 

environmental flows (Chien et al. 2013).  

 

Prediction of future water resources under the projected climate scenarios is made 

using hydrological models with accuracy to simulate observed streamflow through 

calibration (Gupta et al. 1998). Streamflow prediction can be achieved using 

hydrological ensemble systems (Mainardi et al. 2014; Chien et al. 2013). 

Assessments of impact of climate change on hydrology and water resources come 

with many uncertainties.  

 

The uncertainties can be attributed to emission scenarios, climate models, 

hydrological models and downscaling. Many times, uncertainties associated with 

climate models are larger than that of hydrological models or downscaling (Li & Jin, 

2017; Velazquez, 2015). Uncertainty with hydrological prediction is better 

considered with an ensemble system than with a deterministic approach (Krysanova 

et al. 2018; Qin & Lu, 2014).  
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. 

This chapter focuses on evaluating the impact of climate change on streamflow 

regime of the KRB in Zambia. The method involved the use of the SWAT calibrated 

model and GCM data described in Chapter seven. Land use and land cover were 

also kept constant during the SWAT simulations under the RCP4.5 and RCP8.5, 

with climate change being the only factor considered to be influencing streamflow 

regime.  

 

The basin under RCP8.5 climate scenario shows no consensus based on individual 

GCMs. However, the simulated ensemble mean for the annual streamflow under 

RCP8.5 predicts an annual increase of 85%, while the ensemble mean for the 

annual streamflow under RCP4.5 predicts no annual change with the baseline 

streamflow on GCMs. The majority of simulations indicate that intra-annual and 

inter-annual streamflow variability will increase in the future under RCP8.5 by a 

considerable margin while reducing under RCP4.5 scenario when compared to the 

baseline scenario. 

8.2 Materials and Methods 

The study focussed on average monthly, seasonal and annual simulations rather 

than daily simulations because GCM’s reliability decreases at higher frequency 

temporal scales (Anandhi et al., 2011b). The six downscaled bias-corrected GCM 

projections were used as input data in calibrated SWAT model described in chapter 

five to simulate monthly streamflow in m3/s. The streamflow simulations were based 

on the baseline, RCP4.5 and RCP8.5 climate scenarios for each GCM projection. 
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The simulated streamflow was then used as an ensemble for evaluation based on 

monthly, seasonal and annual time scales.  

8.2.1 Hydrological Statistics 

In order to understand the future catchment hydrology of the KRB, flood frequency 

analysis was performed on simulated streamflow time series for each GCM (Yu et 

al, 2018; Ngongondo et al. 2013). Log Normal (LN) and Log Pearson type III (LP3) 

probability distributions with parameter estimation of mean moments (MM) were 

used for the analysis. Temporal variability of streamflow at the KRB outlet was 

analysed with a coefficient of variation for each GCM to determine the spread of the 

streamflow about the means. Therefore, intra-annual and inter-annual variability of 

the streamflow were determined. 

 

Flow Duration Curves (FDC) were calculated to analyse the streamflow variability 

and the percentage flow exceedances (Mülle & Thompson, 2015; Ngongondo et al. 

2013). Different factors affect the shape of the FDC. The rest of the methods and 

data used in this chapter is the same as described in chapter seven. 

8.3 Results and Discussion 

The SWAT simulated results, based on the six GCM projections, show considerable 

variations in monthly streamflow under RCP8.5, RCP4.5 and baseline climate 

scenarios. The SWAT simulated ensemble for streamflow under RCP8.5 shows 

much higher flows from Access1-0 than the remaining five GCMs, while the 

simulation ensemble for streamflow under RCP4.5 was within the same range with 

only a few minor differences. The simulations ensemble streamflow for baseline 

were found to be within similar range as the one under RCP4.5. 

© Central University of Technology, Free State



Chapter 8 

174 

   

 

Therefore, the magnitude and regime of the simulated ensemble for streamflow 

under RCP4.5 does not significantly differ from the simulated ensemble for baseline 

streamflow suggesting that the hydrological variables, such as water yield, surface 

runoff, groundwater flow and interflow may be within the same range. Similar results 

(in Chapter seven) were obtained with rainfall simulation from the six ensemble 

member GCM projections where Access1-0 under RCP8.5 had a much higher 

rainfall amount than the remaining five GCMs.  

 

Although RCP4.5 is a future medium climate scenario (Medium emissions of CO2), 

the simulations have revealed that it will not result in any significant change in 

streamflow from the baseline period. Perhaps, it is due to the limited change in 

temperature under RCP4.5 in the basin, which has insignificant variations with the 

baseline. Figure 8.1 illustrates the temperature variability in the basin under the 

three climate scenarios. 

 

Figure 8.1 Baseline and future temperature variability 
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Figure 8.1 ilustrates a temperature rise of 1.5oc under RCP8.5 which is close to 

RCP4.5 while the maximum temperature under baseline are far less. The 

temperature rise of 1.5oc is quite significant as it comes with huge effects on 

evapotranspiration. Despite the increase in temperature, the pattern across the 

basin remains the same with winter season in June, July and August and summer 

season in September, October and November. 

8.3.1 Simulated Streamflow under three Climate Scenarios 

The different GCM projections were simulated using the SWAT model under the 

baseline, RCP4.5 and RCP8.5 climate scenarios to show variations and any 

possible similarity of patterns that may exist. Figures 8.2 (a), (b) and (c) illustrates 

the six-member simulation ensemble and their calculated mean for streamflow for 

the three climate scenarios. 

 

Figure 8.2 (a) Simulated  ensemble and the mean for streamflow under baseline 
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Figure 8.2 (b) Simulated ensemble and the mean for streamflow under RCP4.5 

 

 

Figure 8.2 (c) Simulated ensemble and the mean for streamflow under RCP8.5 

 

The simulated streamflow based on baseline and RCP4.5 in Figures 8.2 (a) and (b) 

show less variability compared to the mean. The figures also show a similar pattern 
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with the annual streamflow simulations that are in the same range of flow between 

30-90mm/yr across the basin. However, Figure 8.2 (c) shows the simulated 

ensemble streamflow and the mean under RCP8.5 with significant differences as 

streamflow simulated under Access1-0 is higher and in the range of 168-725mm/yr 

across the basin with a different pattern, while the remaining five GCMs in Figure 

8.2 (c) are within 30-90mm/yr with a pattern similar to Figure 8.2 (a) and (b). There 

is, therefore, a similarity of all the GCMs under the baseline and RCP4.5 climate 

scenarios. However, there is no similarity under RCP8.5, which is a high emission 

scenario with a high streamflow simulated based on Access1-0 in Figure 8.2 (c); the 

remaining five GCMs have similarities. The high streamflow simulated reflects the 

high rainfall simulated in chapter seven (Figure 7.11a) under the same GCM and 

RCP. Further more the differences in simulations may demonstrate uncertainty in 

GCMs that have various model skills (Hawkins & Sutton, 2009). 

8.3.2 Monthly Streamflow Analysis 

Figure 8.3 illustrates the SWAT simulated streamflow results for each of the GCM 

under baseline, RCP4.5 and RCP8.5 climate scenarios. 
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Figure 8.3 Streamflow simulations based on individual GCMs 

Figure 8.3 (a) shows the monthly streamflow based on Access1-0 under RCP8.5 

that has the highest magnitude of streamflow at 1696m3/s compared to the baseline 

and RCP4.5. The highest simulated streamflow occurs in January, while in February 

and March the flow begins to recede and continues until August when perhaps it is 

only baseflow. The lowest flow of 204m3/s is experienced in September and October 
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and thereafter begins to rise at a gentle slope up to November where the rise 

changes to a steep slope due to rainfall events that start at the end of September. 

The peak baseline streamflow is shown as 224m3/s occurring in March, while peak 

streamflow under RCP4.5 is illustrated as a peak streamflow of 187m3/s occurring 

in the same month. The baseline streamflow is slightly higher than RCP4.5 

throughout the year, predicting a decrease in RCP4.5 flow magnitude. The lowest 

flow for both baseline and RCP4.5 is 73m3/s occurring in November. Figure 8.3 (a) 

also shows a shift in the peak flow occurrence when compared under the three 

scenarios. Peak flow under RCP8.5 is predicted to occur in January while for 

baseline and RCP4.5 it is in March. There is also a sharp rise in flow predicted under 

RCP8.5 from November to January, which may be the result from a high rainfall 

input beginning in October. Meanwhile, the baseline and RCP4.5 have a very 

negligible rise in the same period, suggesting an input of limited rainfall. 

Figure 8.3 (b) shows the monthly simulated streamflow based on CNRM-CM under 

baseline, RCP4.5 and RCP8.5 scenarios compared with the baseline period. The 

streamflow simulations under the three climate scenarios have nearly the same flow 

regime with insignificant variations. However, the streamflow under RCP8.5 is 

slightly higher than RCP4.5, which is a bit higher than baseline flows between 

January to April and October to December. These are also months of rainfall in the 

KRB. The predictions generally show that the future period will not be very different 

from the baseline period. 
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Figure 8.3 (c) is the prediction of streamflow based on IPSL-CM5A-LR under 

RCP4.5 and RCP8.5 compared with the baseline period. The streamflow 

simulations have nearly the same flow regime with some differences between 

January and April. The streamflow under RCP8.5 is higher than both RCP4.5 and 

baseline streamflow that is almost matching throughout the year. The Figure also 

shows GCM predictions with insignificant variations between the three streamflows 

throughout the year except between January and April where there are apparent 

differences. These are also months of rainfall in the KRB. The predictions generally 

show that the future period will not vary significantly from the baseline with a slight 

streamflow rise between January to April under RCP8.5. 

 

Figure 8.3 (d) shows the streamflow simulated based on MIROC under the baseline 

period, RCP4.5 and RCP8.5 scenarios. Figure 8.3 (d) shows the prediction of 

streamflow based on MIROC5 under RCP4.5 and RCP8.5 compared with the 

baseline period. The three-streamflow simulations have nearly the same magnitude 

and flow regime with some differences between January to April. The streamflow 

under RCP8.5 is slightly higher than RCP4.5, which is also higher than the baseline 

streamflow between January and April. Furthermore, the GCM predicts that there 

will be insignificant variations between the three streamflows from May to 

December. The predictions generally show that the future period will have minor 

differences from the baseline with a slight streamflow rise between January to April 

under RCP8.5 and RCP4.5. 

 

Figure 8.3 (e) shows the streamflow simulated based on MPI-ESM-MR under the 

baseline period, RCP4.5 and RCP8.5. Figure 8.3 (e) illustrates the prediction of 
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streamflow based on MPI-ESM-MR under RCP4.5 and RCP8.5 compared with the 

baseline period. The streamflow simulations have the same flow regime with 

insignificant variations in magnitude between January and March. The predictions 

generally show that the future period will not have considerable differences from the 

baseline period. 

Figure 8.3 (f) shows the streamflow simulated based on MPI-ESM-MR under the 

baseline, RCP4.5 and RCP8.5 climate scenarios compared with the baseline period. 

The streamflow simulations have nearly the same flow regime with some differences 

between January and May. The streamflow under the baseline is slightly higher than 

both RCP8.5 and RCP4.5 that are almost the same throughout the year. The GCM 

is also predicting that the future magnitude of streamflow will slightly reduce between 

May and December while considerable reductions will occur between January and 

April. 

The majority of streamflow simulations based on the five GCMs predict a slight 

increase in streamflow while streamflow simulations based on Access1-0 predict a 

significant increase, while the streamflow simulation based on MRI-CGCM3-MR 

predicts a slightly less streamflow. The streamflow simulations based on the five 

GCMs are within the same range while streamflow simulation based on Access1-0 

has a significant increase.  Further analysis was, therefore, performed to construct 

the monthly simulated streamflow ensemble means based on the six GCMs under 

baseline, RCP4.5 and RCP8.5 climate scenarios. Figure 8.4 illustrateds the results 

of monthly ensemble mean streamflow. 
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Figure 8.4 Monthly ensemble mean streamflow 

 

The ensemble mean streamflow in Figure 8.4 predicts that baseline and RCP4.5 

streamflow will have nearly the same magnitude and flow regime while the ensemble 

mean streamflow under RCP8.5 will be much higher in magnitude compared to the 

two ensemble mean streamflow that also includes a wide variation in flow regime. 

The ensemble mean peak flow under RCP8.5 is predicted to be 467m3/s occurring 

in February while under RCP4.5 and baseline it is 224m3/s, which occurs in March. 

The lowest base flow under RCP8.5 is predicted to be 106m3/s occurring in October 

while under RCP4.5 and baseline periods it is 82m3/s occurring in the same month. 

 

The ensemble mean streamflow under RCP8.5 shows a sharp rise from November 

to January. Under RCP4.5 there is a moderate rise from November to January. The 

predictions from the ensemble mean streamflow indicate an increased magnitude 

of streamflow under RCP8.5, which may culminate into excessive streamflow of 
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most parts of the basin depending on the topography. RCP4.5 generally indicate the 

status quo of the flow regime and magnitude when compared with the baseline flow. 

 

In order to determine the actual increase or decrease for the ensemble mean 

streamflow, a change factor methodology (CFM), one of the most widely used 

methods  as described in chapter three was applied. Figure 8.5 illustrates the results 

of ensemble mean streamflow changes. 

 

Figure 8.5 Ensemble mean streamflow changes 

 

Figure 8.5 ilustrates the highest increase in streamflow of 270m3/s under RCP8.5, 

which is much higher than the ensemble mean under RCP4.5. The increase in 

streamflow occurs in January while the lowest increase of 22m3/s occurs in 

September and October and a sharp rise in increase starts from November to 

January. Another prediction is in flow regime where the peak flow is shown in 

January and recedes gently until September before rising again in November. 
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Meanwhile, the ensemble mean under RCP4.5 predicts no change in streamflow 

with the baseline period. 

8.3.3 Seasonal Flow Analysis 

The KRB experiences four seasons, namely December, January and February 

(DJF) the typical rain season, March, April and May (MAM) is autumn, June, July 

and August (JJA) is winter season and September, October and November (SON) 

the summer season. Streamflow varies depending on the season. DJF and MAM 

are also known as the wet seasons, while JJA and SON are known as the dry 

season. Future streamflow from GCM ensemble means was analysed based on the 

aforementioned seasons and the monthly future streamflow. A change factor was 

applied to the monthly streamflow and aggregated to seasonal streamflow.  Figure 

8.6 shows the seasonal comparisons between baseline, RCP4.5 and RCP8.5 

streamflow and the changes per season. 

 

Figure 8.6 Comparisons of change in seasonal future streamflow 
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The seasonal streamflow in Figure 8.6 shows that under RCP4.5 streamflow will be 

reduced by -0.6% in DJF, -0.7% in MAM, -0.9% in JJA and -1.9% in SON. The 

seasonal streamflow will be slightly less than the baseline flow because all the 

seasons have been predicted with a negative magnitude; the highest occurrence in 

SON at -2% reduction. Therefore, the reduction in seasonal streamflow will need 

planning and management. 

 

However, seasonal streamflow under RCP8.5 is apparently high for all the seasons, 

creating a huge change with baseline and RCP4.5 streamflow. The highest seasonal 

streamflow change in Figure 8.6 is predicted at 134% occurring in DJF, which is 

followed by 87% occurring in MAM. Thereafter 44% is predicted in JJA while the 

lowest predicted is 34% occurring in SON. This implies that DJF and MAM may 

experience excessive streamflows, while JJA that is a dry season may have a higher 

magnitude of streamflow constituting mostly base flow. SON may have streamflow, 

which will be predominately base flow because it is a dry season. All the percentage 

calculations are based on baseline data. 

8.3.4 Intra-Annual Flow Analysis 

The monthly streamflow simulated based on the six GCMs were plotted in Figure 

8.7. The intra-annual variability shows a uniform pattern of streamflow indicating a 

significant correlation efficiency. 

© Central University of Technology, Free State



Chapter 8 

186 

   

 

Figure 8.7 Intra-annual streamflow simulations based on six GCMs under RCP4.5 

 

The monthly streamflow simulated based on RCP8.5 have significant differences 

between Access1-0 and the other five GCMs. Figure 8.8 shows the monthly 

streamflow from the six GCMs. 

 

Figure 8.8 Monthly streamflow for six GCMs under RCP8.5 

 

The simulated streamflow in Figure 8.8 shows that Access1-0 monthly streamflow 

is much higher than the majority, suggesting uncertainty and confirming that different 
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GCMs respond to external forcings differently. The simulations from the majority 

GCMs is similar and provides a uniform pattern throughout the projection period. 

The simulated monthly flows were aggregated to ensemble mean annual flows to 

analyse the annual variability. The result is shown in Figure 8.9. 

 

Figure 8.9 Ensemble mean annual flows 

 

The ensemble mean annual flows are predicted to be higher under RCP8.5 than the 

ensemble means under RCP4.5 and baseline. Figure 8.9 shows that annual flows 

under RCP4.5 and baseline have insignificant differences in magnitude and regime. 

The ensemble mean annual streamflow under RCP8.5 predict an annual increase 

of 85% while the ensemble mean annual streamflow under RCP4.5 predicts no 

annual change with baseline streamflow. 

8.3.5 Intra-Annual and Inter-Annual Streamflow Variability 

Intra-annual variability of baseline streamflow predicted streamflow under RCP4.5 

and RCP8.5 were determined for each GCM to determine the spread about the 

mean, which was quantified as the coefficient of variation (VC). While the inter-
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annual variability was quantified as the CV; the mean of CVs for all GCMs. The 

averaged intra-annual variability under RCP4.5 is 0.397, which is lower than 0.399 

of the six estimates of the intra-annual variability under baseline. Similarly, the 

averaged inter-annual variability under RCP4.5 is 0.112, which is also lower than 

0.136 of the six estimates of the inter-annual variability under baseline. In addition, 

all the CVs, under RCP8.5 scenario, are lower than the CV under baseline scenario. 

Therefore, the majority of simulations indicate that intra-annual and inter-annual 

streamflow variability will decrease in the future under RCP4.5. 

 

The averaged intra-annual variability under RCP8.5 is 0.510, which is higher than 

0.399 of the six estimates of the intra-annual variability under the baseline. Similarly, 

the averaged inter-annual variability under RCP8.5 is 0.161, which is also higher 

than 0.136 of the six estimates of the inter-annual variability under baseline. Also, 

the majority of the CVs, under RCP8.5 scenario, are higher than the CVs under 

baseline scenario, except the CVs for MRI-CGCM3-MR. The estimated coefficient 

of variation for each GCM is listed on Appendix O,Table O1.     

 

The majority of simulations indicate that intra-annual and inter-annual streamflow 

variability will increase in the future under RCP8.5 by a considerable margin. A 

graphical comparison of coefficient of variation for each GCM based on the climate 

scenario was made and revealed that both inter-annual and Intra-annual CVs were 

higher under RCP8.5 than the baseline and RCP4.5. Further information on 

simulated streamflow based on six GCM are listed on Appendix M,Table 

M1,M2,M3,M4,M5 and M6. 
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Figure 8.10 shows the comparison of CVs for the six GCMs. 

 
Figure 8.10 comparisons of CVs 

 

Further analysis showed that the means of CVs based on climate scenario was still 

higher under RCP8.5 than both RCP4.5 and baseline. Table 8.1 shows the CV 

means.  

Table 8.1 Mean CVs based on six GCMs 

 

The annual streamflow is significant and has been confirmed with the intra-annual 

and inter-annual variability of streamflow to increase under RCP8.5. Therefore, 

further analysis to determine the magnitude and frequency of its occurrence on a 
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monthly, seasonal and yearly basis is required and will be discussed in the next 

section. 

8.3.6 Analysis of Flood Frequency in a changing Climate 

A standard procedure for future flood frequency analysis has not yet been 

established and, therefore, it is a matter of research (Quintero et al. 2018). Two 

periods were used in the analysis to compare and determine the changes. The 

comparisons under future and baseline periods were considered with the 

assumptions of stationarity conditions for the two periods. This was due to the 

insignificant changes in climate variables for baseline and RCP4.5 for the period 

2020-2050. 

 

Annual maximum series (AMS) of peak discharges were selected for the baseline 

period (1975-2005) and future annual peak flows under RCP8.5 (2020-2050) for 

each GCM. Flood frequency analysis was performed on two different periods in 

order to quantify changes in frequency of occurrence and the magnitude of the peak 

discharges and their return period (Millington et al. 2011). The AMS data were 

further subjected to statistical analysis to estimate parameter values such as the 

location, dispersion (scale) and shape in order to determine the appropriate 

probability distribution to be applied. 

 

In addition to the consideration of the choice of a distribution, the method of 

parameter estimation was also analysed to ensure reasonable, accurate results. 

Parameter estimation was determined through Method of Moments (MM), which is 

widely used in hydrology while Log Normal (LN) and Log Pearson type III (LP3) were 

found suitable probability distributions for flood frequency analysis. 
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All the GCMs simulated streamflow were analysed for flood frequency individually 

using the frequency factor method (Chow, 2007) and is applicable to many 

probability distributions used in hydrological frequency analysis. The predicted peak 

streamflow based on Access 1-0 under the RCP8.5 have clearly shown a shift of 

the frequency and an increase in peak streamflow in the future increasing the 

potential severity of flooding. Figure 8.11 shows the comparative results of the 

analysis for the future and baseline periods. 
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Figure 8.11 Comparisons of flood frequency curves for two periods 

 

Figure 8.11 (a) shows the probability distribution based on Access1-0, which 

indicates an increase of 97% and 96% in future peak floods with a return period of 

50 years under LP3/MM and LN/MM, respectively. Figure 8.11 (b) shows the 

probability distribution based on CNRM-CM, which indicates no increase under 

© Central University of Technology, Free State



Chapter 8 

193 

LP3/MM, while under LN/MM shows an increase of 4% for the future peak floods.  

Figure 8.11 (c) shows the probability distribution based on IPSL-CM5A-LR, which 

indicates a 4% and 8% increase under LP3/MM and LN/MM, respectively for the 

future peak floods.  

Figure 8.11 (d) shows probability distribution based on MIROC Probability 

distribution, which indicates a 7% and 4% increase under LP3/MM and LN/MM, 

respectively for the future peak floods. Figure 8.11 (e) shows the probability 

distribution based on MPI-ESM-MR with a 12% and 9% decrease under LP3/MM 

and LN/MM, respectively for the future floods. Figure 8.11 (f) shows probability 

distribution based on CGCM3-MR with an 8% and 11% decrease under LP3/MM 

and LN/MM, respectively for the future peak floods. The percentages were 

calculated based on the future period with a return period of 50 years. 

The probability distributions predicted under Access1-0 generally show severe 

future peak flood while the majority GCMs predict an increase of 4-8% magnitude 

of flood with a return period of 50 years. There is also a generally low magnitude of 

floods predicted with some insignificant variation in frequencies at 2, 5 and 20 return 

periods among the majority GCMs. However, the flood frequency at 50 and 100 year 

return periods show some considerable variations in the magnitudes for all the 

GCMs. This could be attributed to the uncertainties in GCMs and the assumptions 

in flood frequency analysis. The ranked simulated streamflow for six GCMs is listed 

on Appendix N,Table N1. 
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The magnitude of an extreme event is related to its frequency of occurrence. The 

bigger the magnitude, the longer the frequency of occurrence. The estimated flood 

frequencies confirm the concept as all peak flows also have higher return periods. 

The longest return period calculated from the data can only be double the period of 

the length of the baseline data, therefore, the data under analysis could only be used 

to estimate peak discharge with return periods not exceeding 60 years as the 

projected period is 2020-2050.  

However, 60 years can only be well extrapolated when the calculation includes 100 

years to project the return periods. It is not enough to only estimate the flood 

magnitude with its frequency of occurrence but also analyse the streamflow regime 

with percentages of flow being equalled or exceeded. Therefore, further analysis 

was performed with flow duration curves. 

8.3.7 Variability of streamflow under Flow Duration Curves 

The streamflow variation for the KRB was further analysed with Flow Duration 

Curves (FDC) that was calculated to show how flow is distributed over a period of 

30 years. FDC shows the relationship between magnitude of streamflow and its 

frequency of daily, weekly, monthly streamflow or an interval for a particular river 

basin (Vogel & Fennessey, 1996; Searcy, 1969). 

Six-member simulated ensemble monthly streamflow was analysed under baseline, 

RCP4.5 and RCP8.5 climate scenarios. The ensemble monthly streamflow was 

analysed for FDC in order to determine the basin characteristics under various 

climate scenarios as projected by the GCMs. Figure 8.12 indicates the baseline 

FDCs for all the GCM ensemble streamflow with the calculated average ensemble. 
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Figure 8.12 Flow duration curves for ensemble streamflow under baseline period 

 

Figure 8.12 shows the simulated ensemble FDCs plotted for the baseline period with 

the average ensemble. There is minor variation between the average ensemble and 

the GCM streamflow. All the curves exhibit gentle slopes characterising the basin to 

have a significant contribution of base flow (spring sources of water) and with the 

capacity to sustain the low flows throughout the year.  

 

The steep slope of the curves for Q10 characterise the flood regime of the basin, 

which is perhaps precipitated by rainfall. However, the high flows, Q10, are 

characterised by a steep slope, while the low flows, Q70, are characterised by flat 

curves. The lowest flow that is equalled or exceeded at 100% time is 66m3/s, which 

is available throughout the year. This is also known as Q100. The flow between Q0 

and Q10 are considered as high flows that are only available for a small proportion 

of time in a year, while flows between Q10 and Q70 are medium-range flows. Flows 
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from Q70 to Q100 are the low flows that are available most of the times. Moving 

further to the right of the graph, flows from Q95 to Q100 are also considered as 

drought flows. The FDC analysis was extended to monthly ensemble streamflow 

under RCP4.5 with the calculated average ensemble. Figure 8.13 shows the 

ensemble streamflows with its calculated average based on RCP 4.5. 

 

Figure 8.13 Flow duration curves for ensemble streamflow under RCP45 

 

Figure 8.13 shows ensemble streamflow with its average under RCP 4.5 which does 

not significantly differ from ensemble stream under baseline in Figure 8.12. The 

FDCs in Figure 8.13 have the slopes and trend that are considerably gentle, 

reflecting the same basin characteristics as shown in Figure 8.12. The high flows 

are represented by Q0 to Q4 where there is a steep slope indicating flood regime. 

The flow may only be available for a very short time in the year reducing the 

probability of flooding. Flows between Q4 and Q60 are medium-range, while low 

flows occur between Q60 and Q100. In general, the basin will have more low flows 
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under this climate scenario with less likelihood of floods. There is a high probability 

that low flows may result in drought flows. 

Further analysis of simulated ensemble FDC and the calculated average was 

performed under RCP 8.5 scenario. Figure 8.14 shows the ensemble FDC with its 

calculated average based on RCP 4.8. 

 

Figure 8.14 Flow duration curves for ensemble streamflow under RCP8.5 

 

Figure 8.14 show a simulated ensemble FDC with its average under RCP8.5 that 

has wide differences between Access1-0 and the other five GCMs showing no 

consensus. The variation between the average ensemble and individual FDC is 

considerable. The FDC analysed from Access1-0 simulated streamflow can be 

divided into very steep slope, gentler slope and very flat slopes.  

 

The Q0 to Q10 is a very steep slope indicating the flood regime and is considered a 

high flow section, which could last for 10% of the time in a year. The slope indicates 
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the possibility of serious floods with Q4 flows considered as severe floods. The 

medium-range flows are between Q10 and Q70, which has a gentler slope while low 

flows are between Q70 and Q100 where the slope is very flat. The basin is predicted 

to experience severe floods under this climate scenario that may require 

comprehensive preparedness. 

 

The majority of GCMs have consensus and are generally flat slopes and not different 

from the climate scenario under RCP4.5. There is no likelihood of floods even for 

flows between Q0 and Q4. The two responses (From Access1-0 and the five GCMs) 

are at a variance, therefore, further analysis was performed between the average 

ensemble baseline and RCP 8.5 to find the future percentage increase in flows. 

Figure 8.15 shows the future percentage increase in FDC under RCP 8.5. 

 

Figure 8.15 FDC for percentage change in average ensemble under RCP8.5 

 

Figure 8.15 refers to the percentage change in average ensemble streamflow under 

RCP8.5. The three sections in the FDC are still eminent as very steep, gentler and 
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very flat. There is a very steep slope between Q0 and Q10 which is predicted to 

increase the basin flows by 100% - 400% for the basin. This may signify high 

probability of severe floods to occur for about 10% of the time in a year. 

 

The flood regime is most likely to be characterised by high-intensity rainfall. The Q10 

to Q70 has a gentle slope, which has medium-range flows expected to increase by 

25% - 100% while the Q70 to Q100 is a very flat slope with low flows. The 

percentage increase in lowest flow is estimated at 25% and is the flow equalled or 

exceeded throughout the year. The overview result predicts that the basin under this 

scenario will experience severe floods with an increased magnitude of streamflow 

throughout the year. 

8.4 Conclusion 

Evaluation of climate change impact on streamflow is critical for water quantification, 

streamflow variability and water balancing. The basin under RCP8.5 for the period 

2020-2050 climate scenario shows no consensus amongst the ensemble GCMs. 

However, the majority GCMs (four out of six) indicate 4-8% increase in streamflow 

predicted in flood frequency analysis with significant changes in monthly, seasonal 

and annual flow regime and magnitude. The majority of simulations indicate that 

intra-annual and inter-annual streamflow variability will increase in the future under 

RCP8.5 by a considerable margin. There is also a significant increase in seasonal 

streamflow that ranges from 134 - 34% analysed from the simulated ensemble under 

RCP8.5. 
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The Flow Duration Curves have also confirmed that the peak flows are between Q0 

and Q10 where there is an increase of high flows by 100% - 400%. The predicted 

flows at Q10 occur for about 10% of the time in a year. Therefore, the high flows 

(floods) are likely to last for one month and two weeks before subsiding. In addition, 

the basin has sufficient low flows expected to increase by 25% at Q95 with 95% 

time of occurrence. 

 

The basin under RCP4.5 for the period 2020-2050 climate scenario is predicted with 

insignificant changes in monthly, seasonal and annual flow regime and magnitude. 

The predictions suggest that the magnitude and temporal streamflow variability will 

not vary from the baseline magnitude and flow regime. Therefore, RCP4.5 future 

climate scenario does not significantly translate into a changed streamflow for the 

basin whether simulated as individual GCMs or ensemble mean. The result is almost 

the same with minor differences. The predicted excessive streamflow under RCP8.5 

needs comprehensive planning for adaptation and mitigation strategies, while 

streamflows predicted under RCP4.5 will require effective management of water 

resources in the basin. This should be reviewed in order to consider the ever-

increasing water demand and other impacts such as water quality, rainfall intensity 

not investigated under this study. 

 

Future studies need to focus on RCP4.5 for the period 2050-2090 and RCP8.5 for 

the period 2050-2090 in order to assess any possible climate change impact on 

streamflow that would arise from the scenarios. It is also advisable to increase the 

number of GCMs projections to find a better consensus in uncertainty. 
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 :  CONCLUSION AND RECOMMENDATIONS 

9.1 Introduction 

The status of the water resources availability and its linkage to climate variability 

revealed that there was paucity of hydro-meteorological data, a high occurrence of 

floods and droughts, uneven distribution of water resources across the basin and 

increasing temperatures across the ZRB altering the hydrology and water resources 

of the KRB. Climate change in the basin becomes an enormous additional pressure 

on water resources. The challenges called for immediate interventions to contribute 

to finding a lasting solution. 

 

In a bid to address the situation, the research undertaken focused on finding 

solutions, which were based on the KRB  to determine their appropriateness for the 

local conditions.  The major research findings to the challenges in the KRB and the 

ZRB include: 

 The use of gridded climate data (CFSR) in data-scarce Southern Africa to 

become an alternative to the traditional ground observed data from 

hydrometeorological stations.  

 Generation of high-resolution climate scenarios for quantification of impact 

across the KRB identified areas for immediate interventions.  

 Assessment of current and future water balance to facilitate the planning of 

water resources under climate change which has begun to impact the KRB.  

 Evaluation of streamflow in the basin for analysis of hydrological flow regime 

under the current and future scenarios and enhance IWRM.  
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The detailed research findings are elaborated on in the following sections.  

9.2  Hydrological Modelling with Alternative Technology. 

The SADC countries in the Southern African region similar to many developing 

countries have challenges of paucity of hydro-meteorological data making it difficult 

to effectively assess water resources with high accuracy. Alternatives and other 

options were, therefore, explored in the research and alternative technology was 

applied with gridded climate data (CFSR) that proved to be reliable and perhaps 

recommended alternative in data-scarce regions. The quantitative statistics showed 

that the alternative technology results were good and may be used in catchments 

with similar characteristics.During the research, it was noted that automatic 

calibration and validation with SWAT-CUP SUFI-2 was effective and efficient as it 

was less time-consuming in producing optimum calibrated parameters. The 

Southern African region has particularly been a data-scarce region, which has 

hampered research on a large scale, but with the use of alternative technology, 

water resources would be well assessed and effective water resources 

management can be envisaged. 

 

The assessment of water resources using alternative technology in the KRB showed 

that spatial distribution of water yield has uneven distribution with some areas of the 

basin appearing to be under water stress. Other areas have excess water, which 

tends to flow out of the basin due to underutilisation and limited water conservation 

structures. The estimated water resources provide an insight into the water balance 

of the basin where various water demands from different water use sectors can be 

assessed. The mean annual water yield ranges from 362mm to 1011mm across the 
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basin and forms part of the green water that can be used to enhance agricultural 

productivity in order to improve the livelihood and reduce the poverty levels of the 

people in the communities. The KRB was assessed with a good potential for 

harnessing water resources where more than half of the generated runoff appears 

to leave the basin unutilised. 

9.3 PRECIS Evaluation of Climate Change Impacts 

The PRECIS (RCM) model proved reliable as most of the results obtained were 

found to be credible after the validation process that was done with the CRU 

observed data. The PRECIS is a sufficient model skill to suitably apply with 

confidence in modelling future climate scenarios.  

 

The prediction of future rainfall under RCP4.5 for the period 2020-2050 scenario 

indicates that rainfall will increase with a coverage area varying from 33% to 77% 

with a magnitude of 0 < 65% while coverage areas with a decrease in rainfall will 

vary from 23% to 67% with magnitudes of -25% < 0 in the four seasons of the KRB. 

Although much of KRB will be under increased rainfall and less will be under 

decreased rainfall, the annual rainfall does not significantly differ from the baseline 

period. There is a general rise in temperature for all seasons varying from 1.4 oC to 

2.5 oC across the KRB and the season of SON is predicted to have the highest 

temperatures. 

 

The PRECIS model predicts that rainfall under RCP8.5 for the period 2020-2050 is 

likely to significantly increase in magnitude and coverage area in the season of DJF. 

The general rise in rainfall is predicted to increase by coverage area varying from 
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49% to 58% and the magnitude varying from 0% to 37%. The coverage area under 

decreased rainfall will vary from 51% to 42% and the magnitude varying from 0% to 

-18%. The increase of rainfall in DJF may cause flooding in the flood-prone areas 

and thus adaptation and mitigation strategies may be required. Further results under 

the same scenario also show increased temperatures ranging from 1.6oC to 2.4oC 

across the KRB. It was, however, noticed that model biases were apparent at 

validation for DJF and MAM seasons and monthly comparisons that will in future 

need   bias-correction especially if required for hydrological modelling. 

 

In general, the PRECIS model predicts an increase in rainfall and temperature in 

selected areas while predicting a decrease in other areas within the same basin 

under both RCP4.5 and RCP8.5 climate scenarios. Even though the increases are 

predicted under RCP4.5, the annual rainfall will insignificantly change from the 

baseline period. The increase and decrease in precipitation and temperature 

predicted are in both magnitude and coverage areas of the basin. Further 

investigations may be required for detailed and accurate quantification of the 

increase and decrease of the climatic variables  

 

Furthermore, a single RCM would not represent the local region well because of the 

uncertainties that exist in the GCM, downscaling and the hydrological model. Future 

studies need to include the use of more regional climate models for downscaling a 

more comprehensive set of HadCM3-based future scenarios in order to create an 

ensemble for prediction and detailed accurate quantification of impact. 
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9.4 Evaluation of Impact of Climate Change on Water Balance 

The impact of climate change on the catchment water balance based on GCMs is 

different and depends on temporal resolution and the climate scenarios. The 

monthly changes under RCP4.5 indicate a slight increase in monthly rainfall for 

December, January, February and March while October and November show a 

significant decrease. The water yield and runoff when compared with a baseline also 

show a slight increase. The results clearly show that monthly rainfall, water yield 

and runoff has increased in December, January, February and March while rainfall 

decreased by 19% and 4% in October and November, respectively. The highest 

rainfall increase of 3% is predicted in January, followed by 2% in February and 

December. The highest monthly water yield is predicted to be 10% and 8% in March 

and January, respectively. The highest and lowest runoff is predicted to be 13% in 

December and 50% in October. There is a slight increase in water yield between 

April and September.  

 

The overall changes in the monthly water balance are not significant in this scenario. 

The monthly changes under RCP8.5 show that the monthly water balance will 

significantly increase in November, December, January, February and March. 

Rainfall and runoff will increase between 9% and 39% and 31% and 232%, 

respectively. Rainfall is expected to decrease in October, September, May and April 

between 1% and 13%. The highest rainfall increase is 39%, predicted in February, 

followed by 31% in December and January. A 27% prediction is set for March and 

9% predicted in November. The highest monthly water yield and runoff is predicted 

at 106% and 232% in February, respectively. The lowest decrease in runoff is 
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predicted in April with 27% while May, June, July, August and September are 

predicted with no runoff but 23-26% increase in water yield. 

 

The seasonal changes under RCP4.5 predict 11% seasonal runoff increase in DJF, 

while the changes in the rest of the seasons in rainfall and water yield are generally 

insignificant throughout the period. The annual rainfall will reduce by 1% while water 

yield and runoff will increase by 5% and 6%, respectively. The individual GCM 

results show insignificant uncertainties and a good consensus. The catchment water 

balance under this scenario will not deviate considerably from the baseline and 

therefore the major concern would be to enhance management of water resources 

because of the demand, which is likely to double by the end of the 31 year period 

for municipal water supply, environmental, industrial, agricultural, energy sector and 

mining sector. The evaluated impact under this scenario gives a status quo of water 

resources with the baseline period.  

 

The seasonal changes under RCP8.5 scenario predict significant increases in water 

balance that has a strong likelihood of increasing the catchment water balance. The 

seasonal increases of runoff at 211%, rainfall at 35% may indicate an occurrence of 

excessive catchment water balance. The comparison of seasonal water balance 

under the two RCPs shows no consensus of the future climate scenarios. The water 

balance analysed under RCP8.5 is significantly more than that of the RCP4.5. The 

seasonal rainfall change under RCP8.5 range from 5%-35% while RCP4.5 does not 

show any significant seasonal changes except for an 8% decrease in SON. The 

catchment water balance under RCP4.5 will have insignificant variations with the 

baseline catchment water balance. 
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Annual statistics under RCP8.5 show a significant increase of 65%, 40% and 19% 

in runoff, water yield and rainfall, respectively. On the other hand, under RCP4.5 

there is an annual reduction in rainfall of 1% and an increase in runoff and water 

yield of 6% and 5%, respectively. Generally, RCP8.5 climate scenario shows high 

uncertainties of GCMs simulations than RCP4.5 climate scenario in the KRB. The 

variability of individual GCMs is also wide and shows no good consensus under 

RCP8.5, compared to RCP4.5 results.  

 

The six GCMs have demonstrated a rare skill in modelling climate change for the 

KRB. There is a significant increase under RCP8.5 in the catchment water balance 

at monthly, seasonal and annual time scales. The prediction may call for 

preparedness in disaster mitigation and adaptation, review of policies, review of 

designs of hydraulic structures, flood mapping and awareness campaigns. 

Meanwhile, under RCP4.5 the evaluated catchment water balance at monthly, 

seasonal and annual time scales may also require integrated water resources 

management of available water resources against a growing water demand in the 

KRB. 

9.5  Analysis of Impact of Climate Change on Streamflow 

Evaluation of climate change impact on streamflow is critical for water quantification, 

temporal and spatial variability and water balancing. The basin under RCP4.5 for 

the period 2020-2050 climate scenario is predicted with insignificant changes in 

monthly, seasonal and annual flow regime and magnitude. The predictions suggest 

that the magnitude and temporal streamflow variability will not vary from the baseline 
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magnitude and flow regime. Therefore, RCP4.5 future climate scenario does not 

significantly translate into a changed streamflow for the basin whether simulated as 

individual GCMs or ensemble mean; the result is almost the same with minor 

differences. 

 

The basin under RCP8.5 climate scenario shows no consensus amongst the 

ensemble GCMs. However, the majority GCMs (four out of six) indicate a 4-8% 

increase in streamflow predicted in flood frequency analysis with significant changes 

in monthly, seasonal and annual flow regime and magnitude. The majority of 

simulations indicate that intra-annual and inter-annual streamflow variability will 

increase in the future under RCP8.5 by a considerable margin. There is also a 

significant increase in seasonal streamflow that ranges between 134 - 34% analysed 

from the streamflow simulated ensemble mean. 

 

The Flow Duration Curves have also confirmed that the peak flows are between Q0 

and Q10 where there a predicted increase of 100% - 400% in high flows. The 

predicted flows at Q10 occur for about 10% of the time in a year. This means that 

the high flows (floods) are likely to last for one month and two weeks before 

subsiding. Also, the basin has sufficient low flows expected to increase by 25% at 

Q95 with 95% time of occurrence. 

9.6 General Research Findings 

The analysis of hydrology and water resources under RCP4.5 climate scenario 

showed that results from PRECIS (RCM) experiments, assessment and evaluation 

of the impact of climate change on the catchment water balance and streamflow 
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would insignificantly vary from the historical baseline period. There is agreement of 

the results that indicate rainfall, water yield, runoff, streamflow to be within the 

baseline period. 

 

However, the analysis of hydrology and water resources under RCP8.5 climate 

scenario show that results from PRECIS (RCM) experiments, assessment and 

evaluation of the impact of climate change on the catchment water balance and 

streamflow will significantly vary from the (historical) baseline period. There is 

consensus of the results that indicate a seasonal, monthly and annual increase in 

rainfall, water yield, runoff, streamflow when compared with the baseline period. 

 

Predicted floods under RCP8.5 need comprehensive planning for adaptation and 

mitigation strategies while streamflow predicted under RCP4.5 will require effective 

management of water resources in the basin.  This needs to be reviewed and should 

consider the ever-increasing water demand and other impacts such as water quality, 

rainfall intensity not investigated under this study. 

9.7 Recommendations for Future Research 

The future climate change impact studies need to focus on RCP4.5 and RCP8.5 for 

the period 2050-2090 to assess and evaluate any possible future impact on 

hydrology and water resources that would arise from the scenarios. It is also 

advisable to conduct research based on an increased number of GCM projections 

to find a better consensus in uncertainty. 
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The PRECIS experiment results need to be bias-corrected and further analysed in 

detail to be used as input data for hydrological modelling to enable future 

researchers to derive an in-depth understanding of the local hydrological processes. 

The results can then be compared with other downscaled, bias-corrected GCMs. 

 

The PRECIS experiments were conducted on a domain area covering almost the 

entire Zambezi River Basin, with Eswatini and parts of South Africa included. 

Therefore, much of the Southern African region is included and the data generated 

for the region is useful for further research in other areas of the region. Group 

research may be arranged to analyse the future hydrology and water resources of 

the region. 
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APPENDICES  

KABOMPO SUB BASIN AREAS  

Table A1 Kabompo Sub Basin Areas 

OBJECTID GRIDCODE Subbasin Area(m2) Lat Long_ Elev (m) HydroID 

1 1 1 63579.95 -11.3806 25.18377 1463.335 300001 

2 2 2 45390.55 -11.5219 25.10548 1473.125 300002 

3 3 3 19323.41 -11.5097 24.95059 1433.159 300003 

4 4 4 103482.8 -11.3582 24.89257 1421.378 300004 

5 5 5 47814.22 -11.6103 24.90114 1436.008 300005 

6 6 6 3760.768 -11.5219 24.77727 1396.928 300006 

7 7 7 77613.52 -11.4656 24.32713 1440.53 300007 

8 8 8 72465.03 -11.6362 24.68304 1415.187 300008 

9 9 9 84112.66 -11.6733 24.2763 1410.541 300009 

10 10 10 25182.24 -11.6418 24.47135 1375.395 300010 

11 11 11 61748.32 -11.7591 25.07484 1478.835 300011 

12 12 12 113801.8 -11.7518 25.30728 1464.831 300012 

13 13 13 103026.4 -11.8615 24.53206 1377.523 300013 

14 14 14 64545.13 -11.9354 24.25341 1383.223 300014 

15 15 15 28160.21 -12.0576 24.4417 1321.338 300015 

16 16 16 58936.17 -12.0834 24.15118 1389.75 300016 

17 17 17 4382.355 -12.164 24.35005 1257.316 300017 

18 18 18 40601.93 -12.1589 24.52508 1370.926 300018 

19 19 19 73103.56 -12.0025 25.14522 1358.588 300019 

20 20 20 50885.74 -12.0679 25.34372 1303.205 300020 

21 21 21 105117 -11.9491 25.56487 1361.105 300021 

22 22 22 120188.3 -11.9948 25.79111 1376.132 300022 

23 23 23 65201.82 -12.2354 24.11805 1387.343 300023 

24 24 24 17334.24 -12.2315 24.37895 1268.188 300024 

25 25 25 38896.59 -12.2186 25.13931 1215.071 300025 

26 26 26 51298.78 -12.2789 25.28675 1242.645 300026 

27 27 27 103244.8 -12.0871 24.95832 1343.755 300027 

28 28 28 2657.062 -12.3483 25.09153 1147.192 300028 

29 29 29 45778 -12.2814 25.53345 1279.665 300029 

30 30 30 95972.32 -12.242 25.80674 1349.695 300030 

31 31 31 179436.4 -12.0895 24.76562 1361.089 300031 

32 32 32 34079.73 -12.429 25.04065 1189.347 300032 

33 33 33 81838.9 -12.3098 23.89711 1379.108 300033 

34 34 34 48053.07 -12.4314 24.03031 1348.813 300034 
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Continuation 

OBJECTID GRIDCODE Subbasin Area (m2) Lat Long_ Elev(m) HydroID 

35 35 35 40424.53 -12.4718 25.62409 1243.327 300035 

36 36 36 62201.26 -12.4848 25.7832 1278.09 300036 

37 37 37 131854.1 -12.6171 25.89602 1275.63 300037 

38 38 38 47549.03 -12.6163 25.43348 1195.523 300038 

39 39 39 90121.21 -12.7943 25.51913 1213.612 300039 

40 40 40 132308.2 -12.5074 25.29228 1217.791 300040 

41 41 41 18402.37 -12.7955 25.26621 1169.044 300041 

42 42 42 47431.58 -12.7117 24.08919 1223.72 300042 

43 43 43 89079.24 -12.6247 24.23877 1243.186 300043 

44 44 44 138037.9 -12.9268 25.85462 1282.524 300044 

45 45 45 233706.9 -12.5869 24.84915 1195.906 300045 

46 46 46 29918.53 -12.8405 25.12502 1151.706 300046 

47 47 47 43924.15 -12.8885 24.8565 1149.62 300047 

48 48 48 8036.874 -12.9299 25.00803 1129.501 300048 

49 49 49 954.8258 -12.982 24.99226 1113.298 300049 

50 50 50 110497.1 -12.9804 25.28131 1205.73 300050 

51 51 51 277463.4 -12.6171 24.5009 1218.583 300051 

52 52 52 89971.11 -13.0998 24.86564 1146.735 300052 

53 53 53 125151.2 -12.8735 24.00373 1189.751 300053 

54 54 54 75941.21 -12.957 24.23842 1167.898 300054 

55 55 55 40767.18 -13.0146 24.46019 1162.639 300055 

56 56 56 62500.25 -13.0853 24.56562 1143.07 300056 

57 57 57 50228.02 -13.0304 24.36421 1167.339 300057 

58 58 58 10076 -13.27 24.51355 1121 300058 

59 59 59 154443.8 -13.1546 25.41084 1243.972 300059 

60 60 60 148351.8 -13.3151 25.47141 1236.836 300060 

61 61 61 35380.03 -13.3257 24.24879 1116.533 300061 

62 62 62 51145.76 -13.3138 24.37561 1115.821 300062 

63 63 63 49442.68 -13.4664 24.01384 1122.993 300063 

64 64 64 101437.3 -13.3098 24.08748 1132.385 300064 

65 65 65 46021.93 -13.3758 23.82899 1127.22 300065 

66 66 66 58224.7 -13.4233 23.91349 1126.446 300066 

67 67 67 3866.734 -13.6183 24.11594 1091.82 300067 

68 68 68 48440.8 -13.5685 24.2778 1118.46 300068 

69 69 69 93934.49 -13.5116 23.70847 1115.01 300069 
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Continuation 

OBJECTID GRIDCODE Subbasin Area(m2) Lat Long_ Elev (m) HydroID 

70 70 70 28533.82 -13.712 23.78701 1101.52 300070 

71 71 71 204848 -13.6094 25.35805 1195.983 300071 

72 72 72 68857.38 -13.8496 25.30425 1169.624 300072 

73 73 73 323.4512 -13.8958 25.07187 1130.644 300073 

74 74 74 96949.54 -13.6459 25.01333 1157.368 300074 

75 75 75 156993.9 -13.4928 24.54138 1161.762 300075 

76 76 76 47841.42 -13.7916 24.61259 1174.327 300076 

77 77 77 187206.1 -13.484 24.8921 1168.075 300077 

78 78 78 715.3194 -13.8907 24.80445 1106.288 300078 

79 79 79 87364.02 -13.6533 24.56673 1178.531 300079 

80 80 80 15771.75 -13.8605 23.66189 1085.621 300080 

81 81 81 76638.65 -13.9956 24.97415 1154.748 300081 

82 82 82 55040.26 -13.8008 23.86521 1107.777 300082 

83 83 83 15535.92 -13.8986 24.31186 1126.461 300083 

84 84 84 2362.408 -13.9472 24.34335 1107.062 300084 

85 85 85 35722.59 -14.0347 24.44879 1146.746 300085 

86 86 86 15418.66 -13.9358 24.75144 1127.238 300086 

87 87 87 62329.25 -14.0316 25.22399 1167.326 300087 

88 88 88 79561.95 -13.7991 24.08362 1112.385 300088 

89 89 89 3322.033 -14.0025 23.86162 1074.05 300089 

90 90 90 111890.1 -14.0299 24.15123 1126.751 300090 

91 91 91 80597.99 -14.0729 24.59157 1157.913 300091 

92 92 92 9206.361 -13.9596 23.5962 1074.101 300092 

93 93 93 40659.34 -13.9881 23.74844 1083.599 300093 

94 94 94 48183.41 -14.1907 24.40428 1168.802 300094 

95 95 95 56955.09 -14.134 23.95988 1114.854 300095 

96 96 96 183462.6 -13.6613 23.52309 1097.212 300096 

97 97 97 30978.67 -14.0891 23.56777 1068.078 300097 

98 98 98 6299.159 -14.1249 23.44076 1052.917 300098 

99 99 99 156107.6 -14.2118 24.85418 1175.663 300099 

100 100 100 45741.01 -14.2311 25.24412 1168.814 300100 

101 101 101 29081.06 -14.1803 23.338 1048.66 300101 

102 102 102 289973 -14.5382 25.15933 1194.233 300102 
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APPENDIX B THE EXTRACTED BASIN FROM MOSAIC DEM 

 

Figure  B1 The extracted basin from mosaic DEM 
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APPENDIX C CALIBRATION AND VALIDATION DATA 

Table C1 Calibration flow data 1982-1997 

Month  Year Flow(m3/s) Month  Year Flow(m3/s) 

1 FLOW_OUT_1_1982 226.19 41 FLOW_OUT_5_1985 185.82 

2 FLOW_OUT_2_1982 394.87 42 FLOW_OUT_6_1985 114.73 

3 FLOW_OUT_3_1982 499.22 43 FLOW_OUT_7_1985 100.77 

4 FLOW_OUT_4_1982 294.65 44 FLOW_OUT_8_1985 83.73 

5 FLOW_OUT_5_1982 193.85 45 FLOW_OUT_9_1985 64.93 

6 FLOW_OUT_6_1982 130.12 46 FLOW_OUT_10_1985 51.77 

7 FLOW_OUT_7_1982 107.17 47 FLOW_OUT_11_1985 58.64 

8 FLOW_OUT_8_1982 89.66 48 FLOW_OUT_12_1985 82.60 

9 FLOW_OUT_9_1982 74.15 49 FLOW_OUT_1_1986 148.78 

10 FLOW_OUT_10_1982 72.13 50 FLOW_OUT_2_1986 369.06 

11 FLOW_OUT_11_1982 96.17 51 FLOW_OUT_3_1986 590.37 

12 FLOW_OUT_12_1982 243.16 52 FLOW_OUT_4_1986 514.67 

13 FLOW_OUT_1_1983 242.08 53 FLOW_OUT_5_1986 229.52 

14 FLOW_OUT_2_1983 348.73 54 FLOW_OUT_6_1986 133.52 

15 FLOW_OUT_3_1983 342.85 55 FLOW_OUT_7_1986 113.01 

16 FLOW_OUT_4_1983 410.28 56 FLOW_OUT_8_1986 96.89 

17 FLOW_OUT_5_1983 197.96 57 FLOW_OUT_9_1986 71.55 

18 FLOW_OUT_6_1983 134.94 58 FLOW_OUT_10_1986 80.14 

19 FLOW_OUT_7_1983 116.30 59 FLOW_OUT_11_1986 159.69 

20 FLOW_OUT_8_1983 99.68 60 FLOW_OUT_12_1986 203.54 

21 FLOW_OUT_9_1983 82.09 61 FLOW_OUT_1_1987 265.22 

22 FLOW_OUT_10_1983 84.02 62 FLOW_OUT_2_1987 607.29 

23 FLOW_OUT_11_1983 132.87 63 FLOW_OUT_3_1987 579.70 

24 FLOW_OUT_12_1983 132.59 64 FLOW_OUT_4_1987 328.67 

25 FLOW_OUT_1_1984 202.70 65 FLOW_OUT_5_1987 169.09 

26 FLOW_OUT_2_1984 234.08 66 FLOW_OUT_6_1987 133.24 

27 FLOW_OUT_3_1984 279.38 67 FLOW_OUT_7_1987 112.97 

28 FLOW_OUT_4_1984 206.92 68 FLOW_OUT_8_1987 94.92 

29 FLOW_OUT_5_1984 118.28 69 FLOW_OUT_9_1987 74.04 

30 FLOW_OUT_6_1984 80.92 70 FLOW_OUT_10_1987 71.03 

31 FLOW_OUT_7_1984 73.73 71 FLOW_OUT_11_1987 64.32 

32 FLOW_OUT_8_1984 63.10 72 FLOW_OUT_12_1987 90.32 

33 FLOW_OUT_9_1984 50.82 73 FLOW_OUT_1_1988 184.33 

34 FLOW_OUT_10_1984 47.55 74 FLOW_OUT_2_1988 350.38 

35 FLOW_OUT_11_1984 61.20 75 FLOW_OUT_3_1988 567.42 

36 FLOW_OUT_12_1984 132.59 76 FLOW_OUT_4_1988 458.26 

37 FLOW_OUT_1_1985 199.51 77 FLOW_OUT_5_1988 165.31 

38 FLOW_OUT_2_1985 385.37 78 FLOW_OUT_6_1988 118.32 

39 FLOW_OUT_3_1985 396.12 79 FLOW_OUT_7_1988 100.60 

40 FLOW_OUT_4_1985 491.89 80 FLOW_OUT_8_1988 82.65 
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Month Year Flow(m3/s) Month Year Flow(m3/s) 

81 FLOW_OUT_9_1988 64.89 121 FLOW_OUT_1_1992 160.46 

82 FLOW_OUT_10_1988 52.79 122 FLOW_OUT_2_1992 206.55 

83 FLOW_OUT_11_1988 77.00 123 FLOW_OUT_3_1992 175.70 

84 FLOW_OUT_12_1988 100.88 124 FLOW_OUT_4_1992 209.93 

85 FLOW_OUT_1_1989 223.17 132 FLOW_OUT_12_1992 98.66 

86 FLOW_OUT_2_1989 415.46 133 FLOW_OUT_1_1993 138.43 

87 FLOW_OUT_3_1989 291.40 134 FLOW_OUT_2_1993 227.49 

88 FLOW_OUT_4_1989 417.26 135 FLOW_OUT_3_1993 546.93 

89 FLOW_OUT_5_1989 163.30 136 FLOW_OUT_4_1993 625.22 

90 FLOW_OUT_6_1989 104.33 137 FLOW_OUT_5_1993 241.32 

91 FLOW_OUT_7_1989 91.38 138 FLOW_OUT_6_1993 127.95 

92 FLOW_OUT_8_1989 76.32 139 FLOW_OUT_7_1993 99.64 

93 FLOW_OUT_9_1989 57.08 140 FLOW_OUT_8_1993 83.52 

94 FLOW_OUT_10_1989 52.24 141 FLOW_OUT_9_1993 71.95 

95 FLOW_OUT_11_1989 54.92 142 FLOW_OUT_10_1993 62.57 

96 FLOW_OUT_12_1989 80.49 143 FLOW_OUT_11_1993 76.32 

97 FLOW_OUT_1_1990 152.10 144 FLOW_OUT_12_1993 108.12 

98 FLOW_OUT_2_1990 330.37 145 FLOW_OUT_1_1994 315.78 

99 FLOW_OUT_3_1990 228.52 146 FLOW_OUT_2_1994 472.39 

100 FLOW_OUT_4_1990 350.16 147 FLOW_OUT_3_1994 381.66 

101 FLOW_OUT_5_1990 197.98 148 FLOW_OUT_4_1994 169.40 

102 FLOW_OUT_6_1990 109.23 149 FLOW_OUT_5_1994 122.80 

103 FLOW_OUT_7_1990 88.24 150 FLOW_OUT_6_1994 95.32 

104 FLOW_OUT_8_1990 75.82 151 FLOW_OUT_7_1994 91.16 

105 FLOW_OUT_9_1990 58.24 152 FLOW_OUT_8_1994 79.01 

106 FLOW_OUT_10_1990 52.83 153 FLOW_OUT_9_1994 57.05 

107 FLOW_OUT_11_1990 47.92 154 FLOW_OUT_10_1994 47.20 

108 FLOW_OUT_12_1990 83.91 155 FLOW_OUT_11_1994 49.66 

109 FLOW_OUT_1_1991 296.85 156 FLOW_OUT_12_1994 81.92 

110 FLOW_OUT_2_1991 569.34 157 FLOW_OUT_1_1995 122.76 

111 FLOW_OUT_3_1991 459.59 158 FLOW_OUT_2_1995 270.07 

112 FLOW_OUT_4_1991 360.48 159 FLOW_OUT_3_1995 370.92 

113 FLOW_OUT_5_1991 176.19 160 FLOW_OUT_4_1995 174.89 

114 FLOW_OUT_6_1991 126.48 161 FLOW_OUT_5_1995 91.16 

115 FLOW_OUT_7_1991 100.34 162 FLOW_OUT_6_1995 71.04 

116 FLOW_OUT_8_1991 79.58 163 FLOW_OUT_7_1995 63.89 

117 FLOW_OUT_9_1991 58.94 164 FLOW_OUT_8_1995 55.98 

118 FLOW_OUT_10_1991 54.90 165 FLOW_OUT_9_1995 43.77 

119 FLOW_OUT_11_1991 77.55 166 FLOW_OUT_10_1995 39.77 

120 FLOW_OUT_12_1991 108.58 167 FLOW_OUT_11_1995 47.81 
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Month  Year Flow(m3/s)    

168 FLOW_OUT_12_1995 83.10 

169 FLOW_OUT_1_1996 127.24 

170 FLOW_OUT_2_1996 193.51 

171 FLOW_OUT_3_1996 370.55 

172 FLOW_OUT_4_1996 247.71 

173 FLOW_OUT_5_1996 111.28 

174 FLOW_OUT_6_1996 89.50 

175 FLOW_OUT_7_1996 73.87 

176 FLOW_OUT_8_1996 60.55 

177 FLOW_OUT_9_1996 47.92 

178 FLOW_OUT_10_1996 38.29 

179 FLOW_OUT_11_1996 47.72 

180 FLOW_OUT_12_1996 86.14 

181 FLOW_OUT_1_1997 197.45 

182 FLOW_OUT_2_1997 273.61 

183 FLOW_OUT_3_1997 299.29 

184 FLOW_OUT_4_1997 265.27 

185 FLOW_OUT_5_1997 131.52 

186 FLOW_OUT_6_1997 89.20 

187 FLOW_OUT_7_1997 73.25 

188 FLOW_OUT_8_1997 61.12 

189 FLOW_OUT_9_1997 49.69 

190 FLOW_OUT_10_1997 45.27 

191 FLOW_OUT_11_1997 56.25 

192 FLOW_OUT_12_1997 129.50 
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Table C2 Validation flow data 1998-2005 

Month  Year Flow(m3/s) Month  Year Flow(m3/s) 

1 FLOW_OUT_1_1998 386.47 41 FLOW_OUT_5_2001 209.41 

2 FLOW_OUT_2_1998 468.08 42 FLOW_OUT_6_2001 141.82 

3 FLOW_OUT_3_1998 667.99 43 FLOW_OUT_7_2001 123.12 

4 FLOW_OUT_4_1998 532.80 44 FLOW_OUT_8_2001 106.62 

5 FLOW_OUT_5_1998 205.48 45 FLOW_OUT_9_2001 85.15 

6 FLOW_OUT_6_1998 134.59 46 FLOW_OUT_10_2001 67.43 

7 FLOW_OUT_7_1998 118.39 47 FLOW_OUT_11_2001 98.78 

8 FLOW_OUT_8_1998 99.94 48 FLOW_OUT_12_2001 137.05 

9 FLOW_OUT_9_1998 75.18 49 FLOW_OUT_1_2002 210.41 

10 FLOW_OUT_10_1998 64.58 50 FLOW_OUT_2_2002 371.31 

11 FLOW_OUT_11_1998 66.74 51 FLOW_OUT_3_2002 330.15 

12 FLOW_OUT_12_1998 114.23 52 FLOW_OUT_4_2002 343.36 

13 FLOW_OUT_1_1999 290.55 53 FLOW_OUT_5_2002 192.63 

14 FLOW_OUT_2_1999 466.68 54 FLOW_OUT_6_2002 139.63 

15 FLOW_OUT_3_1999 584.77 55 FLOW_OUT_7_2002 120.64 

16 FLOW_OUT_4_1999 556.84 56 FLOW_OUT_8_2002 95.10 

17 FLOW_OUT_5_1999 189.07 57 FLOW_OUT_9_2002 76.50 

18 FLOW_OUT_6_1999 130.37 58 FLOW_OUT_10_2002 64.66 

19 FLOW_OUT_7_1999 114.59 59 FLOW_OUT_11_2002 76.91 

20 FLOW_OUT_8_1999 92.93 60 FLOW_OUT_12_2002 112.42 

21 FLOW_OUT_9_1999 71.25 61 FLOW_OUT_1_2003 308.27 

22 FLOW_OUT_10_1999 64.96 62 FLOW_OUT_2_2003 371.56 

23 FLOW_OUT_11_1999 70.74 63 FLOW_OUT_3_2003 503.20 

24 FLOW_OUT_12_1999 112.83 64 FLOW_OUT_4_2003 640.35 

25 FLOW_OUT_1_2000 146.60 65 FLOW_OUT_5_2003 224.73 

26 FLOW_OUT_2_2000 205.92 66 FLOW_OUT_6_2003 142.78 

27 FLOW_OUT_3_2000 490.56 67 FLOW_OUT_7_2003 122.07 

28 FLOW_OUT_4_2000 316.97 68 FLOW_OUT_8_2003 102.61 

29 FLOW_OUT_5_2000 140.27 69 FLOW_OUT_9_2003 77.36 

30 FLOW_OUT_6_2000 102.63 70 FLOW_OUT_10_2003 62.98 

31 FLOW_OUT_7_2000 88.00 71 FLOW_OUT_11_2003 73.83 

32 FLOW_OUT_8_2000 75.06 72 FLOW_OUT_12_2003 128.87 

33 FLOW_OUT_9_2000 59.88 73 FLOW_OUT_1_2004 246.94 

34 FLOW_OUT_10_2000 47.64 74 FLOW_OUT_2_2004 330.86 

35 FLOW_OUT_11_2000 63.80 75 FLOW_OUT_3_2004 539.94 

36 FLOW_OUT_12_2000 186.16 76 FLOW_OUT_4_2004 588.97 

37 FLOW_OUT_1_2001 410.44 77 FLOW_OUT_5_2004 245.69 

38 FLOW_OUT_2_2001 695.32 78 FLOW_OUT_6_2004 151.02 

39 FLOW_OUT_3_2001 762.00 79 FLOW_OUT_7_2004 126.37 

40 FLOW_OUT_4_2001 637.08 80 FLOW_OUT_8_2004 106.58 
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Continuation 

Month Year Flow(m3/s) 

81 FLOW_OUT_9_2004 80.63 

82 FLOW_OUT_10_2004 69.82 

83 FLOW_OUT_11_2004 80.75 

84 FLOW_OUT_12_2004 144.55 

85 FLOW_OUT_1_2005 411.07 

86 FLOW_OUT_2_2005 523.88 

87 FLOW_OUT_3_2005 390.02 

88 FLOW_OUT_4_2005 409.26 

89 FLOW_OUT_5_2005 200.84 

90 FLOW_OUT_6_2005 141.52 

91 FLOW_OUT_7_2005 124.81 

92 FLOW_OUT_8_2005 104.85 

93 FLOW_OUT_9_2005 81.48 

94 FLOW_OUT_10_2005 64.63 

95 FLOW_OUT_11_2005 62.71 

96 FLOW_OUT_12_2005 102.96 
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APPENDIX D  

Table D1 Gridded Rainfall from CFSR 

 

SUBB STATION WLATITUDEWLONGITUDEWELEV YRS PCPMM1 PCPMM2 PCPMM3 PCPMM4 PCPMM5 PCPMM6 PCPMM7 MM8 PCPMM9 PCPMM10 PCPMM11 PCPMM12 MAPMM

1 114s253e -11.3964 25.3125 1501 32 277.466 249.039 256.42 60.8631 3.36389 0.025803 0.057828 0.00 4.73544 32.2603 178.079 282.257 1344.567

2 114s250e -11.3964 25 1410 32 334.878 293.076 298.811 70.711 3.20376 0.187245 0.09023 0.00 6.90159 44.4727 210.024 338.246 1600.602

3 114s250e -11.3964 25 1410 32 334.878 293.076 298.811 70.711 3.20376 0.187245 0.09023 0.00 6.90159 44.4727 210.024 338.246 1600.602

4 114s250e -11.3964 25 1410 32 334.878 293.076 298.811 70.711 3.20376 0.187245 0.09023 0.00 6.90159 44.4727 210.024 338.246 1600.602

5 117s250e -11.7086 25 1483 32 365.747 313.601 310.731 72.0825 3.76757 0.177187 0.081432 0.00 8.03466 44.3009 226.975 355.514 1701.012

6 114s247e -11.3964 24.6875 1355 32 347.408 298.733 295.399 69.3838 3.08105 0.301266 0.032723 0.00 7.40099 49.882 214.704 349.21 1635.536

7 114s244e -11.3964 24.375 1503 32 311.026 267.181 265.132 64.2399 3.10302 0.216132 0.02135 0.02 6.80626 48.8126 200.922 323.261 1490.746

8 117s247e -11.7086 24.6875 1447 32 346.494 295.549 291.211 64.6052 3.37781 0.100288 0.049406 0.00 8.57462 47.6361 219.432 342.618 1619.647

9 117s244e -11.7086 24.375 1390 32 301.783 260.255 262.243 61.5128 2.99552 0.063461 0.028002 0.00 7.99821 48.5738 209.621 316.5 1471.574

10 117s244e -11.7086 24.375 1390 32 301.783 260.255 262.243 61.5128 2.99552 0.063461 0.028002 0.00 7.99821 48.5738 209.621 316.5 1471.574

11 117s250e -11.7086 25 1483 32 365.747 313.601 310.731 72.0825 3.76757 0.177187 0.081432 0.00 8.03466 44.3009 226.975 355.514 1701.012

12 117s253e -11.7086 25.3125 1532 32 329.516 289.267 288.94 70.5882 4.0643 0.127995 0.109273 0.00 6.37856 34.6582 210.833 322.893 1557.376

13 117s247e -11.7086 24.6875 1447 32 346.494 295.549 291.211 64.6052 3.37781 0.100288 0.049406 0.00 8.57462 47.6361 219.432 342.618 1619.647

14 120s244e -12.0208 24.375 1240 32 291.615 248.939 254.425 57.7877 2.79545 0 0.055951 0.00 8.19511 39.4336 196.747 296.423 1396.417

15 120s244e -12 24.375 1240 32 291.615 248.939 254.425 57.7877 2.7954 0 0.0559 0.00 8.1951 39.4336 196.747 296.423 1396

16 120s241e -12.0208 24.0625 1404 32 300.556 260.358 266.453 62.3701 2.93761 0.134969 0.071025 0.00 8.83147 51.2744 221.308 309.26 1483.555

17 120s244e -12.0208 24.375 1240 32 291.615 248.939 254.425 57.7877 2.79545 0 0.055951 0.00 8.19511 39.4336 196.747 296.423 1396.417

18 120s244e -12.0208 24.375 1240 32 291.615 248.939 254.425 57.7877 2.79545 0 0.055951 0.00 8.19511 39.4336 196.747 296.423 1396.417

19 120s250e -12.0208 25 1401 32 321.113 268.09 258.642 53.2117 2.70895 0.090176 0.053752 0.00 5.77166 24.5614 173.788 300.448 1408.479

20 120s253e -12.0208 25.3125 1373 32 306.71 263.064 246.761 51.9158 2.80779 0.107101 0.111312 0.00 4.31082 20.577 164.253 284.461 1345.079

21 120s256e -12.0208 25.625 1366 32 307.834 272.216 238.01 45.2025 2.50698 0.155193 0.073814 0.06 3.61082 18.7076 155.325 283.745 1327.446

22 120s259e -12.0208 25.9375 1419 32 332.28 301.676 249.823 43.6456 2.93616 0.134271 0.034869 0.05 2.99144 17.9492 152.534 308.24 1412.296

23 123s241e -12.333 24.0625 1419 32 299.145 255.552 255.547 54.5917 2.59852 0.058633 0.020546 0.00 7.57027 39.4852 206.43 296.296 1417.295

24 123s244e -12.333 24.375 1240 32 280.409 233.941 231.285 43.9972 2.10191 0 0.038248 0.00 6.96057 25.2656 167.791 267.907 1259.697

25 123s250e -12.333 25 1154 32 268.634 217.681 195.536 34.7767 1.41183 0.055093 0.029397 0.00 3.82108 12.8336 124.279 237.192 1096.25

26 123s253e -12.333 25.3125 1232 32 264.515 216.922 185.615 32.3522 1.53559 0.079447 0.034547 0.00 2.42026 12.5298 118.773 231.072 1065.849

27 120s250e -12.0208 25 1401 32 321.113 268.09 258.642 53.2117 2.70895 0.090176 0.053752 0.00 5.77166 24.5614 173.788 300.448 1408.479

28 123s250e -12.333 25 1154 32 268.634 217.681 195.536 34.7767 1.41183 0.055093 0.029397 0.00 3.82108 12.8336 124.279 237.192 1096.25

29 123s256e -12.333 25.625 1270 32 283.44 236.591 192.783 31.6458 1.50984 0.08744 0.034332 0.02 2.33234 12.9829 118.198 245 1124.623

30 123s259e -12.333 25.9375 1331 32 298.818 264.823 208.78 32.604 1.7484 0.146771 0.019097 0.06 2.74583 13.1523 118.836 272.416 1214.148

31 120s24 - 24 1401 32 310 258 253 52 2 0 0 0.00 7 30 179 299 1392
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SUBB STATION WLATITUDEWLONGITUDEWELEV Yrs PCPMM1 PCPMM2 PCPMM3 PCPMM4 PCPMM5 PCPMM6 PCPMM7 MM8 PCPMM9 PCPMM10PCPMM11PCPMM12MAPMM

32 123s250e -12.333 25 1154 32 268.634 217.681 195.536 34.7767 1.41183 0.055093 0.029397 0.00 3.82108 12.8336 124.279 237.192 1096.25

33 123s238e -12.333 23.75 1382 32 328.22 285.66 279.251 61.589 2.68832 0.147253 0 0.00 7.08185 51.1648 234.448 329.814 1580.064

34 123s241e -12.333 24.0625 1419 32 299.145 255.552 255.547 54.5917 2.59852 0.058633 0.020546 0.00 7.57027 39.4852 206.43 296.296 1417.295

35 123s256e -12.333 25.625 1270 32 283.44 236.591 192.783 31.6458 1.50984 0.08744 0.034332 0.02 2.33234 12.9829 118.198 245 1124.623

36 123s259e -12.333 25.9375 1331 32 298.818 264.823 208.78 32.604 1.7484 0.146771 0.019097 0.06 2.74583 13.1523 118.836 272.416 1214.148

39 126s256e -12.6453 25.625 1218 32 297.487 247.154 189.891 28.1901 1.30833 0.168389 0.050318 0.02 1.59353 12.2032 116.21 260.334 1154.612

40 126s253e -12.6453 25.3125 1207 32 285.101 230.866 187.129 27.9263 1.41621 0.0725 0.018024 0.02 1.45783 11.8082 112.541 240.464 1098.817

41 126s253e -12.6453 25.3125 1207 32 285.101 230.866 187.129 27.9263 1.41621 0.0725 0.018024 0.02 1.45783 11.8082 112.541 240.464 1098.817

42 126s241e -12.6453 24.0625 1224 32 291.12 240.417 221.525 35.865 1.3013 0 0 0.00 6.14626 23.9805 163.612 269.459 1253.426

43 126s244e -12.6453 24.375 1231 32 296.112 239.666 213.601 32.5204 1.2413 0 0.028217 0.00 6.20481 17.513 147.274 263.44 1217.601

44 130s259e -12.9575 25.9375 1315 32 311.298 273.714 214.491 32.432 1.92148 0.343645 0.103641 0.08 1.56024 12.9865 123.644 292.968 1265.545

45 126s250e -12.6453 25 1214 32 278.743 226.657 191.124 31.2589 1.67745 0.063461 0 0.00 3.21186 11.4442 117.446 235.652 1097.278

46 130s250e -12.9575 25 1120 32 337.481 276.482 234.275 37.4349 2.1212 0.056595 0.034815 0.00 2.92999 17.1352 139.826 290.835 1338.612

47 130s250e -12.9575 25 1120 32 337.481 276.482 234.275 37.4349 2.1212 0.056595 0.034815 0.00 2.92999 17.1352 139.826 290.835 1338.612

48 130s250e -12.9575 25 1120 32 337.481 276.482 234.275 37.4349 2.1212 0.056595 0.034815 0.00 2.92999 17.1352 139.826 290.835 1338.612

37 126s259e -12 25.9375 1280 32 286.887 248.944 192.937 28.5104 1.4066 0.1917 0.0754 0.08 1.8937 11.395 108.785 260.351 1141

38 126s253e -12.6453 25.3125 1207 32 285.101 230.866 187.129 27.9263 1.41621 0.0725 0.018024 0.02 1.45783 11.8082 112.541 240.464 1098.817

49 130s250e -12.9575 25 1120 32 337.481 276.482 234.275 37.4349 2.1212 0.056595 0.034815 0.00 2.92999 17.1352 139.826 290.835 1338.612

50 130s253e -12.9575 25.3125 1208 32 352.475 294.31 232.302 34.8849 1.93559 0.096452 0.025427 0.03 1.22539 16.8013 140.693 307.985 1382.76

51 126s244e -12.6453 24.375 1231 32 296.112 239.666 213.601 32.5204 1.2413 0 0.028217 0.00 6.20481 17.513 147.274 263.44 1217.601

52 130s250e -12.9575 25 1120 32 337.481 276.482 234.275 37.4349 2.1212 0.056595 0.034815 0.00 2.92999 17.1352 139.826 290.835 1338.612

53 130s241e -12.9575 24.0625 1188 32 298.079 240.748 195.688 25.1402 0.684875 0.015986 0 0.00 4.80883 17.3042 136.599 261.632 1180.7

54 130s244e -12.9575 24.375 1171 32 326.47 259.556 217.298 28.8691 1.1037 0 0 0.00 4.98851 17.5284 141.202 279.577 1276.593

55 130s244e -12.9575 24.375 1171 32 326.47 259.556 217.298 28.8691 1.1037 0 0 0.00 4.98851 17.5284 141.202 279.577 1276.593

56 130s247e -12.9575 24.6875 1103 32 338.593 268.875 236.38 35.3407 2.1142 0 0 0.00 4.0985 18.9096 143.726 289.871 1337.908

57 130s244e -12.9575 24.375 1171 32 326.47 259.556 217.298 28.8691 1.1037 0 0 0.00 4.98851 17.5284 141.202 279.577 1276.593

58 133s244e -13.2697 24.375 1074 32 312.88 249.019 209.437 27.4613 0.975546 0 0.021297 0.03 3.71612 18.6379 131.733 276.035 1229.943

59 133s253e -13.2697 25.3125 1240 32 366.605 305.465 244.515 35.7387 1.65331 0.156856 0.067002 0.03 1.33099 18.901 145.797 326.304 1446.567

60 133s256e -13.2697 25.625 1267 32 372.647 313.757 247.67 36.9226 1.86805 0.195131 0.062656 0.03 1.47607 17.7174 148.367 337.529 1478.24

61 133s244e -13.2697 24.375 1074 32 312.88 249.019 209.437 27.4613 0.975546 0 0.021297 0.03 3.71612 18.6379 131.733 276.035 1229.943

62 133s244e -13.2697 24.375 1074 32 312.88 249.019 209.437 27.4613 0.975546 0 0.021297 0.03 3.71612 18.6379 131.733 276.035 1229.943

63 136s241e -13 24.0625 1097 32 278.762 231.819 193.523 25.0446 0.668 0.0207 0.019 0.06 2.2457 19.064 124.379 257.253 1132
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SUBB STATION WLATITUDEWLONGITUDEWELEV PCPMM1 PCPMM2 PCPMM3 PCPMM4 PCPMM5 PCPMM6 PCPMM7 PCPMM9 PCPMM10 PCPMM11PCPMM12 MAPMM

64 133s241e -13.2697 24.0625 1110 32 297.42 239.01 196.04 23.64 0.75 0.04 0.02 0.00 3.47 18.37 129.47 259.17 1167.38

65 133s238e -13.2697 23.75 1143 32 278.54 228.41 186.65 25.12 0.63 0.07 0.02 0.00 2.57 19.36 134.39 247.04 1122.82

66 133s241e -13.2697 24.0625 1110 32 297.42 239.01 196.04 23.64 0.75 0.04 0.02 0.00 3.47 18.37 129.47 259.17 1167.38

67 136s241e -13.582 24.0625 1097 32 278.76 231.82 193.52 25.04 0.67 0.02 0.02 0.06 2.25 19.06 124.38 257.25 1132.86

68 136s244e -13.582 24.375 1094 32 268.65 215.61 180.78 23.31 0.74 0.00 0.03 0.07 2.08 16.35 111.59 242.38 1061.59

69 136s238e -13.582 23.75 1125 32 287.38 237.18 198.81 25.87 0.63 0.02 0.03 0.02 1.71 21.67 129.84 261.96 1165.11

70 136s238e -13.582 23.75 1125 32 287.38 237.18 198.81 25.87 0.63 0.02 0.03 0.02 1.71 21.67 129.84 261.96 1165.11

71 136s253e -13.582 25.3125 1174 32 295.39 238.89 192.82 24.26 1.11 0.07 0.13 0.00 1.16 13.04 111.74 270.58 1149.20

72 139s253e -13.8942 25.3125 1192 32 252.92 201.08 156.71 18.89 0.87 0.00 0.15 0.00 1.29 9.69 86.93 227.67 956.20

73 139s250e -13.8942 25 1176 32 246.01 195.99 154.95 18.93 0.67 0.04 0.06 0.00 1.68 11.13 86.20 221.81 937.48

74 136s250e -13.582 25 1200 32 276.55 218.92 181.19 23.37 1.00 0.04 0.09 0.03 1.58 12.83 104.41 247.99 1067.99

75 136s247e -13.582 24.6875 1113 32 265.08 210.00 174.45 23.67 0.87 0.02 0.05 0.05 1.68 13.97 104.20 235.13 1029.17

76 139s247e -13.8942 24.6875 1072 32 243.42 195.24 154.03 20.63 0.61 0.00 0.05 0.02 1.51 12.47 88.52 213.94 930.45

77 136s250e -13.582 25 1200 32 276.55 218.92 181.19 23.37 1.00 0.04 0.09 0.03 1.58 12.83 104.41 247.99 1067.99

78 139s247e -13.8942 24.6875 1072 32 243.42 195.24 154.03 20.63 0.61 0.00 0.05 0.02 1.51 12.47 88.52 213.94 930.45

79 136s247e -13.582 24.6875 1113 32 265.08 210.00 174.45 23.67 0.87 0.02 0.05 0.05 1.68 13.97 104.20 235.13 1029.17

80 139s238e -13.8942 23.75 1078 32 288.81 232.77 196.84 27.45 0.53 0.03 0.02 0.05 1.56 21.30 121.53 257.43 1148.31

81 139s250e -13.8942 25 1176 32 246.01 195.99 154.95 18.93 0.67 0.04 0.06 0.00 1.68 11.13 86.20 221.81 937.48

82 139s238e -13.8942 23.75 1078 32 288.81 232.77 196.84 27.45 0.53 0.03 0.02 0.05 1.56 21.30 121.53 257.43 1148.31

83 139s244e -13.8942 24.375 1060 32 256.94 212.58 170.03 23.03 0.60 0.02 0.04 0.06 1.71 15.32 99.92 229.24 1009.48

84 139s244e -13.8942 24.375 1060 32 256.94 212.58 170.03 23.03 0.60 0.02 0.04 0.06 1.71 15.32 99.92 229.24 1009.48

85 139s244e -13.8942 24.375 1060 32 256.94 212.58 170.03 23.03 0.60 0.02 0.04 0.06 1.71 15.32 99.92 229.24 1009.48

86 139s247e -13.8942 24.6875 1072 32 243.42 195.24 154.03 20.63 0.61 0.00 0.05 0.02 1.51 12.47 88.52 213.94 930.45

87 139s253e -13.8942 25.3125 1192 32 252.92 201.08 156.71 18.89 0.87 0.00 0.15 0.00 1.29 9.69 86.93 227.67 956.20

88 139s241e -13.8942 24.0625 1040 32 277.96 227.04 191.72 25.73 0.60 0.05 0.04 0.05 1.74 19.04 113.24 249.36 1106.56

89 139s238e -13.8942 23.75 1078 32 288.81 232.77 196.84 27.45 0.53 0.03 0.02 0.05 1.56 21.30 121.53 257.43 1148.31

90 139s241e -13.8942 24.0625 1040 32 277.96 227.04 191.72 25.73 0.60 0.05 0.04 0.05 1.74 19.04 113.24 249.36 1106.56

91 142s247e -14.2064 24.6875 1195 32 268.02 224.06 173.30 22.90 0.74 0.03 0.04 0.05 1.98 13.30 95.86 234.99 1035.26

92 139s238e -13.8942 23.75 1078 32 288.81 232.77 196.84 27.45 0.53 0.03 0.02 0.05 1.56 21.30 121.53 257.43 1148.31

93 139s238e -13.8942 23.75 1078 32 288.81 232.77 196.84 27.45 0.53 0.03 0.02 0.05 1.56 21.30 121.53 257.43 1148.31
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SUBB STATION WLATITUDEWLONGITUDEWELEV PCPMM1 PCPMM2 PCPMM3 PCPMM4 PCPMM5 PCPMM6 PCPMM7 PCPMM9 PCPMM10PCPMM11PCPMM12 MAPMM

94 139s238e -13.8942 23.75 1078 32 288.81 232.77 196.84 27.45 0.53 0.03 0.02 0.05 1.56 21.30 121.53 257.43 1148.31

95 142s244e -14.2064 24.375 1134 32 270.51 228.13 181.75 23.75 0.61 0.04 0.08 0.02 1.74 15.88 100.86 237.03 1060.39

96 142s241e -14.2064 24.0625 1121 32 276.15 227.06 184.76 24.79 0.49 0.02 0.06 0.03 1.70 17.50 102.63 242.99 1078.18

97 136s234e -13.582 23.4375 1115 32 279.45 237.97 196.11 27.39 0.45 0.06 0.03 0.00 1.69 23.24 133.23 253.97 1153.59

98 142s234e -14.2064 23.4375 1073 32 258.94 206.82 172.88 23.39 0.58 0.02 0.00 0.02 1.23 19.35 103.27 218.47 1004.98

99 142s250e -14.2064 25 1132 32 269.57 226.41 166.62 21.29 0.76 0.00 0.09 0.04 1.77 11.68 93.46 238.48 1030.17

100 142s253e -14.2064 25.3125 1166 32 262.31 215.69 159.09 20.11 0.84 0.02 0.11 0.04 1.43 8.74 87.66 234.09 990.13

101 142s234e -14.2064 23.4375 1073 32 258.94 206.82 172.88 23.39 0.58 0.02 0.00 0.02 1.23 19.35 103.27 218.47 1004.98

102 145s253e -14.5186 25.3125 1183 32 267.46 225.32 159.42 21.67 0.80 0.11 0.10 0.04 1.61 9.61 91.23 234.65 1012.03

© Central University of Technology, Free State



  Appendices 

242 

   

APPENDIX E PRECIS (RCM) AVERAGE CLIMATE DATA 1975-2005 

 

Table E1 PRECIS (RCM) average temperature data 1975-2005 

  Temp oC   

Month  Min Mean Max 

Jan  18.423 20.058 21.280 

Feb  18.903 20.482 21.618 

Mar  19.048 20.727 21.938 

Apr  19.339 20.990 22.177 

May  18.900 20.081 21.644 

Jun  17.097 18.343 20.313 

Jul  17.025 18.454 20.590 

Aug  19.723 21.221 23.232 

Sep  22.032 23.954 25.562 

Oct  21.223 23.554 25.412 

Nov  18.862 20.831 22.157 

Dec  18.352 20.081 21.362 

 

Table E2 PRECIS (RCM) average precipitation data 1975-2005 

 Precip (mm/day)  
Month Min Mean Max 

Jan 5.46460 8.90510 11.18700 

Feb 6.36850 8.44320 10.87900 

Mar 3.71830 5.16270 7.60290 

Apr 0.74941 1.37050 2.57330 

May 0.14748 0.22789 0.38057 

Jun 0.00823 0.01649 0.03720 

Jul 0.00378 0.00889 0.01886 

Aug 0.02104 0.10425 0.33863 

Sep 0.53950 1.18790 2.47790 

Oct 2.93520 4.49270 6.19000 

Nov 6.21570 8.49070 10.92100 

Dec 6.44120 9.80540 12.75100 
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APPENDIX F CRU (OBSERVED) DATA 1975-2005 

 

Table  F1 CRU Temperature ( oC) data 1975-2005 

Month Min Mean Max 

Jan 21.12900 22.60800 23.9840000 

Feb 21.33200 22.84400 24.2190000 

Mar 21.26500 22.75800 24.1350000 

Apr 20.58400 21.89900 23.0900000 

May 18.52900 19.86700 21.6520000 

Jun 16.30000 17.63000 19.7290000 

Jul 15.93500 17.38400 19.6840000 

Aug 18.59700 20.13400 22.1190000 

Sep 21.48400 23.03500 24.6810000 

Oct 22.75500 24.23800 25.9840000 

Nov 22.35800 23.80800 25.4420000 

Dec 21.39700 22.85700 24.2580000 

 

Table F2 CRU Precipitation 1975-2005 

 Precip (mm/day)  
Month Min Mean Max 

Jan 6.33060 7.54300 8.80450 

Feb 5.96430 6.70210 7.63380 

Mar 2.03650 5.78690 7.61490 

Apr 0.40194 1.76950 2.78050 

May 0.03205 0.14657 0.30656 

Jun 0.00000 0.00284 0.01161 

Jul 0.00000 0.00137 0.03028 

Aug 0.00000 0.02147 0.07128 

Sep 0.04419 0.42190 0.77215 

Oct 0.91093 2.21250 3.74910 

Nov 3.70660 5.45260 6.41330 

Dec 6.31090 7.62230 8.41710 
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APPENDIX G  COMPARISON OF RAINFALL FOR REANALYSIS & BASELINE 

Graphical rainfall comparison of reanalysis and baseline in mm/day. 

  

 

Figure G1 Graphical rainfall comparison of reanalysis & baseline for MAM & JJA 

 

 

 

REANALYSIS 1980-2010 BASELINE 1975-2005 
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Figure G2 Graphical rainfall comparison of reanalysis & baseline for SON & DJF 
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APPENDIX H COMPARISON OF TEMPERATURE FOR REANALYSIS & 

BASELINE  IN O C. 

Graphical temperature comparison of reanalysis and baseline 

TEMPERATURE 

Figure H1 Graphical temp comparisons of reanalysis & baseline for MAM & JJA 

REANALYSIS 1980-2010 BASELINE 1975-2005 
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Figure  H2 Graphical temp comparisons of reanalysis & baseline for SON & DJF 

 

 

 

© Central University of Technology, Free State



  Appendices 

248 

   

APPENDIX I SIMULATED RAINFALL FOR BASELINE AND RCP 4.5 

Table I1 Simulated rainfall for baseline and RCP 4.5 

Baseline 1975-2005  Rainfall(mm)    

Month 
p_Access1-

0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 
p_MPI-

ESM-MR 
P_MRI-
CGCM3 

Jan 228.52 242.75 250.31 229.88 238.07 219.4 

Feb 196.82 183.34 204.73 191.56 202.16 187.04 

Mar 171.62 201.02 197.09 182.72 185.69 154.2 

Apr 44.22 43.85 47.84 52.77 51.65 43.93 

May 0.36 0.5 0.52 0.96 1.28 0.57 

Jun 0 0 0 0 0 0 

Jul 0 0 0 0 0 0 

Aug 0.06 0.01 0 0 0 0 

Sep 7.46 6.78 5.76 7.29 7.62 8.44 

Oct 78.44 88.02 79.8 80.85 82.38 69.63 

Nov 204.17 186.14 196.92 196.44 199.16 187.99 

Dec 240.81 242.53 244.86 246.33 238.86 239.52 

 
RCP45 

 
2020-2050  Rainfall(mm)    

Month 
p_Access1-

0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 
p_MPI-

ESM-MR 
P_MRI-
CGCM3 

Jan 234.23 239.16 280.1 254.62 238.84 198.94 

Feb 178.06 204.19 207 220.85 203.11 170.23 

Mar 157.02 184.96 224.73 196.12 184.06 152.14 

Apr 35.2 46.1 38.39 59.86 56.9 48.98 

May 0.61 0.63 0.71 0.49 0.53 0.57 

Jun 0 0 0 0 0 0 

Jul 0 0 0 0 0 0 

Aug 0.23 0.01 0 0 0 0.05 

Sep 7.56 8.48 3.94 10.18 6.39 6.46 

Oct 61.8 78.93 48.25 60.66 73.62 64.95 

Nov 142.16 213.66 175.64 202.16 204.79 185.59 
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Table I2 Simulated rainfall for RCP 8.5 (mm) 

Month 
p_Access1-

0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 
p_MPI-ESM-

MR 
P_MRI-
CGCM3 

Jan 561.88 239.51 289.54 267.66 259.27 225.28 

Feb 549.25 212.02 250 229.49 203.58 173.31 

Mar 456.04 188.89 213.57 186.21 180.4 159.83 

Apr 44.11 47.97 44.76 40.64 54.49 32.91 

May 0 1.15 0.78 0.67 0.82 0.71 

Jun 0 0 0 0 0 0 

Jul 0 0 0 0 0 0 

Aug 0 0.06 0 0 0 0.03 

Sep 2.54 7.75 4.89 8.08 4.89 9.38 

Oct 80.89 112.14 48.99 56.47 77.33 87.66 

Nov 313.3 216.99 190.82 206.65 192.85 157.27 

Dec 648.03 251.34 296.83 259.7 238.39 208.5 

 

APPENDIX J SIMULATED RUNOFF FOR BASELINE 

Table J1 Simulated runoff for baseline 

Baseline 1975-2005  

Runoff(mm) 
    

Month 
p_Access1-

0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 
p_MPI-ESM-

MR 
P_MRI-
CGCM3 

Jan 17 28.51 12.29 20.77 22.87 16.43 

Feb 15.05 21.71 8.98 15.18 19.78 16.48 

Mar 10.69 25.49 8.62 17.01 15.71 8.8 

Apr 2.84 1.61 1.56 2.1 1.69 5.14 

May 0 0 0 0 0 0 

Jun 0 0 0 0 0 0 

Jul 0 0 0 0 0 0 

Aug 0 0 0 0 0 0 

Sep 0 0 0 0 0 0.01 

Oct 0.94 2.21 2.67 4.62 2.55 1.23 

Nov 16.85 17.86 11.2 18.16 16.58 17.52 

Dec 19.97 25.46 16.2 26.22 19.4 22.94 
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Table J2 Simulated runoff for  RCP 4.5 and RCP 8.5 (mm) 

RCP 4.5  (2020-2050) 

RCP45 
p_Access1-

0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 
p_MPI-ESM-

MR 
P_MRI-
CGCM3 

Jan 19.69 22.23 18.34 29.46 22.62 16.6 

Feb 14.73 22.84 11.5 25.67 17.34 13.64 

Mar 10.05 18.98 12.7 21.18 19.26 9.75 

Apr 1.55 2.45 0.98 4.08 3.77 1.73 

May 0 0 0 0 0 0 

Jun 0 0 0 0 0 0 

Jul 0 0 0 0 0 0 

Aug 0 0 0 0 0 0 

Sep 0 0 0 0.03 0 0 

Oct 0.51 1.56 0.77 0.81 3.25 0.38 

Nov 6.03 25.99 6.63 22.98 21.35 16.14 

Dec 23.46 31.28 21.97 25.55 23.55 21.69 

 

RCP 8.5 (2020-2050)   

Month 
p_Access1-

0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 
p_MPI-ESM-

MR 
P_MRI-
CGCM3 

Jan 217.77 26 21.04 35.75 30.97 23.36 

Feb 224.16 22.31 16.11 26.63 18.85 14.34 

Mar 184.76 19.07 14.68 17.57 19.29 11.46 

Apr 2.71 2.37 1.75 1.67 1.94 0.52 

May 0 0 0 0 0 0 

Jun 0 0 0 0 0 0 

Jul 0 0 0 0 0 0 

Aug 0 0 0 0 0 0 

Sep 0.22 0 0 0.02 0 0.01 

Oct 2.38 11.41 0.02 0.7 3.01 1.13 

Nov 108.76 35.24 13.09 24.55 19.9 10.92 

Dec 274.27 27.07 26.41 31.06 22.47 15.13 
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APPENDIX K SIMULATED WATER YIELD FOR BASELINE 

Table K1 Simulated water yield for baseline (mm) 

Month 
p_Access1-

0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 
p_MPI-ESM-
MR 

P_MRI-
CGCM3 

Jan 50.64 49.97 50.59 52.58 56.2 45.91 

Feb 44.88 39.43 42.24 43.37 49.31 42.13 

Mar 40.68 35.71 43.5 45.4 45.47 32.73 

Apr 23.42 19.03 24.77 21.81 21.82 22.87 

May 18.97 15.71 21.27 18 18.57 15.49 

Jun 18.35 15.25 20.65 17.36 18 15.02 

Jul 19 15.79 21.38 17.97 18.64 15.55 

Aug 19 15.8 21.39 17.98 18.64 15.56 

Sep 18.39 15.3 20.69 17.41 18.05 15.08 

Oct 20.74 16.61 25.38 23.36 21.89 17.47 

Nov 44.4 25 41.7 44.22 43.62 39.41 

Dec 55.19 53.15 54.81 61.11 54.57 53.33 

 

Table K2 Simulated water yield for RCP 4.5 (mm) 

Month 
p_Access1-

0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 
p_MPI-ESM-

MR 
P_MRI-
CGCM3 

Jan 49.97 56.35 59.65 64.83 56.22 43.19 

Feb 39.43 53.18 45.26 58.06 46.75 36.93 

Mar 35.71 48.03 50.3 52.57 48.89 33.19 

Apr 19.03 23.5 24.14 26.2 23.57 18.45 

May 15.71 18.96 21.77 19.87 18.65 14.97 

Jun 15.25 18.41 21.15 19.28 18.06 14.49 

Jul 15.79 19.06 21.9 19.96 18.7 15 

Aug 15.8 19.06 21.91 19.96 18.7 15 

Sep 15.3 18.46 21.19 19.37 18.1 14.53 

Oct 16.61 21.73 23.31 21.39 22.38 15.86 

Nov 25 53.83 35.37 50.97 48.72 38.32 

Dec 53.15 66.64 61.62 61.02 59.83 51.29 
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Table K3 Simulated water yield for RCP 8.5 (mm) 

Month 

p_Access1-
0 P_CNRM_CM5 p_ISPL_CM5A_LR P_MIROC5 

p_MPI-ESM-
MR 

P_MRI-
CGCM3 

Jan 284.59 60.16 64.3 71.59 65.69 51.61 

Feb 284.61 53.21 54.88 59.09 47.72 38.57 

Mar 244.71 48.84 53.15 47.99 48.28 35.63 

Apr 42.76 23.49 26.78 21.97 21.53 16.65 

May 37.09 19.31 23.34 19.39 18.55 15.36 

Jun 35.99 18.69 22.62 18.82 17.89 14.89 

Jul 37.26 19.35 23.43 19.49 18.52 15.41 

Aug 37.27 19.35 23.44 19.49 18.52 15.41 

Sep 36.22 18.73 22.67 18.89 17.93 14.94 

Oct 40.21 33.28 23.71 20.59 22.08 17.66 

Nov 155.15 64.19 43.33 51.78 46.76 31.41 

Dec 344.73 63.42 71.54 67.63 56.37 43.29 

 

APPENDIX L COMPARISON OF CLIMATE VARIABLES OBSERVED AND 

BASELINE 

Table L1 comparison of climate variables observed and baseline 

 

 

 

 

 

 

 

 

Rainfall 1975-2005  Temperature 1975-2005 GCM-Historical

Observed Hist-Ensemble Obs average Obs Min Obs Max Max Average Min

Jan 245.59 234.82 22 17 28 Jan 28 23 18

Feb 197.47 194.28 22 16 28 Feb 28 23 18

Mar 185.01 182.06 22 16 28 Mar 29 23 18

Apr 50.42 47.38 21 14 29 Apr 30 23 16

May 4.17 0.70 19 10 28 May 30 21 13

Jun 0.41 0.00 16 7 26 Jun 28 19 9

Jul 0.00 0.00 16 6 27 Jul 28 19 9

Aug 0.45 0.01 19 9 29 Aug 31 21 11

Sep 7.23 7.23 22 12 32 Sep 33 24 15

Oct 50.18 79.85 24 15 33 Oct 33 25 17

Nov 136.89 195.14 23 16 30 Nov 30 24 18

Dec 227.23 242.15 22 16 28 Dec 28 23 18

© Central University of Technology, Free State



  Appendices 

253 

   

APPENDIX M SIMULATED STREAMFLOW BASED ON SIX GCMs 

Table M1 Simulated streamflow based on ACCESS1-0 

Month Historical RCP45 RCP85 

 m3/s m3/s m3/s 

Jan 169.82 128.06 1695.8 

Feb 215.37 171.14 1605.48 

Mar 224.08 186.87 1454.01 

Apr 196.16 172.77 1115.9 

May 155.40 140.62 903.479 

Jun 131.18 119.36 600.682 

Jul 114.13 102.16 364.675 

Aug 98.46 87.20 256.661 

Sep 87.32 77.08 209.018 

Oct 83.21 73.00 203.85 

Nov 90.75 72.90 317.618 

Dec 124.35 93.19 1036.61 
 

Table M2 Simulated streamflow based on P-CNRM-CM5 

Month Historical RCP45 RCP85 

 m3/s m3/s m3/s 

Jan 176.87 200.26 216.05 

Feb 226.35 241.43 251.73 

Mar 238.54 236.08 249.23 

Apr 208.32 213.01 221.51 

May 158.88 162.49 166.92 

Jun 134.66 137.04 139.65 

Jul 117.82 120.42 123.19 

Aug 101.37 103.71 106.99 

Sep 89.36 91.19 94.63 

Oct 85.57 87.64 93.30 

Nov 93.14 99.27 128.19 

Dec 124.42 147.36 169.06 
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Table M3-M4 Simulated streamflow based on P-IPSL-CM5A-LR and P-MIROC5 

Month Historical RCP45 RCP85 

 m3/s m3/s m3/s 

Jan 183.26 181.86 218.58 

Feb 227.49 240.18 275.04 

Mar 238.30 246.05 282.32 

Apr 211.78 220.89 241.83 

May 162.86 165.01 176.61 

Jun 136.79 138.03 144.79 

Jul 119.71 121.24 127.94 

Aug 103.25 104.45 112.21 

Sep 91.51 92.10 99.66 

Oct 87.62 86.56 94.73 

Nov 95.01 89.88 98.41 

Dec 133.77 119.15 146.30 
 
 
 P-MIROC5   

Month    Historical RCP45 RCP85 

       m3/s m3/s m3/s 

Jan 170.36 187.04 201.95 

Feb 216.50 245.46 260.81 

Mar 223.11 254.42 259.32 

Apr 198.52 219.10 216.36 

May 156.27 166.21 163.13 

Jun 133.34 139.26 137.61 

Jul 116.39 122.14 121.30 

Aug 99.66 105.37 105.01 

Sep 87.50 92.76 92.69 

Oct 83.69 88.05 87.82 

Nov 94.13 97.86 94.28 

Dec 123.04 130.81 130.54 
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Table M5 Simulated streamflow based on MPI-ESM-MR 

Month Historical RCP45 RCP85 

    m3/s m3/s m3/s 

Jan 167.53 180.26 175.86 

Feb 222.36 228.40 233.01 

Mar 235.71 236.41 239.39 

Apr 203.88 204.85 202.65 

May 158.58 158.95 157.85 

Jun 134.64 134.92 134.21 

Jul 117.49 117.90 117.28 

Aug 100.58 101.02 100.65 

Sep 88.62 88.79 88.30 

Oct 84.16 84.41 83.60 

Nov 90.77 91.81 94.23 

Dec 122.64 125.48 123.15 

Table M6 Simulated streamflow based on MRI-CGCM3-MR 

Month Historical RCP45 RCP85 

      m3/s   m3/s m3/s 

Jan 147.92 137.82 126.60 

Feb 192.44 171.97 173.10 

Mar 200.22 181.51 182.70 

Apr 181.26 167.47 167.13 

May 146.47 140.09 138.35 

Jun 125.14 120.73 118.89 

Jul 107.84 103.29 101.40 

Aug 92.37 88.12 86.56 

Sep 81.36 77.73 76.41 

Oct 77.37 73.27 72.92 

Nov 81.11 77.56 76.47 

Dec 108.59 104.00 95.01 
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APPENDIX N Table N1 Ranked simulated streamflow for six GCM 

Access CNRM_CM5 IPSL_CM5A_LR MIROC MPI-ESM-MR MRI-CGCM3-MR

Year Hist RCP45 RCP85 Hist RCP45 RCP85 Hist RCP45 RCP85 Hist RCP45 RCP85 Hist RCP45 RCP85 Hist RCP45 RCP85

1 2023 312.2 153.8 4595 200 300.2 214.7 254 178.2 267.5 129.6 245.7 300.4 200.8 209.4 183.9 123.3 187.4 216.5

2 2024 263.9 151.4 2479 185 223.2 265.9 332.4 246.7 259.5 242.3 248.4 265.3 238.2 206.6 266.4 200.7 166.4 209.6

3 2025 260.2 190.2 1677 222 258.1 217 246.7 268.4 280.2 214.8 264.8 285.1 212.3 213.7 340 165.4 148.5 269

4 2026 235.4 162.3 4964 273 196.4 167.9 274.5 235 245.7 258.1 256.9 254 311.5 270.9 314.6 147.5 192.6 241.9

5 2027 230.1 312.2 5037 209 227.5 203.7 257.5 281.1 310 314.3 235.8 274.6 285.1 214.9 227.3 204.3 196.4 199.6

6 2028 227.1 197.3 1401 339 240.7 272.6 294.9 250.5 251.9 238.7 242.2 219.1 233.2 277.5 288.6 210.1 155.2 173

7 2029 225.3 176.6 923.9 240 268.2 319.6 278 220.2 272.9 199.9 332.4 279.5 241.4 299.8 199.2 147.4 153 165.7

8 2030 217.2 260.2 2319 298 241.3 310.5 249.8 246.1 254.3 213.7 246.6 301.9 210.9 273.8 255.7 214.2 134.3 283.7

9 2031 215.5 200.8 824.4 198 258.4 229.9 269.2 189 331.2 204.3 270.9 260.8 269.4 227.7 209.9 206.5 202.7 159.7

10 2032 214.2 212.6 1210 175 213.4 299.6 276.9 247.1 192.4 249.3 206.9 282.2 228.9 248.7 235.6 174.5 147.2 120.2

11 2033 212.6 194 1606 309 223.8 282.8 172.4 298.3 281.8 223.5 277.7 178.9 198.6 247.7 244.9 234.8 139.9 166

12 2034 205.1 194 1606 309 223.8 282.8 172.4 298.3 281.8 223.5 277.7 178.9 198.6 247.7 244.9 234.8 139.9 166

13 2035 202.1 214.2 1410 253 280.3 374.1 182.1 292.5 278 219.4 288.4 269.2 208.9 242.9 245.7 209.6 198.4 173.4

14 2036 200.8 183.3 1079 274 220.1 202.5 259 268.7 309.3 188.5 270.1 234.8 175.8 222.6 301.8 196.6 194.6 191.5

15 2037 197.3 225.3 2641 289 247.3 293.9 229.4 195.8 301.5 197.2 230.5 252.2 229.9 218.2 187.1 187.6 224.3 250.6

16 2038 194 227.1 3302 242 245.3 300.8 195.8 273.8 356.5 214.1 292.9 207.1 219.5 247.5 267.5 208.1 185.3 203

17 2039 194 217.2 4334 308 201.2 303.3 201.6 312.4 286.4 244.6 269.3 275.3 300.5 223.1 346.4 244.9 193.9 216.4

18 2040 190.2 163 2476 233 310.9 348.8 280.8 311.9 313.6 207.3 265.7 299.5 217.2 230.4 271.3 186.2 179.4 193.6

19 2041 184.5 167.6 1595 230 279.6 306.7 272.9 236.8 321.6 238.2 202.2 279.6 325.1 261.2 211.9 272.3 192 200.8

20 2042 183.3 235.4 2916 190 360.2 300.6 243.6 231.1 302.6 316.1 298.1 321.8 221.6 242.7 171.9 248.5 199.2 195

21 2043 176.6 202.1 814 238 273.1 223 330.9 313.9 272.3 267.4 291.5 271.9 287.1 196.3 186 299.3 297.4 199.9

22 2044 167.6 119.1 1798 162 253.3 254.8 249.5 230.2 300.8 286.2 239.1 264.8 242.3 240.5 177 172.2 319.8 168.3

23 2045 163 215.5 7163 263 200.6 244.7 229.8 227.5 226.9 243.6 276.2 257.2 256.9 269.7 317.1 185.3 207.1 146.5

24 2046 162.3 205.1 1339 221 300.1 226.2 182.8 286.3 313.9 209 281.3 252.8 205.4 256.4 290.7 232.8 202 194.9

25 2047 153.8 120.6 2058 222 237.4 286.8 210.7 318.2 345.6 189.1 301.6 269.5 251.9 291.1 258.6 265.7 189.6 153.2

26 2048 151.4 263.9 3029 345 226.4 257.5 190.9 215.7 348.2 251.4 315.8 324.1 221.7 236.5 275 186.3 213.5 144

27 2049 120.6 184.5 1343 301 251.3 322 208.6 289.9 273.1 225.9 225.8 317.7 316.9 256.3 242.3 167 203.2 170.6

28 2050 119.1 230.1 3290 310 272.5 304 261.5 233.1 341.1 249 301.9 300.2 230.6 269.2 207.6 277.5 219.7 203.8
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APPENDIX O ESTIMATED COEFFICIENT OF VARIATION FOR EACH GCM 

Table O1 Estimated coefficient of variation for each GCM 

GCM Access 
CNRM 
CM5 

IPSL CM5A LR 
MIROC MPI-ESM-MR MRI-CGCM3-MR 

Highest 

CV 

Mean 

CV 

Lowest 

CV 

Scenario Historical 
Intra-annual 

(CV) 0.410 0.413 0.404 0.387 0.386 0.396 0. 0.399 0.386 

Inter- 
Annual 
(CV) 0.160 0.139 0.140 0.128 0.096 0.153 0.160 0.136 0.096 

Scenario RCP4.5 

Intra-annual 
(CV) 

0.399 0.401 0.419 0.406 0.384 0.371 0.419 0.397 0.371 

Inter-Annual 
(CV) 

0.141 0.121 0.119 0.087 0.079 0.125 0.141 0.112 0.079 

Scenario RCP8.5 
Intra-annual 

(CV) 0.998 0.427 0.434 0.419 0.407 0.375 0.998 0.510 0.375 
Inter-Annual 

(CV) 0.334 0.158 0.118 0.101 0.116 0.142 0.334 0.161 0.101 
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