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Abstract 

The Northern Cape Operating Unit in South Africa is experiencing load growth, 

due to residential developments, high electrification growth, agriculture and mining. The 

rural areas were previously not given sufficient attention, a result of slow developmental 

growth. The current 66 kV network experiences low voltages, under n-1 contingencies. 

The existing 66 kV network has no spare capacity to supply new customers. For 

additional capacity, Eskom should upgrade its distribution network from 66 kV to 132 

kV. Eskom further upgrades their substations, due to equipment reaching their functional 

lifespans. The cost to maintain equipment regularly is high. Old apparatus interrupts 

security and continuity of supply to customers regularly.  

The challenge with substation upgrades, on existing substations, is the cost 

involved to upgrade the 66 kV substations to 132 kV. Before substation, upgrades may 

take place. New and existing consumers who require additional capacity are not 

connected, due to capacity constraints in existing substations. Older protection schemes 

do not possess any data storage facilities, to be utilised during fault investigations. Phase 

one protection schemes solely retain the flag of the previous incident, which is not 

adequate when investigating faults for extended periods. During substation upgrades, 

continuity of supply to existing customers is necessary to improve customer satisfaction 

and network performance. 

Electricity is generated and distributed instantaneously, by electricity utilities. 

There is occasionally an enormous amount of wasted capacity in electricity utilities. Illegal 

connections contribute to overloads and trips, as the network is carrying more users than 

initially designed. It is particularly critical to assess the economic practicability of BESS 
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for diverse applications. The costs of energy storage systems, depend on the type of 

technology, the planned operation, and the hours of storage required.  

This dissertation further proposed a Battery Energy Storage System (BESS) 

design, which leads to a costly network upgrade deferral and increased self-consumption. 

BESS reduces environmental pollution (Environmentally friendly), reduces consumer 

electricity prices (Creating value for customers), provides reliable back up supply, 

improve network performance and create sufficient capacity on the medium voltage 

network.  

This dissertation compared different substation designs and the most cost-

effective design, when upgrading modern substations, were preferred. The modern 

substation design reduced the complexity of substation upgrades, reduced substation 

upgrade expenses and improved network performance. Furthermore, the preferred 

modern substation upgrade designs had the lowest influence on network performance, 

during construction. The high voltage and medium voltage systems were reliable for n-1 

contingencies. Finally, the same Control Plant schemes and cabling were re-used during 

substation upgrades. 

Design, apparatus and construction expenses of  a standard 66/22 kV, 40 MVA 

substation, were approximately R 39,946,427. The decommissioning cost of an existing 

66/22 kV substation was approximately R18,540,602, per substation. The 

decommissioning cost escalated the cost to upgrade an existing 66/22 kV substation to R 

58,487,029. The minimum energy storage system cost was approximately R4,931,500 for 

a 1 MW power conversion system and R4,931,500, for a 1 MWh battery system. The 

modern substation designs, including upgrade costs, reduced capital expenditure and 

operational expenditure to R 43,169,816, during substation upgrades. Substation upgrade 
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cost comparison was to calculate the most cost-effective design for substation upgrades, 

when upgrading high voltage networks or deferring substation upgrades.  

  

Keywords - Battery, Substation, Upgrade, Cost comparison 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The Northern Cape Operating Unit is experiencing load growth, due to residential 

developments, high electrification growth, agriculture and mining. For additional 

capacity, power utilities should upgrade its network from 66 kV to 132 kV [1]. The 

complexity of substation upgrades is due to safety working clearances between substation 

equipment. Eskom has built new power stations, expanding its generation capacity. 

Furthermore, power utilities upgrade their substations, due to material reaching its useful 

lifespan. The cost in maintaining old substation equipment is regularly high. Old 

substation apparatus interrupts security and continuity of supply to customers [2]. 

On the medium voltage feeder bays, the focus area is, to reduce the number of 

customers impacted. The power systems performance was improved, by installing a 

sufficient number of re-closers, splitting feeders, cutting the line length, and providing 

back-feeding capabilities. Electricity utilities installed voltage regulators and capacitor 

cans, increasing the voltage on the medium voltage network [3]. The existing reticulation 

networks cannot supply the forecasted load, without the requirement of substation 

upgrades.  

Due to the diameter and capacity of Wolf conductor on the 66 kV network, under 

n-1 contingency, the voltage drops below allowable limits. Power utilities upgraded their 

conductors to a Tern conductor, that is larger in diameter and carries increased current, 

to supply customers under n-1 conditions. N-1 contingency further refers to steady 

supply. When municipalities apply for 10 MVA steady supply, power utilities will install 
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two 10 MVA transformers. If one of the transformers is faulty, the additional 10 MVA 

transformer carries the load.  

Eskom Distribution carries out Network Development Plans, which entails: 

analysing their networks and carrying out load forecasts over ten years. During the 

analysis and comparison of the proposed alternatives, technical requirements, 

environmental issues, design issues, constructability issues and operational issues, were 

considered. 

There exist no methods in place to predict lightning, or prevent lightning from 

striking in certain servitudes. For lightning protection, power utilities used lightning 

masts, surge arresters, shield wires and earth mats. Earth mats are utilised, preventing 

damage to equipment and for safety to personnel during faulty conditions. 

The proposed method of substation designs, for future substation upgrades, 

reduced the amount of steelwork used, foundations demolished, conductors installed, 

cabling used, labour and cost. The proposed modern substation design, using Micro-

station V8i, ensured security and continuity of supply to customers. Installing by-pass 

isolators on the medium voltage feeder bays, provides security and continuity of supply 

to customers and ensures a steady supply to customers, improving the performance of 

the network. 

 

1.2 Problem Statement 

Methods used to carry out substation upgrades are costly, time-consuming and 

considerably multifaceted. Methods involve decommissioning of equipment, steelwork, 

Control Technology cabling, conductors and equipment foundations. Existing methods 

require interruption of the continuity of supply to customers, reducing the performance 
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of the network. New substation designs incorporate an approach of overcoming these 

problems. 

 

1.3 Objectives of the study 

The aim of this research, is an investigation into the design of a new 66/22 kV 

substation, using Micro-station V8i, that will minimise cost and save time during future 

upgrades. 

The objectives of this study were as follows: 

• To review substation upgrades, existing substation designs, modern substation 

designs, Battery Energy Storage Systems, Solar Energy technologies with BESS 

integration designs, Wind Energy technologies with BESS integration designs, 

mobile substations, Power Plant technologies and Control Plant technologies. 

• To design a new substation with BESS integration designs, using Micro-station 

V8i. 

• To design a new substation for future substation upgrades, using Micro-station 

V8i. 

• To carry out an economic analysis, using Power Delivery Engineering modules, 

Bill of quantities, Power Office software and the Black Pearl (ACNAC) software, 

to find the most cost-effective design for substation upgrades. 

 

1.4 Research methodology 

The following methodologies were used for this research: 
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1.4.1 Literature review:  

 The literature related to voltage upgrades, existing substation designs, modern 

substation designs, Battery Energy Storage Systems, Solar Energy technologies with 

BESS integration designs, Wind Energy technologies with BESS integration designs, 

Power Plant technologies and Control Plant technologies, were reviewed.  

1.4.2 Micro-station V8i was utilised:  

• To design a switching station with BESS and Wind Energy integration designs. 

• To design a new substation with BESS integration designs. 

• To design the modern 66/22 kV substation, for future upgrades. 

A. Control plant designs that were designed using Micro-station V8i: 
• High voltage impedance schemes (4FZD3920) 

• Transformer schemes (4TM7101) 

• Rural feeder protection schemes (4RF1101) 

• Metering designs 

• Direct current designs 

B. Power Plant designs that were designed using Micro-station V8i: 
• General arrangement designs 

• Station electric diagrams 

• Sections designs 

1.4.3 Proposed substation design costing 

• Power Delivery Engineering modules and cells were used for equipment selection.  

• For an economic analysis of equipment, Power Office software was used.  
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• The total material cost and bill of quantities were used to populate the detail 

design cost, utilising the Black Pearl software, finding the most cost-effective 

design for substation upgrades.  

 

1.5 Hypothesis 

• The new substation design minimises cost and saves time, during future upgrades. 

• The usage of Battery Energy Storage Systems increase self-consumption, 

improves solar technologies, enhance wind generation technologies and defer 

substation upgrades. 

 

1.6 Limitation of the Study 

The study was conducted, with the following limitations: 

• The research focussed on substation designs and did not include high voltage and 

medium voltage line designs. 

• The study focussed on alternative substation upgrade designs, using substation 

design software, Miro-station V8i. 

 

1.7 Contribution to Knowledge 

• The proposed modern substation designs, using Micro-station V8i, reduces capital 

expenditure and operational expenditure.  

• The proposed modern substation designs utilised less control technology cabling, 

during substation upgrades and reduced the complexity of substation upgrades.  
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1.8 Research Output 

     The following papers were presented and published: 

• Pienaar, S.B., Kusakana, K. and Manditereza P.T., “Proposed substation general 

arrangement on networks thateeds to be upgraded.”, 26th Southern African 

Universities Power Engineering Conference pp. 468-473, 24-26 January 2018. 

• Pienaar, S.B., Kusakana, K. and Manditereza, P.T., “Usage of Battery Energy 

Storage Systems to Defer Substation Upgrades.” In 2018 Open Innovations Conference 

(OI), pp. 151-156, IEEE, 2018. 

1.8.1 Scientific outcomes 

• The new substation upgrade design improves the performance of the 

network. 

• The high voltage and medium voltage bays are reliable during faulty 

conditions.  

• New substation upgrades ensure available sufficient capacity on the medium 

voltage network for future growth. 

• Micro-station V8i was utilised, designing the new substation with BESS 

integration designs, for energy storage. 

• Solar Energy designs, with BESS and Wind Farm designs with BESS, were 

used to improve solar technologies and enhance wind generation technologies, 

in South African switching stations. 
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1.8.2 Social impact 

• The modern substation design, for future upgrades, ensures economic growth 

in South Africa. 

• Battery Energy Storage Systems stores energy and ensures reduced 

environmental pollution. 

 

1.9 Outline of the Dissertation 

Chapter 1 offers an introduction to the dissertation, which entails the problem 

statement, research objectives, methodology, hypothesis, limitations of the study, social 

impact, as well as scientific outcomes. 

Chapter 2 reviews the literature on substation upgrades, existing substation 

designs, modern substation designs, Battery Energy Storage Systems, Solar Energy 

technologies with BESS integration designs, Wind Energy technologies with BESS 

integration designs, capacitor banks  and mobile substations.  

Chapter 3 presents the design methodology, using Micro-station V8i on existing 

substation upgrades, BESS integration designs in new substations and the proposed 

modern substation designs, for future upgrades.  

Chapter 4 provides the economic analysis, using Power Delivery Engineering 

modules, Bill of quantities, Power Office software and the Black Pearl (ACNAC) 

software, for detailed design costs. 

Chapter 5 presents the substation upgrade recommendations and concludes the 

dissertation. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The South African energy utilities upgrade their substations, due to substation 

equipment reaching their useful lifespan. The cost to maintain outdated apparatus, that 

interrupts security and continuity of supply to customers, is high. Before substation, 

upgrades may take place. New and existing consumers who require additional electricity 

are rejected, due to capacity constraints in existing substations [4].  

Electricity is generated and distributed instantaneously by power utilities. In power 

utilities, producing and distributing power simultaneously is occasionally an enormous 

amount of wasted capacity. Illegal connections may contribute to overloads and trips, as 

the network is carrying more users than designed [56].  

In 1970, conversion methods for the storage of alternating current were 

extraordinarily costly and unreliable. Hence, Battery Energy Storage Systems were not 

preferred. The fact that generated electricity is transmitted in AC, has led to the belief 

that energy cannot be stored in batteries [5]. 

Battery Energy Storage Systems may lead to costly network upgrade deferral and 

reduced demand charges. The installation of large scale Battery Energy Storage Systems 

(BESS), may support the long-term carbon mitigation strategy of South Africa, 

transitioning to a low carbon economy. The depletion of coal and concerns over 

environmental pollution, ensures that renewable energy continues to grow [6].  

The objective of Chapter 2, is to carry out a literature review on existing 

substation upgrades, modern substation upgrade designs and alternate substations 

upgrade designs. This Chapter further reviews capacitor banks, the use of mobile 
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substations during substation upgrades and renewable energy sources with BESS, to 

improve renewable energy and defer substation upgrades.  

 

2.2 Existing substation upgrade design methods 

General arrangements are for construction of new substations and refer to the 

physical layout of a substation. When designing the General Arrangement (GA) of a 

substation, it is necessary to develop the cable connection layout, considering the location 

of the control room. The consideration of the location of the control room is to save 

costs on control plant cables, while meeting the operating requirements [7].  

Micro-station V8i, Power Delivery Engineering modules and Power Office 

software, was utilised to design the new substation for future upgrades. The proposed 

modern substation design improves safety in substations, by adhering to Power Delivery 

Engineering clearances between high voltage feeder bays, transformer bays and MV 

feeder bays, for various voltage and insulation levels. A cost-effective design was 

achieved, by using 132 kV clearances between 66 kV feeder bays and 66 kV transformer 

bays. On the 66 kV bus-bars, 66 kV voltage transformers and the 66 kV bus-section 

isolators 132 kV clearances prevent decommissioning of steelwork and demolishing of 

existing foundations. The 66 kV foundations and 66 kV steelwork were cast and erected, 

according to 132 kV steelwork and 132 kV foundation designs, according to the Power 

Delivery Engineering modules and cells. Reducing labour and cost during substation 

upgrades was achieved, by solely decommissioning the 66 kV apparatus and installing 132 

kV apparatus. 
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The Single-line diagram, in Figure 2.1, is an existing 66/11 kV substation. The 

substation consists of two 66 kV feeder bays, two 66/11 kV transformer bays and five 11 

kV feeder bays. The 66/11 kV substation supplies the existing five customers from the 

two 11 kV busbars. 

 

 

Figure 2.1: Existing 66/11 kV Single-line Diagram 

The method in Figure 2.2 was applied during the Kuruman network upgrade, on 

the Eldoret substation and Moffat substation designs. The 66/11 kV general arrangement 

design, in Figure 2.2, is an example of how this substation was upgraded. The newly 

installed 66 kV feeder bay, 66 kV busbar and the 66/11 kV transformer bay area, is 

indicated on the right-hand side of the general arrangement, in Figure 2.2. The new 66 

kV feeder bay, 66 kV busbar and the 66/11 kV transformer bay were installed in 

advance, under dead conditions, for safety. The existing 11 kV busbar does not require to 

be extended to connect the new 66/11 kV transformer bay. The newly installed 66/11 
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kV transformer bay connects to the existing 11 kV busbar, using live-work techniques, as 

indicated in Figure 2.2.  

 

 

Figure 2.2: Existing 66/11 kV General Arrangement 

The disadvantage of this method is that it should be executed, while the medium 

voltage side of the substation is live, ensuring back-up supply to existing customers, while 

the substation is upgraded. There is a risk of electrocution with this method of carrying 

out substation upgrades. The new substation general arrangement design incorporates a 

way of reducing this. 

Figure 2.3 demonstrates the method used to extend the new 132 kV busbar, to 

install an additional 132 kV feeder bay and a second 132/22 kV transformer bay, while 

the substation is switched off. The second 132 kV feeder bay, 132 kV busbar and the 

132/11 kV transformer bay was constructed in advance. A second line was built, 

energising the second 132 kV feeder bay, as well as the second 132/11 kV transformer 
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bay. Eventually, premium supply was connected to the existing customers, using live 

work techniques.  

 

 

Figure 2.3: Upgraded 132/11 kV General Arrangement 

The preferred method used to carry out substation upgrades, was for the Riries 

substation, Mothibistat substation and Valley substation. The procedure was to construct 

a new 132/22 kV substation, on a platform alongside the existing 66/22 kV substation 

yard. Building a new substation alongside an existing substation, is a safer method of 

carrying out substation upgrades, although significantly costly. 

 

2.3 Control Plant Technologies 

Electro-mechanical relays, used in existing substations, are not reliable and have 

no fault recording capabilities [4]. Analysing a fault from Electro-mechanical relays and 

Siemens Oscillo-store K recorders was difficult and the information gained from Electro-

mechanical relays was insufficient for fault investigations. Over the years, testing electro-
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mechanical relays have become particularly challenging, since electro-mechanical relays 

have a single function. Non-directional over-current protection relays are not sensitive, 

when interconnected customers provide fault current to the protected feeder bay. 

Directional overcurrent relays are utilised, reducing the mal-functioning of non-

directional relays [8].  

In smart substations, substation designers should understand the substation 

configuration of the apparatus, while existing substations field technicians should 

understand the various electro-mechanical relay wiring [9]. Smart substations enable bay-

level intelligent electronic equipment to communicate, meaning that the failure of one 

relay does not reflect the collapse of the entire bay [10].  

Intelligent Electronic Devices (IEDs) in Figure 2.4, monitor, protect and control 

the primary equipment in a substation [11]. An IED is any device incorporating one or 

more processors, with the potential to receive sampled values from voltage and current 

transformers, sending data to circuit breakers [12]. Microprocessor-based, Intelligent 

Electronic Devices (IEDs), observe the state of the equipment and protection settings, 

taking action to ensure a steady supply to customers [13]. 
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Figure 2.4: REF 615 IED 

Due to technological advancements, manufacturers began using intelligent 

electronic devices with different protocols. The various protocols were used to 

distinguish the apparatus from that of seperate manufacturers. The problem with 

different protocols, was that they are incompatible with equipment from seperate 

manufacturers. Three tests are carried out for relays of different manufacturers to 

communicate with one another. The tests are: the system performance-oriented test, 

function-oriented test and communication service oriented test [14]. 

Intelligent Electronic Devices (IEDs), from different manufacturers, make use of 

the IEC61850 standard, ensuring interoperability between various relays [15]. Due to the 

IEC61850 standard, physical interfaces between the Primary Plant equipment and the 

intelligent electronic devices, are standardised. The IEC61850 standard, ensures that 

there are more manufacturers, of the same technology [16]. This standard reduces the 

cost of Microprocessor-based, intelligent electronic devices [17]. All the IEC61850 IED’s 

communicate with primary plant equipment, bay level equipment and station level 
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equipment, using a standard language called Substation Configuration Language [18]. The 

IEC61850 standard keeps up with technological advancements (updating of software, 

protection functions, and testing equipment), over the entire lifespan of the substation 

[19].  

GOOSE (Generic Object Oriented Sub-station Event) messages, are the communication 

method used between intelligent electronic devices and the station level equipment. 

GOOSE messages have an interlocking function. The interlocking feature, is to prevent 

the substation equipment from operating, when they not required to [20].   

The station level, refers to the Human Machine Interface, engineering workstation 

and gateways, to connect to the substation control centre. The station bus enables 

information exchange between intelligent electronic devices and the SCADA 

(Supervisory Control and Data Acquisition) system [21]. Protection IEDs will conduct 

calculations and a trip signal will be sent to the breaker, via the process bus [22].  

Wireless communications within the IEC61850, could be considered as a cost-

saving initiative, reducing control plant cabling and wiring costs [23]. Wireless data 

acquisition systems, based on the IEC61850, may monitor plant equipment wirelessly 

[24]. 

 

2.4 Capacitor bank bays 

Most of the customer loads are inductive, which results in lagging power factors, 

further corresponding to power losses between the consumer and the electricity utility. 

Capacitor bank bays, in Figure 2.5, installed on substation busbars, improve power factor 

correction and assist with voltage upgrades, during peak load periods. The placement of 

© Central University of Technology, Free State



16 
 

capacitor banks plays an essential role in ensuring minimum system power losses and 

improves the overall power distribution efficiency [25]. 

Capacitor banks, in Figure 2.5, cause high frequency and high current transients 

during the switching of the breakers. The peak transient current is more than six times 

the nominal current and this may damage equipment in the capacitor bank bay. 

 

 

Figure 2.5: Capacitor bank bays using Micro-station V8i 

The Magnetically Controlled Shunt Reactor relieve the Ferranti effect, when the 

feeders are lightly loaded. To reduce the peak transient flow, a passive element, such as a 

resistor, is installed in the capacitor bank bay [26]. Failure of capacitor banks could result 

in a voltage drop at the substation busbar and affects the balance of the network [27]. 
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2.5 Mobile substations 

     Mobile substations may refer to an entire substation on wheels, or simply a 

transformer bay. Mobile substations provide a steady supply to existing customers, if one 

transformer bay fails or during substation upgrades. However, mobile substations should 

adhere to the safe working clearances, required for operators to operate [28].  

The mobile substation in Figure 2.6, may supply customers, whilst the existing 66 

kV feeder bays and the 66/22 kV transformer bays, are decommissioned [29]. Portable 

substations should adhere to safe working clearances on the general arrangement designs. 

Mobile unit substations may increase the operational flexibility of substations [30].  

 

 

Figure 2.6: 132-66 kV/22-11 kV Mobile Substation 

The purpose of transportable substations is to further provide power supply to 

customers, during natural disasters or equipment failure [31]. It is challenging to improve 

the performance of the network, if mobile substations are installed without the necessary 

lifting equipment [32]. Lightning protection of the mobile substation, is independent of 

the lightning protection provided on the general arrangement of a substation [33]. The 
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equipment on mobile transformer trailers should be earthed with a copper conductor, 

that carries the maximum fault current. Due to limited space in substations, transportable 

substations are designed to retain sizeable apparent power on light trailers [34]. Movable 

substations damage roads as a result of weight and block traffic, due to size [35]. 

The 4TM7100 scheme, in Table 2.1, protects the mobile substation and the 4TC-

5200 tap changer protection scheme controls the On-Load Tap Changer of the mobile 

substation. The current circulating system uses the REG-DA voltage-regulating relay for 

on-load tap changing applications.  

Table 2.1: Mobile substation protection scheme 

4TM7100 Protection Scheme Intelligent Electronic 
Devices 

Two terminal differential protection SEL487E 

HV and MV O/C SEL487E 

E/F and breaker fail SEL487E 

High impedance HV REF RMS 2V73K1 

High impedance MV REF RMS 2V73K1 

 

The unhealthy protection alarm, is any situation implying that the protection 

system is not proficient in performing the intended function. The harmful protection 

alarm may further be activated, by the busbar VT or line VT supply fails.  

The ‘Circuit-breaker not healthy’ alarm, refers to any situation indicating that the circuit 

breaker is not capable of executing its intended function. The trip circuit supervision 

monitors each phase of the circuit breaker trip circuit independently. The trip circuit 

supervision blocks the closing of the circuit breaker, when the trip circuit has failed. The 
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main station layer, located in the control centre, is responsible for fault-finding, tripping 

breakers of faulty bays and remote reclosing of switches on the mobile substation [36]. 

 

2.6 Distributed Battery Energy Storage 

Battery energy storage has been used in China, Germany and the United States, as 

one of the preferred alternatives for energy storage [37]. Distributed battery energy 

storage is further used to improve network capacity, quality of supply and to defer costly 

substation upgrades [38, 39]. No Battery Energy Storage Systems, from 1 MWh or 

higher, are in service in South African electrical utilities. Battery Energy Storage Systems 

remain costly; this being the reason as to why the demand is not high.  

As presented in Table 2.2, Battery Energy Storage Systems are installed on the 

power system, at a substation, or by electricity consumers. Calculating the size and 

placement of Battery Energy Storage Systems on the distribution network, is dependent 

on the battery technology and the purpose of the storage system [40].  

Table 2.2: Grid-Related Energy Storage Applications [41, 42] 

Category Placement Application 

A Battery energy storage systems connect as 
close as possible to consumers (230V-400 
V). 

• Voltage support  
• Solar smoothing  
• Stabilising, 

Frequency 
B Battery Energy Storage Systems ties to the 

medium voltage busbars and the medium 
voltage feeders (3.3 kV-33 kV). 

• Peak shifting  
• Substation upgrades 

deferral  
• Back-up supply 

C Battery Energy Storage Systems connect 
to the high voltage busbars and the HV 
feeders (44 kV - 132 kV). 

• Reliability of supply 
• Substations 

upgrades deferral 
• Back-up energy 

D Renewables Integration • Renewables Energy 
Time-shift 
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• Renewable energy 
capacity firming 

• Wind Generation 
Grid Integration 

 

2.7 Radial distribution feeders 

The concern, on a radial distribution feeder, is that the end of the feeder lacks 

consistent back-up supply connection from other feeders. Back-up supply decreases the 

interruption time and reliability methods are challenging to achieve. Battery energy 

storage offers one possibility to reduce the outage times, experienced by consumers [43]. 

The customer loads connect to the network, using Battery Energy Storage Systems, 

located close to loads, as it is not possible to foresee as to where future disturbances will 

materialise [44, 45]. 

The purpose of BESS installations in the distribution network, is to reduce 

network constraints for the efficient operation of the network [46]. BESS reduce stress 

on equipment in the network, consequently improving their lifetime. Energy storage 

systems further improve reliability, as an alternative to more costly distribution line 

capacity upgrades [47]. The concern with feeder designs with BESS, is that power utilities 

are not certain as to which feeder interruptions are likely to occur. 

 

2.8 A Wind Energy Farm with BESS 

Wind Energy Farms (WEFs), are more environmentally friendly and cost-

effective, than the traditional approach of centralised grids [48]. Renewable energy 

sources operated in both grid-connected mode and islanded mode. The Wind Turbine 

Transformer (WTT), connects as closely as possible to the wind turbine, at the bottom of 
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the wind turbine structure [49]. Wind Turbine Transformer failure leads to high 

economic loss, including Cost of Unserved Energy (COUE) and a high cost of 

transformer refurbishment [50].  

The output of wind power generation is unable to maintain stability, like that of 

traditional coal generation stations, to operate precisely, according to the generation 

schedule [51]. The challenge with renewable energy, is that the amount and timing of 

energy production by the wind plant, is unknown [52]. Wind Energy Farms generate 

electricity as the wind is blowing and the power output depends on the wind speed and 

type of generator [53]. Energy generated by a wind farm is calculated, as follows [54]: 

 

)(*******5.0 3 tfCvAE tgpw ηηρ=       (2.1)  

Where: ρ = density of wind (1.225Kg/m3); 

 A = wind turbine swept area (m2); 

 v = wind velocity (m/s); 

 Cp = power coefficient of a wind turbine performance; 

 ηg = generator efficiency; 

 ηt = turbine efficiency; 

 f (t) = wind probability density function.  

The Micro-station V8i design, in Figure 2.7, consists of a Wind Energy Farm 

(WEF), Battery Energy Storage (BES) and a Power Conversion System (PCS). The 2 

MWh Battery Energy Storage System and the 20 MW WEF are connected, in parallel to 
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the power grid [55]. BESS, with wind generation, improves the function of renewables 

and overall generation. BESS is further used to avoid the cost of coal and carbon 

emissions by coal generating stations [56]. The aim of using BESS, in Figure 2.7, is to 

increase self-consumption and achieve cost savings from the decrease of energy import, 

during peak price periods [57]. 

 

 

Figure 2.7: Wind Energy Farm with BESS integration design 
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With the improvement of renewable power prediction technology, it is possible to 

calculate an optimal SOC, to smooth wind power fluctuations [58, 59]. The State of 

Charge (SOC), is an important parameter, indicating the battery state during discharge, as 

compared to its charged state [60]. The battery management system calculates the state of 

charge (SOC), implement balance control and diagnose the fault [61, 62]. The SOC of a 

battery is calculated as follows [61]: 

Idt
Q

SOCSOC
t

N
∫−=

00
1 η                    (2.2) 

Where: SOC0 = the initial SOC; 

η = the charge and discharge efficiency; 

I = the discharge current; 

Qn = the rated capacity of the battery. 

SOC in [68] is further calculated, as follows:  

r

t

dch

C

dti
SOCSOC ∫−= 0

0          (2.3) 

Where: Idch = discharge current in ampere; 

Cr = Rated battery capacity in Ampere-hour (Ah); 

SOC0 = the initial state of battery at t = zero. 

The calendrical ageing is due to three main factors: temperature, state of charge 

and the non-operating duration of the energy storage system [63]. However, the lifespan 

increases exponentially, as the depth of discharge decreases. The actual lifecycle is heavily 

© Central University of Technology, Free State



24 
 

dependent on plate design and active material composition, for most battery types, used 

for energy storage [64]. Higher DOD (depth of discharge), means more energy is 

discharged from the battery, during the discharging process, however, at the same time, 

higher DOD reduces battery life [65]. Therefore, the depth of discharge is calculated as 

follows:  

min1 SOCDOD −=          (2.4) 

Where: DOD = Depth of Discharge; 

SOC min = SOC at its minimum value. 

Depth of discharge is an important parameter, influencing battery lifetime [65]. 

Therefore, battery lifetime is calculated as shown: 

]**(*)(*[* nomrLifetime VCDODDODFMeanE =      (2.5) 

Where: F = the number of cycles which is a function of DOD; 

Cr = Nominal battery capacity in Ah; 

V nominal = Nominal battery voltage. 

 

2.9 Solar Power with BESS 

Solar energy is an inexhaustible renewable resource; the disadvantage of solar 

energy is that there is a lack of solar power at night. BESS is used to store energy, to be 

utilised through network peaks, allowing for more consumers to be connected to the 

grid. Charging the batteries during load off-peak times, when the price of electricity is 
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low and discharging the stored energy during load peak evening time, is an alternative 

method of deferring substation upgrades [66]. 

The size of PV systems, with battery energy storage, should be calculated, so that 

the PV, with BESS, will be sufficient in supplying the load. The output energy of a solar 

PV is calculated as follows [67]: 

IPAE fpcmpv **** ηη=          (2.6) 

Where: A = total area of the PV panel (m2); 

𝜂𝜂m = PV module efficiency; 

𝜂𝜂pc = power conditioning efficiency (0.86); 

Pf = packing factor (0.9); 

I = hourly irradiance (kWh/m2). 

The Battery Management System, is the control hub in the Battery Energy Storage 

System, with voltage regulation and peak load saving functions [68]. The Battery 

Management System (BMS), monitors and measures the power system’s performance 

parameters, such as voltages, currents and temperatures [69]. The BMS communicates 

with the PCS (Power Conversion System), the state of the Battery Energy Storage System 

[70]. The four quadrants, Power Conversion System, release capacity back to the utility 

system, providing active and reactive power control [71]. The Battery Management 

System prevents any stray currents, or electrical problems, from affecting the grid [72, 73, 

74].  

The illumination levels required for all the lights in the Wind Farm, with BESS, 

are indicated in Table 2.3. Lighting protection is provided by multiple 400-Watt High-
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Pressure Sodium (HPS) floodlights, placed within the switching station yard and 

mounted on lightning masts. The floodlights are fed from the AC module installed in the 

yard AC distribution box. 

Table 2.3: Illumination levels 

Illumination level Level (Lux) 

Control panels front 200 

Control panels rear 100 

Lavatory 100 

Transformer areas 20 

Substation yard 10 

 

Micro-station V8i was utilised for a Solar Energy Farm, with BESS and 66/22 kV 

switching station lightning protection, (Figure 2.8).  The equipment is protected from 

direct lightning strikes, using 21-meter lightning masts. Lighting and lightning protection 

was carried out, keeping in mind 132 kV safe working clearances, 132 kV phase to 

ground clearances, access to equipment and lighting and lightning coverage, for future 

switching station upgrades. Lightning strikes may cause damage to substation equipment, 

due to over-voltages, in the event where lightning protection is not carried out according 

to specifications [75].   
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Figure 2.8: Switching Station Lightning Protection 

The equation below, determines how far apart and the amount of lightning masts 

were applied, for 66/22 kV switching station lightning protection: 

)12(*1)2(* HRHHRHX −−−=           (2.7) 

Where: X = The protective distance from mast for height H1; 

H = Mast height;  

R = lighting attractive radius 45m;  
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H1 = height of the equipment to be protected. 

 

2.10 Conclusion 

Due to capacity constraints, low voltage conditions are experienced on the high 

voltage and medium voltage feeders. Electro-mechanical relays, used in existing 

substations, are less reliable, with no fault recording capability. The cost in maintaining 

outdated equipment, that interrupts security and continuity of supply to customers, is 

high. Before substation upgrades may take place, new and existing consumers, requiring 

additional electricity are rejected, due to capacity constraints in existing substations. 

Substation upgrades aim to improve the capacity, connecting outstanding and new 

electrification customers in the area.  

Mobile unit substations may increase the operational flexibility of substations, and 

consequently, ensure continuity of power supply to customers, during substation 

upgrades. Capacitor bank bays, installed on substation busbars, improve power factor 

corrections and assist with voltage upgrades, thereby improving the overall power 

distribution efficiency. The 4TM7100 scheme protects the mobile substation and the 

4TC-5200 tap changer protection scheme controls the On-Load Tap Changer of the 

mobile substation.   

The output of solar and wind power generation is unable to maintain stability, like 

that of traditional coal generation stations, to operate precisely according to the 

generation schedule. The challenge with renewable energy, is that the amount and timing 

of energy production by solar and wind plants, is unknown. Wind Energy Farms generate 
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electricity when the wind is blowing and the power output depends on the wind speed 

and the type of generator.  

The aim of using BESS, is to defer substation upgrades, increase self-consumption 

and achieve cost savings, from the reduction of energy import, during peak price periods. 

BESS, with renewable generation, should improve the function of renewables and overall 

generation. Financial losses, incurred by customers due to load shedding, should be less, 

due to Battery Energy Storage Systems and improved network performance. The cost of 

un-served energy, incurred by power utilities is less, due to a firm, reliable supply. BESS 

will reduce environmental pollution (Environmentally friendly), provide secure backup 

supply and improve network performance (Reduce SAIDI and SAIFI).  

 

 

 

 

 

 

 

 

 

 

© Central University of Technology, Free State



30 
 

CHAPTER 3: MODERN SUBSTATION UPGRADE 

DESIGNS 

3.1 Introduction 

Chapter 3 presents modern substation upgrade designs in the Northern Cape 

Operating Unit, in South Africa. Substations in the Northern Cape are experiencing load-

growth, due to residential developments, high electrification growth, agriculture and 

mining. Consumers requiring electricity are not connected, due to capacity constraints. 

The methods used to carry out substation upgrades are costly and time-consuming. 

Network upgrades require the interruption of the steady supply to customers and power 

supply interruptions reduce the performance of the power system. New substation design 

considers safety, reliability, maintenance, increased supervisory control, interoperability, 

environmental compliance and reduced capital expenditure [76]. 

Chapter 3 further illustrates alternate methods of substation upgrade designs and 

integration designs of Battery Energy Storage Systems. Battery Energy Storage System 

designs lead to costly network upgrade deferral, reduced demand charges, back-up 

supply, peak shaving, peak shifting, voltage support, reliability of supply and improved 

quality of supply. 

 

3.2 Modern substation designs for upgrades 

The modern substation design solution was to discover safe, reliable and cost-

effective methods of carrying out substation upgrades, paying attention to:  
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• Safety of personnel and equipment. 

• Environmental compliance. 

• Passive fire protection. 

• Re-use of Control Plant schemes and cabling during substation upgrades to save 
cost. 

• Network performance. 

3.2.1 Control Technology Designs 

Electromechanical relays have a longer lifespan than microprocessor-based relays. 

However, Electromechanical relays require an outage for testing and maintenance, which 

reduces network performance and the cost of unserved energy is exceedingly high-priced 

[77, 78]. Microprocessor-based relays may be tested while the substation is in service and 

have more protection and monitoring functions than phase one relays [79]. 

A. Protection scheme designs 

The two feeder protection schemes (4FZD3920), protect the two incoming 66 kV 

feeders in the modern substation. The RED670 relay provides distance protection, 

breaker fail, ARC functionality and synchro-check. The REF615 relay offers directional 

back-up O/C, E/F, overvoltage protection, under-voltage protection and thermal 

overload protection. Sensitive, selective and high-speed busbar protection is required to 

clear busbar faults in the modern substation. Busbar protection limits damage to 

equipment, maintains the system stability and continuity of supply.  

The bus-zone protection scheme (4BZ5800), in Figure 3.1, protects the 132 kV 

sectionalised busbars. The two voltage transformers, on the 132 kV busbars, are for 

directionality and synchronisation check. The protection remains operative during VT 
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supply selection, to detect busbar isolator closure onto a fault or isolator flashover, whilst 

under operation. 

 

 

Figure 3.1: 66 kV Bus-zone Protection Scheme (4BZ5800) 

B. Metering designs 

Mount two metering modules with four ZMD405 meters for the two incoming high 

voltage feeder bays and the two transformer bays. Tariff metering modules, with 

ZMD402 meters, were for the 22 kV feeder bays. Meter module one, may consist of 66 

kV feeder one and 66 kV feeder two. Meter module two will consist of 66/22kV 

transformer one and 66/22kV transformer two. All the metering equipment was 

connected to the IDF. All the meters were connected to the cell modem and the GSM kit 

(Truteq), enabling remote metering. 

C. Direct Current designs 

© Central University of Technology, Free State



33 
 

The total DC drain current for schemes, in Table 3.1, is the total drain current for the 

panels, plus 20% for circuit breaker operations, which resulted to 3.466 A. Travelling 

time to the furthest substation, is approximately 24 hours. Therefore, battery sizing was 

calculated as 24 hours * 3.466 A = 83 Ah. However, the standard battery bank rating is 

85 Ah. The preferred battery charger, recharges flat batteries to 80% capacity, within 5 

hours. Therefore, the charge current required was calculated as 0.8 * 85/5 = 13.6 A. The 

rating for the battery charger to carry the substation load, was calculated as 3.466 A + 

13.6 A = 17.1 Ampere. The standard battery charger rating was 20 A. 

Table 3.1: 110 V DC drain current for schemes 

Schemes Description Quantity Total drain 
current (A) 

4FZD3920 HV feeder protection scheme 2 0.8 

4TM7101 Transformer protection scheme 2 0.812 

4TC5200 Tap changer scheme 2 0.306 

4RF1101 MV feeder protection scheme 4 0.4 

D20 RTU Remote terminal unit 1 0.47 

4LS1100 Under frequency load shedding 
scheme 

1 0.1 

Total   2.888 

 

The load requirements of the complete electrical system were 150 Ah, providing the 

required 24-hour standby power. The DC supply module, installed in the relay room, 

provided DC supply to all the protection, control, communication and metering 

equipment. The 110 Volt direct current batteries ensure that the primary and back-up 

protective relays remain stable during an Alternating Current fail condition.  
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D. SCADA design 

The challenge with hardwiring, is that the connections to the protection schemes are 

different; the data transferred is slow and cannot be compared [80]. The communication 

failure reports locally at the protection IED and remotely to the station HMI.  

Each Control Plant scheme was provided with a 110 V DC supply for the 

protection system, back-up protection system, Ethernet switch and breaker spring rewind 

circuits. The 240 V AC supply was used to illuminate the amber Protection Not Healthy 

alarm on each protection module and to supply mechanism box heaters. The rear of the 

new scheme modules is, open to ease access to the internal components and improve 

heat dissipation. The modern substation protection schemes were designed for a 

minimum operational lifespan of 20 years. 

The suitable protocol for the serial link is DNP 3.0 (Data Network Protocol), with 

proven compatibility to the Remote Terminal Unit, in Figure 3.2. The data 

communication connection shall be via copper RS485 and optical RS232. A new D20 

RTU, with serial RS-485 communication ports, as illustrated in Figure 3.2, was utilised for 

the modern substation. The D20 RTU interfaces serially with the substation IED’s, such 

as the transformer protection scheme, the On Load Tap Changer scheme, high voltage 

feeder back-up protection (REF 615) and the medium voltage feeder protection scheme 

(P145).  
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Figure 3.2: Substation RS-485/DNP 3.0 serial communication architecture 

The serial RS485 connection reduces the cost of hardwiring. The RS485 

communications standard has up to 32 intelligent electronic devices (IED), that are 

connected on one port and the devices connect up to a distance of approximately 1200 

meters. The serial interfaces reduce the amount of hardwiring between IEDs and the 

RTU. All inputs and outputs are relayed, via serial communication (DNP3 protocol), to 

and from protection schemes, which reduced the complexity of wiring and installation 

time. Therefore, the size of the required IDF is smaller.  

E. Control Plant cabling 
Secondary Plant, multi-core thermoplastic insulated cables, have a voltage rating 

of 600 to 1000 V and current ratings dependent on the cross-sectional area. During the 

installation of Control Plant cabling, provision was provided for sufficient slack to reach 

the furthest point on the terminals. A 10% spare capacity factor was used for all long run 
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cables, when selecting cables for an application. The reason for the additional cores, is to 

provide provision for damaged cores, should modifications be necessary at a later stage. 

The cable block diagram, as in Figure 3.3, indicates the cable number and destination of 

each cable. 

The purpose of the modern substation design, is to prevent decommissioning of 

all the Control Plant cabling, during substation upgrades, to save costs. All the control 

cables were installed from the 66/22kV transformer panels, 66 kV feeder panels and the 

22 kV feeder panels to the respective equipment in the substation yard. All the cabling 

used in Figure 3.3 below, is the very same cabling that will be used during substation 

upgrades. 

 

 

Figure 3.3: 66 kV feeder scheme cabling (4FZD3920) 

All the safety clearances, foundations, conductor lengths, type of clamps used, 

steelwork and equipment heights, for future upgrades, were taken into consideration 
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while designing the new 66/22 kV modern substation. Cable racks are provided, such 

that every cable is adequately supported, throughout its run. The cable trays were 

installed, so that there will be a minimum of 400 mm between the cable tray and the 

control panels.  

3.2.2 Power Plant designs 

A. General Arrangement designs 

The General Arrangement design, in Figure 3.4, ensures operability, 

maintainability and extendibility. Operability indicates that substation equipment may 

safely be opened, isolated, tested and earthed, for maintenance and refurbishment of 

equipment. The modern substation design improves safety and operability in substations, 

by adhering to safety clearances. The control room on the General Arrangement design, 

in Figure 3.4, is close to the transformers in conserving costs on Control Plant cabling.  
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Figure 3.4: 66/22 kV design for future upgrades 

On the two 66 kV feeder bays and the two 66/22 kV transformer bays, the 

decommissioning of the following equipment, foundations and steelwork, were 

prevented during substation upgrades, to save cost and time: 

• Two sets of 132 kV terminal supports, 

• Two sets of 132 kV line isolators, 

• Two sets of 132 kV current transformers, 

• Four sets of 132 kV breakers, 

• Four sets of 132 kV busbar isolators, 

• Twelve 132 kV current transformers. 
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The complexity of substation upgrades, was due to safety clearances between 

equipment on General Arrangement designs. Power Delivery Engineering software uses 

designs for safe working clearances,  in Table 3.2, for the high voltage feeder bay, 

transformer bay and medium voltage feeder bay equipment, with different voltage and 

insulation levels. 

Table 3.2: Electrical and Working Clearances 

System 
Nominal 

Voltage (kV) 

System 
Highest 
Voltage (kV) 

 

Minimum Electrical 

Clearance 

Working Clearance 

Phase to 
Earth 

(mm) 

Phase to 

Phase 

(mm) 

Vertical 

(m) 

Horizontal 

(m) 

3,3 

6,6 

11 

3,6 

7,2 

12 

80 

150 

200 

110 

200 

270 

2,5 

2,6 

2,7 

1,2 

1,2 

1,3 

22 

33 

44 

66 

24 

36 

48 

72 

320 

430 

450 

770 

430 

580 

730 

1 050 

2,8 

2,9 

3,0 

3,2 

1,4 

1,5 

1,6 

1,8 

88* 

132 

100 

145 

840 

1200 

1 150 

1650 

3,3 

3,7 

1,9 

2,3 

 

B. 66 kV feeder bay section 

For the 66 kV feeder bay section, in Figure 3.5, 132 kV clearances were used. 

With an increase in voltage, the further apart the safe working clearances, phase-to-phase 

clearances and phase to ground clearances. Phase-to-phase and phase-to-ground 

clearance, is for preventing voltage flashovers. Safe working clearances, prescribe 
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distances that should be adhered to, depending on apparatus voltage level. Safe working 

clearances are for allowing work to be carried out safely on isolated and earthed primary 

plant apparatus, whilst adjacent equipment is in service. All the equipment on the 66 kV 

incoming feeder bays was strung with a Centipede conductor. The 66 kV section design, 

in Figure 3.5, has 132 kV clearances on the high voltage side, saving on labour and cost, 

during substation upgrades. Reducing labour and cost during substation upgrades was 

achieved, by decommissioning the 66 kV voltage carrying apparatus and installing the 132 

kV apparatus.  

 

 

Figure 3.5: 66 kV feeder bay (132 kV clearances) 

Alternatively, dual voltage equipment may be used with off-load selector switches, 

alleviating labour, reducing upgrade costs and improving substation performance. Since 

the high voltage winding of the multi-winding transformer is partially graded, a neutral 66 

kV surge arrester was installed on the neutral of the primary winding. The 22 kV neutral 

earthing resistor, limits the secondary earth fault current to 360 A, irrespective of the high 

voltage level selected.  

C. Sectionalised busbar with bus-section breaker 

For busbar selection, tubular busbar and high-strung busbar, using columns and 

beams, were considered. The preferred option, was to use low profile tubular busbars, as 
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they are more cost-effective and compact, with limited visual impact. One of the factors 

that determine the requirement for busbar protection, is the importance of the 

substation. A substation may be an essential link to the network, maintaining system 

stability, or the substation may be feeding a critical load. A substation design, with two 

incoming high voltage feeders, with a single split busbar and two transformer bays, were 

considered for high voltage busbar protection.  

Tube vibration damping for high wind conditions was considered for the 120 mm 

diameter aluminium alloy tubes, exceeding 5.5 meters. Tube vibration damping was 

carried out by installing a single centipede conductor, two-thirds the length of the tube 

and fixing it at both ends. A drain hole of 10 mm diameter was drilled at the bottom 

centre point of the aluminium alloy tubes, facilitating drainage of condensate moisture. 

D. 66/22 kV transformer bay section 

The 20 MVA, 66/22 kV transformer bay, in Figure 3.6, has a full-load current of 

175 A, on the 66 kV side of the transformer bay. All the stringing on the high voltage 

side was carried out with the Centipede conductor. Centipede has a rating of 833 A, 

suitable for future 40 MVA transformers.  

 

 

Figure 3.6: Transformer bay section design (132 kV clearances) 

On the 22 kV side, the maximum continuous current from the 20 MVA, 66/22 

kV transformer, is 525 A. The maximum single-phase fault current on the 22 kV busbar, 
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is limited to 720 A by the integrated resistors, in the neutral electromagnetic coupling 

resistors, with auxiliary transformers.  

The new type CTB36 22 kV vacuum circuit breaker, in Figure 3.7, may be used 

for future substation upgrades. Vacuum insulation circuit breakers are environmentally 

friendly and do not require oil. The CTB36 vacuum insulation circuit breaker has two 

trip coils, ensuring tripping of 22 kV feeder bays, during faulty conditions. However, 

electricity utilities continue to have operational challenges with the new outdoor vacuum 

insulation circuit breakers.  

 

 

Figure 3.7: CTB36 Vacuum Circuit Breaker 

 

3.3 Modern substation designs with BESS 

General arrangements are utilised, for the construction of new substations and 

refer to the physical layout of a substation. When designing the General Arrangement 

(GA) of a substation, it is necessary to design the cable connection layout, considering 
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the location of the control room. Considering cable connection layout, is to save costs on 

control plant cables, while meeting the operating requirements [81].  

3.3.1 BESS integration designs 

The Battery Energy Storage System (BESS) integration design, in Figure 3.8, was 

designed for substations with more than one constrained medium voltage feeder. Kiosk 

circuit breakers are three-pole operated circuit breakers, with integrated protection and 

current measurement transformers. The kiosk circuit breakers were used for control, 

measuring, indication, maintenance and protection purposes.  

The BESS integration design, used for energy storage, utilises two kiosk breakers on 

both sides of the 400 V/22 kV step-up transformers, as designed in Figure 3.8. The 

current transformers of the kiosk breakers were used for over-current, earth fault, 

differential protection and restricted earth fault protection.  

Connecting the Direct Current (DC) batteries to the 22 kV/400 V transformers, 

was carried out through DC to AC inverters [82]. A 400 V yard distribution box, with a 

chop-over module was installed, to provide auxiliary supply for more than one of the 

Energy Storage Systems (ESS). 
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Figure 3.8: BESS integration design 

The SEL-487E two terminal differential protection relay, in Figure 3.9, was used 

when two kiosk breakers were utilised. The on-load tap changer of the step-up 

transformer, is protected and controlled by the 4TC-5200 Tap Changer protection 

scheme.  

 

 

Figure 3.9: SEL-487E relay 
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The BESS section design was strung with a Bull conductor and connected to the 

22 kV bypass Isolators, as designed in Figure 3.10, below. The bypass of the protected 

bay, refers to the complete switching out of the protected bay, including the protected 

equipment. The bypassed feeder bay is rerouted to a fully equipped bay, which has a 

protection scheme and revenue metering. The bypass of a faulty bay, was to improve 

network performance and ensure customer satisfaction, while the faulty bay was repaired. 

 

 

Figure 3.10: BESS section design 

The 4RF1100 scheme, in Figure 3.11, for Embedded Generators in power 

utilities, were utilised. A three-phase voltage transformer input is included for 

measurements, direction determination and synchronism checks. 
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Figure 3.11: MiCOM P145 relay 

The 4RF1100 scheme was used, protecting the medium voltage power system and 

the consumers, from possible adverse effects of the BESS. The 4RF1100 protection 

scheme utilises the MiCOM P145 feeder management relay. The 4RF1100 scheme 

provides over-current, earth fault and sensitive earth fault protection. Sensitive earth fault 

protection, is a low-set exact time protection function, used on medium voltage overhead 

lines.  

3.3.2 Yard AC Distribution Box 

Two 100 kVA NEC/R/T’s (Neutral Electro-magnetic Couplers with neutral 

earthing resistors and auxiliary transformers), were used as a source of AC power for the 

substation. A yard AC distribution box, complete with a chop-over module and a 

termination module, was installed in the substation high voltage yard. The yard AC 

distribution box were utilised to supply power to the yard lights, AC/DC panel and the 

tap changer motors. The yard AC Distribution box will be no further than 30 meters 

from any apparatus of the plant in the substation, to save on cabling costs. The AC 
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distribution module further provides an electrical supply for maintenance, breakdown or 

testing purposes. 

The chop-over operates in a manner that, the breaking contacts break, before the 

making contacts close (and vice versa), in order to prevent paralleling of the voltage 

sources. The chop-over function includes a short time delay, before chopping-over or 

chopping-back between supplies, providing provision to block the frequency protection, 

for a short time, after a chop-over operation. The chop-over will operate, based on a 

complete loss of voltage on one transformer supply. 

 

3.4 Environmental compliance 

Three items should be present to start a fire: oxygen, transformer oil and heat [83]. 

Fire sensors provide quick alarming for fires to be extinguished, before they start [84]. 

Major substation fires will result in revenue losses, due to loss of supply to customers or 

asset losses. Due to winds, fire spreads to the rest of the equipment in substations; fire 

may further affect nearby buildings. Therefore, an appropriate risk assessment was 

carried out, before Passive Fire Protection was considered for the modern substation. 

Passive fire protection was set in place, providing a cost-effective fire protection system, 

to reduce fire damage in substations and to minimise environmental pollution, due to oil. 

Electricity utility transformers use oil for cooling, which may cause oil spills in the 

incident of distributing a leak. 

Electrical companies previously used crushed stone-filled pits around the 

transformers. The crushed stone-filled pits prevented fires from spreading to the entire 

substation [85]. Installing oil-holding dams ensured that oil will not spread and cause 
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environmental pollution. A single oil dam was designed, to accommodate both 

transformer 1 and transformer 2. The dimensions of the oil dam are 3.9 m x 3.9 m x 2.8 

m. The oil dam is capable of holding 18 000 litres of oil, which exceeds the capacity of 

the largest transformer, plus 20%. The transformer bund wall areas, are drained via 300 

mm diameter concrete pipes leading to the oil dam. The bund walls should be 1.5 meters 

away from the oil-filled equipment, so that oil spills within the bund wall. Bund walls are 

between 200 mm to 500 mm above the concrete runway. The use of ester oil in 

transformers, illuminates the use of bund walls, as ester oil is environmentally friendly 

[86].  

Substation, construction activities are not permitted within 100 meters of 

memorial sites and 20 meters from heritage sites. If clearing of plant species of protected 

trees (Conservation importance), is unavoidable, a removal permit from the relevant 

authority must be obtained. Environmental concerns were considered during the design 

of the new substation, for the safety of animals and consumers [87]. 

With the worldwide concerns on global warming and the target of reducing 

carbon emissions, renewable energy technologies, such as Battery Energy Storage 

Systems, were introduced in electric power networks. Renewable Energy Sources are 

considered to steer clear of the harmful and dangerous effects of climate change [88].  

The BESS container was designed for the harshest expected environmental 

conditions, being coastal environments, with a creepage distance of 31 mm/kV. 

Renewable Energy Sources (RES’s), solar energy, wind energy and Battery Energy 

Storage Systems, provide a solution for additional energy, with reduced environmental 

pollution [89]. The standard creepage distances, for high voltage electrical equipment, are 

20 mm/kV and 31mm/kV, for medium to very high pollution levels. The Northern Cape 
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is located close to mining activities, leading to pollution on the substation insulators. The 

pollution levels of substations, near mining activities and coastal areas, are high. As a 

result, all insulators for the modern substation design, have a creepage distance of 31 

mm/kV.  

 

3.5 Conclusion 

The current 66 kV network experiences low voltages, under n-1 contingencies. 

The existing 66 kV network does not aquire spare capacity to supply new customers. For 

additional capacity, Eskom should upgrade its distribution network from 66 kV to 132 

kV. The challenge with substation upgrades on existing substations, is the cost involved 

to upgrade the 66 kV substations to 132 kV. The methods used to carry out substation 

upgrades are costly and time-consuming. Network upgrades require the interruption of a 

steady supply to customers, reducing the performance of the power system. 

  The modern substation upgrade utilises less control technology cabling. The very 

same Control Plant schemes and cabling were re-used, during substation upgrades. The 

yard AC Distribution box, with an AC distribution module, will be no further than 30 

meters from any apparatus of the plant in the substation, to save on cabling costs. The 

AC distribution module will provide an electrical supply for maintenance, breakdown, or 

testing purposes.  

Electromechanical relays requiring an outage for testing and maintenance, which 

reduces network performance and cost of unserved energy, is exceedingly costly. 

Microprocessor-based, Intelligent Electronic Devices (IED’s), observe the state of the 
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equipment and protection settings and take action to ensure a steady supply to 

customers. Microprocessor-based relays may be tested, while the substation is in service.  

The 4BZ5800 Bus-zone scheme was applied on single busbar arrangements, with 

two bus-section isolators and a circuit breaker. The busbars have two-zone busbar 

protection, with a check zone. The 4BZ5800 busbar arrangement will provide 

discriminate isolation of the faulted bus-section, ensuring security and continuity of 

supply to customers. Steady supply to customers will improve the performance of the 

network and reduce the cost of unserved energy.  

Power Delivery Engineering, drawing modules for high voltage feeder bays and 

transformer bays, should be adhering equipment for various voltage and insulation levels. 

On the 66 kV feeder bays and the 66 kV high voltage transformer bays, 132 kV safe 

working clearances was applied, reducing cost and labour, during substation upgrades. 

The modern substation solution for future upgrades, will reduce the complexity of 

substation upgrades and improve network performance.   

All the safety clearances, foundations, conductor lengths, type of clamps used, 

steelwork and equipment heights for future upgrades, were taken into consideration, 

while designing the new 66/22 kV modern substation. The design of the conductors and 

clamps, caters for the highest anticipated load currents and the maximum expected fault 

currents, during substation upgrades. Sufficient capacity was created on the medium 

voltage network for future growth, by applying the new substation upgrade solutions. 

Sufficient capacity was achieved, by installing the loop-in loop-out configurations, on the 

high voltage feeder bays and by-pass isolators, on the medium voltage feeder bays.  
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CHAPTER 4: COMPARATIVE ECONOMIC ANALYSIS 

4.1 Introduction 

The primary objective of this Chapter, was to demonstrate the economic 

investments between the various methods of substations upgrade designs. The selection 

of the optimal substation upgrade design requires a comparative economic analysis. The 

economic analysis was performed, using literature review expenses, PowerOffice 14 

material expenses, supplier budget quotes and the Black Pearl (ACNAC) detail design 

costs.  

Energy consumption expenses were presented, in terms of the levelized annual 

cost ($/kW per year) and revenue requirements (cents/kWh). The levelized annual cost, 

is that which an electricity utility would expect to pay yearly, for all the construction work 

of the proposed substation, including repaying a loan and interest, for the up-front capital 

cost. The revenue requirement is the amount, in ¢/kWh, that an energy utility would 

require to charge for each kWh of energy consumed, covering all costs for operating and 

owning the energy storage system. The revenue requirement value applies to utilities, that 

expect to sell the energy stored, during peak load periods. 

The BESS (Battery Energy Storage System) may be used in reducing the 

overestimation and underestimation costs of  electricity utilities [90]. BESS ageing affects 

the operational and maintenance cost of the equipment. To prolong the life of the BESS, 

the cycle ageing and calendar ageing process of the BESS was, revised in the forecast and 

cost minimisation algorithm [91]. BESS installation cost may be as high as 2.5 times the 

cost of  an equivalent on-grid system [92]. Literature review and comparative cost analysis 
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revealed that, Battery Energy Storage Systems are noticeably more expensive, than the 

proposed modern substation upgrades [93]. 

 

4.2 BESS Capital Cost 

System cost depends on many factors, including the battery system and the Power 

Conversion System equipment, necessary for the Battery Energy Storage System. The 

most critical factors influencing total life-cycle cost are the capital cost of the equipment, 

followed by the replacement costs, losses, charging and discharging energy costs. The 

frequency of operation, application of the BESS and planned discharge cycles, are 

essential parameters for calculating the life-cycle cost, or present worth of life-cycle cost 

[94]. The system capital cost, is the sum of the component costs, plus construction costs, 

for a Battery Energy Storage System, which operates in both the discharge and charge 

modes [95]. The capital cost calculation for the Power Conversion System and the 

Battery System are mathematically expressed as follows [96]: 

($)($)($) storagepcstotal CostCostCost +=       (4.1) 

The cost of the power conversion equipment was multiplied to the power rating 

of the system, as shown by Equation 4.2 [96]: 

)(*)/($($) kWPkWCostUnitCost pcspcs =       (4.2) 

The cost of the storage unit, is related to the amount of energy stored, as shown 

by Equation 4.3 [96]: 
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)(*)/($($) kWhEkWhCostUnitCost storagestorage =      (4.3) 

With: tPE *=  

Where: P = Power;  

t = the discharge or storage time; 

E = the stored energy capacity. 

To account for Battery Energy Storage System inefficiency cost, the storage cost 

equation was modified as follows: 

)/)((*)/($($) ηkWhEkWhCostUnitCost storagestorage =     (4.4) 

Where: 𝜂𝜂 = the efficiency. 

The power conversion systems and the battery systems provide various functions 

and utilise different ratings. The Power Conversion Systems in Table 4.1, for Long-Term 

Operation, were priced in $/kW. Battery units are priced in $/kWh. Energy storage 

systems expenditure depend not only on the type of technology, but further on the 

planned operation, round-trip efficiency and particularly the hours of storage required. 

Table 4.1: PCS Costs for Long-Term Operation [95] 

Technology 250 kW 1 MW 5 MW 20 MW 

1st unit 10th 
unit 

1st unit 10th 
unit 

1st 
unit 

10th 
unit 

1st 
unit 

10th 
unit 

Battery 500 225 300 175 200 150 150 125 

Note: Power rating is based on continuous operation. 

Note: All costs are in $/kW. 
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Battery technology costs, in Table 4.2, were considered for most energy storage 

batteries and the costs reflect development costs. Costs of Battery Energy Storage 

Systems are limited and the costs are power and time-dependent [97]. 

Table 4.2: BESS technology expenses and performance [96] 

Battery Technology Power 
Subsystem 

Cost ($/kW) 

Energy 
Storage 

Subsystem 
Cost ($/kWh) 

Round-
trip 

Efficiency 
(%) 

Cycles 

Sodium/ 

Sulfur Batteries 

350 350 75 3000 

Vanadium Redox 
Batteries 

400 600 65 5000 

Lithium-ion Batteries 
(large) 

400 600 85 4000 

 

4.3 Existing Substation Upgrade 

Bill of quantities and the ACNAC program were used for the decommissioning 

costs of existing substations. Bill of quantities was further used for supply and installation 

of steelwork. Most existing substations are standard connection substations, meeting the 

most cost-effective design. Furthermore, standard connection substations meet the 

Quality of Supply and technical performance specifications. Electricity utilities generally 

contract with customers on the Standard Option. Specific voltage dip or interruption 

limits were not specified in the standard contract. Large power consumers may, however, 

contract the Power Quality Service Option or premium power option. Steady supply 

option entails costs to be recovered, for the measuring device and operating costs 

thereof.  

© Central University of Technology, Free State



55 
 

From the detailed costing in Table 4.3 above, the cost of upgrading an existing 66/22 

kV substation, is more costly than constructing a new substation. While constructing new 

substations, there are design issues and lessons learnt, that escalate costs. Nevertheless, 

the cost to upgrade the modern 66/22 kV substation is more affordable, compared to the 

existing substation upgrade methods, currently used by electricity utilities.   

Table 4.3: Upgrading of an existing 66/22 kV substation 

Description Upgrading expenditure (Rand) 

Engineering ( E ) 2,605,513 

Material ( M ) 19,395,513 

Internal Contracts 87,531 

External Contracts 14,543,896 

Commissioning ( T ) 594,543 

Overheads (7.5%) R 2 684 071 

IDC (0 %) 0.00 

Land and Rights 35,361 

Substation Total Capital cost 39,946,427 

Existing 66/22 kV substation 
decommissioning costs 18,540,602 

Total Substation Upgrade Cost 58,487,029 

 

4.4 Modern Substation Expenditure 

PowerOffice 14 was, utilised for the costing of a new standard 66/22 kV 

substation and the modern 66/22 kV substation, for future upgrades. The PowerOffice 

14 software makes use of design modules from the Power Delivery Engineering program, 

for the costing of substations. 
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 The PowerOffice 14 software, in Figure 4.1, consists of Power Delivery 

Engineering design cells and design modules, used for equipment selection. PowerOffice 

14 use standard prices for all the equipment required to design substations. The total 

material cost and bill of quantities were used, populating the detail design cost on 

ACNAC (Black Pearl, costing program). Detail costing sheets were used to compare the 

standard 66/22 kV substation to the proposed 66/22 kV substation, for substation 

upgrades. 

 

 

Figure 4.1: PowerOffice 14 software 

4.4.1 Control Technology expenditure 

The Control Plant expenses were to procure and install two new 66 kV feeder 

protection schemes, two new 66/22 kV transformer protection schemes, two new tap 

changer schemes and four new 22 kV rural feeder schemes. Expenditure includes: pre-
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commissioning and commissioning of protection schemes, SCADA circuits, metering 

modules, direct current and telecommunication circuits.  

A. High Voltage Feeder Protection schemes (4FZD3920) 

The REF615 supports the IEC61850 standard, for inter-device communication in 

substations. The IEC61850 remote engineering access, via Ethernet and the local testing 

option, were added to the protection schemes. The 66 kV high voltage feeder protective 

relay, the RED670 offer an Ethernet module, using the IEC61850 protocol, for 

communication with station bus equipment. The high voltage feeder schemes 

expenditure, in Table 4.4, included digital transducers, for current measurements. 

Table 4.4: 66 kV Feeder Protection schemes (4FZD3920) expenditure 

Description Quantity SAP no. Total cost 
(Rand) 

4FZD3920 schemes  2 0248558 294,210 

Supervisory binary output cards 
1MRK000614-AB for ABB RED670 relay 

2 0248568 6,490 

IEC 61850 remote engineering access 
Ethernet switch 

1 0248625 31,468 

END 

Digital transducers - universal, stand-alone 2 0183360 16,004 

Box scheme in a wooden crate for shipping 2 0248565 3,278 

Total   351,450 

 

B. Transformer Protection schemes (4TM7101) 

The economic expenses for the two 66/22 kV transformer bays, in Table 4.5, were 

for the two transformer protection schemes (4TM7101), restricted earth fault protection 

and the Ethernet communication interfaces. Two neutral electromagnetic couplers, with 

auxiliary transformers, are for the auxiliary supply of the substation.  
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Table 4.5: Transformer Protection schemes (4TM7101) expenses 

Description Quantity SAP number Total cost (Rand) 

4TM-7101 three winding 
transformer protection 
schemes (110V DC) 

2 0246026 278,428 

High impedance restricted 
earth fault protection relays 

2 0246035 50,740 

Ethernet communication 
interfaces supporting the IEC 
61850 PROTOCOL 

2 0246044 26,468 

Total Cost   355,636 

 

The single-phase fault current is restricted to 720 A, by the two 360 A, 22 kV neutral 

electromagnetic couplers with auxiliary transformers, installed on the 22 kV side of the 

transformer. The high impedance, high voltage and medium voltage restricted earth fault 

protection, is provided by the RMS 2V73K1 relay. 

C. Tap Changer protection schemes (4TC5200) 

The two tap changer protection schemes (4TC5200) expenditure, in Table 4.6, were 

allocated to the two 66/22 kV transformer tap changers. The REG-DA IED controls the 

voltage, by using the minimum circulating current principle.  

Table 4.6: Tap changer protection schemes (4TC5200) costs 

Description Quantity SAP number Total cost 
(Rand) 

4TC-5200 tap changer 
protection and control 
schemes (110 V DC) 

2 0246077 99,531 

REG-PED (ETHERNET) 
supervisory communication 
interface 

2 0246086 12,263 

© Central University of Technology, Free State



59 
 

Total    111,794 

 

D. Bus-zone scheme (4BZ5800) 

The Bus-zone scheme (4BZ5800) expenditure, in Table 4.7, was allocated to the high 

voltage bus-zone protection. High voltage bus-zone protection is in between the high 

voltage feeder bays and the transformer bays.  

Table 4.7: Bus-zone scheme (4BZ5800) expenses 

Description Quantity SAP 
number 

Total cost 
(Rand) 

Bus-zone Protection Scheme 
including cabinet 1 Buy out 44,385 

Single phase current transducers 2 224937 1,266 

Total   45,651 

 

E. Medium Voltage Protection scheme (4RF1101) 

Capital expenditure for equipment, in Table 4.8, was set aside for the four rural 

feeder protection schemes (4RF1100), on the outgoing 22 kV feeder bays. The four 

feeder protection schemes, in the control room, were mounted and earthed, as per the 

proposed control room layout drawings. 

Table 4.8: 22 kV Protection scheme (4RF1101) expenses 

Description Quantity SAP 
number 

Total cost 
(Rand) 

Rural feeder bays, including cabinet 
(4RF1100) 

4 0224944 152,596 

Communication ports, for MiCOM 
P145 relay.  

4 0224955 7,084 

Single phase current transducers 4 0224937 2,532 
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Total   162,212 

 

F. Metering expenses 

Costing was calculated for twelve new meters, as indicated in Table 4.9, for the two 

metering panels. The meters are for 66 kV statistical metering and 22kV tariff metering. 

The Smartoo GPRS modem is for remote downloading of statistical and revenue 

metering data. The GSM modem is connected onto the MV90 network. The Vecto II 

meters, in the quality of the supply module, were for the quality of supply measurements. 

Table 4.9: Metering expenditure 

Description Quantity SAP 
number 

Total cost 
(Rand) 

3MM02C meter modules 6 0175685 56,070 

Voltage Selection Module D 2 0175688 10,896 

GSM Cellular patch antenna 1 0246200 2,000 

ABB Vision meters 1A type A1700 
class 0.5 PB3KAARCTPRNC 

12 0242582 54,000 

Smartoo GPRS Modem 1 0223364 3,598 

Swing frame cabinets 2  22,416 

Quality of supply modules 2 0230644 9,908 

Total   158,888 

 

G. AC/DC supply 

The AC/DC supply expenses, in Table 4.10, were allocated to the dual control yard 

AC distribution board, the single-phase AC module, AC supply module, DC supply 

module, DC interface module and the AC/DC panel. 

Table 4.10: AC/DC supply charges 
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Description Quantity SAP 
number 

Total cost 
(Rand) 

Dual control yard AC distribution 
board 

1 185222 38,508 

The single phase AC modules 2 216215 7,306 

AC supply module 1 175669 3,387 

DC supply modules 2 216216 10,580 

DC interface module 1 185229 3,533 

AC/DC panel including cabinet 1 Buy out 3,269 

Total   66,583 

 

H. Direct Current expenditure 

Expenses for integrated battery chargers and NiCad battery cells, in Table 4.11, were 

allocated to the protection schemes and telecommunication equipment. 

Table 4.11: Direct Current equipment costs 

Description Quantity SAP 
number 

Total cost 
(Rand) 

110 V, 20 A integrated battery charger 1 0212980 71,519 

50 V, 30 A integrated battery charger 1 0212993 69,657 

88C SA TYPE 3, cabinet with fixed 
steps, suitable for 88 cells 

1 0256354 16,655 

40C SA Cabinet with Fixed Steps, 
Suitable for 40 cells 

1 0209840 16,655 

1.2 V, 150 Ah NiCad Cells 38 0256102 31,170 

1.2 V, 100 Ah NiCad Cells 85 0256104 102,191 

Suitable for 85-88 VTX1 L95-110 Ah, 
VTX1 M75-100Ah Cells (Link set) 

1 0256348 675.00 

Suitable for 85-88 VTX1 L140-185 
Ah, VTX1 M125-170Ah Cells (Link 
set) 

1 0256349 675.00 
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Total   309,197 

 
I. SCADA and Telecommunications 

The SCADA system and telecommunications expenses, in Table 4.12, were allocated 

to the supervisory control of  substation breakers and alarms, of  substation equipment. 

Table 4.12: SCADA and Telecommunications equipment expenses 

Description Quantity 
SAP 
number 

Total cost 
(Rand) 

DRTU 1 Buy out 220,000 

Polyphasor lighting arrester 1 4543 1,200 

Ten pair 80 way back mount frame 1 11136 180.00 

Corner reflector cr400 & brackets 1 11714 1,100 

Fixed label holder, 10 pair (16mm) 1 115067 6.00 

Fixed label holder, 10 pair (22mm) 1 115068 2.00 

LSA profile, 10pr disconnect module 1 164810 238.00 

Earthing kit for coaxial cable 1 165520 275.00 

Radio, mobile dash mount UHF 
TAIT T2015 1 174711 3,309 

MODEM, radio FFSK 
1200/2400/4800 baud 1 174778 750.00 

Sundries, Krone 1 Buy out 6,500 

Fibre Optic patch panel 1 Buy out 11,000 

KabelFlex underground cable 500 m Buy out 1,042 

Total   245,602 

 

J. Under-frequency Load Shedding scheme 
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Rotational load shedding scheme expenses, for under-frequency load-shedding, is 

shown in Table 4.13 below. Load shedding is a last resort, once no emergency reserves 

are available to maintain the frequency and voltage, at acceptable levels [98]. 

Table 4.13: Under-frequency Load Shedding scheme charges 

Description Quantity SAP 
number 

Total cost 
(Rand) 

4LS1101 Under-frequency Load 
Shedding protection scheme 

1 0404060 44,976 

4LS-1101 protection scheme module, 
with enclosure for transport 1 404076 1,636 

Total     46,612 

 

K. Control Plant cabling and glands 

The purpose of the multi-purpose substation design, was to further prevent 

decommissioning of all the Control Plant cabling, during substation upgrades, to spare 

costs. All of the control cables, in Table 4.14, were installed from the 66/22 kV 

transformer panels, 66 kV feeder panels and the 22 kV feeder panels, to the respective 

equipment in the substation yard. 

Table 4.14: Control Plant cabling and glands expenditure 

Description Quantity  SAP 
number 

Total cost 
(Rand) 

Cable 1kV 4c 4 mm² Cu BVX4ECV 6000 m 014475 129,000 

Cable 1kV 12c 2.5mm² Cu 
BVX12DCV 

1500 m 0014469 74,145 

Cable 1kV 19c 2.5mm² Cu 
BVX19DCV 

900 m 0014484 60,786 

Cable 1kV 4c 16mm² Cu BVX4HCV 300 m 0014476 15,726 
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Cable telephone 10pr 0.5mm diameter 
TPH10AX 

300 m 0014666 6,900 

CAT5E FTP (Shielded) Solid Core 
(4pair) 

400 m 0243301 5,600 

Gland No 1 & Shroud 336 0168367 5,796 

Gland No 2 & Shroud 96 0168279 2,415 

TPH 10AX Cable Gland No.1 160 0010910 3,755 

Total costs   304,123 

 

L. Junction boxes 

The voltage transformer and current transformer junction boxes installed, were for 

metering and protection functions. The costing for junction boxes, in Table 4.15, was 

allocated to the 66 kV feeder bays and the 66/22 kV transformer bays. 

Table 4.15: Junction box expenses 

Description Quantity SAP 
number 

Total cost 
(Rand) 

VRW20 junction boxes, with 8 
circuit VT insert 

4 0186950 28,188 

VRW20 junction boxes, with 6 
circuit CT insert 

4 0186961 22,543 

Total   50,731 

 

M. Total Control Technology expenses 

The total Control Technology expenditure, in Table 4.16 was, for the Control 

Technology designs, Control Plant schemes, Control Plant cabling as per cable block 

diagrams, installation and earthing of Control Plant panels, as well as the pre-

commissioning and commissioning of Control Plant panels. 
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Table 4.16: Total Control Technology expenses 

Description 
Total Control Technology Cost 
(Rand) 

Engineering design costs 263,000 

Secondary Plant material costs 2,543,265 

Installation and earthing of schemes 463,352 

Commissioning costs 974,532 

 Total 4,244,149 

 

4.4.2 Power Plant design expenditure 

The period from budget quote approval, to the connection of a Battery Energy 

Storage System, may be brought down to one year. The time frames, from load 

forecasting to the construction and commissioning of new high voltage networks and 

substation upgrades, may take up to a decade. The financial benefit for network upgrade 

deferral, lasts for approximately one year, due to energy demand. Thereafter, it becomes 

cost-effective to proceed with the network and substation upgrades [99]. 

A. Proposed 66/22 kV substation equipment 

For the substation equipment expenses, in Table 4.17, 132 kV current carrying 

equipment was used to save costs and time, during substation upgrades.  

Table 4.17: 66/22 kV substation equipment expenses 

DESCRIPTION SAP 
number 

Quantity Material 
costs 
(Rand) 

Isolator, hand operated, 132 KV, AC, 2500 A, 40 
kA 

0527586 8 567,434 

BKR, 132 kV, 3150 A, 40 kA, 3P, 110 VDC, 31 
mm/kV 

0218735 5 519,459                                            
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CT, 132 kV, 2500 A, 40 kA, 2P2M2B1600, 31 
mm/kV 

0180034 18 1,332,772 

66 KV SURGE ARRESTER, MCOV 84 kV,  31 
mm/kV 

0004562 12 43,252 

TRFR 20 MVA, 66/22 kV, OLTC, YNd1  0185767 2 10,096,332 

22 KV SURGE ARRESTER, MCOV 24 kV, 31 
mm/kV 

0400391 18 28,352 

NEC/NER/AUX TRFR 22 kV, 360 A, 31 
mm/kV 

0182732 2 164,789 

BKR KIOSK 22 kV, 1250 A, 20 kA, 31 mm/kV 0170218 6 623,351 

ISOLATOR 22 kV, 2500 A, 25 kA, hand operated 0012904 8 672,059 

ISOLATOR 22 kV, 400 A, 12 kA 0170064 24 40,368 

VT 1PH, 66 kV/110 V, 100/50 VA, 31 mm/kV 0180091 6 157,104 

VT 1PH, 22 kV/110 V, 100/50 VA, 31 mm/kV 0008746 6 79,336 

Total cost   4,228 276 

 

B. 66/22 kV substation steelwork 

Steelwork expenditure, in Table 4.18, was for standard equipment supports, designed 

according to distribution technology cells and modules. The labour and transport costs 

were incorporated in the quoted rate.  

Table 4.18: Supply and installation of substation steelwork costs 

DESCRIPTION SAP 
number 

Quantity Material 
expenses 
(Rand) 

6m Terminal supports pad type D-DT-5210 6 59,040 

132 kV Surge Arrestor brackets 0559307 2 13,996 

132 kV Manual Isolator lattice supports 0186033 8 136,144 

132 kV Circuit breaker tubular supports 0182927 5 72,680  

132 kV CT lattice supports 0182752 18 68,886 
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132 kV CT lattice support caps 0182753 18 3,780 

22 kV NECRT lattice supports 0185520 2 14,026 

22 kV Kiosk breaker lattice supports 0402740 6 34,650  

132 kV Twin tubular Busbar supports 0220125 4 108,244 

132 kV Busbar tubes AL 120mm x 4 mm 0206318 6 1,752 

22 kV Road crossing Tubular Busbar 
supports 

D-DT-5221 4 24,000 

22 kV Box structure column supports 0182776 20 265,000 

22 kV Box structure, Extension bays 0183871 10 471,670  

22 kV VT lattice support structures 0186034 2 7,654  

22 kV VT lattice support structure caps 0227047 2 4,502  

22 kV Manual isolator lattice supports 0182592 8 41,928  

21 m Lighting / Lightning Masts 0214509 6 293,076  

Total cost   1,621,028 

 

C. Proposed 66/22 kV substation foundations 

The expenses, in Table 4.19, were allocated to foundation material, foundation 

excavations, reinforcements, holding down bolts, backfilling and casting of foundations, 

according to distribution technology designs, including compaction around the 

foundations. Compaction is required to increase the stability of the foundations; the fill 

was compacted to a density of 93% Mod AASHTO. The expenses include shoring for 

foundations larger than 1.5 metres, where the subgrade tends to collapse. 

Table 4.19: Supply and installation of substation foundations expenses 

DESCRIPTION DDT 
number 

Quantity Material costs 
(Rand) 

6m Terminal support pad type 
foundations 

D-DT-5210 6 55,074 
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132 kV Isolator support foundations D-DT-5202 8 60,408 

132 kV Circuit breaker foundations D-DT-5200 5 60,725 

Medium Equipment Support 
foundations 

D-DT-5206 24 111,120 

132 kV Tubular Busbar Twin support 
foundations 

D-DT-5225 8 56,984 

22 kV Road crossing Tubular Busbar 
support foundations 

D-DT-5221 8 56,984 

22 kV NECRT foundations D-DT-5207 2 12,382 

22 kV Kiosk circuit breaker foundations D-DT-5216 6 30,534  

22 kV Isolator foundations D-DT-5205 8 24,760  

22 kV Box structure support 
foundations 

D-DT-5223 20 88,840  

21m Lightning/lighting mast 
foundations 

D-DT-5217 6 66,798 

Concrete Trenches (m) D-DT-5254 193 123,906 

Concrete Covers D-DT-5254 643 83,590  

Total cost   832,105 

 

D. Proposed 66/22 kV substation conductors 

The conductor stringing expenses, in Table 4.20, was carried out, by using Sections 

layout designs. The two incoming 132 kV line bays were strung with a Bull conductor. 

The 132 kV Busbars, have a 120 mm outer diameter aluminium tube. The medium 

voltage feeder bays were strung with a Hornet conductor.  

Table 4.20: Substation conductors expenditure 

Description SAP 
number 

Quantity Material costs 
(Rand) 

Cond, AAC Centipede 26.46 mm 
diameter  

14447 291 12,288 
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Cond, AAC Bull 38.25 mm diameter  14452 654 70,030 

 

Tube AL 120 mm outer diameter x 4 
mm W thick and 12 m long 

206318 6 1,752 

All Aluminium Conductor Hornet 
16.25 mm diameter ungreased  

14446 484 19,639 

Copper round 10 mm diameter 
conductor 

0400769 4815 72,090 

Conductor, flat 50 x 3 mm 0400772 568 87,607 

All Conductor Steel Re-enforced, Hare 
14.16 mm diameter ungreased  

14441 32 3,872 

Total costs   267,278 

 

4.4.3 Total modern substation design expenditure 

Total acquisition expenditure, in Table 4.21, include: contractor site establishment, 

transport of equipment from the factory to the substation, design expenses and material 

expenses. Futhermore, acquisition expenditures include: servitude of substation, survey, 

civil works, construction and commissioning of substations. 

Table 4.21: Modern 40 MVA substation cost breakdown 

Description 
Modern Substation expenditure 
(Rand) 

Engineering design 3,316,603 

Material  22,063,659 

Internal Contracts 97,252 

External Contracts 13,478,602 

Commissioning  693,493 
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Overheads (7.5%) 2,973,721 

IDC (0%) 0.00 

Land and Rights 31,170 

Total Project expenses 42,654,500 

 

4.4.4 132/22 kV Upgrade expenditure 

In Table 4.22, substation equipment upgrade expenses were allocated to 132 kV 

voltage carrying equipment, only. 

Table 4.22: Substation equipment upgrade expenses 

DESCRIPTION SAP 
number 

Quantity Material costs 
(Rand) 

S/ARR S/CL 132 kV, MCOV 84 kV, 31 
mm/kV 

0400380 12 82,988 

TRFR 20 MVA, 132/22 kV, OLTC, 
YNd1, 31 mm/kV 

0185670 2 10,746,632 

VT 1PH, 132 kV/110 V, 100/50 VA, 31 
mm/kV 

0180089 6 285,128 

Total   368,116 

 

Factors that contributed to substation upgrade expenses, in Table 4.23, were: 

• Labour expenses: Labour costs on the modern substation design was economical. 

Considering that the steelwork, as well as cabling and foundations, will not be 

decommissioned during substation upgrades. 

• Cable expenses: The control plant cabling, from the control room to the Primary 

Plant equipment, was re-used. The cable lengths, from the Control Plant schemes 

to the Primary Plant equipment, were designed for 132kV clearances. 
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• Land development costs: There are no additional Land Development expenses; 

the same servitude was re-used. 

Table 4.23: Total modern substation upgrade costs 

Description 
Modern Substation expenditure 
(Rand) 

Engineering  3,316,603 

Material  22,063,659 

Internal Contracts 97,252 

External Contracts 13,478,602 

Commissioning  693,493 

Overheads (7.5%) 2,973,721 

IDC (0%) 0.00 

Land and Rights 31,170 

Total Project Costs 42,654,500 

Upgrade equipment costs 368,116 

Upgrade labour cost 147,200 

Total 132/22 kV modern substation 
upgrade costs 

 

43,169,816 

 

4.5 Conclusion 

Energy storage systems were used to defer substation upgrades, as well as to avoid 

the cost of  coal and carbon emissions, by coal generating stations. Literature review and 

comparative cost analysis, revealed that Battery Energy Storage Systems and existing 

substation upgrade designs, are noticeably more costly, than the modern substation 

design for future upgrades.  
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Design, apparatus and construction expenses of  a standard 66/22 kV, 40 MVA 

substation, were approximately R 39,946,427. The decommissioning cost of an existing 

66/22 kV substation, was approximately R18,540,602, per substation. The 

decommissioning cost, escalated the cost to upgrade an existing 66/22 kV substation, to 

R 58,487,029. The minimum Battery Energy Storage System cost, was approximately 

R4,931,500, for a 1 MW power conversion system and R4,931,500, for a 1 MWh battery 

system. The modern substation designs, including upgrade costs, reduced capital 

expenditure and operational expenditure to R 43,169,816, during substation upgrades. 

Substation upgrade cost comparison was for calculating the most cost-effective design, 

for substation upgrades. 
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CHAPTER 5: CONCLUSION AND FUTURE 

RECOMMENDATIONS 

 

5.1 Conclusion 

The aim of this research was an investigation into the design of a new substation, 

using Micro-station V8i, minimizing cost and saving time, during future upgrades. 

Chapter 2 shows that, mobile unit substations may increase the operational flexibility of 

substations and consequently, ensure continuity of power supply to customers, during 

substation upgrades. Capacitor bank bays installed on substation busbars, improve power 

factor correction and assist with voltage upgrades, thereby, improving the overall power 

distribution efficiency.   

The challenge with renewable energy is that the amount and timing of energy 

production, by solar and wind plants, is unknown. BESS, with renewable generation, will 

improve the function of renewables and overall generation. The cost of un-served energy, 

incurred by power utilities is less, due to firm reliable supply. BESS will reduce 

environmental pollution (Environmentally friendly), defer substation upgrades, provide 

secure backup supply, improve network performance and create sufficient capacity on 

the medium voltage network, during peak periods. 

Chapter 3 presents the design methodology, using Micro-station V8i on existing 

substation upgrades and the modern substation designs, for future upgrades. The 

methods used to carry out substation upgrades, are costly and time-consuming. Network 
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upgrades require the interruption of steady supply to customers and this reduces the 

performance of the power system. 

Power Delivery Engineering, drawing modules for high voltage feeder bays and 

transformer bays, should be adhering equipment, for various voltage and insulation 

levels. On the 66 kV feeder bays and the 66 kV high voltage transformer bays, 132 kV 

safe working clearances were applied, reducing cost and labour, during substation 

upgrades.  

The modern substation solution, for future upgrades, will reduce the complexity 

of substation upgrades and improve network performance. All the safety clearances, 

foundations, conductor lengths, type of clamps used, steelwork and equipment heights 

for future upgrades, were taken into consideration, whilst designing the new 66/22 kV 

modern substation.  

The modern substation upgrade utilised less control technology cabling. The very 

same Control Plant schemes and cabling were re-used during substation upgrades. The 

yard AC Distribution box, with an AC distribution module, was not further than 30 

meters from any apparatus of the plant in the substation, to save on cabling costs. The 

4BZ5800 Busbar arrangement, provided discriminate isolation of the faulted bus-section, 

ensuring security and continuity of supply to customers. A steady supply to customers, 

will improve the performance of the network and reduce the cost of unserved energy.  

Chapter 4 provides the economic analysis, using Power Delivery Engineering 

modules, Bill of quantities, Power Office software and the Black Pearl (ACNAC) 

software, for detailed design costs. Design, apparatus and construction expenses of  a 

standard 66/22 kV, 40 MVA substation, were approximately R 39,946,427. The 

decommissioning cost of an existing 66/22 kV substation, was approximately 
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R18,540,602, per substation. The decommissioning cost, escalated the cost to upgrade an 

existing 66/22 kV substation, to R 58,487,029. The minimum Battery Energy Storage 

System cost, was approximately R4,931,500, for a 1 MW power conversion system and 

R4,931,500 for a 1 MWh battery system. Substation lifespan is approximately 50 years 

and the BESS life span, is approximately 20 years.  

The modern substation designs, including upgrade costs, reduced capital 

expenditure and operational expenditure to R 43,169,816, during substation upgrades. 

The optimum economic results obtained for substation upgrades, were by comparing the 

most cost-effective designs for substation upgrades, when upgrading high voltage 

networks, or deferring substation upgrades. 

 

5.2 Future recommendations 

The study has discovered the following future recommendations: 

• Methods of reducing the cost of Battery Systems and Power Conversion Systems 

for electricity utilities and large power users. 

• Recommending the use of condition-based maintenance on all Control Plant 

schemes and mobile substations, ensuring a steady supply to customers. 

• Cost-effective methods of deferring substation upgrades and high voltage network 

upgrades, should be explored. 
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