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A link exists between human and animal diseases caused by E. coli. Avian 

pathogenic E. coli (APEC) causes detrimental economic losses in the poultry 

industry due to infections in poultry such as colibacillosis and cellulitis. In 2003, 

poultry producers were made aware that some avian diseases could be transmitted 

to humans, particularly via the faecal-oral route. For the identification of these E. coli 

strains, surface antigens are used. Based on surface antigens namely somatic (O), 

capsular (K) and flagella (H) antigens, different E. coli strains can be serotyped. The 

most common APEC strains are O1, O2 and O78, but serotypes O8, O15, O18, 

O36, O88, O109, O115 and O116 have also been reported as E. coli isolates 

associated with cellulitis and colibacillosis in poultry. E. coli strains O1:K1:H7, 

O18:K1:H7 and O15:K52:H1 have been linked to diseases in both mammals and 

birds. In South Africa, only enumeration is performed routinely to monitor the 

presence of E. coli in poultry processing plants, thus no serotyping occurs in this 

setting. For this reason, it is important to know which serotypes are prevalent, 

especially in poultry abattoirs, to prevent the possibility of such pathogens infecting 

humans via poultry. It was therefore the aim of this study to develop a method that 

can identify these pathogens at serotype level from environmental samples. To 

identify the three laboratory strains, both genotypic (molecular) and phenotypic 

(immunological) characteristics were considered. When using multiplex-PCR as a 

molecular serotyping technique, targeted genes (wzx-1, neuC, fliC, wzx-2 and fumC) 

were detected on the test strains. With the optimization of multiplex-PCR, it was 

possible to apply this technique to field isolates as well as to the environmental 

sample. One-step digestion of multiplex PCR allowed the differentiation of the 

O1:K1:H7, O18:K1:H7 and O15:K52:H1 APEC E. coli test strains. The method 

proved to be fairly simple and cost effective, yet such a method is currently not 
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available in the poultry sector. Conversely, an array of immunological techniques 

was able to detect only flagellin antigens on both the O1:K1:H7 and O18:K1:H7 

strains using plate agglutination on the test strains. Additionally, K1 bacteriophage 

was able to detect K1 antigens again on both O1:K1:H7 and O18:K1:H7 using zone 

of inhibition, pour plate and broth clearing assays. However, counter current 

immunoelectrophoresis results were inconclusive due to negative results on the 

targeted antigen (i.e., K52 antigen). 
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1.1 Introduction 

South Africa’s poultry meat production exceeded the one million ton mark for the first 

time in 1998 and seemed to keep growing (Germishuis, 2000). In 2017, 47 025 

employees were directly employed by the industry with 57% working in broiler 

processing (poultry abattoirs); 13% working in broiler distribution; and 30% working 

in broiler breeding, hatchery and rearing (SAPA, 2017). According to the Department 

of Agriculture, data for 2017 revealed that the total poultry meat (all saleable) 

production amounted to 1.658 million tons. Broiler production contributed 

approximately 92% to the total poultry meat production with the balance of 8% made 

up by cull layer hens and cull broiler breeders (SAPA, 2017).  

The South African Meat Safety Act No. 40 of 2000 (South Africa, 2000) specifies that 

it is mandatory that high-throughput poultry abattoir environments be monitored for 

the presence of specific microorganisms. These organisms include bacteria such as 

Escherichia coli, Salmonella, Staphylococcus aureus, Clostridium perfringens, 

intestinal Enterococci and Listeria. E. coli can be found both inside (enteric E. coli) 

and outside (extraintestinal E. coli) the digestive tract (Bien et al., 2012). 

Extraintestinal E. coli (ExPEC) can further be subdivided into uropathogenic E. coli 

(UPEC), septicemic E. coli (SPEC), neonatal meningitis E. coli (NMEC), and avian 

pathogenic E. coli (APEC). UPEC and NMEC can cause diseases such as urinary 

tract infections (UTI/pyelonephritis and neonatal meningitis respectively) when E. coli 

contaminated chicken is consumed (Bien et al., 2012). 

APEC is an important extraintestinal pathogenic bacterial species as it contains 

harmful serotypes. APEC is known to cause infectious diseases in poultry such as 

colibacillosis and cellulitis (Lutful Kabir, 2010). The most common APEC strains are 

O1, O2 and O78; however, serotypes O8, O15, O18, O36, O88, O109, O115 and 
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O116 have also been reported to be associated with colibacillosis and cellulitis in 

poultry (La Ragoine et al., 2000; Stordeur et al., 2004). The occurrence of these 

infectious diseases has caused extensive losses in the poultry industry in South 

Africa (Germishuis, 2000). There is also evidence that humans who come into direct 

contact with poultry are at risk of contracting E. coli diseases from poultry (Ojeniyi, 

1989). In 2015, Zweifel and co-workers reported that total viable counts of E. coli 

from plucked carcasses of three poultry abattoirs ranged from 2.9 to 3.3 log CFU/g in 

Zurich. It is therefore important to implement targeted and sustainable measures at 

selected stages of the poultry slaughter process to detect the presence of such 

microorganisms in poultry abattoirs. Presently, if E. coli strains are detected in South 

African abattoirs, they are not subjected to serotyping but are only enumerated; so 

the prevalence of strains of APEC in South African abattoirs is currently unknown. 

For many bacterial species there exists serotypes that are infectious or that produce 

harmful toxins. However, these harmful serotypes cannot be identified using the 

required legislated monitoring procedures that are applied in South Africa. 
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1.2 Aim and Objectives 

To identify E. coli, multiple assays such as nucleic acid based methods (NABM, or 

molecular techniques) and immunological serotyping can be used. However, some 

methods are non-specific (microtiter plate agglutination and countercurrent 

immunoelectrophoresis) as well as expensive and laborious; for example, it is 

necessary to locate and purchase the antibodies and create a suitable environment 

to perform the assay, yet only limited positive results may be obtained.  

The aim of this study was therefore to assess the usefulness of multiplex-PCR or 

immunology as techniques for serotyping selected laboratory and environmental 

APEC E. coli strains. To achieve this aim, it was important to find suitable primers, 

optimize multiplex, find suitable restriction enzymes, source suitable antibodies for 

immunology, and optimize immunology protocols and application using 

environmental isolates. A peripheral aim was to test the best performing assays and 

techniques on laboratory strains and to apply them on field and environmental 

samples collected from the effluent of a poultry abattoir. To achieve these aims, the 

following objectives were devised: 

 To evaluate the specificity and sensitivity of multiplex PCR on the 

O1:K1:H7, O15:K52:H1 and O18:K1:H7 strains followed by 

optimization;  

 To apply (or optimize) the multiplex PCR/Restriction enzyme digestion 

(mPCR/RED) approach for identifying E. coli serotypes O1:K1:H7, 

O15:K52:H1 and O18:K1:H7 on field and environmental samples 

collected at a high-throughput poultry abattoir; and 
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 To evaluate the specificity and sensitivity of microtitre-plate 

agglutination, plaque assay, and counter current 

immunoelectrophoresis. 

 

1.3 Thesis Layout 

 

Chapter 1: Introduction 

In Chapter 1 the research project is introduced, the problem is specified and the 

aims and objectives are presented. 

 

Chapter 2: Literature Review  

Chapter 2 entails a review of related literature. Topics that are relevant to this 

research project are covered subsequent to the introduction such as the background 

of the South African poultry industry, the nature of high-throughput abattoirs, 

regulations and monitoring protocols for the South African poultry industry, 

challenges in the poultry industry, avian pathogenic E. coli, the identification of E. coli 

in poultry, and assays and techniques used for the identification of E. coli (e.g., 

immunological identification using agglutination and molecular identification using a 

polymerase chain reaction). 

  

© Central University of Technology, Free State



Chapter 1 

6 | P a g e  
 

Chapter 3: Application of a multiplex PCR/Restriction enzyme digestion 

(mPCR/RED) approach for identifying E. coli serotype strains O1:K1:H7, 

O15:K52:H1 and O18:K1:H7 

After a brief introduction to Chapter 3, the materials and methods that were utilised in 

this study are discussed. The topics that follow include the validation of the presence 

of extracted DNA products, primer specificity with unoptimized PCR conditions, 

unoptimized multiplex-PCR on reference strain gene products, optimization of 

multiplex-PCR on reference strain gene products, the application of the optimized 

multiplex-PCR on reference strain gene products, verification of BstAPI as the 

enzyme of choice from in silico screening, one-step digestion of optimized mPCR 

with BstAPI restriction enzyme, one-step digestion application on field isolates with 

BstAPI restriction enzyme, and the application of one-step digestion of optimized 

mPCR of environmental samples with the BstAPI restriction enzyme. A brief 

conclusion brings this chapter to a close.     

 

Chapter 4: Specificity and sensitivity of immunological serotyping assays on 

reference strains 

The introduction of this chapter is followed by a more extensive discussion of the 

materials and methods. Further topics include the results of bacterial isolation, 

bacterial preservation, growth studies, bacterial enumeration, microtitre-plate 

agglutination, plaque assay, and counter current immunoelectrophoresis.  
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Chapter 5: Concluding Remarks 

Chapter 5 presents an overall discussion that covers the findings of Chapter 3 and 

Chapter 4. Recommendations are offered as future applications of the findings are 

suggested. 
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2.1 Introduction 

A substantial portion of the human diet in many countries is made up of poultry meat.  

Globally, people consumed approximately 12 kg of poultry per person between 2000 

and 2009 (DAFF, 2014; SAPA, 2016). At the time, the world average annual 

consumption (WAAC) rate of poultry exceeded that of approximately 9 kg per person 

of beef and was steadily approaching the WAAC value for pork of approximately 15 

kg per person (Avarez-Fernandez et al., 2013; SAPA, 2016). In South Africa, the 

relatively low price of poultry meat makes it a more attractive protein for consumers 

than beef. Poultry meat consumption in South Africa has increased from 

approximately 23 kg per person in 2004 to approximately 35 kg per person in 2013 

(DAFF, 2014; Esterhuizen, 2015; SAPA, 2016). With this noteworthy increase in 

poultry consumption, the threat of poultry for human disease transmission is also 

high. For example, as far back as 1989, Ojeniyi documented the direct transmission 

of E. coli from poultry to humans. More recently, Jacob et al. (2003) found that 

colibacillosis infections caused by E. coli in poultry were transferred to humans via 

the faecal-oral route. Moreover, these researchers found that the infection was often 

food or water borne.   

  

© Central University of Technology, Free State



Chapter 2 

12 | P a g e  
 

2.2 The South African Poultry Industry (SAPI) 

The South African poultry industry comprises two sectors, namely the broiler and the 

egg layer sectors (SAPA, 2016). The broiler sector of the industry makes up 80% of 

the total industry, with the egg laying component comprising the remaining 20% 

(DAFF, 2014). The broiler sector of the industry is mostly centred around privately 

owned abattoirs. These abattoirs are spread throughout the country with most of 

them located in the provinces of Gauteng and KwaZulu-Natal (DAFF, 2014). These 

abattoirs slaughter more than 750 million chickens each year (DAFF, 2014). 

South African legislation, more specifically the Meat Safety Act No. 40 of 2000 

(South Africa, 2000), requires that all poultry abattoirs are registered (DARD, 2009). 

Registered poultry abattoirs are classified according to how many chickens are 

slaughtered each day. Originally, poultry abattoirs were graded from A to E (Table 

2.1). However, currently registered poultry abattoirs are rated and classified as high-

throughput abattoirs (HTPA), low-throughput abattoirs, and rural abattoirs. There are 

322 registered poultry abattoirs in South Africa with 176 high-throughput abattoirs, 

67 low-throughput abattoirs and 79 rural abattoirs (DARD, 2009). About 90% of 

these poultry abattoirs are privately owned, while about 5% are owned by the 

government (DARD, 2009). The other 5% are operated as community projects 

(Molapo, 2009).  
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Table 2.1: Previous and current classification of poultry abattoirs in South Africa  

PREVIOUS CLASSIFICATION CURRENT CLASSIFICATION 

Grading Classification Maximum slaughter 
chicken per day 

A and B High-throughput abattoirs > 2000  

C and D  Low-throughput abattoirs < 2000  

E Rural abattoirs < 50  

Source: Adapted from Molapo, 2009 

In South Africa, seven major producers are responsible for the majority of broiler 

production. These producers include Astral Foods, Countrybird, Daybreak, Fourie’s 

Poultry Farms, Rainbow Limited, Rocklands, and Tydstroom (DAFF, 2014). Astral 

Foods and Rainbow Limited are the most productive and are responsible for the 

production of 46% of the broilers in South Africa (DAFF, 2014). These two 

companies produce more than 220 million of approximately 750 million broilers per 

annum (DAFF, 2014).  

 

2.2.1 High-throughput abattoirs (HTPA) 

 

In HTPA, more than 2000 chickens are slaughtered each day. In the slaughtering 

process, vast volumes of water are used to wash the chicken carcasses. This 

process culminates in large volumes of water being drained from abattoirs; in fact, 

the quantity of water that drains away from South African HTPA exceeds 10 billion 

litres annually. The volume of wastewater produced by abattoirs amounts to 

approximately 29 million litres daily, while approximately 14 litres of water is used per 

chicken daily (DAFF, 2014).   
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The processing of live chickens in an HTPA is a complex process which comprises 

two stages that are referred to as primary and secondary processing. Emphasis has 

been placed on the role that poultry abattoir processing plays in the development of 

ill health amongst workers exposed to various pathogens. This occurs during both 

primary (receiving, shackling, stunning, bleeding, scalding, de-feathering, 

evisceration, recovery) and secondary (portioning, brining, filleting, chilling, freezing, 

packaging and dispatching) processing operations (Harmse et al., 2017).  

 

The feathers, feet, skin and gastrointestinal tracts of chickens harbour a large 

number of micro-organisms that enter a poultry abattoir (Pan & Yu, 2014), and 

abattoir workers may be exposed to these micro-organisms. Many of these micro-

organisms are pathogenic and are referred to as animal-borne pathogens (ABP) 

(Meat Inspection Manual, 2007). According to the Advisory Committee on 

Dangerous Pathogens in the United Kingdom, most abattoir workers are 

unnecessarily exposed to chicken parts and residues which might contain ABP 

(ACDP, 2012).  
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2.2.2 Regulations and monitoring of SAPI   

 

Open chicken carcasses introduce a high number of microorganisms that may by 

pathogenic to the environment, and workers are constantly exposed to this hazard. 

Rigorous monitoring is therefore required. South African poultry producers are 

regulated by a body called the South African Poultry Association (SAPA). SAPA is 

responsible for a code of practice that requires collection, compilation and 

distribution statistics; the promotion of positive aspects of the broiler industry’s 

image; and adherence to food compliance and safety regulations. It also critically 

monitors imports; institutes and maintains protective import tariffs; and supports 

industry training (DAFF, 2014). This body is also responsible for monitoring chickens 

that are reared for human consumption (broilers) and ensuring that they are reared 

in healthy environments (SAPA, 2012).  

 

However, current monitoring procedures involve only the enumeration of listed 

microorganisms that might be present in the meat in an abattoir (South Africa, 2000). 

For example, a survey revealed that, in five regions in South Africa, the enumeration 

of microorganisms ranged from 2.2 × 102 to 3.2 × 106 CFU on a plate count agar 

(PCA) plate (Mabote et al., 2011). Moreover, the enumeration of microorganisms is 

performed only up to species level (South Africa, 2000). 

 

2.3 Poultry Pathogens 

 

In 2007, an abattoir hygiene manual was provided by the Veterinary Public Health 

Unit of the South African National Department of Agriculture. The tests that were 

conducted used predominantly meat carcasses. These tests were mainly conducted 
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to detect bacteria that are most frequently associated with food-borne diseases  such 

as Listeria monocytogenes, Staphylococcus aureus, Campylobacter jejuni, 

Clostridium, Salmonella and E. coli (specifically O157:H7) (Meat Inspection Manual, 

2007). The E. coli O157:H7 strain can cause serious food poisoning in humans and 

is occasionally responsible for product recalls (Yun Lee et. al., 2009). However, 

O157:H7 is not the only strain associated with disease. 

 

E. coli forms part of the complex community of microorganisms in poultry. It begins 

to colonize the gastrointestinal tract (GIT) within a few hours after hatching, reaching 

up to 106 colony forming units per gram (CFU.g-1) of intestinal contents during the 

first few days of life (Dho-Moulin & Fairbrother, 1999). The complex community of 

microorganisms residing in or passing through the GIT is referred to as intestinal 

microbiota and these microbiota play an important role in metabolic, nutritional, 

physiological and immunological processes in the human body. For instance, they 

initiate important metabolic activities by extracting energy from otherwise indigestible 

dietary polysaccharides such as resistant starch and dietary fibres. These metabolic 

activities also lead to the production of important nutrients such as short-chain fatty 

acids, vitamins (vitamin K, vitamin B12 and folic acid) and amino acids, which 

humans are unable to produce themselves (Hamer et al. 2008). In addition, the 

intestinal microbiota participate in the defence against pathogens by mechanisms 

such as colonization resistance and the production of antimicrobial compounds.  

 

Furthermore, intestinal microbiota are involved in the development, maturation and 

maintenance of the gastrointestinal functions (sensory and motoric), the intestinal 

barrier, and the mucosal immune system. These are just a few examples of the 
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functional contributions of intestinal microbiota to human health, which is a subject 

that has been regularly reviewed (Barbara et al. 2005; Cerf–Bensussan & Gaboriau–

Routhiau, 2010; Sekirov et al., 2010; Zoetendal et al., 2008). In recent years, a sharp 

increase has been seen in the number of publications addressing intestinal 

microbiota, and these articles have provided various lines of evidence supporting a 

close link between microbiota and human health.  

 

Infections associated with E. coli include intra-abdominal infections, acute bacterial 

meningitis, urinary tract infection, pyelonephritis, neonatal meningitis, gastroenteritis, 

and septicemia (Bauchart et al., 2010; Dai et al., 2010; Bien et al., 2012). The 

pathogenic E. coli strains are broadly classified as either enteric/diarrheagenic E. coli 

or extraintestinal E. coli (ExPEC). Strains of enteric E. coli can be grouped into six 

categories: enteroaggregative E. coli (EAEC), enterohemorrhagic E. coli (EHEC), 

enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. 

coli (ETEC), and diffuse adherent E. coli (DAEC). The pathogenesis of these 

categories are presented in the summary below as well as in Figure 2.1.  

1) The pathogenesis of ETEC diarrhoea involves two steps: intestinal colonization, 

followed by the elaboration of diarrheagenic enterotoxins (Baron, 1996).  

2) EPEC serogroups bind intimately to the epithelial surface of the intestine, usually 

the colon, via the adhesive bundle-forming pili (BFP). The lesion caused by EPEC 

consists mainly of the destruction of microvilli (Baron, 1996).  

3) Haemorrhagic colitis is caused by EHEC strains (most notably O157:H7) that 

colonise the gut by intimately adhering to the epithelial cells causing the 

condensation of actin and the effacement of the microvilli. They also produce 
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relatively large quantities of the bacteriophage-mediated Shiga-like toxin. Many 

strains of O157:H7 also produce a second cytotoxin (Shiga-like toxin 2, or Vero toxin 

2) which is similar in effect but antigenically different (Baron, 1996; Belanger et al., 

2011).  

4) EIEC pathogenesis starts with the penetration of the bacteria into the epithelial 

cell which causes the lysis of the endocytic vacuole. The bacteria proliferate and 

move intracellularly and eventually spread laterally to the adjacent cells (Sansonetti, 

1992; Goldberg & Sansonetti, 1993).  

5) EAEC enhances the secretion of mucus which traps the bacteria to form a biofilm 

mucus layer and releases the cytotoxin (Tzipori et al., 1992).  

6) DAEC strains induce finger-like projections that extend from the surface of 

infected cells. The projections wrap around the bacteria but do not effect complete 

internalization (Cookson & Nataro, 1996; Yamamoto et al., 1994).  
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Figure 2.1: Six categories of E. coli that can cause gastroenteritis in humans. It should be noted that these 

descriptions are largely the result of in vitro studies and may not completely reflect the phenomena occurring in 

infected humans (Nataro & Kaper, 1998; Smith & Fratamico, 2005).    

These pathogenic E. coli are serotyped on the basis of their O (somatic), H (flagella), 

and K (capsular) surface antigen profiles. Each of the six categories listed above has 

a different pathogenesis and comprises a different set of O:H serotypes (Nataro & 

Kaper, 1998). There are also E. coli strains that cause disease outside the GIT; 

these are known as extraintestinal pathogenic E. coli (ExPEC) and they include 

human uropathogenic E. coli (UPEC) (which is one of the most virile causes of 

bacterial infectious diseases in industrialized countries), avian pathogenic E. coli 

(APEC), and E. coli causing neonatal meningitis (NMEC) and septicemia (SPEC) 

(Andersen et al., 2012; Johnson & Stell, 2000; Russo & Johnson, 2003; Soto et al., 

2008; Germon et al., 2005). ExPEC infections are among the most significant 
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infectious diseases in production birds and result in severe losses due to mortality, 

production losses, and condemnations (Ewers et al., 2009). Concurrently, infection 

with APEC generally begins as a localized infection of the air sacs commonly 

referred to as airsacculitis or ‘the air sac disease’ which, in turn, may spread to other 

internal organs resulting in systemic infection. This initial infection generally occurs in 

4–9-week-old broiler chickens and in laying hens at the peak of egg production 

which occurs at week 30 (Antao et al., 2008). ExPEC, APEC and UPEC also share 

virulence-associated traits and have overlapping O serogroups and phylogenetic 

types (Rodriguez-Siek et al., 2005; LeStrange et al., 2017). Nevertheless, serotyping 

is still a common method for estimating the pathogenic potential of APEC strains as 

it has been accepted for a long time that some serotypes, including serotypes O1, 

O2, O8, O18, and O78, are detected more frequently than other serotypes (Ewers et 

al., 2009). 

 

2.4 Avian Pathogenic E. coli (APEC)  

 

Human hosts are the point of origin for all sequenced pathogenic E. coli (Johnson et 

al., 2007; Johnson et al., 2012). This partiality has left a gap in our knowledge, as 

various E. coli strains cause significant and widespread diseases in animals, 

including in those raised for human consumption (Barnes et al., 2003). 

Consequently, while the genomic analysis of E. coli strains from animals can be 

justified solely on the basis of E. coli’s detrimental impact on animal agriculture, a 

broader rationalization would also include the potential link between animal-source 

E. coli and human disease. Links between human and animal disease caused by E. 
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coli have been well established by various studies (Johnson et al., 2007, Belanger et 

al., 2011; Bergeron et al., 2012; Harmse et al., 2017).  

 

In contrast, APEC strains are commonly of the O1, O2 and O78 serotypes, but 

serotypes O8, O15, O18, O36, O88, O109, O115 and O116 have also been reported 

for E. coli isolates associated with cellulitis and colibacillosis in poultry (Blanco et al., 

1998; La Ragoine et al., 2000; Stordeur et al., 2004). APEC is the most common 

bacterial pathogen that affects chickens (Barnes et al., 2008; Ghunaim et al., 2014). 

A considerable diversity of serogroups has been detected among poultry clinical 

isolates and only a small percentage of these isolates belongs to serotypes O1, O2 

or O78. Therefore, no single E. coli serotype used as a bacterin can provide full 

protection against all the serotypes that cause avian E. coli infections. Although it is 

generally agreed that the immediate source of UPEC causing human UTIs is an 

individual’s own colonic flora (Johnson & Stell, 2000; Johnson et al., 2007; Chassin 

et al., 2011; Bien et al., 2012), it is not completely understood how these virulent 

strains come to inhabit the colon. One hypothesis is that retail poultry harbouring 

avian pathogenic E. coli (APEC) represents a food-borne source of E. coli strains 

that are capable of causing human UTIs; or they could serve as a genetic pool for 

ExPEC strains (Ron, 2006; Ewers et al., 2009; Vincent et al., 2010; Belanger et al., 

2011; Manges & Johnson, 2012). Additionally, there is a well-documented history of 

transfer of E. coli strains and their plasmids from poultry to humans (Ojeniyi, 1989; 

Van Den Bogaard et al., 2001), and one report has demonstrated that APEC 

plasmids can contribute to the urovirulence (cause of disease in the urinary system) 

of E. coli for mammalian hosts (Skyberg et al., 2006). Virulence factors of E. coli 

include the ability to resist phagocytosis, utilization of highly efficient iron acquisition 
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systems, resistance to killing by serum, the production of colicins, and adherence to 

respiratory epithelium (Dziva & Stevens, 2008; Tufani et al., 2011; Ahmed, 2013). 

 

In poultry, E. coli causes colibacillosis (a collective term for several diseases such as 

pericarditis, perihepatitis, peritonitis, airsacculitis, septicemia and other mainly 

extraintestinal diseases) which is a widespread disease and is responsible for 

economic losses in the poultry industry globally. Infected chickens could be the 

source of animal disease from avian origin, because ExPECs cause extraintestinal 

disease, share virulence-associated traits, and have overlapping O serogroups and 

phylogenetic types (Barnes et. al., 2003; Rodriguez-Siek et. al., 2005; Ron, 2006; 

Fasaei et al., 2009; Lutful Kabir, 2010; Ghunaim et al., 2014; Jajarmi et al., 2017). 

These economic losses are caused by increased mortality, increased carcass 

condemnation rates at the time of processing, decreased growth rate, and 

decreased feed conversion efficiency of affected birds. In 2000, APEC was 

responsible for 45.2% of condemned poultry carcasses in Brazil, which is the world’s 

largest exporter of chicken meat (Fallavena et al., 2000). In addition to its negative 

economic impact, APEC is also considered a major source for spreading 

antimicrobial resistance to other bacteria (mainly through their plasmids) and the 

exchange of other genetic material (Gyles, 2008). This is prevalent in Europe, the 

USA and Australia, where up to 92% of avian E. coli isolates were found to be 

resistant to three or more antimicrobial drugs despite strict measures on antibiotic 

use in the poultry industry (Gyles, 2008).  
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The most prevalent bacteria in the intestinal tract in warm-blooded animals and 

humans is E. coli. They constitute approximately 106-109 CFU.g-1 of stool and can 

easily contaminate food products during animal evisceration after slaughter through 

contact with tainted water or during food handling (Alvarez-Fernandez et al., 2013). 

E. coli is also considered as a major zoonotic agent, as it can be involved in 

intestinal and extra-intestinal infectious diseases (Lei et al., 2010).  

2.5 Assays and Techniques Used for the Identification of E. coli 

 

Serotyping is based on the fact that strains of the same species can differ in the 

antigenic determinants expressed on the cell surface. Surface structures such as 

lipopolysaccharides, membrane proteins, capsular polysaccharides, flagella and 

fimbriae display antigenic variations. Strains differentiated by antigenic differences 

are said to be serotypes. Serotyping for several Gram-negative and Gram-positive 

bacteria is performed using a number of serologic assays such as bacterial 

agglutination, latex agglutination, co-agglutination, and fluorescent and enzyme-

labelling assays. 

Of the 181 numbered E. coli O antigens, only a small subset is associated with 

disease in humans (Nataro & Kaper, 1998). According to the modified Kauffman 

scheme, E. coli is serotyped (serotype is distinct variations within a species) on the 

basis of their O (somatic), H (flagella), and K (capsular) surface antigen profiles (Lior, 

1996). As many as 170 different O antigens, each defining a serogroup (group of 

serotypes/serovars with common antigens), are recognized currently. The presence 

of K-antigens was originally determined by means of bacterial agglutination tests. It 

was argued that an E. coli strain that was inagglutinable by O antiserum but became 

agglutinable when the culture was heated could be considered to have a K-antigen. 
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However, the discovery that several different molecular structures, including 

fimbriae, conferred the K phenotype led experts to suggest restructuring the K-

antigen designation to include only acidic polysaccharides (Lior, 1996). 

Proteinaceous fimbrial antigens have therefore been removed from the K series and 

have been given F designations (Orskov et al., 1982).  

 

A specific combination of O and H antigens defines the serotype of an isolate. E. coli 

of specific serogroups can be associated reproducibly with certain clinical 

syndromes, but it is not in general the serologic antigens themselves that bestow 

virulence. Rather, the serotypes and serogroups serve as readily identifiable 

chromosomal markers that correlate with specific virulent clones (Whittam et al., 

1993). Molecular (PCR)  and immunological (ELISA) methods have been described 

for the identification and serotyping of E. coli (McCarthy, 2003; Shaw & Bosley, 

2005; Warburton, 2005; Kim et al., 2006). 

 

In 2017, Harmse and co-workers documented that there was a presence of 

hazardous biological agents in poultry abattoirs such as bacteria (Harmse et al., 

2017). Furthermore, all the production areas showed high levels of microbial agents 

above the permissible human infectious dose. The receiving, shackling and killing 

areas had the highest counts for the following species: Pseudomonas, Listeria, 

Salmonella and Bacillus (Harmse et al., 2017). Coliforms, including E. coli, were also 

found to occur throughout several production areas (Bohaychuk et al., 2009; Craven 

et al., 2000; Lindbald et al., 2006; Lutgring et al., 1997; Nonnenmann et al., 2010). 

However, the listed organisms had been identified by these studies only to species 

level, and it was therefore deemed vital to evaluate the methods used to serotype 
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strains of E. coli in poultry abattoirs, especially in wastewater that can be a reservoir 

of such pathogens.      

 

2.5.1 Molecular identification 

Molecular serotyping assays (MSAs) are based on the characteristics provided by 

the nucleic acid sequences of the microbial genome (Sanderson & Nichols, 2003), 

whereas all other methodologies rely on the expression of the phenotypic 

characteristics of the bacteria (Fung, 2002). Molecular identification uses MSAs for 

the identification of the organisms and they have also been applied for the 

verification of E. coli species. Although there is no ‘gold standard’ for the 

standardization of MSAs, some of these methodologies have been applied as 

standard methods, for example the WarnexTM semi-quantitative real-time PCR 

system and PCR (Shaw & Bosley, 2005). MSAs are highly specific and their 

specificity is determined by the selection of the primer pairs and the probes (Scheu 

et al., 1998).  Primers have been developed to indicate the presence of bacteria 

(McCabe et al., 1999), but the level of specificity can be chosen for genus level, 

species level and serotype level. These methods can be applied to determine 

bacterial serotypes in addition to the immunological serotyping methods of 

microorganisms. Due to their specificity, some MSAs do not require the isolation and 

purification of the target microorganism prior to testing (Bettleheim & Beutin, 2003; 

Bell et al., 2005). However, it should be noted that high concentrations of other 

microbiota can have an influence on the sensitivity of the PCR (Ramesh et al., 

2002). MSAs play an important role in the discrimination of microbial strains, even at 

levels lower than species level, during food-borne disease outbreak investigations 

(Barrett et al., 1994). These methods have been applied in the diagnosis of patients 
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suffering from food-borne illnesses during outbreaks, and they have also been used 

to test food and environmental samples to trace the source that caused the disease 

(Swaminathan et al., 2001). 

 

2.5.1.1 Polymerase chain reaction (PCR) 

 

One of the most popular MSAs applied in the food industry is the polymerase chain 

reaction (PCR). This method forms the basis for most of the nucleic acid-based 

techniques and is also applied for rapid screening of microorganisms in samples 

from various origins (Merk et al., 2001). Amplified fragments can also be verified by 

various methods, such as the ELISA combined with PCR (PCR-ELISA) southern 

blotting, and DNA-hybridisation and sequencing can also be applied to confirm the 

amplified DNA product (Fratamico et al., 1995; Mo & Wang, 1997; Lehmacher et al., 

1998; Scheu et al., 1998; Meyer, 1999; Hébert et al., 2000; Gilligan et al., 2000; 

Fach et al., 2003; Mairena et al., 2004). Another method, which is a modification of 

PCR applied for the verification of bacteria, is real-time PCR. With this method, the 

amplification of DNA is monitored in real time by the detection of probes that bind to 

the amplified DNA and no further detection or visualization of the amplified DNA 

fragments is required (Jothikumar et al., 2003; Palomares et al., 2003).  This method 

can further be applied for the quantification of the amplified DNA (Roussel et al., 

2005). 
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Various successful applications of MSAs to verify the presence of food-borne 

organisms at species level, including E. coli, have been repeated in the past years 

(Agersborg et al., 1997; Gouws et al., 1998; Denis et al., 2001; Hudson et al., 2001; 

Agarwal et al., 2002; Ramesh et al., 2002; Bhaduri, 2003; Fratamico, 2003; Martín et 

al., 2003; Jofré et al., 2005; Isonhood et al., 2006; Myint et al., 2006). For example, 

different genes have been used to identify species in sexual organisms using 

population genetic theory and DNA sequences (Birky, 2013). In addition, Ramesh et 

al. (2002) applied multiplex PCR for the verification of Staphylococcus aureus and 

Yersinia enterocolitica from milk samples by the simultaneous amplification of the 

nuc (nuclease) and ail (virulence-associated attachment invasion locus) genes. 

Yersinia enterocolitica was also verified by Bhaduri (2003) by amplifying the virF 

(from the virulence plasmid) and ail genes. The amplification of various genes has 

also been targeted for E. coli serotype verification because testing for an organism 

up to species level has been found to be inadequate. It is therefore necessary to 

verify up to serotype level because there are different/multiple E. coli serotypes that 

are pathogenic.  

 

The amplification of stx (Shiga toxins) and eae (intimin) genes, however, only verifies 

the presence of STEC and the intimin gene respectively and not the specific 

serotype (Guan & Levin, 2002). For this purpose, genes from the O-antigen (as they 

are the somatic antigens) gene cluster, such as the wzy (O-antigen polymerase) 

gene, contain sequences that are specific to the serotypes (Feng et al., 2005). The 

O-antigen, which is part of the lipopolysaccharide (LPS), is a repeat unit 

polysaccharide that is an integral component of the Gram-negative bacterial outer 

membrane (Samuel & Reeves, 2003). The genes encoding the O-antigens are 

© Central University of Technology, Free State



Chapter 2 

28 | P a g e  
 

usually located in a cluster containing three groups of genes that are involved in the 

nucleotide sugar biosynthesis, sugar transfer (glycosyl transferases) and O-antigen 

processing.  

 

The advantages of PCR include high sensitivity in situ detection of target templates, 

it is not laborious, and it is highly specific. However, substances in faeces have been 

shown to interfere with the PCR, thus decreasing its sensitivity and making detection 

without prior isolation difficult (Panutdaporn et al., 2004). Although several methods 

can be used successfully to remove such inhibitors (e.g., phenolic compounds, 

glycogen, fats, cellulose, constituents of bacterial cells, non-target nucleic acids and 

heavy metals) (Barnard et al., 2011), the additional processing will escalate 

expenditure for detection. 
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Table 2.2: Selected MSAs used for species detection  

Method As described by 

PCR Lorenz, 2012 

Real Time PCR (RT-PCR) Fraga et al., 2008 

Warnex™ semi-quantitative RT-PCR system  Shaw & Bosley, 2005 

Multiplex PCR Zheng et al., 2014 

Reverse transcriptase PCR Bürgmann et al., 2003 

Colony Hybridization Hill et al., 2001 

DNA Hybridization − Hydrophobic-Grid Membrane 

Filter (HGMF) Kaboré et al., 2009 

PCR − ELISA for STEC detection Ge et al., 2002 

Protein Profile Docter et al., 2014 

Plasmid Profile Khadgi et al., 2013 

Pulse Field Gel Electrophoresis (PFGE) Herschleb et al., 2007 

Ribotyping Martinson et al., 2015 

PCR − Restriction Fragment Length Polymorphism Ota et al., 2007 

Amplified Fragment Length Polymorphism Fry et al., 2009 

 

2.5.2 Immunological identification 

 

Immunological serotyping assays (ISAs) depend on the interaction between 

antibodies and antigens from the intended organism (Baylis, 2003). One of the best 

known and most generally applied ISAs is the enzyme-linked immunosorbent assay 

(ELISA). This method has become available as a kit and some kits have also been 

accepted as standardized methods. The Meridian Premier EHEC kit (Meridian 
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Diagnostics) and the Assurance EHEC immunoassay (BioContol Systems Inc.) are 

examples of such kits (Warburton, 2005 & 2006). Although these methods are rapid 

to perform, multiple washing stages make them labour-intensive.  

 

Lateral flow devices (LFDs) are also ISAs that are applied for the identification of E. 

coli. These LFDs are membrane-based tests that rely on immunochromatography, 

which is a combination of chromatography and antigen-antibody reaction. These test 

devices have been applied for food testing, and commercial kits are available for 

specific strains such as E. coli O157:H7, while the DuopathVerotoxins (Merck) are 

available for the detection of Shiga toxins (Stx1 [VT1] and Stx2 [VT2]) (Baylis, 2003).  

 

Another ISA includes the agglutination test, where the interaction between the 

antigen and the subsequent antibody produces macroscopic clumping (Baylis, 

2003). Kits are commercially available for the detection of specific pathogens such 

as E. coli O157:H7, and also for the detection of toxins produced by microorganisms 

such as the Verocytotoxigenic E. coli-Reverse Passive Latex Agglutination (VTEC-

RPLA) kit available from Oxoid for the detection of E. coli toxins (Chart et al., 2001; 

Oxoid, 2006).  

 

Agglutination was first observed by Gruber and Durham when the serum antibody 

was found to react with the bacterial cells. The agglutination test was originally 

developed for the detection of antibody to Brucella (Wright & Smith, 1897). To date, 

a great deal of work has been done to improve diagnostics. Primarily, agglutination 

assay is the clumping of bacteria, erythrocytes, or cells due to the introduction of an 

antibody. This assay can be used either qualitatively or quantitatively. In the 
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qualitative method, the antibody is mixed with the particulate antigen and a positive 

test is indicated by the clumping of the particulate antigen. Agglutination can also be 

tested indirectly in a quantitative method where instruments such as a 

spectrophotometer and nephelometer are used to measure absorbed or scattered 

light from a very sensitive microsphere due to lattice/turbidity that is formed by 

antibody and antigen. 

 

2.6 The strains of interest 

The strains that were both pathogenic to poultry and humans were chosen based on 

information in the literature. The O1:K1:H7 strain (Mora et al., 2009), the 

O15:K52:H1 strain (Johnson et al., 2002), and the O18:K1:H7 strain (Johnson & 

Stell, 2000; Moulin-Schouleur et al., 2006) were selected. For molecular serotyping, 

the targeted genes were the flippase gene (wzx), the fumerase gene (fumC), the 

flagellin gene (fliC), and neuC.  

 

2.7 Advantages of mPCR 

Multiplex PCR has been firmly established as a general technique of choice because 

it has been shown that it can amplify multiple loci in the human dystrophin gene 

(Edwards & Gibbs, 1994). Internal controls and template quality and quantity are 

some of the advantages when using mPCR, and it is also efficient because the cost 

of reagents and preparation time are lesser in multiplex PCR than in systems where 

several tubes are used (Edwards & Gibbs, 1994). The most recent application of this 

technique was when it was used for the simultaneous detection of six sexually 

transmitted diseases (Vica et al., 2016).  The inclusion of restriction enzymes makes 
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it even more advantageous in the mPCR because it can cleave DNA at specific 

sequences (https://www.addgene.org/protocols/restriction-digest/).  

This study aimed to include the following as reference strains: O1:K1:H5, 

O15:K52:H1 and O18:K1:H7. Selective enrichment was also used for the reduction 

of competing organisms and this had an influence on the duration of the identification 

process.  This led to the evaluation of the specificity and sensitivity of PCR on 

reference strains and finally the application of a multiplex PCR/restriction enzyme 

digestion (mPCR/RED) approach for identifying the E. coli strains from both on-field 

isolates and environmental samples (wild-type). The molecular assay was followed 

by the evaluation of specificity and sensitivity of immunological assays on reference 

strains.  
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CHAPTER 3 

Application of a multiplex PCR/Restriction 

enzyme digestion (mPCR/RED) approach for 

identifying E. coli serotypes O1:K1:H7, 

O15:K52:H1 and O18:K1:H7 
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3.1 Introduction 

Microbial isolate identification is an important tool to use for the characterization of 

an organism using phenotypic and genotypic characteristics (Tang et al., 1998). 

Phenotypic characteristics mostly identify microorganisms up to species level. 

Understanding these characteristics allows the research world access to the body of 

knowledge that exists about a particular species (Mora et al., 2011). For example, 

knowledge is gained about economically important pathogens for humans or animals 

or about those that cause spoilage in food products or are the sources of a 

contaminant. This field of study is always growing because the ability to investigate 

the genetic relationship between isolates has been sustained in many 

communications (Whatmore et al., 2000; Jarraud et al., 2002).  

Because phenotypic characteristics are the products of gene expression, it is 

possible to identify microorganisms using the information from microbial genomes 

using molecular assays to identify the genotypic characteristics (Emerson et al., 

2008). Sequencing specific regions (genes) of the ribosomal RNA such as the 

sequenced genes by PCR can be compared to information that is presented in the 

database (Emerson et al., 2008). Using 16S rRNA as an example, many different 

species share the same 16S sequence. Therefore, the accuracy of PCR is highly 

dependent on the quality of the database against which the sequence is compared to 

(Wallon et al., 2010).  

Many techniques have been used previously for species typing. The Kauffmann-

White scheme for typing Salmonella species (about 2500 serovars) is a well-known 

technique in this regard (Wattiau et al., 2011). Others include phage typing, 

biotyping, bacteriocin typing, protein typing, and genotyping (Sridhar Rao, 2006). 
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With genotyping, amplification of genes by PCR has led to an explosion of published 

molecular assays over the past 25 years (Sobel et al., 2008). This technique has 

been widely recognised, not only in clinical microbiology, but in the pharmaceutical 

sector as well. A variety of techniques can be used for analysing extracted DNA and 

many techniques have been developed for typing. Some of the widely used methods 

include Pulsed-field gel electrophoresis (PFGE), Multilocus sequence typing (MLST), 

Multilocus variable number of tandem repeats analysis (MLVA), Ribotyping, DNA 

Microarrays, and multiplex PCR (mPCR) (Borucki et al., 2004). Multiplex PCR is an 

advantageous method due to its proficiency to provide more information with less 

sample. Moreover, it has high throughput, is cost effective and time saving, has 

increased accuracy of data analysis, and also performs well in a closed setting to 

decrease the possibility of contamination (Edwards & Gibbs, 1994). Numerous 

primer sets are described in the literature that are able to selectively amplify specific 

antigens or even strains of selected APEC E. coli. However, these primer sets have 

not been combined in multiplex PCR reactions to detect multiple strains 

simultaneously, which will allow molecular serotyping to be less tedious and time-

consuming. Apart from optimization, PCR product length similarities in a multiplex 

approach can also be a hurdle.  

Therefore, the aim of this chapter is to describe the use of a multiplex PCR approach 

followed by restriction enzyme digestions to differentiate among three laboratory 

APEC strains (O1:K1:H7, O15:K52:H1 and O18:K1:H7) that can be transferred from 

chickens to humans. 
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3.2 Materials and Methods 

3.2.1 Cultivation of E. coli strains  

3.2.1.1 Reference strains 

The E. coli (reference strains) used in this study (O1:K1:H7, O15:K52:H1 and 

O18:K1:H7) were smooth strains supplied by Professor Johnson from the Veterans 

Administration Medical Center (Minnepolis, USA) (Shi et al., 1996; Cagnacci et al., 

2008). The strains were transported as stab cultures in nutrient agar on dry ice. Cells 

were harvested from the stab cultures using an inoculation loop and transferred to 

sterile Luria-Bertani (LB) broth (1% tryptone, 0.5% yeast extract, 1% sodium 

chloride) and incubated at 37ºC with shaking (180 rpm) for 12 hours. Revived strains 

were transferred to LB agar plates and incubated at 37ºC for 12 hours. Each strain 

was also grown on Violet Red Bile Agar with 4-Methylumbelliferyl ß-D-glucuronide 

(MUG) (Biolab Diagnostics) and viewed under UV light to confirm its identity as E. 

coli. Revived strains were also aliquoted in 2 ml Eppendorf tubes and centrifuged for 

5 min at 5000 rpm. The supernatant was discarded and the cells were resuspended 

in 40% final glycerol concentration solutions and stored at -20ºC. 

 

3.2.1.2 Field isolates 

Wastewater/effluent was collected from a poultry abattoir, diluted, pipetted onto 

Chromocult® Coliform Agar (peptone 3 g.l-1, sodium chloride 5 g.l-1, sodium 

dihydrogen phosphate 2.2 g.l-1, disodium hydrogen phosphate 2.7 g.l-1, sodium 

pyruvate 1 g.l-1, tryptophan 1 g.l-1, sorbitol 1 g.l-1, chromogenic mixture 0.4 g.l-1, 

tergitol®7 0.15 g.l-1 and agar 10 g.l-1) (Merckmillipore) and spread on the agar plate 

using a sterilized hockey stick. The plates were incubated overnight at 37ºC. Seven 
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individual purple colonies on the Chromocult® Coliform Agar were randomly picked 

from different plates with the inoculation loop and resuspended in 1 ml of ultrapure 

water. The cell suspensions were later used as template in the optimized multiplex 

PCR protocol. 

  

3.2.1.3 Environmental sample 

Duplicate plates (3.2.1.2) were covered with 1 ml ultrapure water which was spread 

over the plate with a sterilized hockey stick to collect the entire colony growth on the 

surface of the agar plate. The cell suspensions were aspirated and 1 µl was used as 

whole cell template in optimized multiplex PCR assay. 

 

3.2.2 Procedure used to prepare inoculums 

Reference strains preserved in 40% glycerol at -20oC were transferred to sterile LB 

broth (100 ml broth in a 500 ml Schott bottle) using a sterile inoculated loop. The 

bottle was incubated at 37ºC for 16 hours with shaking (180 rpm). This culture 

served as pre-inoculum of which 100 µl was transferred to a new bottle containing 

100 ml sterile LB media. The freshly inoculated culture was incubated at 37ºC for 5 

hours with shaking (180 rpm). This culture served as the inoculum (Figure 3.1). 
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Figure 3.1: The preparation of inoculum from preserved cultures (in 40% glycerol at -20°C) and incubated for 5 

hours (37°C) with shaking by firstly preparing pre-inoculum incubated (37°C) with shaking for 16 hours. 

 

3.2.3 Bacterial cultivation on agar plates 

The inoculum of the reference strains (O1:K1:H7, O15:K52:H1 and O18:K1:H7) was 

prepared as described in Figure 3.1. From the inoculum, a sterile inoculation loop 

was used to streak for single colonies isolation on the LB agar plates and incubated 

overnight at 37°C. 

 

3.2.4 Genomic material (gDNA) isolation from LB agar plate 

 

To extract genomic DNA, the RTP® Bacteria DNA Mini Kit (© QIAGEN 2013) was 

used according to the protocol for the organisms (O1:K1:H7, O15:K52:H1 and 

O18:K1:H7) as described in the manufacturer’s instruction manual. Isolated single 

colonies (cells) after overnight incubation (at 37ºC) on LB agar plate were harvested 

with a sterilized inoculation loop (⅓ full) and suspended in sterile 1 500 µl distilled 

water and mixed thoroughly by vortexing. This was followed by centrifugation at 
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10 000 rpm for 3 minutes. Supernatant was aspirated without disturbing the pellet, 

and 400 µl of resuspension buffer (resuspension Buffer R) was added to the pellet 

and resuspended by an up and down pipetting motion. The resuspended sample 

was transferred to the extraction tube (extraction tube L) and vortexed briefly. The 

sample was placed in a 65ºC water bath for 10 minutes with periodic vortexing. The 

extraction tube was then transferred to 95ºC hotplate and incubated for further 10 

min with periodic vortexing. Binding Buffer B6 (400 µl) was added to the sample 

followed by brief vortexing. The sample was loaded onto a RTA Spin Filter Set and 

incubated at 25°C for 1 min, then centrifuged at 12 000 rpm for 1 min. The filtrate 

was discarded. Bound DNA was washed twice with wash buffers I (400 µl) and II 

(600 µl) respectively. After washing the bound DNA, 3 min centrifugation at 

maximum speed was included as a final step for ethanol removal. The RTA Spin 

Filter was then placed into a new 1.5 ml Eppendorf tube and eluded the bound DNA 

with 100 µl of elution buffer (Elution Buffer D). The samples were stored at 4ºC until 

used. To confirm that stored gDNA was intact and that sufficient gDNA had been 

extracted, 0.8% (w/v) agarose gel electrophoresis with ethidium bromide was used 

for analysis. Electrophoresis was performed at 85 V for 30 minutes and visualized 

under UV light. 

 

3.2.5 Pre-optimized multiplex PCR conditions and primer specificity  

The primer pairs listed in Table 3.1 targeting the wzx-1, neuC, fliC, wzx-2 and fumC 

genes (Integrated DNA Technologies, Inc. [IDT]) were amplified individually (single 

PCR reaction) as selective markers for the O1, K1, H7, O18 antigens and the 

O15:K52:H1 strain. The 16S rRNA gene was included as an internal reaction control 
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gene for the E. coli ThermoPol® buffer (100 mM Tris-HCl, 1.5 mM MgCl2, 500 mM

KCl, pH 8.3), 0.52 µM primers, 0.2 mM dNTP mixture, 1U of Taq DNA polymerase 

(New England BioLabs Inc.) and with 2% (v/v) of bovine serum albumin (BSA) used 

as a reagent to increase product yield in the reaction. The reaction conditions 

consisted of an initial denaturation cycle of 94°C for 10 min, followed by 25 cycles of 

denaturation at 94°C for 30 sec, annealing at 58°C for 30 sec, extension at 68°C for 

180 sec, followed by final extension of 68°C for 10 min. The products were analyzed 

by electrophoresis on 1% (w/v) agarose with ethidium bromide at 90 V for 45 min 

and visualized under UV light. 
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Primer 
Name 

Target 
Gene 

Tm Amplicon size (bp) Sequence (5'-3') 
Target 

Antigen/Strain 
Reference 

wl-14632F 
wzx-1 

54,9°C 
1098 

GTGAGCAAAAGTGAAATAAGGAACG 
O1 Momtaz et. al.,2013 

wl-14633R 54,8°C CGCTGATACGAATACCATCCTAC 

wl-14656 
wzx-2 

55,6°C 
551 

GTTCGGTGGTTGGATTACAGTTAG 
O18 Momtaz et al.,2013 

wl-14657 56,2°C CTACTATCATCCTCACTGACCACG 

fumCF 
fumC 

68,4°C 
138 

GCTGCTGGCGCTGCGCAAGCAA 
O15:K52:H1 Johnson et al., 2004 

fumCR 47,4°C CCGGAAATCTCCTGT 

H7f 
fliC 

58,4°C 
550 

ACGATGCAGGCAACTTGACG 
H7 Zhao et al.,2009 

H7r 59,1°C GGGTTGGTCGTTGCAGAACC 

neu1 
neuC 

57,2°C 
676 

AGGTGAAAAGCCTGGTAGTGTG 
K1 Moulin-Schouleur et al., 2006 

neu2 59,6°C GGTGGTACATCCCGGGATGTC 

27F 
16S rRNA 

55,2°C 
1365 

AGAGTTTGATCCTGGCTCAG 
E. coli Srinivasan et al., 2015 

1392R 57,4°C GGTTACCTTGTTACGACTT 

Table 3.1: Oligonucleotide primer sequences for the reference strains used in this study 
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3.2.6 Optimization of multiplex-PCR on reference strains’ gene products 

Dimethyl sulfoxide (DMSO) replaced the BSA in the multiplex-PCR (mPCR) 

reactions and was used as a reagent for increasing product yield (Hardjasa et al., 

2010). A gradient PCR (52°C-58°C) was performed on the C1000™ Thermal Cycler 

(BioRad, Singapore) to find the most suitable annealing temperature for each primer 

set. Touchdown mPCR (TdPCR) where reactions with two separate cycles were 

used was also adopted for the optimization. Working concentrations for reaction 

constituents were adjusted as follows: dNTPs from 0.2 mM to 0.3 mM, genomic DNA 

(template) from 1:50 dilution to 2:50 dilution, primers from 0.5 μM to 1 μM, Taq DNA 

polymerase from 1 U to 10 U, and MgSO4 from 1.5 mM to 2 mM in individual reaction 

mixtures of 50 μl volumes. The thermal cycling program consisted of initial 

denaturation for 3 min at 94°C followed by TdPCR. The first cycle was 30 s 

denaturation (at 94°C), 45 s annealing (63°C), and 210 s extension (at 68°C) for 10 

cycles. Before final extension, another 20 cycles of 30 s denaturation (at 94°C), 45 s 

annealing (at 58°C), and 210 s extension (at 68°C) followed with a final extension 

step at 68°C for 10 min. Amplicons were analyzed by electrophoresis on 1% (w/v) 

agarose with ethidium bromide at 90 V for 45 min and visualized under UV light. 

3.2.7 Purification of DNA fragments for sequencing 

The GFX™ PCR DNA and Gel Band Purification Kit (Amersham Bioscience, USA) 

protocol was followed for the purification of DNA from the gel. Bands were excised 

with the X-Tracta™ Agarose Gel Extraction Tool (LabGadget, Illinois) on a Dark 

Reader® (Clare Chemical Research), transferred to a pre-weighed 2 ml Eppendorf 

tube, and weighed. The weighed gel slices (79 mg for fumC, 90 mg fliC, 88 mg for 
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neuC, 92 mg for wzx-2 and 83 mg for wzx-2) were transferred to individual 1.5 ml 

Eppendorf tubes. For each 10 mg of gel slice, 10 µl of capture buffer was added to 

the gel slices in the Eppendorf tubes and vigorously mixed by vortexing. The mixture 

was incubated in a water bath at 60°C until the gel agarose had completely dissolved 

(5-15 minutes). After the gel slice had completely dissolved, the liquid was 

centrifuged through a GFX column. The filtrate was discarded and the column 

washed with wash buffer (500 µl). The DNA was eluded by applying 50 µl of elution 

buffer. Extracted DNA was stored at -20°C until used. 

3.2.8 Sequencing and analysis 

PCR products purified from the gel were used as templates for sequencing. 

Sequencing was performed on both the sense and antisense strands on the ABI 

Prism 3130 XL genetic analyser using the Big Dye® Terminator V3.1 Cycle 

Sequencing Kit (Applied Biosystems). PCR was performed on the C1000™ thermal 

cycler (BioRad) with the same primers that had been used for generating the 

amplicons (25 cycles: 30 s at 94°C, 30 s at 63°C, 180 s at 68°C). DNA was 

precipitated with 25 mM EDTA and 70% ethanol. The sequences obtained were 

compared to the NCBI GenBank Database (http://www.ncbi.nlm.nih.gov) using the 

BLAST algorithm for identification.  
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3.2.9 Selection of restriction enzymes and their application on the 

optimized mPCR product 

Clustal Omega, EMBL-EBI (http://www.ebi.ac.uk) was used to perform multiple 

sequence alignments of sequenced DNA and database sequences of interest. In-

silico restriction mapping was performed on sequenced products using NEBcutter 

V2.0 software (New England BioLabs) to allow and provide a predicted digestion 

pattern for all commercially available restriction enzymes. Restriction map analysis 

was carried out and the predicted restriction profiles were determined for each of the 

sequenced genes with eight enzymes: BfaI, BsrDI, BstAPI, BstBI, MnlI, NmeAIII, 

RsaI and SnaBI (New England Biolabs, USA).  

3.2.10 Application of the optimized multiplex-PCR on the gene products 

of the reference strains 

The optimization mPCR described in section 3.2.6 was followed for both genomic 

DNA material and whole cell as templates. The mPCR reaction was as follows: 16S 

rRNA gene (included as an internal reaction control gene for the E. coli), ThermoPol® 

buffer (100 mM Tris-HCl, 1.5 mM MgCl2, 500 mM KCl, pH 8.3), 0.52 µM primers, 0.2 

mM dNTP mixture, 10U of Taq DNA polymerase (New England BioLabs Inc.) and 

with 2% (v/v) DMSO. Both genomic DNA and whole cell products were analyzed by 

electrophoresis on 1% (w/v) agarose with ethidium bromide at 90 V for 45 min and 

visualized under UV light. 

© Central University of Technology, Free State



Chapter 3 

68 | P a g e

3.2.11 One-step digestion of optimized mPCR with BstAPI restriction 

enzyme 

Optimized mPCR products were digested using one-step digestion (addition of 

restriction enzyme at only one stage) with restriction enzyme following the New 

England BioLabs protocol (Mizani et al., 2017). Optimized mPCR product (10 µl), 5 

µl of 1X reaction (CutSmart®) buffer (50 mM Potassium Acetate, 20 mM Tris-

Acetate, 10 mM Magnesium Acetate, 100 µg.ml-1 BSA, pH 7.9 at 25°C), 0.5 µl of 

selected restriction enzyme (BstAPI) were mixed together, and distilled water was 

added to adjust to the volume to a final volume of 50 µl in a PCR reaction tube. The 

tube was incubated for 1 hour at 60°C. One-step digestion was analyzed by 

electrophoresis on 2% (w/v) agarose with ethidium bromide at 85 V for 40 min and 

observed under UV light. 

3.3 Results and discussion 

3.3.1 Bacterial isolation 

The bacterial growth of the three reference strains appeared as smooth, shiny, 

creamy white, circular colonies with smooth edges (filiform), convex elevation and a 

repelling odour when cultivated on an LB agar plate (Madigan et al., 2010). When 

cultivated on Violet Bile Red with MUG, all the reference strain colonies appeared 

red and emitted blue fluorescence when observed under UV light (Leclercq et al., 

2002). In contrast, non-E. coli colonies produced red non-fluorescing colonies under 

UV light (Villari et al., 1997; Dogan et al., 2002). 
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Figure 3.2: Reference stains O1:K1:H7 (A), O15:K52:H1 (B) O18:K1:H7 (C) cultivated on Violet Red Bile with 

MUG agar showing blue fluorescence light when observed under UV light. 

The modified Solty’s preservation method with 40% glycerol was used to preserve 

the cultures and all could be revived without incident. 

3.3.2 gDNA yields 

The gDNA yield of all three reference strains (O1:K1:H7; O15:K52:H1 and 

O18:K1:H7) was high and intact as was be observed on the 0.8% (w/v) agarose gel 

(Figure 3.3). 
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Figure 3.3: gDNA yield for O1 (O1:K1:H7), O15 (O15:K52:H1) and O18 (O18:K1:H7) separated in a 0.8% 

agarose gel (85 V for 30 minutes) showing sufficient gDNA without any degradation.  

3.3.3 Primer specificity analysis 

Successful amplification was confirmed for each reaction by the presence of a 1 

300 bp fragment that represented the 16S rRNA internal control. Figure 3.4 depicts 

the PCR products produced by each primer pair listed in Table 3.1 used in single 

reactions (one primer pair and DNA from one reference strain). The expected 138 bp 

band for fumC was only amplified when O15:K52:H1 was included as DNA template 

(Figure 3.4, fumC lane B). No amplification was detected for O1:K1:H7 or 

O18:K1:H7. The fliC gene (550 bp) representative of H7 was amplified from 

O1:K1:H7 and O18:K1:H7 (Figure 3.4, fliC lanes A & C) and no product was 

obtained from O15:K52:H1. The neuC gene (676 bp) represented K1 and yielded 

results similar to fliC. The wzx-1 and wzx-2 genes served as specific targets for O1 

and O18 respectively. Primer pair specificity was confirmed by the presence of a 

1098 bp only from O1:K1:H7 DNA (Figure 3.4, wzx-1 lane A) and similarly a 551 bp 

fragment was observed only when O18:K1:H7 DNA was included as template 
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(Figure 3.4, wzx-2 lane C). The fumC primer pair showed non-specific binding where 

1200 bp and 700 bp fragments were also detected. This was not entirely

unexpected as the fumC forward primer melting temperature of 68.4oC was much 

higher compared to that of the other primers. To overcome this problem, TdPCR was 

adopted by increasing the initial annealing temperature for 10 cycles, followed by 20 

cycles at a lower annealing temperature 58oC (Hecker & Roux, 1996).  

Figure 3.4: Single primer pair amplification of five genes; fumC (138 bp), fliC (550 bp), neuC (676 bp), wzx-1 

(1098 bp), and wzx-2 (551 bp) in from E. coli reference strains − Lanes A (O1:K1:H7), B (O15:K52:H1) and C 

(O18:K1:H7). The 16S rRNA internal reaction control amplicon is represented by the 1300 bp present. Lanes M 

and NTC represent the GeneRuler™ 1 kb Plus DNA ladder (Thermo Scientific) and the non-template control 

respectively. 

3.3.4 Pre-optimized multiplex-PCR on the gene products of reference 

strains 

Before modifying the PCR conditions, the primer pairs were tested using a multiplex 

approach. All five primer pairs for the targeted genes as well as the 16S rRNA 

internal control primer pair were pooled and used in single reactions. DNA from each 
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reference strain and all three combined strains were used as templates in separate 

reactions (Figure 3.5). Amplification profiles for O1:K1:H7, O15:K52:H1, O18:K1:H7 

were as expected (Figure 3.5 lanes 1, 2 & 3), with the same non-specific binding still 

visible for fumC in O15:K52:H1. Not all the targeted genes were amplified when 

reference strain DNA was pooled and included as a template (Fig 3.5, lane 4). The 

internal control (1 300 bp) and fumC (138 bp) failed to amplify, presumably due to 

reaction competition (Hamajima et al., 2002). Systematic optimization was therefore 

required to achieve optimum amplification of all targeted genes in complex reaction 

conditions. Furthermore, the intense band present at 550 bp in lane 4 demonstrated 

that the amplification products of fliC (550 bp) and wzx-2 (551 bp) could obviously 

not be resolved by agarose electrophoresis and thus required secondary processing 

for conclusive confirmation.  

Figure 3.5: Multiplex PCR targeting all genes: fumC (138 bp), fliC (550 bp), neuC (676 bp), wzx-1 (1098 bp), and 

wzx-2 (551 bp). Template DNA from O1:K1:H7 (lane 1), O15:K52:H1 (lane 2), O18:K1:H7 (lane 3) as well as all 

three pooled strains (lane 4) were used. Lanes M and NTC represent the GeneRuler™ 1 kb Plus DNA ladder 

(Thermo Scientific) and the non-template control respectively. 
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3.3.5 Multiplex-PCR optimization 

PCR conditions were adapted to the TdPCR described in section 3.2.6. Figure 3.6 

illustrates the resulting multiplex PCR amplification obtained with the different 

concentrations of template (gDNA), dNTPs, Taq polymerase, primers and MgSO4 

and showed that increasing the concentration of Taq was the only parameter that 

overcame competition and improved the sensitivity of detecting the five targeted 

genes in a multiplex approach (Figure 3.6, lane 3) (Roux, 2009; Apte & Daniel, 

2009). 

 

Figure 3.6: Representative gel of multiplex PCR demonstrating optimization attempts. Amplification of target 

genes fumC (138 bp), fliC (550 bp), neuC (676 bp), wzx-1 (1098 bp) and wzx-2 (551 bp) and internal control 16S 

rRNA gene (1300 bp) is shown. DNA from reference strains O1:K1:H7, O15:K52:H1 and O18:K1:H7 were 

pooled and used as template. Lane 1: increased concentrations of DNA template (4% v/v); lane 2: dNTPs (0.3 

mM); lane 3: Taq polymerase (10 U); lane 4: primer pairs (1 µM); lane 5: MgSO4 (2 mM); and in lane 6: all 

changes were incorporated in a single reaction. Lanes M and NTC represent the GeneRuler™ 1 kb Plus DNA 

ladder (Thermo Scientific) and the non-template control respectively. 
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Optimized mPCR protocol was applied using gDNA and whole cells as template. 

Being able to use a whole cell means that a direct PCR approach for the detection of 

specific E. coli serotypes will be more economical and practical if the protocol is to 

be applied on field isolates. All target genes were detected using either DNA sources 

as template (Figure 3.6). Clearly, the extracted gDNA resulted in better resolution, 

but when using the whole cell, the direct PCR approach was able to adequately 

detect all the targeted genes (Figure 3.6 B) (Ruiz-Villalba et al., 2017). 

Figure 3.7: Multiplex PCR using gDNA (A) and whole cell (B) as a template to detect fumC (138 bp), fliC (550 

bp), neuC (676 bp), wzx-1 (1098 bp) and wzx-2 (551 bp) genes in E. coli reference strains. Lanes 1, 2 and 3 

contained DNA from O1:K1:H7, O15:K52:H1 or O18:K1:H7 respectively. Lane 4 contained pooled DNA from all 

three strains. Lanes M and NTC represent the GeneRuler™ 1 kb Plus DNA ladder (Thermo Scientific) and the 

non-template control respectively.
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Figure 3.8: In-silico screening (using online NebCutter V2.0 software) of enzyme restriction sites in wzx-2, fliC, 16S rRNA, neuC, fumC and wzx-1. BstAPI restriction sites on 

wzx-1 and fliC and RsaI and MnlI sites on wzx-2 and fliC are indicated by black boxes. Maps are not drawn to scale.    
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3.3.7 One-step digestion of optimized mPCR product to differential 

fliC and wzx-2 

Online NebCutter V2.0 software was used with sequenced gene product data to 

search for restriction enzymes that were able to differentiate between the 550 bp 

(fliC) and 551 bp (wzx-2) (Figure 3.8). Eight restriction enzymes (BfaI, BsrDI, 

BstAPI, BstBI, MnlI, NmeAIII, RsaI and SnaBI) were identified for laboratory analysis. 

The wzx-2 gene product was only digested by RsaI and MnlI to yield the expected 

400 bp products (Figure 3.9). None of the other enzymes were able to digest this

gene product. RsaI, MnlI and BstAPI were able to digest fliC, yielding 270 & 280 

bp and 400 & 150 bp (Figure 3.9). Only BstAPI was able to digest the fliC gene 

but not the wzx-2 gene. However, wzx-1 also contained a BstAPI restriction site 

(Figure 3.8) and the multiplex PCR product mix digested the 1098 bp wzx-1 gene 

product into two fragments of 900 and 200 bp.   

Figure 3.9: Restriction enzyme digestion profiles of the wzx-2 and fliC genes. Lanes M and NTC represent the 

GeneRuler™ 1 kb Plus DNA ladder (Thermo Scientific) and the non-template control respectively. 
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Digestion of mPCR products with BstAPI resulted in the 1098 bp wzx-1 gene 

product that was cut into two fragments of 850 and 250 bp (the latter is visible as a 

faint band in Figure 3.10, lane 2). Furthermore, the intense 550 bp product 

representing both fliC and wzx-1 gene products was digested into two fragments of 

400 bp and 150 bp (the latter overlapping with the fliC band in Figure 3.10, lane 2) 

leaving the 551 bp wzx-1 fragment still intact. Other bands of 1300 bp (16S rRNA), 

676 bp (neuC) and 138 bp (fumC) remained unaffected. 

 

Figure 3.10: Restriction enzyme digestion profiles of multiplex PCR products amplified from whole cell, direct 

PCR. Lane 1: multiplex PCR products – undigested. Lane 2: one-step digestion with BstAPI restriction enzyme. 

Lane M: GeneRuler™ 1 kb plus DNA ladder (Thermo Scientific). 

 

3.3.9 Application of mPCR/RED protocol on field isolates and 

environmental samples 

Proof of concept for the mPCR/RED protocol for E. coli serotyping to detect 

serotypes O1:K1:H7, O15:K52:H1 and O18:K1:H7 was attempted on E. coli colonies 
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isolated from poultry abattoir effluent. Seven colonies were randomly picked from 

Chromocult® Coliform agar plates and subjected to whole cell, direct multiplex PCR. 

The resulting PCR products were digested with BstAPI. Figure 3.11 shows the 

mPCR results and digestion profiles for each isolate. Internal control 16S rRNA 

bands were amplified in all seven isolates. None of the isolates harboured O1 

antigen or could be classified as O15:K52:H1 serotype confirmed by the absence of 

1098 bp (wzx-1 gene) or 138 bp (fumC gene) PCR amplicons. Similarly, the K1 

antigen was not detected because no amplification of the neuC gene (676 bp) was 

observed. All the isolates contained either O18 antigen or H7 antigen or both, judged 

by the presence of a 550 bp amplicon (Figure 3.11, lanes 1, 3, 5, 7, 9, 11 and 13). 

Digestion of the mPCR products showed that two isolates could be serotyped as 

K1:H7 (lanes 12 and 14) retaining a 550 bp fragment after digestion accompanied 

by two fragments 400 and 150 bp in length. Three isolates contained only the H7 

antigen (lanes 2, 4 and 10) and two contained the O18 antigen (lanes 6 and 8).  
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Figure 3.11: Application of mPCR/RED protocol on seven randomly selected E. coli isolates from poultry abattoir 

effluent grown on Chromocult
®
 Coliform agar. Even numbered lanes represent undigested PCR products and

uneven numbers represent their one-step BstAPI digestion profiles. Lane M represents the GeneRuler™ 1 kb 

Plus DNA ladder (Thermo Scientific). 

A further attempt was made to apply the mPCR/RED protocol to environmental 

samples, as it was envisaged that serotyping would be possible from a mixture of 

colonies on an agar plate. A mixture of colonies from randomly selected plates was 

harvested in 1 ml ultrapure water and 1 µl of the cell suspension was used as 

template for mPCR. Figure 3.12 shows the absence of any profiles which was 

possibly due to the random selection of the plates. The other possible reasons could 

be the overload of DNA, as in this event underrepresented isolates will not be 

amplified because only 1 µl was used for PCR; so the distribution of serotypes could 

not play a role. Therefore more optimization could be required because it was no 

longer one colony. 

One-step digestion of the optimized mPCR product of the reference strains (lane 1) 

is observed in lane 2, showing that the wzx-1 fragment of 1100 bp (lane 1) 
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presented two fragments of 900 bp and 200 bp after digestion with BstAPI in lane 

2 (Figure 3.12) (Mizani et al., 2017). Also, the fliC fragment (550 bp in lane 1) was 

digested into two fragments of 400 bp and 150 bp as observed in lane 2 (Figure 

3.12). With optimized mPCR products of the two environmental samples (lanes 3 

and 4), the internal control gene fragment (1300 bp) and a fragment of 550 bp 

(fliC) were observed in both lanes (Figure 3.12), which confirmed the presence of 

O18 antigen in the environmental samples.  

Figure 3.12: mPCR/RED protocol applied to reference strains and two environmental samples. Lanes 1 and 2 

were already depicted in Figure 3.10 as mPCR products from a mixture of reference strains and one-step 

digestion with BstAPI respectively. Repeat of one-step digestion (lane 2) of optimized mPCR (lane 1) as depicted 

in Figure 3.8 was used as a positive control for one-step digestion of two environmental samples in lanes 3 and 

4. Lanes M and NTC represent the GeneRuler™ 1 kb Plus DNA ladder (Thermo Scientific) and the non-template

control respectively. 
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3.4  Conclusions 

Primers as suggested by the literature for the selective detection of E. coli serotype 

O15:K52:H1 (targeting the fumC gene) and genes for the specific detection of 

antigens O1 (wzx-1), O18 (wzx-2), K1 (neuC) and H7 (fliC) were successfully used in 

a multiplex PCR application. The initial mPCR showed non-specific binding for fumC 

amplification. To produce the expected results, the mPCR was optimized by 

performing a gradient PCR to assist with the development of a touchdown PCR 

protocol to eliminate non-specific binding. Also, BSA was replaced by DMSO to 

increase PCR product yield. Furthermore, an increase in working concentration of 

Taq polymerase from 1 U to 10 U proved to be a necessary adjustment for mPCR 

improvement. After successful optimization of mPCR (for both gDNA and whole cell), 

the two fragments could not be distinguished from one another due to similar PCR 

product sizes: a somatic antigen gene product (O18) of 551 bp (wzx-2 gene product) 

and a flagellin antigen gene product (H7) of 550 bp (fliC gene product). To 

distinguish between the two fragments, the BstAPI restriction enzyme was selected 

in silico and used to digest the fliC gene product into ~400 bp and ~150 bp 

fragments while the wzx-2 product was left undigested. Furthermore, the 

mPCR/RED protocol was tested on field isolates and it was demonstrated that 

O18:H7, O18 and H7 E. coli serotypes could be detected in poultry abattoir effluent.  
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4.1 Introduction 

Microorganisms possess unique growth stages that are important in serotyping 

(Maier, 2008). Growth stages are divided into the lag phase, exponential phase, 

stationary phase and death phase (Maier, 2008). In order for the growth phases to 

occur, the organism requires certain basic growth parameters for energy generation 

and cellular biosynthesis. Both physical (pH, temperature, osmotic pressure, 

hydrostatic pressure and moisture content) and chemical factors (quantity of carbon, 

nitrogen, sulphur, phosphorus and other elements provided by the medium) can 

affect the growth of an organism (Feher et al., 2012). For most microorganisms 

(bacteria), nutrient media contain most of the chemical factors required for bacterial 

growth. For E.coli, the Luria-Bertani (LB) medium is suitable for growth stages of this 

bacterium. 

E. coli strains have many different serotypes based on long-standing observation of

different antigenic determinants (O, K and H) expressed on the cell surfaces 

(Brenner et al., 2005; Ucieklak et al., 2017). Early in the 1940s, Kauffmann was able 

to subdivide E. coli into a number of O groups (Kauffmann, 1943). Using a boiled 

culture for O-antiserum production and as an antigen in agglutination tests, he was 

able to establish well-defined E. coli O groups (Kauffmann, 1944). Later, E. coli 

causing pyelonephritis O-antigens were serotyped using ELISA (Brauner et al., 

1989). A problem of cross-reaction between O-antigen antisera and several O-

antigens and partial cross-reaction with K-antigens (not only from E. coli but from 

other Enterobacteriaceae species) was encountered (Orskov et al., 1977; Brenner et 

al., 2005). K-antigens were earlier serotyped by passive hemagglutination, double 

diffusion in gel, and immunoelectrophoresis (Orskov et al., 1977). In contrast, 
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H-antigens were serotyped by the classical method of agglutination of flagellated 

whole bacterial cells with highly specific absorbed monovalent H-antigen antisera 

(Ratiner et al., 2003). 

Some serotypes of E. coli cause various diseases both in animals and humans 

(Marshall & Levy, 2011). Strains such as O157:H7, O104:H4 and O104:H21 have 

caused serious disease outbreaks in different parts of the world (Piérard et al., 

2012). Earlier, the O157:H7 strain was serotyped using monoclonal antibodies. 

Specificity and sensitivity of the antibodies proved to be important parameters to 

observe when differentiating between different antigenic determinants of the strain. 

Jin and co-workers (2012) used indirect-ELISA where the plates were coated with 

the capture antibody followed by the addition of the sample and a secondary 

antibody conjugated to an enzyme. This assay presented the specificity of the 

antibodies and reached 3 × 104 CFU.ml-1 sensitivity. The specificity of serotyping 

was also previously applied in the immune complexes for serotyping HIV based 

strains on the use of epitope-mimicking peptides (Shchelkanov et al., 2001). 

Currently, commercially available kits target only serotypes that are considered 

economically important, such as O157:H7. 

The objective of this chapter is to present an evaluation of the specificity and 

sensitivity of immunological serotyping assays using plate agglutination assays, 

plaque assays, and counter current immunoelectrophoresis on three laboratory 

APEC strains (O1:K1:H7, O15:K52:H1 and O18:K1:H7) that can be transferred from 

chickens to humans. 
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4.2 Materials and Methods 

4.2.1 Growth monitoring of reference strains 

The inoculum was prepared as described in Figure 3.1. After a 5-hour incubation 

period, 100 ul was transferred to a fresh set of bottles containing 100 ml LB medium 

in which the growth was monitored over time. Optical density (600nm) of the culture 

was measured every half hour for the first 5 hours and thereafter hourly for a further 

6 hours. Growth monitoring was performed as three technical repeats. 

 

Figure 4.1: Preparation of inoculum (A) from cultures preserved in 40% glycerol at -20°C and incubated for 5 

hours (37°C) with shaking (180rpm) by firstly preparing pre-inoculum incubated at 37°C with shaking (180rpm) for 

growth monitoring over a period of 11 hours (B).  

 

Numbers of colonies forming units per millilitre (CFU.ml-1) were determined by 

initially preparing the inoculum as illustrated in Figure 3.1. After 5 hours of 

incubation, fresh media bottles were inoculated with 100 µl of the inoculum until the 

optical density (600nm) reading of 0.1 was reached. Inoculated bottles (enumeration 

culture) were incubated for 5 hours in a shaker incubator at 180 rpm at 37ºC and 

were serially diluted up to 10-6 (Madigan et al., 2010). 
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4.2.2 Microtiter plate agglutination 

4.2.2.1 Preparation of O- and H-antigen suspensions 

Antigen suspensions (ASs) for use in antisera testing were prepared as described in 

Figure 3.1 and Figure 4.1. The AS was diluted to a final concentration of 

109 CFU.ml–1 by adding formaldehyde in saline (1% formol saline) according to 

McFarland standard (www.evaluations-standards.org.uk). Three bottles, each 

containing 100 ml of 109 CFU.ml-1 in 1% formol saline (1% FS), were prepared. To 

expose the somatic (O) antigens by removing the capsule on the reference strains, 

two methods were adopted for further preparation of the O-antigen suspension (O-

AS). The first bottle of O-AS was steamed for 1 hour in a 95ºC closed water bath (to 

facilitate steaming) followed by cooling at 4ºC for 20 minutes. The second bottle of 

O-AS was autoclaved and left to cool overnight. Both bottles of O-AS were mixed

gently by swirling and left for 1 hour to allow sedimentation. The contents of the O-

AS bottles were diluted with an equal volume of sterile saline and used in plate 

agglutination (www.evaluations-standards.org.uk). For further preparation of 

H-antigen suspension (H-AS), an equal volume of H-AS was mixed with 1% FS (1:1

v/v). The suspension was left to stand overnight at 25°C until use (Figure 4.2). 
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Figure 4.2: Preparation of O-antigen suspension (O-AS) by steaming in an autoclave and immersion in a water 

bath. H-antigen suspension (H-AS) from the enumeration culture was adjusted with the inoculum up to OD of 0.1 

at 600nm. After incubation, O-AS bottles were allowed to cool (at room temperature for autoclaved O-AS and at 

4°C for water bathed O-AS) and gently mixed and left for 1 hour before use. The contents of H-AS bottle was 

mixed with an equal quantity of 1% FS (1:1 v/v) (www.evaluations-standards.org.uk). 

 

4.2.2.2 Plate agglutination  

Six undiluted antisera solutions were purchased from Statens Serum Institut, 

Denmark, namely: O1 monospecific for O1 antigen; O18ab unabsorbed for O18; 

O18ac monospecific for O18; O15 monospecific for O15 antigen; H1 monospecific 

H1; and H7 monospecific for H7 (SSI Diagnostica, 2008 & 2012a). All the reference 

strains were pre-screened for plate agglutination by placing a droplet of O-AS on a 

glass slide followed by the addition of an undiluted droplet of O antisera (O1 

monospecific, O15 monospecific, O18ab unabsorbed, and O18ac monospecific). 

Stock of diluted 1:10 (v/v) antisera was prepared according to the Rockland-Inc.com 

protocol and tested independently against all three reference strains (O1:K1:H7; 
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O15:K52:H1 and O18:K1:H7). Two antisera were tested per 96 well plate. The plate 

setup was as follows: Rows A and E were used as controls and contained a 

phosphate buffered solution with a pH of 7.4 (PBS) only. ASs (Figure 4.2) of the 

different strains were added to rows B and F (O1:K1:H7), rows C and G 

(O15:K52:H1), and rows D and H (O18:K1:H7) (Figure 4.3). PBS was added to all 96 

wells of a round welled microtiter plate. An equal volume of each antisera was added 

to column 1 A – D and column 1 E – F respectively (Figure 4.3). After carefully 

mixing the contents of column 1, eleven times successive serial dilution of antisera 

across the plate (columns) were performed and 50 µl from the last well was 

discarded. ASs (O-AS or H-AS) (50 µl) prepared as described in Figure 4.2 were 

added to the respective rows (Figure 4.3), except for rows A and E, where the 

volume was replaced by an equal volume of PBS and used as controls. O-AS plates 

were incubated at 50ºC overnight in a moist chamber and H-AS plates were 

incubated at 50ºC for 2 hours (SSI Diagnostica, 2008 & 2012a; www.evaluations-

standards.org.uk).    
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Figure 4.3: Representative microtiter plate setup showing O1 and O18ab antisera testing. All 96 wells were filled 

with 50 µl of PBS. Diluted O1 antiserum (1:10 v/v) was added to column 1 rows A-D and O18ab antisera was 

added to column 1 rows E-H. After mixing, the contents of column 1 were serially diluted across the plate to 

column 12. The test strains (50 µl) were added as follows: O1:K1:H7 to rows B and F (red), O15:K52:H1 to rows 

C and G (yellow), and O18:K1:H7 to rows D and H (blue). Rows A and E (green) served as controls and 

contained 50 µl of PBS only (SSI Diagnostica, 2008 & 2012 (a) (www.evaluations-standards.org.uk).  

4.2.3 Plaque assay 

Undiluted bacteriophage (K1) suspension was purchased from Statens Serum 

Institut, Denmark. Sensitivity and specificity were tested for this suspension using 

both the cross-brush and broth clearing assays against revived reference strains as 

described previously in Figure 4.1. 
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4.2.3.1 Cross-brush assay 

A sterile yellow micropipette tip was used to aseptically transfer (10 µl) and streak 

one line of K1 bacteriophage suspension vertically across an LB agar plate. The 

plate was left for 10 min, or until the applied phage suspension had dried. Thereafter, 

all three reference strains were streaked horizontally across the line of 

bacteriophage and the agar plate was incubated overnight at 37ºC (SSI Diagnostica, 

2012b). 

 

4.2.3.2 Broth clearing plate and pour assay 

Sterile sets of test tubes were prepared containing 9 ml of LB broth and 9.9 ml of 

molten LB agar (with molten LB agar stored at 45ºC in a water bath until use). An 

inoculum (1 ml) prepared as previously mentioned in Figure 3.1 was transferred to 

10 test tubes containing 9 ml of LB broth resulting in a 1:10 (v/v) inoculum. Nine 

times successive serial dilution of 100 µl of K1 bacteriophage (phage) were 

performed from the first test tube across all ten test tubes containing 1:10 (v/v) 

concentration of inoculum in LB broth. From all ten test tubes 100 µl was transferred 

to respective ten molten LB agar test tubes (9.9 ml) and mixed thoroughly by 

pipetting. Before solidifying, the contents of the test tubes were poured evenly onto 

already prepared LB agar plates and allowed to solidify. The plates were incubated 

overnight at 37ºC. Each test tube containing 1:10 (v/v) inoculum concentration and 

successive serially diluted bacteriophage was also incubated overnight at 37ºC for 

the broth clearing assay (Figure 4.4). 
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 Figure 4.4: An inoculum (1ml) prepared as described in Figure 3.1 was mixed with LB broth (ten test tubes 

containing 9 ml) to 1:10 (v/v) concentration. K1 bacteriophage (100 µl) was pipetted into the first test tube and 

serially diluted across all ten test tubes.  The contents in the test tubes in the red block (for broth clearing assay 

[BCA]) were transferred (100 µl) to respective test tubes containing 9.9 ml of molten agar (stored at 45°C). For 

BCA, the test tubes were incubated at 37°C overnight. The contents of the molten agar test tubes were poured 

onto LB agar plates and thinly layered. After solidifying, the plates were incubated at 37°C overnight to observe 

the plaque formation. 
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4.2.4 Counter current immunoelectrophoresis 

A glass surface area (70 × 100 mm) was marked positive and negative at the bottom 

on the opposite ends and placed on an electrophoresis apparatus (submarine) with 

the positive end facing towards anode and the negative facing cathode. Molten 

agarose (2%) was evenly spread over a glass on a flat surface. Agarose was left for 

15 minutes to solidify without disturbance. Wells that were not more than 50 mm 

apart were made using a yellow micropipette tip (two parallel columns of three wells). 

Welled agarose was submerged to just below the surface in single strength of Tris-

acetate Ethylene-diamine-tetra-acetic acid (EDTA) buffer (1× TAE) (40 mM Tris, 20 

mM acetic acid and 1 mM EDTA). A bacterial layer (colony) from LB agar was 

suspended in 1 ml of PBS (pH 7.4) for antigen preparation. An antigen (30 µl) was 

pipetted into the cathode well and 30 µl of antiserum (1:10 v/v) was added into the 

second well (anode). Counter current immunoelectrophoresis was conducted at 

room temperature for 20 min using a constant current of 40 V. The glass agarose 

was transferred to a moist chamber and incubated for 6 hours.  

Figure 4.5: Representative counter current immunoelectrophoresis setup showing three different antigens (Ag) 

(three reference strains O1:K1:H7, O15:K52:H1 and O18:K1:H7) on the cathode terminal represented by O1, 

O15 and O18 respectively. These were tested against K52 antibody (Ab) on the anode terminal with O15 

included as a positive control strain (Ørskov & Ørskov, 1984). 
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4.3 Results and discussion

4.3.1 Sampling of reference strains using growth curve as reference for plate 

agglutination assay 

Cells in the exponential phase are in their healthiest state and this is of utmost 

importance because all the antigens will be well presented (Madigan et al., 2010). It 

was therefore important to understand the growth patterns of the O1:K1:H7, 

O15:K52:H1 and O18:K1:H7 strains. Optical density was measured as a guide to 

determine the appropriate time interval for harvesting cells while in the exponential 

phase and at a suitable concentration of 109 CFU.ml-1 for immunology testing. None 

of the three strains showed any difficulty adjusting to the new media as the growth 

curves did not show any lag phase (Figure 4.6). Concentrations of 109 CFU.ml-1 

were reached after 5 hours of growth; i.e., 8.23±5.55 × 109 CFU.ml-1, 1.12±0.05 × 

1010 CFU.ml-1, and 1.05±0.04 × 1010 CFU.ml-1 were determined for O1:K1:H7, 

O15:K52:H1 and O18:K1:H7 respectively (Madigan et al., 2010). For microtitre-plate 

agglutination, 1 × 109 CFU.ml-1 was required to perform the assay according to the 

McFarland Standard (www.evaluations-standards.org.uk). 
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Figure 4.6: Growth curves of E. coli strains cultivated in LB broth at 37°C. The growth was monitored over 10 

hours by measuring OD at 600nm. Average values of three independent replicates were plotted and error bars 

represent standard deviations. 

 

4.3.2 Microtitre-plate agglutination 

Positive microtiter-plate agglutination results were observed as cells forming a lattice 

network with the antibodies formed a turbid blanket at the base of the well. 

Conversely, negative results were observed as cells sinking to the bottom of the well 

formed a spot (dot) at the bottom. No turbidity was observed in the wells where O1, 

O18ab, O18ac, O15 and H1 antisera were tested against the respective antigens 

and only dots that had formed at the bottom of the wells were observed. In contrast, 

H7 antiserum was specific and formed a lattice network with the O1:K1:H7 and 

O18:K1:H7 strains (Figure 4.7) with the maximum sensitivity represented by the last 

turbid well. Maximum sensitivity of H7 monospecific H rabbit antiserum was at 1/8 

(Figure 4.7, lane B at row 3) for O1:K1:H7 and 1/16 for O18:K1:H7 (Figure 4.7, lane 

D at row 4). 
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These results could be explained by the false negative results concept which was 

reported by Kricka in 1999. Kricka stated that the cause of these observations was 

that the detection antibody was preventing reaction with the analyte. Also, it is 

possible that inhibitors were present in the antigen preparation media (Kricka, 1999; 

Kragstrup et al., 2013). It was therefore suggested that efforts be directed at 

improving existing methods for identifying and eliminating this type of analytical 

interference and such inhibitors.   

Figure 4.7: Representative microtitre plate results of serially diluted H7 monospecific H rabbit antiserum against 

all reference strains with lane A as the negative control.  

4.3.3 Plaque assay 

Cross-brush assay succeeded in showing specificity through growth inhibition of the 

O1:K1:H7 and O18:K1:H7 reference strains that were inhibited by K1 bacteriophage 

(phage) infection. The sensitivity of the strains is also clearly observable by the zone 

of inhibition which is represented by the size of the red line (the longer the red line 

the more sensitive the strain) in Figure 4.8. This was due to the cell lysis caused by 

the phage. Conversely, reference strain O15:K52:H1 managed to grow over the 

phage cross-brush which demonstrated the specificity of the phage because the 

targeted capsular antigen (K1) was not present on the strain (Ørskov & Ørskov, 
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1984). Specificity of the phage and sensitivity of the reference strains (O1:K1:H7 and 

O18:K1:H7) are further illustrated by the broth clearing assay in Figure  4.9. There 

was no broth clearing effect representing specificity because all the test tubes were 

turbid for the O15:K52:H1 reference strain (Figure 4.9C). However, Figure 4.9A and 

4.9B show sensitivity as minimum inhibition concentrations (MICs) of 10-5 (0.1 ml.104 

ml-1) for the O1:K1:H7 reference strain and 10-6 (0.1 ml.105 ml-1) for the O18:K1:H7 

reference strain can be observed respectively. 

Figure 4.8: Zone of inhibition caused by K1 bacteriophage from the vertical phage stripe. Here, O1, O15 and 

O18 represent reference strains O1K:1:H7, O15:K52:H1 and O18:K1:H7 respectively. The red lines represent the 

area of growth inhibition by the phage (Ørskov & Ørskov, 1984).
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Figure 4.9: LB broth with E. coli reference strains O1:K1:H7 (A) and O1:K1:H7 (B) showing the clearing activity 

of the broth (MIC) by K1 bacteriophage. With E. coli reference strain O15:K52:H1 (C), all the test tubes were 

turbid showing the inability of K1 bacteriophage to clear the broth (Madigan et al., 2010). Specificity of the phage 

was further demonstrated by the pour plate assay.  

Where clear spots or plaques (Figure 4.10B) were formed, they represented the 

growth inhibition of reference strains O1:K1:H7 and O18:K1:H7 due to ruptured cells 

caused by the phage. However, the plate of reference strain O15:K52:H1 was not 

inhibited (Figure 4.10A).   
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Figure 4.10: LB agar plate overlaid with E. coli reference strain O15:K52:H1 showing an overgrowth of the strain 

on plate A (the arrow points at the edge of the cell growth) and plate B, showing plate B covered with plaque 

caused by the phage for both reference strains O1:K1:H7 and O18:K1:H7. 

4.3.4 Counter current immunoelectrophoresis 

The presence of an immunoprecipitin line between the antigen and antisera indicates 

the presence of antibody for the antigen in the test sera. The presence of more than 

one immunoprecipitin indicates the heterogenicity of the antibody for the antigen in 

the test sera. In contrast, the absence of the immunoprecipitin line indicates the 

absence of any antibody for the antigen in the test sera. In all three the tested E. coli 

reference strains (O1:K1:H7, O15:K52:H1 and O18:K1:H7), no immunoprecipitin 

lines were observed between the antigen (reference strain) and the antibody (K52 

monovalent K rabbit antiserum), including the O15:K52:H1 reference strain that 

possessed the K52 capsular antigen. 
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A possible explanation for these results is that the tested strain could have 

possessed positively charged capsular antigens (El-Refaie & Dulake, 1975). Sharma 

et al. (1997) also reported that counter current immunoelectrophoresis had low 

sensitivity for serodiagnosis of typhoid fever.  

 

4.4 Conclusion 

Growth curve data of the reference strains contributed significantly towards 

determining the cell concentration (1 × 109 CFU.ml-1) that was used for 

immunological assays. H7 monospecific H rabbit antiserum effectively agglutinated 

with the target flagella antigens presented by two reference strains (O1:K1:H7 and 

O18:K1:H7), thereby showing its specificity with different levels of sensitivity (1/8 

dilution for O1:K1:H7 and 1/16 dilution for O18:K1:H7). The other antisera (O1, 

O18ab, O18ac, O15 and H1) presented negative results. The specificity and different 

sensitivity levels (10-4 dilution and 10-5 dilution for O1:K1:H7 and O18:K1:H7 

respectively) became evident with K1 bacteriophage on the O1:K1:H7 and 

O18:K1:H7 reference strains. Broth clearing proved to be the best method for 

determining the sensitivity of K1 bacteriophage against the two reference strains, 

whereas the zone of inhibition and plaque forming assays were the decisive methods 

for ascertaining the specificity of K1 bacteriophage on the targeted capsular antigens 

(K1). Counter current immunoelectrophoresis proved to be a tedious assay as it 

presented negative results even for the targeted capsular antigen (K52) present on 

the positive control (reference strain O15:K52:H1). Due to the predominantly 

negative results encountered with the immunological assays on the reference 

strains, no attempt was made to use these techniques on field isolates or 

environmental samples.    

© Central University of Technology, Free State



Chapter 4 

105 | P a g e

4.5 References 

Brauner, A., Kaijser, B., Svenson, S. B. & Wretlind, B. (1989). Antibody 

responses to eight Escherichia coli serotypes in patients’ bacteremia. Serodiagnosis 

and Immunotherapy in Infectious Diseases, 3, 65-73. 

Brenner, D. J., Krieg, N. R. & Staley, J. T. (2005). The Proteobacteria Part A: 

Introductory essay. In: G. M. Garrity (Ed.). Bergey’s manual of systematic 

Bacteriology (2nd ed.). New York: Springer-Verlag, [i]-xxvi. 2, 1-304. 

El-Refaie, M. and Dulake, C. (1975). Counter-current immunoelectrophoresis for the 

diagnosis of pneumococcal chest infection. J. clin. Path., 28, 801-806. 

Fehér, T., Bogos, B., Méhi, O., Fekete, G., Csörgö, B., Kovács, K., Pósfai, G., 

Papp, B., Hurst, L. D. & Pál, C. (2012). Competition between transposable 

elements and mutator genes in bacteria. Mol. Biol. Evo., 29(10), 3153-3159. 

Doi:10.1093/molbev/mss122. 

Jin, L., Pahuja, K. B., Wickliffe, K. E., Gorur, A., Baumgärtel, C., Schekman, R. 

& Rape, M. (2012). Ubiquitin-dependent regulation of COPII coat size and function. 

Nature, 482, 495–500. Doi:10.1038/nature10822. 

Kaufmann, F. (1943). About new thermolabile body antigen of coli bacteria. Acta 

Pathologica et Microbiologica Scandinavica, 20, 21–44. 

© Central University of Technology, Free State



Chapter 4 

106 | P a g e

Kaufmann, F. (1944). Serology of the coli group. Acta Pathologica et Microbiologica 

Scandinavica, 21, 20–45. 

Kragstrup, T. W., Vorup-Jensen, T., Deleuran, B., & Hvid, M. (2013). A simple set 

of validation steps identifies and removes false results in a sandwich enzyme-linked 

immunosorbent assay caused by anti-animal IgG antibodies in plasma from arthritis 

patients. SpringerPlus, 2(1), 263. doi:10.1186/2193-1801-2-263 

Kricka, L. J. (1999). Human anti-animal antibody interferences in immunological 

assays. Clin Chem., 45, 942–956. 

Maier, R. M. (2008). Bacterial growth. In: Initial, Surname of Authors (Eds.). 

Environmental Microbiology, Chapter 3. Location: Academic Press. 

Marshall, B. M. & Levy, S. B. (2011).  Food animals and antimicrobials: Impacts on 

human health. Clin. Microbiol. Rev., 24(4), 718-733. Doi:10.1128/CMR.00002-11. 

Ørskov, I., Ørskov, F., Jann, B. & Jann, K. (1977). Serology, chemistry and 

genetics of O and K antigens of Escherichia coli. Bacteriological Reviews, 41, 667-

710. 

Ørskov, I., Sharma, V.  & Ørskov, F. (1984). Influence of growth on the 

development of Escherichia coli polysaccharide K antigens. J.Gen. Microbiol., 130, 

2681-2684. 

© Central University of Technology, Free State



Chapter 4 

107 | P a g e

Piérard, D., De Greve, H., Haesebrouck, F. & Mainil, J. (2012).  O157:H7 and 

O104:H4 vero/Shiga toxin-producing Escherichia coli outbreaks: Respective role of 

cattle and humans. Vet. Res., 43(1), 13. Doi:10.1186/1297-9716-43-13. 

Ratiner, Y. A., Salmenlinna, S., Eklund, M., Keskimäki, M. & Siitonen, A. (2003). 

Serology and genetics of the flagellar antigen of Escherichia coli O157:H7a,7c. I. 

Clin. Microbiol., 41(3), 1033-1040. Doi:10.1128/JCM.41.3.1033-1040.2003. 

Sharma, M., Datta, U., Roy, P., Vermant, S. & Sehgal, S. (1997). Low sensitivity of 

counter-current immunoelectrophoresis for serodiagnosis of typhoid fever. J. Med. 

Microbiol., 46, 1039-1042. 

Shchelkanov, M., Iudin, A. N., Burunova, V. V., Denisov, M. V., Starikov, N. S. & 

Papuashvili, M. N. (2001). Review article: Analysis of specific complexes in HIV 

serotyping based on use of epitope-mimicking peptides (a literature review). Klin. 

Lab. Diagn., 37(1), 16-20. 

Statens Serum Institut (SSI) Diagnostica. (2008). E. coli antisera (2nd ed.). 61289. 

Copenhagen, Denmark.  

Statens Serum Institut (SSI) Diagnostica. (2012a). E. coli phage suspensions. (2nd 

ed.). 76815. Copenhagen, Denmark. 

Statens Serum Institut (SSI) Diagnostica. (2012b). E. coli diagnostic K antisera. 

88819. Copenhagen, Denmark. 

© Central University of Technology, Free State



Chapter 4 

108 | P a g e  
 

 

Ucieklak, K., Koj, S., Pawelczyk, D. & Niedziela, T. (2017). Structural masquerade 

of Plesiomonas shigelloides strain CNCTC 78/89 O-antigen: High resolution magic 

angle spinning NMR reveals the modified D-galactan I of Klebsiella pneumoniae. Int. 

J. Mol. Sci., 18(2), 2572. Doi:10.3390/ijms18122572 

 

United Kingdom Health Protection Agency. (2010).  Agglutination test.  National 

Standard Method BSOP TP 3 Issue 2. http://www.hpa-

standardmethods.org.uk/pdf_sops.asp.www.evaluations-standards.org.uk.

© Central University of Technology, Free State

http://www.hpa-standardmethods.org.uk/pdf_sops.asp
http://www.hpa-standardmethods.org.uk/pdf_sops.asp
http://www.evaluations-standards.org.uk/


 

 

 

 

 

 

 

 

 

CHAPTER 5 

Concluding remarks 

 

 

  

© Central University of Technology, Free State



Chapter 5 

110 | P a g e

5.1 Concluding remarks 

The poultry industry in South Africa is the largest individual agricultural sector in the 

country and contributes 15% to the GDP. An average high-throughput poultry 

abattoir employs about 29 workers. As with any food sector that works with raw 

animal products, microbial contamination, especially through faecal contamination, is 

prevalent. Because abattoir workers are working in close contact with open 

carcasses, the possibility of the transfer of hazardous biological agents (HBAs) from 

carcasses to humans is very high. The presence of these HBAs in abattoirs is 

presently enumerated and identified only at species level. This may be deemed a 

high risk oversight and thus the current study utilised molecular and immunological 

techniques to identify one such microorganism (E. coli) at serotype level. 

By using molecular techniques, both the genomic material and whole cell were used 

as the template for the mPCR. For specificity, the wzx-1, neuC, fliC, wzx-2 and fumC 

genes were amplified individually as selective markers for the O1, K1, H7, O18 

antigens and the O15:K52:H1 strain. After optimization of mPCR, the mPCR with 

increased Taq DNA polymerase was able to detect different E. coli strains with 

different hosts’ pathogenicities (i.e., different O, K and H antigens). Information about 

which primers to use in the reactions was found in the literature, but they had not 

previously been used in a mPCR.  

It was found that the assay did not produce unique bands for all targeted genes, thus 

BstAPI was used to ascertain the presence of the wzx O18 product in the mPCR. In 

silico screening, online NebCutter V2.0 software was used to choose the correct 

restriction enzyme. For sensitivity, the application of the optimized mPCR on both 

field isolates and the environmental sample was adequately sensitive to identify the 
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targeted antigens. The findings suggest that the use of whole cell as a template will 

make application to field isolates much more efficient. 

Using immunological techniques, only the flagellin antigen (H7) was able to show 

specificity by the formation of lattice with H7 monospecific H rabbit antiserum 

targeted on the O1:K1:H7 and O18:K1:H7 strains. Sensitivity of varying degrees (8-

fold dilution factor for O1:K1:H7 and 16-fold dilution factor for O18:K1:H7) with the 

microtitre-plate agglutination (Figure 3.7) process was also achieved. Plate 

agglutination assay targeting other antigens (O1, O18, O15 and H1) was 

inconclusive. Furthermore, the specificity and sensitivity of K1 bacteriophage was 

observed by the zone of inhibition and pour plate and broth clearing assays. In 

counter current immunoelectrophoresis assay (CCIE), no precipitin lines were 

observed on both the targeted (O15:K52:H1) and the non-targeted (O1:K1:H7 and 

O18:K1:H7) strains when separated on agarose gel electrophoresis against K52 

antiserum. These results indicated that the CCIE did not yield the expected results. 

The reasons for the inconclusive results from plate agglutination and CCIE assays 

may have been due to factors acting on the equilibrium constant such as 

temperature, pH, ionic strength, duration of incubation, and concentrations of antigen 

and antibody. For this reason, not even one serotype could be identified and it was 

thus not possible to apply the assay to field isolate identification.  

For future research projects, it is recommended that an inter-laboratory validation of 

the optimization protocol to test more field isolates might be a suitable entity to focus 

on. It is also important to develop less costly methods such as second and third 

generation ELISAs which may be more suitable for routine testing. 
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