
i

INTELLIGENT SINGLE WORKER UTILIZATION

FOR COMPONENT RETRIEVAL FOR MULTIPLE

STATIONARY ASSEMBLY LINES

By

ELIE MICHAEL NGANDU

Thesis submitted in fulfillment of the requirements for the degree:

MASTER TECHNOLOGIAE: ENGINEERING ELECTRICAL

in the

School of Electrical, Electronic and Computer Engineering

of the

Faculty of Engineering, Information and Communication Technology

at the

Central University of Technology, Free State

Supervisor:

Dr. NJ LUWES

Bloemfontein

2019

© Central University of Technology, Free State

ii

DECLARATION OF INDEPENDENT WORK

I, Elie Michael Ngandu (Identity number: Student number:

) do hereby declare that this research project which has been submitted to

the Central University of Technology for the degree MASTER TECHNOLOGIAE:

ENGINEERING ELECTRICAL, is my independent work; and complies with the Code of

Academic Integrity, as well as other relevant policies, procedures, rules and regulations

of the Central University of Technology; and has not been submitted before by any

person in fulfilment (or partial fulfilment) of the requirements for the attainment of any

qualification.

Student Signature: Date: 2019 – 08 – 20

© Central University of Technology, Free State

iii

ACKNOWLEDGEMENTS

The Author would like to acknowledge the following individuals and institute, whom

without whom the completion of this dissertation would not have been possible:

• Firstly, to The God Almighty, because through Him all is possible, and He surely

works in mysterious ways!

• Dr NJ Luwes, Prof. HJ Vermaak, the CUT, and RGEMS, for the provision of

guidance, granting the opportunity to undertake the project, monitor assistance

and the work experience gained during the duration of the project.

• To JA Niemann for his assistance and advice during the development of this

project.

• To the CUT cyber junkyard 2012 team for their much-appreciated help in building

a section of this project.

• And to various fellow research students within the RGEMS research group.

© Central University of Technology, Free State

iv

ABSTRACT

Since the late 90s, the manufacturing industries have considerably evolved. Industries

are more frequently making use of automated systems to improve their productivity,

reduce the assembling time, and to be more competitive. This has led to an ever-

increasing necessity for the implementation of automated manufacturing system

capable of effectively handling all the required manufacturing processes.

This study aims to develop an automated manufacturing system that will be easy to

manage, maintain, and capable of efficiently using the resources to complete the

required manufacturing tasks. This experimental system consists of two assembly lines,

an AGV, and a storeroom. These parts have been developed as autonomous system

that collaborate with one another over a network link.

The assembly lines use a programmed algorithm that help them share information about

each task performed, negotiate on the usage of the autonomous guided vehicle (AGV)

and storeroom, and backup each other’s data. Each task performed by the assembly

line is a time-based simulation of the assembling process of the four parts required from

the storeroom. An AGV is used by the assembly line to collect parts from the storeroom.

It follows a black line on a white surface connecting the storeroom to the assembly lines

by using digital sensors. The storeroom uses an RFID system to store and retrieve parts

according to the request placed by the assembly lines.

The final results obtained show that the project’s main objectives to create a resource

sharing algorithm in a manufacturing system with autonomous assembly lines, AGV,

and storeroom, capable of negotiating and sharing information were successfully

achieved.

© Central University of Technology, Free State

v

TABLE OF CONTENTS

DECLARATION OF INDEPENDENT WORK ... ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

TABLE OF CONTENTS ... v

List of tables ... vii

List of figures ... viii

Acronyms and Abbreviations ... xi

1 INTRODUCTION .. 1

1.1 Problem statement .. 4

1.2 Research Goals and Objectives .. 5

1.2.1 Hypothesis .. 5

1.2.2 Specific Objectives .. 5

1.3 Layout of Dissertation ... 5

2 LITERATURE REVIEW .. 6

2.1 Assembly lines .. 6

2.1.1 Research done on assembly line optimization ... 7

2.1.2 Computer programming software .. 7

2.2 Single automated guided vehicle (worker) .. 10

2.2.1 Types of AGVs .. 11

2.2.2 AGV Guidance system .. 12

2.2.3 Line following sensors ... 13

2.2.4 LabVIEW ... 17

2.3 Storeroom ... 19

2.3.1 Automation .. 19

2.3.2 Radio frequency identification .. 21

2.3.3 Step Motors ... 22

2.4 Communication using Transmission Control Protocol/Internet Protocol

(TCP/IP) with socket .. 24

2.4.1 Basic LabVIEW’s TCP/IP Communication ... 25

2.5 Chapter conclusion ... 27

3 METHODOLOGY ... 28

3.1 System’s manager operation (or the system’s user) 28

3.2 The assembly line ... 30

© Central University of Technology, Free State

vi

3.2.1 Communication ... 32

3.2.2 Assembly line’s operation .. 41

3.3 The worker .. 55

3.3.1 Communication ... 58

3.3.2 Sensing ... 64

3.3.3 Decision and Action ... 69

3.4 The storeroom .. 83

3.4.1 Main process (PLC Main program) .. 85

4 TESTING AND RESULTS .. 91

4.1 The assembly line ... 91

4.1.1 Test ... 91

4.1.2 Results .. 93

4.2 The worker .. 97

4.2.1 Test ... 97

4.2.2 Results .. 98

4.3 The storeroom ...103

4.3.1 Operation and results ...103

4.4 System’s operation ..107

4.4.1 Test ..107

4.4.2 Results ...109

5 CONCLUSION...115

6 REFERENCES ..118

7 Appendixes ..120

7.1 Assembly line 1 log ..120

7.2 Assembly line 2 log ..124

© Central University of Technology, Free State

vii

List of tables

Table 1.1 List of tasks to be performed ... 3

Table 2.1 Main coding languages comparison .. 10

Table 3.1 Server's messages Decryption .. 61

Table 3.2 Client's messages Decryption ... 63

Table 3.3 List of components for IR sensor ... 64

Table 3.4 Sensors roles .. 66

Table 3.5 Sensors Connections .. 68

Table 3.6 List of AGV actions .. 69

Table 3.7 Optimum Velocity .. 75

Table 3.8 Decisions and Actions based on sensors input .. 77

Table 3.9 Decision and actions based on Assembly lines Commands and sensors .. 78

Table 3.10 AGV program reference full table .. 79

Table 4.1 Application buttons and description ..101

Table 4.2 example ...108

Table 4.3 Task list ..110

Table 4.4 Task list ..112

Table 4.5 Task list before sharing ..114

Table 4.6 Task list after sharing ...114

© Central University of Technology, Free State

viii

List of figures

Figure 1.1 System layout .. 2

Figure 2.1 Various coding languages [12] ... 8

Figure 2.2 Various industrial AGVs [22]... 11

Figure 2.3 Festo SOEG-RT-M12-PS-K-2L opto-electrical sensor 14

Figure 2.4 Direct incidence.. 15

Figure 2.5 Indirect incidence ... 16

Figure 2.6 Analog and Digital circuit for IR sensors ... 17

Figure 2.7 LabVIEW block diagram ... 18

Figure 2.8 various types of PLCs .. 20

Figure 2.9 Typical RFID system’s layout[33] ... 21

Figure 2.10 Basic step motor system [35] ... 23

Figure 2.11 TCP/IP network. ... 25

Figure 2.12 TCP Client Example with LabVIEW .. 26

Figure 2.13 TCP Server example with LabVIEW ... 26

Figure 3.1 Task list .. 29

Figure 3.2 System's Flow chart ... 31

Figure 3.3 Server Application and Client sockets .. 33

Figure 3.4 AVG and Storeroom communication server flowchart 35

Figure 3.5 Primary server flowchart ... 37

Figure 3.6 Client's basic operation flowchart ... 40

Figure 3.7 Assembly lines basic operation .. 42

Figure 3.8 Client State Machine .. 44

Figure 3.9 Case 0 & 9 Flowchart ... 46

Figure 3.10 Case 1 flowchart .. 47

Figure 3.11 Case 2 flowchart .. 47

Figure 3.12 Case 3 flowchart .. 49

Figure 3.13 Case 4 flowchart .. 51

Figure 3.14 Case 5 flowchart .. 52

Figure 3.15 Case 6 flowchart .. 53

Figure 3.16 Case 7 flowchart .. 54

Figure 3.17 Case 8 flowchart .. 54

Figure 3.18 NI LabVIEW Robotics Starter Kit[44] .. 55

© Central University of Technology, Free State

ix

Figure 3.19 the 9632 NI Single-Board RIO includes a real-time processor, FPGA, and

built-in digital and analogue I/O [45] .. 56

Figure 3.20 LabVIEW robotics Starter kit (connections diagram) 57

Figure 3.21 LabVIEW robotic starter kit fitted with Wi-Fi router 58

Figure 3.22 AGV communication function diagram ... 59

Figure 3.23 Communication flowchart ... 60

Figure 3.24 Digital IR sensor circuit ... 65

Figure 3.25 Connector P5, 3.3 V Digital I/O on NI sbRIO-9632/9632XT [46] 67

Figure 3.26 LabVIEW robotics Starter kit (block diagram) with sensors connection .. 68

Figure 3.27 AGV with line follower sensors ... 69

Figure 3.28 labView robotics 2014 .. 70

Figure 3.29 New labView robotics project window ... 71

Figure 3.30 Controller IP address window ... 71

Figure 3.31 robotics architecture window .. 72

Figure 3.32project name and destination window .. 73

Figure 3.33 project explorer window .. 73

Figure 3.34 project’s front panel .. 74

Figure 3.35 project’s block diagram ... 75

Figure 3.36 Motors control block diagram ... 75

Figure 3.37 AGV in its environment ... 76

Figure 3.38 AGV on the line .. 77

Figure 3.39 AGV at the cross line.. 78

Figure 3.40 AGV program flowchart .. 79

Figure 3.41 Case 1 flowchart .. 82

Figure 3.42 Storeroom system connection diagram .. 84

Figure 3.43 Main Storeroom’s PLC program flow chart ... 86

Figure 3.44 PLC program break down structure .. 87

Figure 3.45 Pick and store process flow .. 88

Figure 3.46 Pick and deliver process flow ... 89

Figure 3.47 Execute order process flow .. 90

Figure 4.1 Assembly line program User Interface .. 92

Figure 4.2 Start server message box .. 93

Figure 4.4 Server’s IP message box ... 93

Figure 4.5 Server connection user interface .. 94

© Central University of Technology, Free State

file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318206
file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318206
file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318206
file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318207
file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318207
file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318207
file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318208
file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318208
file:///C:/Users/eliem/Downloads/EM_Ngandu_MASTERS_Review_Draft_V0.2%20luwes.docx%23_Toc17318208

x

Figure 4.5 Assembly lines communication .. 96

Figure 4.6 AGV side view .. 98

Figure 4.7 Line following speed test results ... 99

Figure 4.8 Communication and commands testing application100

Figure 4.9 Line following AGV ..102

Figure 4.10 Automated storage and retrieval system ...103

Figure 4.11 storeroom system’s operation flowchart ..105

Figure 4.12 Storage allocation ...106

Figure 4.13 storage time chart. ..107

Figure 4.14 Master 1 & 2 Comparison ..111

Figure 4.15 Master 1 & 2 Comparison ..113

© Central University of Technology, Free State

xi

Acronyms and Abbreviations

AGV Automated Guided Vehicle

ALB Assembly Line Balancing

ASP Assembly Sequence Planning

IEEE Institute of Electrical and Electronics Engineers

IR Infra-Red

LAN Local Area Network

LED Light Emitting Diode

MOACO Multi-Object Ant Colony Optimization

OOP Object Oriented Programming

PLC Programmable Logic Controller

RFID Radio Frequency Identification

SUALBSP Setup Assembly Line Balancing and Scheduling Problem

TCP/IP Transmission Control Protocol/Internet Protocol

TSALBP Time and Space Assembly Line Balancing Problem

UDP User Datagram Protocol

© Central University of Technology, Free State

1

1 INTRODUCTION

Manufacturing and workshop practices have become important in the industrial

environment to produce products for the service of humanity. It is the backbone of any

industrialized nation [1].

A manufacturing system is a collection of integrated systems whose function is to

perform one or more processing and assembly operations on a starting raw material,

part, or set of parts [2].

In the late nineteenth and early twentieth century, the rapid indutrialisation of countries

led to a need to improve the productiveness of factories. Frederick Winslow Taylor was

a precursor in increasing workers' efficiency [3]. He believed that work could be

managed by using scientific methods. He planned methods for reducing the movements

required to complete the tasks, thereby increasing worker output. Taylor's principles

were ultimately used to create assembly lines, in which workers were placed along a

mechanized line. The product was put on the line, and each worker completed a single

and specialized task over and over again. Because the product came to the workers,

their work required very little movement. This is called the specialization of labor. The

man who made the assembly line famous was Henry Ford. The assembly line increased

efficiency but also minimized variety and originality. Automobiles before this point bare

the mark of expert craftsmen, and each was somewhat unique [4].

The manufacturing industries has significantly involved, and the ever increasing use of

machineries and automation have led to a rising need for an autonomous manufacturing

system that is capable of efficiently managing the tasks and resources at its disposal

[5].

This research proposes the development of a resource sharing algorithm for a

manufacturing system that consists of two independent assembly lines, an AGV, and a

storeroom. The two separate assembly lines will be connected to a local area network

(LAN) to communicate and share information about the task they perform. They will

negociate about the usage and the sharing of the resources (the AGV and the

Storeroom). The assembly lines will be refer as the assembly lines and the AGV as the

worker in the rest of this document.

Thus, this research focuses on the development of an algorithm that will allow the

assembly devices to negociate for and share resources.

© Central University of Technology, Free State

2

The case study set up consists of a worker that moves from the storeroom to either one

of the assembly lines to supply them with the parts needed for the predefined tasks that

they need to perform. The system layout is as follow:

Figure 1.1 System layout

Figure 1.1 above shows that there are three layers to this system. This system will be

composed of four different autonomous entities capable of communicating and

collaborating with each other to achieve a set of goals preloaded to the system by the

user at the initialization. The four different entities will be:

• Two assembly lines station

• An AGV worker

• The storeroom

Table 1.1 below is a detailed illustration of an assumption of all simulated tasks that the

system will be expected to perform. In this illustration, there are four different jobs, each

job has a level of priority, with level1 being the highest priority and level4 the lowest.

Those levels of priorities will be used by the two assembly lines to determine which one

of them gets to utilize the resources (AGV worker and Storeroom) first.

Each simulated job requires four parts to be completed, and each part has to be

retrieved from the storeroom and assembled at the master’s station.

© Central University of Technology, Free State

3

Table 1.1 List of tasks to be performed

Tasks Priority level Components needed Retrieval time in min. Assembling time in min. Total time in min.

PART2 2 10 12

PART3 3 15 18

PART3 3 15 18

PART4 4 20 24

72

PART1 1 5 6

PART2 2 10 12

PART2 2 10 12

PART3 3 15 18

48

PART1 1 5 6

PART1 1 5 6

PART2 2 10 12

PART3 3 15 18

42

PART1 1 5 6

PART1 1 5 6

PART2 2 10 12

PART2 2 10 12

36

JOB3 COMPLETION TIME IN MINUTES

JOB4 COMPLETION TIME IN MINUTES

JOB1

JOB2

JOB3

JOB4

LEVEL1

LEVEL2

LEVEL3

LEVEL4

JOB1 COMPLETION TIME IN MINUTES

JOB2 COMPLETION TIME IN MINUTES

© Central University of Technology, Free State

4

Table 1.1 above will be used in the master's software application to determine their

behaviours for cases where the two assembly lines start jobs simultaneously and

negotiate on the utilization of the resources (worker & the storeroom). The master with

the highest priority will use the worker first and send a message to the second assembly

lines as soon as the worker is no longer required. Subcases will also be developed for

which the worker can be released before the completion of the job. For example: if the

first master is performing the highest priority job and for that job, the first part required

is part 4 which takes four minutes to be collected from the storeroom and the twenty

minutes to be assembled which make a total time of twenty-four minutes. And if the

second master waiting for the worker is performing a job where the first three parts

required are part 1 which takes one minute to be collected and five minutes to be

assembled giving a total time of six minutes. Thus, the first master can release the

worker after the collection of its first required part and then be busy for twenty minutes

while the second master can use the worker for eighteen minutes and send it back to

the first master with the highest priority job.

1.1 Problem statement

In a manufacturing system where two assembly lines share one AGV to collect part to

complete a list of tasks, the system is faced with a problem where one assembly holds

priority on the AGV most of the time leaving the other waiting for a long time to complete

its task. In other words where manufacturing industries are always evolving. To be more

competitive industries are more frequently making use of automated systems to improve

their productivity and reduce the assembling time.

© Central University of Technology, Free State

5

1.2 Research Goals and Objectives

1.2.1 Hypothesis

A time-based priority algorithm could be implemented on the two assembly lines to

efficiently organize the negotiations and the sharing of the AGV for part collection from

a storeroom

1.2.2 Specific Objectives

The aim of this study are:

• to develop a manufacturing system that will consist of two autonomous assembly

lines, an AGV and a storeroom.

• To implement communication protocols between the assembly lines, AGV, and

the storeroom for information sharing.

• To develop an algorithm that allows the assembly lines to efficiently negotiate for

the utilization of the AGV and storeroom.

1.3 Layout of Dissertation

Chapter 1: an introductory chapter, which contains the problem statement, hypothesis

and the objectives of the project.

Chapter 2: a literature study done by the author, to acquire preliminary knowledge in

the field of study.

Chapter 3: a section containing a description of the method and steps followed to

complete the project.

Chapter 4: a section dedicated to the tests that were done, how they were done, and

the results obtained.

Chapter 5: A closing chapter to discuss test results as well as future work.

© Central University of Technology, Free State

6

2 LITERATURE REVIEW

This chapter encloses a literature study done to acquire preliminary knowledge in the

field of study. It highlights the different sections of the project and the selection of

components, programming software, styles of programming selected to complete the

research.

This research project a set for a small manufacturing system where a variation of tasks

have to be performed by two assembly lines that are supplied with parts from a

storeroom by an AGV.

This project proposes that the assembly lines (assembly lines), single AGV (worker)

and storeroom be individual intelligent systems. These different intelligent systems

would have the ability to make compromises and negotiate on which one of them will

get to utilize the worker efficiently and as timely as possible, improving assembly time

and throughput, thus improving the manufacturing capability of the plant. The project

consists thus of assembly lines (assembly lines), single AGV (worker) and storeroom.

Therefore, this chapter is structured in the following subsection:

• Assembly line: this section of the chapter covers the research done on assembly

line and the software used to program and simulate its functions

• The AGV: different types of AGVs are proposed in this section, and the

justification of the selected type of AGV and sensor are also discussed.

• The storeroom: in this part of the chapter, the author highlight some of the

components that are used to make an effective automated storage and retrieval

system

• The communication: this is an essential part of research, and the author

highlights the importance of reliable communication link between the different

section of this research project

2.1 Assembly lines

An assembly line is a manufacturing method which is a crucial part of industry. It can be

regarded as “a manufacturing process that is used in the mass production of

standardized products, such as automobiles”. An assembly line is often composed of

numerous stations organized in a serial manner and connected by a material handling

system, such as a conveyor belt and AGVs. Parts of the product are sequentially

launched down the line and are moved from station to station by the material handling

system. Each station is allocated an identical time, known as the cycle time, to complete

one or more tasks on each product.[6]

© Central University of Technology, Free State

7

2.1.1 Research done on assembly line optimization

This section highlights different types of researches that have been done to optimize

the operation of assembly lines. These researches are mainly focused on solving

Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) that often

occur during the production and development on manufacturing goods. Researcher in

the following articles use soft computing approaches to solve ALP and ALB.

- Özcan Mutlu, Olcay Polat, and Aliye Ayca Supciller developed an Iterative

Genetic Algorithm that is aimed at solving the assembly line worker assignment

and balancing problem. They have adopted modified bisection search, genetic

algorithm and iterated local search to obtain search diversity and efficiency [7].

- Abdolmajid Yolmeh and Farhad Kianfar proposed a hybrid genetic algorithm to

solve the setup assembly line balancing and scheduling problem (SUALBSP). A

dynamic programming procedure is used to hybridize the algorithm that

determine the assignment of task to assembly station [8].

- Abdolreza Roshani, Parviz Fattahi, Abdolhassan Roshani, Mohsen Salehi and

Arezoo Roshani addressed the cost-oriented two-sided assembly line balancing

problem. They have used a mix integer programming with a heuristic algorithm

based on simulated annealing approached to optimally solve this problem on a

medium and large-scale [9].

- Juan Rada-Vilela, Manuel Chicab, Óscar Cordón and Sergio Damasb

researched the Time and Space Assembly Line Balancing problem (TSALBP).

They have compared the performance of height different Multi-Objective Ant

Colony Optimization (MOACO) algorithms on ten well-known problem

illustrations to resolve such an intricate problem [10].

Many more researches have been done on assembly line optimization and balancing.

Therefore, the assembly lines in this project will be autonomous and computer based

where all the tasks and processes will be time-based simulation executed by the

programming software researched in section 2.1.1 of this chapter.

2.1.2 Computer programming software

Computer programming is simply defined as the process of writing instruction that a

computer can execute [11]. The instructions are usually written using software called

programming or coding language. The Figure 2.1 below shows various types of coding

languages and their ranking according to the IEEE programming spectrums 2014

ranking.

© Central University of Technology, Free State

8

Figure 2.1 Various coding languages [12]

Out of the coding languages shown above in Figure 2.1 above, the author will only

consider and compare the main programming languages that are currently being used

in the area of computer application development. Those coding languages include C

sharp (C#), Java, and Python

2.1.2.1 C Sharp (C#)

C# is a simple, modern, object-oriented, and type-safe programming language that

combines the high efficiency of fast application development languages with the raw

power of C and C++ [13]. The language provides support for software engineering

principles like strong type examination, array bounds testing, detection of attempts to

utilise uninitialized variables, and automatic garbage collection. Software robustness,

durability, and programmer productivity are important. It is intended for developing

software components suitable for deployment in distributed environments [13].

C# is envisioned to be appropriate for writing applications for both hosted and

embedded systems, ranging from the very large that use refined operating systems,

down to the very small having dedicated functions [13].

Although C# applications are envisioned to be efficient on memory and processing

power necessities, the language was not intended to compete directly on performance

and size with C or assembly language.

2.1.2.2 Java

The Java coding language is a general-purpose, concurrent, class-based, object-

oriented language. It is intended to be simple enough that programmers can reach

© Central University of Technology, Free State

9

fluency in the language. It is related to C and C++ but is structured slightly differently,

with some aspects of C and C++ omitted and a few notions from other languages

included. [14].

The Java coding language is a relatively high-level language and strongly typed. It has

compile time usually consists of converting programs into a machine-independent byte

code representation. Its run-time activities include loading and linking of the classes

required to execute a program, optional machine code generation and dynamic

expansion of the program, and actual program execution[14].

2.1.2.3 Python

Python is an interpreted, interactive, object-oriented programming language. It provides

high-level data structures such as list and associative arrays (called dictionaries),

dynamic typing and dynamic binding, modules, classes, exceptions, automatic memory

management, etc... It has a remarkably straightforward and elegant syntax and yet is a

powerful and general purpose programming language. It can be run on practically any

modern computer. A python program is compiled automatically by the interpreter into

platform independent bytecode which is then executed [15].

Python is modular by nature. The Python distribution includes a diverse library of

standard extensions (some written in Python, others in C or C++) for operations ranging

from string manipulations and Perl-like regular expressions, to Graphical User Interface

(GUI) generators and including web-related utilities, operating system services,

debugging and profiling tools, etc. New extension modules can be created to extend the

language with new or legacy code. There are a substantial number of extension

modules that have been developed and are distributed by members of the Python user

community [15, 16].

© Central University of Technology, Free State

10

Table 2.1 Main coding languages comparison

Language Object

oriented

programming

Multi-

threading

Event

driven

TCP socket

programming

C# ✓ ✓ ✓ ✓

Java ✓ ✓  ✓

Python ✓ ✓  ✓

The above table is a comparison that the author uses to select the best suited coding

language for the development of this study. It compares the main attributes of a coding

language that are often used during the software development process.

2.1.2.4 Programming style

2.1.2.4.1 Object oriented programming

Object-oriented programming (OOP) is a programming pattern that represents the

concept of "objects" that have data fields (attributes that describe the object) and

associated processes known as methods. Objects, which are general illustrations of

classes, are used to interact with one another to design applications and computer

programs [17].

It is a programming style that focuses on the use of objects to design and build

applications. An object can be comprehended as the model of the concepts, processes,

or things in the real world that are significant to the application [18]

2.2 Single automated guided vehicle (worker)

An AGV is a robot that uses markers or wires in the floor to navigate itself in a particular

environment. It may also use vision, magnets, or lasers for navigation depending on its

application, refer to Figure 2.2. They are frequently employed in industrial applications

to move materials from one place to another a manufacturing facility or a storeroom

[19]. AGVs increase productivity and reduce costs by facilitating the automation of a

manufacturing plant or storeroom. AGVs have a wide variety of applications in which

they are mostly used to transport many different types of material including pallets, rolls,

racks, carts, and containers [20] [21].

© Central University of Technology, Free State

11

Figure 2.2 Various industrial AGVs [22]

Figure 2.2 above shows an example of the various forms of industrial AGVs.

2.2.1 Types of AGVs

The following are the existing types of AGVs:

2.2.1.1 AGVS Towing Vehicles

It is usually a towing vehicle that can also be called an automated guided tractor. It is

often composed of flatbed trailers, pallet trucks, or custom trailers. This form of AGV is

commonly considered as the first type of AGV introduced to the industrial world. It is

generally used for large volumes (>450 kg) and long moving distances (>300m) [20].

2.2.1.2 AGVS Unit Load Carriers

This type of AGV is equipped with a powered or non-powered roller, chain or belt deck,

or custom deck for carriage of individual unit load onboard the vehicle by Pallet truck,

forklift truck, automatic loading/unloading equipment, etc. [20].

2.2.1.3 AGVS Pallet Trucks

These AVGs are generally used in distribution tasks with a load capacity ranging from

450-900 kg and usually has a maximum speed that is less than 60m/min. The pallet

truck can be loaded onto the AGV either manually or automatically. This particular kind

of AGV does not need a special device for loading except that the loads should be on a

pallet. It is restricted to floor level loading and unloading with palletized load [20].

© Central University of Technology, Free State

12

2.2.1.4 AGVS Forklift Trucks

This type of AGV is usually very costly and only used where complete automation is

required. It has the ability to pick up and drop palletized load both at ground level and

on stands. It can accurately place its fork according to load stands with different heights

[20].

2.2.1.5 AGVS Light Load Transporters

This type of AGV is used to dispense packs/parts between storage and multiple

workstations with a standard speed 30m/min. It is commonly used to handle light and

small loads/parts over moderate distances with a load capacity that is less than 225 kg.

They are usually used for manufacturing areas with restricted space because of its

turning radius 0.61m making it ideal for these type of applications [20].

2.2.1.6 AGVS Assembly-Line Vehicles

This type of AGV is slightly similar to a light load transporter, and it is used for serial

assembly processes. The AGV travels from one station to another, and subsequent

assembly operations are performed. It offers flexibility for the manufacturing processes

by dropping expenses and making it easy to install. However, a sophisticated computer

control and extensive planning are essential to integrate the system [20].

2.2.2 AGV Guidance system

The aim of AGV guidance system is to keep the AGV on a predefined path. One of the

main advantages of AGV is that it is simple to adjust by making use of the guidance

system for altering the guide path at low cost compare to conveyors, chains, etc.

An additional benefit is that guide tracks are flexible to allow intersection on different

paths because usually, a guide path does not obstruct another system. Various types

of guidance systems can be selected by considering the type of AGV selected, its

application, requirement, and environmental limitation [23]. The different kinds are as

followed:

• Wire-guided: An antenna on the AGV follows an energized wire is rooted

along the guide path [23].

• Guide tape: A tape is used for the guide path, and the AGV is fitted with the

suitable guide sensor to follow the path of that tape. The tapes can either be

magnetic or collared [23].

© Central University of Technology, Free State

13

• Inertial: The AGV uses sonar system or obstacle avoidance sensor to follow

a guide path that is programmed on its microprocessor [23].

• Infrared: Reflectors are attached on the top of the AGV and infrared light

transmitters are used to detect the position of the vehicle [23].

• Laser: Accurate positioning of the AGV can be obtained by using a laser

beam to scan wall-mounted bar-coded reflectors [23].

• Teaching type: AGV learns the guide path by moving the required route and sends

the information about every step taken to the host computer [23].

2.2.3 Line following sensors

These are the different types of sensors that could be used for a line following robot:

2.2.3.1 MGS1600 magnetic sensor

The MGS1600 is a sensor that is capable of detecting accurately and reporting the

location of a magnetic field along its horizontal axis. This sensor is mostly used for line

following robotic applications, using a magnetic tape to form a track guide on the floor.

It uses innovative signal processing to measure its lateral distance from the centre of

the track precisely, with millimetre resolution, resulting in nearly 160 points end to end.

The information related to the position of the tape can be output in numerical format on

the sensor's RS232 or USB ports [24]

Furthermore, this sensor will detect and report the presence of magnetic indicators that

can be placed on the left or right side of the path. The sensor is equipped with four LEDs

for easy monitoring and diagnostics [24].

2.2.3.2 Opto-electrical sensors

Optoelectronics is defined as “the study and application of electronic devices that

source, detect and control light.” The opto-electrical sensor can be used to identify

precisely light reflecting object from the non-reflecting object, example a Wight tape on

a dark floor. Therefore, these sensors are also perfect for line following robotic

applications where a light reflecting tape can be used the guide for the robot to follow.

The SOEG-RT-M12-PS-K-2L opto-electrical sensor by Festo is ideal for line following

robotic applications. It has an operating voltage ranged from 10 to 30 V with a max

output current of 200mA. It has a switching frequency that is up to 1kHz, and an

operating temperature ranged between -25º and 55ºC. It is a retro-reflective sensor with

a sensitivity range that can go up to 1.5m [25].

© Central University of Technology, Free State

14

Figure 2.3 Festo SOEG-RT-M12-PS-K-2L opto-electrical sensor[24]

Figure 2.3 above is a drawing picture of the Festo SOEG-RT-M12-PS-K-2L opto-

electrical sensor.

2.2.3.3 Infrared line following sensor

In this section is discussed, what is an Infrared sensor ad its working mechanism.

2.2.3.3.1 What is an IR sensor? [26]

An infrared sensor is used to detect infrared radiation that falls on it. Depending on the

application, there are various kinds of IR sensors that can be used. The following are

some example of different types of IR sensor and their use:

• Proximity sensors: Used in Edge Avoiding Robots and Touch Screen phones

• Contrast sensors: Used in Line Follower Robots

• Obstruction counters/sensors: Used for counting goods and in Burglar Alarms.

2.2.3.3.2 Working Mechanism

An IR sensor is essentially a device which is made of a pair of an IR LED and a

photodiode. The IR LED produces IR radiation that is received by the photodiode and

intensity of that reception dictates the output of the sensor. Different applications of the

infrared sensor are developed depending on the way and amount of radiation from the

IR LED reaches the photodiode.

Figure 2.4 below shows the IR LED placed right in front of the photodiode in such a way

that nearly all the radiation emitted reaches the photodiode. This makes an invisible line

of infrared radiation between the IR LED and the photodiode. This mechanism is used

in burglar alarms and object counters.

© Central University of Technology, Free State

15

Figure 2.4 Direct incidence

Figure 2.5 below refers to a setting where the IR LED and the photodiode are placed

side by side. All the IR radiation from the IR LED will be emitted away from the

photodiode. This mechanism can be used to sense reflective objects or colours

intensity. For instance, if a reflective object, (White or some other light colour), is placed

in front of the IR LED and photodiode, then most of the radiation will get reflected from

the object to the photodiode. If a non-reflective object is placed in front of the sensor,

(Black or some other dark colour), then it will absorb most of the radiation, and none of

it will be sensed by the photodiode. It is comparable to there being no surface (object)

at all.

Figure 2.6 refers to circuit design used for IR sensors. They can be analog or digital:

o Analog sensor: they give an analog output voltage ranging from 0 to the voltage

supply to the circuit (+5V for the circuit in Figure 2.6). That voltage is relative to

the amount of radiation that the photodiode receives.

o Digital sensor: they give an output of 0 when there is no radiation reflected on

the photodiode and 1 when the radiation is reflected onto the photodiode.

© Central University of Technology, Free State

16

Figure 2.5 Indirect incidence

These different settings are shown in Figure 2.4 and Figure 2.5 are the basis for the

many different types of IR sensor mention bellow:

• Proximity Sensors: uses Figure 2.5 setting. The amount radiation reflected back

on the photodiode by an object is used to determine how close that object is from

the sensor. The closer it is, the higher the intensity of the radiation on the

photodiode will be.

• Line Follower Robots: uses Figure 2.5 setting. The IR LED generates IR radiation

that in the standard state gets reflected to the sensor from the white surface

around the black line. But, the instant that IR radiation falls on the black line, the

radiation gets totally absorbed by the black colour, and there is no reflection of

the IR radiation going back to the sensor module.

• Item Counter: uses Figure 2.4 setting. Every time an item obstructs the invisible

line of IR radiation, an increment in the value of a stored variable in a

computer/microcontroller which could be displayed by LEDs, Seven Segment

Displays, and LCDs etc. These counters are often used to count products/parts

on conveyor belts that are loaded/unloaded from large factories.

• Burglar Alarm: uses Figure 2.4 setting. Here, the IR LED is placed on one side

of the door frame, and the photodiode on the other side, in such a way the IR

© Central University of Technology, Free State

17

radiation emitted by the IR LED falls on the photodiode directly. As soon as a

person obstructs the IR path, the alarm goes off.

Figure 2.6 below refers to the circuit diagram often used to build IR sensor. Depending

on its application, the IR sensor can either be analog or digital. The Analog IR sensor

gives out an output that ranges between zero and the maximum supplied voltage (5V

for the circuit in Figure 2.6). The digital sensor provides an output of one when a

significant amount of radiation falls on the photodiode and zero when there is no IR

radiation falling the photodiode.

Figure 2.6 Analog and Digital circuit for IR sensors

The digital circuit in Figure 2.6 uses an op-amp as a comparator to change the analog

voltage from the first part of the circuit to a digital signal. R3 is used the set the sensitivity

of the IR sensor. The op-amp compares the voltage from the none-inverted (+) input

that is connected to the analog voltage coming from the IR sensor to the voltage set on

R3 connected to the inverted input of the op-amp (-). And if the positive voltage is greater

than the negative voltage, the op-amp will give Vcc as the output and zero otherwise.

These types of IR sensor when used for a line-follower robot, are usually required to be

placed at least 1 cm from the line that needs to be followed.

2.2.4 LabVIEW

NI LabVIEW software is utilized for a wide diversity of applications and industries. It is

a highly creative development environment for producing custom applications that

interact with real-world data or signals in fields such as science and engineering.

The net result of using a tool such as LabVIEW is that advanced quality projects can be

completed in less time with a smaller number of people involved.

Across different industries, the tools and components needed to succeed vary widely,

and it can be an overwhelming task to find and use all these various items together.

LabVIEW is exceptional because it makes this wide variety of tools accessible in a

© Central University of Technology, Free State

18

single environment, making certain that compatibility is as simple as drawing wires

between functions.

LabVIEW itself is a software development environment that comprises several

components, a number of which are required for any type of test, measurement, or

control application [27] [28].

Figure 2.7 LabVIEW block diagram

Figure 2.7 above is the block diagram for LabVIEW, it shows the different blocks that

make out the national instrument LabVIEW software.

G
PROGRAMMING

HARDWARE
SUPPORT

ANALYSIS AND
TECHNICAL CODE

LIBRARIES

UI COMPONENTS
AND REPORTING

TOOLS

TECHNOLOGY
ABSTACTION

MODELS OF
COMPUTATION

© Central University of Technology, Free State

19

2.3 Storeroom

The development of this study is set for a small manufacturing system where certain

tasks have to be performed repeatively by two assembly lines that are supplied with

parts from a storeroom by an AGV. Therefore, the storeroom provides all the necessary

materials needed to maintain a smoothly operating manufacturing environment. Extra

or lack of spares, unmanaged inventory and inefficient processes not only add cost, but

also can negatively impact your production environment and operating budget.

Therefore, a proper storage management system will significantly improve the

effectiveness the manufacturing industry by improving the collection time and storage

process. The storeroom will be an automated storage management system. In order to

complete this section of the project, there are different aspects there are essential its

successful completion.

1. The first aspect to look at is automation. A brief definition of what it is and what

will be used to incorporate automation into this project.

2. The second aspect is the identification process using radio frequency

identification

3. The third aspect is the motion control by making use of stepper motor for their

precision to replace forklift movements.

2.3.1 Automation

Automation is the usage of information technologies, control systems and machines to

enhance productivity in the production of goods and delivery of services. The reason for

applying automation is to increase production, and/or quality beyond what is presently

possible with human labour levels so as to realize predictable quality levels [2]. In the

scope of industrialization, automation is a step beyond mechanization. While

mechanization offers human operators with machinery to support them with the

muscular requirements of work, automation significantly decreases the need for human

physical and mental requirements but with increasing load capacity, speed, and

repeatability. Automation plays an ever more important role in the world economy and

in daily experience [2].

2.3.1.1 Programmable Logic Controller (PLC)

A Programmable Logic Controller, PLC or Programmable Controller is a digital

computer used for automation of electromechanical processes, such as control of

machinery on factory assembly lines, amusement rides, or light fixtures [29, 30]. Many

© Central University of Technology, Free State

20

industries and machines are more and more making use of PLCs. Unlike general-

purpose computers, it is intended for multiple inputs and output arrangements, extended

temperature ranges, resistance to electrical noise, and can withstand vibration and

impact [31].

Programmable Logic Controllers were first implemented as a replacement for automatic

control systems that often used tens and hundreds (maybe even thousands) of hard

wired relays, motor driven cam timers and rotary sequencers [31].

Figure 2.8 various types of PLCs

Figure 2.8 above shows various types of industrial PLCs.

2.3.1.2 Operation of a PLC

A Programmable Logic Controller is a device that is programmed to perform a series of

events. These events are triggered by inputs received at the programmable logic

controller through delayed actions such as time delays or counted occurrences. Once

an event is triggered, it actuates in the outside world by switching on or off electronic

control gear or the physical actuation of devices. A PLC will continually loop through its

user defined program waiting for inputs and giving outputs at a specific programmed

times [32].

2.3.1.3 Programming

PLC programs are usually written in a special software on a computer, then downloaded

over a network to the PLC. The program is saved in the PLC non-volatile flash memory.

Often, a single PLC can be programmed to replace thousands of relays.

© Central University of Technology, Free State

21

PLCs are often programmed using standards-based programming languages. A

graphical programming notation called Sequential Function Charts is available on

certain programmable controllers. Originally most PLCs use Ladder Logic Diagram

Programming, a model which emulated electromechanical control panel devices (such

as the contact and coils of relays) which PLCs replaced. This model remains common

today.

2.3.2 Radio frequency identification

Radio Frequency Identification (RFID) is a technology that is commonly used identify

objects or people automatically. RFID systems consist of tags containing electronically

stored information and readers that use radio frequencies to transfer identification data

wirelessly from a tag to a reader on request of a querying reader [19]. An RFID tag is a

small device containing of a microchip with limited functionality, data storage, and an

antenna to wirelessly communicate with the readers. Depending on the powering

technique, RFID tags can be passive, active or semi-active. In general passive tags

have no on-board power and are powered from the signal of the interrogating reader.

Active tags contain batteries for their transmission. Each RFID tag contains a unique

identifier to serve as object identity so that this identity can be used as a link to relate

information about the corresponding object. [33].

Figure 2.9 Typical RFID system’s layout[33]

© Central University of Technology, Free State

22

Figure 2.9 above is an illustration of a typical RFID system’s layout. It shows how the

RFID tags are activated by the antenna, read by the reader, and finally stored in a

database by making used of a secured link between the computer and the RFID reader.

2.3.2.1 Uses

RFID systems are used for the following:

• General transport (logistics), tracking a package, parcel; replacing barcodes

• Tracking vehicles for road toll

• Many countries have started using RFID chips in passports

• Identifying animals; used for tracking pets, but also for research, for example on

turtles.

• Keys for vehicles. The vehicle key has an RFID tag inside; only the key with the

right RFID tag can start the vehicle (this makes copying vehicle keys harder).

Also used for locking/unlocking vehicles from a distance.

• Contactless identity cards, for example to regulate entry into certain areas; also

used for ticketing, or public transport

2.3.3 Step Motors

The stepper motor is defined as an electromechanical device which actuates a train of

step movememnts of shaft in response to a train of input pulses. The step movement

may be angular or linear [34]. With the assistance of a stepper motor controller, step

motors convert electrical energy into accurate mechanical motion. It rotates in a specific

incremental distance per each step. The number of steps that are executed controls the

degree of rotation of the motor’s shaft. This characteristic makes step motors

exceptional for positioning applications [35].

The stepper motor controller can very accurately control how far and how fast the

stepper motor will rotate. The number of steps the motor executes is equal to the

number of pulse commands it is given by the controller. A stepper will rotate a distance

and at a rate that is proportional to the number and frequency of its pulse commands

[35].

© Central University of Technology, Free State

23

2.3.3.1 Basic Step Motor System

Figure 2.10 Basic step motor system [35]

Figure 2.10 is a diagram that shows a classic step motor based system. The stepper

motor controller, step motor driver and motor must all be present in one form or another.

Each component’s performance will have an effect on the others [35].

2.3.3.2 Breakdown of Step Motor Benefits:

The stepper motor has the following benefits:

• Accuracy & Repeatability – Ability to position accurately.

• Responsiveness & Quick Acceleration – Step motors have low rotor inertia,

allowing them to get up to speed quickly. This makes step motors an excellent

choice for short, quick moves.

• Excellent torque for their size – Step motor has the highest torque per cubic inch

of any motor.

• Positioning Stability – Unlike other types of motors, step motors can be held

completely motionless in their stopped position.

• Cost and Reliability – Step motor technology is reliable and proven. It is the most

cost effective method of precision position control.

© Central University of Technology, Free State

24

2.4 Communication using Transmission Control Protocol/Internet

Protocol (TCP/IP) with socket

A computer network is made up of machines interconnected by communication

channels. These machines are called hosts and routers. The Hosts are computers

running applications that are dependent on the network such as the Web browser [36].

A communication channel is a way to transmit sequences of bytes from one host to

another; it could be a broadcast technology like Ethernet, a dial-up modem connection,

or something more sophisticated [37].

Information transmitted over the network is a sequence of bytes that are constructed

and interpreted by programs. These byte sequences are usually named packets. The

packet contains control information that the network uses to do its job and occasionally

also includes user data. An illustration will be information about the packet’s destination.

Routers use such control information to figure out how to forward each packet [37].

Protocol can be considered as an agreement about how packets are traded by

communicating programs and what they mean. It tells in what way packets are

organised—for instance, where the destination information is situated in the packet and

how big it is—as well as how the information is to be interpreted [37].

The Implementation of a useful network necessitates that a lot of diverse problems be

solved. To keep things manageable and modular, different protocols are designed to

address different sets of problems. TCP/IP is one of such collection of solutions,

sometimes called a protocol suite. The main protocols in the TCP/IP family are the

Internet Protocol (IP), the Transmission Control Protocol (TCP), and the User Datagram

Protocol (UDP) [37].

Transmission Control Protocol/Internet Protocol (TCP/IP) is the rudimentary

communication protocol or language of the Internet. It can similarly be used as a

communications protocol in a private network (either an intranet or an extranet). A copy

of the TCP/IP program is provided to each computer when it set up with direct access

to the internet. That program is used by each computer on the internet to send or receive

information [38].

© Central University of Technology, Free State

25

Figure 2.11 TCP/IP network.

Figure 2.11 illustrates the interactions between the applications, protocols, and the

sockets API in the hosts and routers, along with the flow of data from one application

(using TCP) to another[37].

A socket can be an abstraction over which an application can receive and send data. It

allows the application to “connect” to a network and communicate with other

applications that are also connected in to the same network. Information written to the

socket by an application on one host can be read by an application on a different host,

and vice versa[37].

2.4.1 Basic LabVIEW’s TCP/IP Communication

TCP/IP communication in LabVIEW offers a simple user interface that conceals the

complexities of guaranteeing consistent network communications. LabVIEW TCP/IP

functions are located on the Functions » Communication » TCP palette. The

communication process usually involves opening the connection, reading and writing

the information, and closing the connection [39].

Most communication always uses the client as a processor that initiates the connection

to the server. With TCP/IP communication/connections, a computer can be able to

function either as the server or the client. Figure 2.12 diagram below is a simple example

of a client application that starts a connection to a remote server with TCP Open

Connection. The server listens for remote connections and responds appropriately.

© Central University of Technology, Free State

26

Figure 2.12 TCP Client Example with LabVIEW

LabVIEW allows users to develop a custom application for TCP/IP with client and

server. This application can also be established with an access control server that uses

the remote address output value of the TCP listen VI to determine if the remote client

has permission to access the server.

Figure 2.13 TCP Server example with LabVIEW

The following are the most important labview function blocks use for TCP

communication.

• TCP Open Connection

• TCP read

• TCP write

• TCP close connection function

Detailed explanations, illustrations, and example of the above function blocks can be

found in the NI LabVIEW user manual [40].

© Central University of Technology, Free State

27

2.5 Chapter conclusion

This chapter covered the study and research for the potential hardware, software, and

components that could be utilized in the implementation of this project. In the next

chapter, the author will use some of these materials to develop the project proposed in

this document. It will show how the hardware and components that are used and

connected to the software selected. It also shows how the software are used to monitor

and control the system.

© Central University of Technology, Free State

28

3 METHODOLOGY

In this chapter, the author will cover and describe the method and process followed to

build and program the different sections of this research project. Each of these

subsections will discuss their contribution to the main objective of the creation of a

resource sharing algorithm.

Referring to Figure 1.1, the system is divided into three separate subsections, which

include:

• The master: in this section, the author illustrates the process that was followed

to program the different functionalities of the assembly lines. It also contains the

communication procedure used to share commands and information between

the assembly lines and the resources.

• The worker: this section focuses on the method used to build and program an

autonomous and accurate line follower robot. It also shows the different steps

used to establish and maintain a proper communication line between the AGV

and the assembly lines.

• The storeroom: this part of the chapter emphasizes on the development of an

autonomous storage system capable of storing and retrieve parts according to

their properties and specification.

3.1 System’s manager operation (or the system’s user)

Although this system is made of autonomous parts, it still needs a system’s manager to

get it started. The system’s manager role is as followed:

• Write the list of tasks to be perform by the assembly lines

The user writes a specific list of tasks that he wants the assembly lines to

perform. Each one of the list has to be saved as text file with the following name

“list jobs.txt”. The task list only contains the name of the tasks without any other

description. When the list is loaded to the assembly lines, the assembly lines will

use these names to collect all the need information about each task from a task

detailed Database that they contain.

© Central University of Technology, Free State

29

Figure 3.1 Task list

Figure 3.1 above is an example of the list of tasks written in Microsoft Notepad

and it will be loaded into the assembly lines in the next step.

• Load that list onto the assembly lines

After writing the task list, the user has to load it into a specific directory on the

assembly lines computer which is “C:\Program Files\Assembly Line\Files”.

Once started, the assembly line will look for the task list in that directory to create

a full list of all the tasks, parts and the time it takes to assemble them.

• Start the assembly lines

• Start the communication server

Each assembly line can run the server’s communication application, the system’s

manager has to select and start the server in one of the two assembly line to start

the communication process.

• Connect all client to the server

When the server is started, the system’s manager has to make sure that all the

assembly lines are connected to the correct communication server.

• Start the worker

The system’s manager turns on the AGV and places it at the start up position at

the storeroom.

• Start the storeroom system

The system’s manager starts the storeroom system.

• Monitor the system’s operations

© Central University of Technology, Free State

30

The system’s manager is a crucial part of this research because without it, none of the

operations mentioned above will be possible. However, after the start of the system and

every one of its components, it will run autonomously without the intervention of the

system’s manager.

3.2 The assembly line

Referring to Figure 1.1 in chapter one, it is shown that the assembly lines are computers

connected to each other over a local area network. They share information about all the

tasks and operation they perform over that network. The program and functions of the

assembly lines were written using C#.net in Microsoft Visual Studio (refer to 2.1.2

Computer programming software in Chapter 2).

Each assembly line is programmed to follow these specific steps of its work cycle:

• Step1: read the preloaded list of jobs to be performed.

At the initialisation of the assembly line, the system’s manager has to load a list

of jobs to be performed. The list contains the label of each task, its priority level,

the parts needed for that job, the time required the collect each part from the

storeroom, and the time necessary for the assembly line to assemble the job.

• Step2: calculate the total time needed to complete all the tasks on the list.

• Step3: share step1 and step2 over the network with the other assembly line.

At this step the assembly lines share all the information regarding the jobs to be

performed and those that have been performed already with the other assembly

line. This will serve as a backup in case of a breakdown or maintenance of the

assembly lines.

• Step4: start the first/next job on the list.

• Step5: compare job’s level of priority with the other assembly line

If the job starting has the highest priority, the assembly line will go to step 6.

Otherwise it will have to wait for the other assembly line to release the worker

then execute step 6.

• Step6: order the parts need from the worker

The assembly line sends a message to the work and the storeroom over the LAN

about the part that is required. Each part that is delivered by the worker is

scanned by the RFID scanner. Once all parts have been collected the assembly

lines broadcast a massage to let the other assembly line’s station know that the

worker will no longer be needed for a specific amount of time.

• Step7: assemble and complete the job.

© Central University of Technology, Free State

31

• Step 8: repeat process from step 4.

The flowchart in Figure 3.2 below illustrates the above-mentioned steps.

The assembly line’s development is divided into 2 phases that complement each other.

The first phase is to establish communication between the assembly lines and the other

devices used in the project. This is discussed in detail in section 3.2.1 below. The

second phase is the implementation of the assembly line’s functions and operations. It

will be discussed in section 3.2.2 below.

start

Initialize jobs
database

Share list of jobs
with their priority

level

Start job

Check priority
with other

masters

Wait for worker free
message

LOW

Message
received

Activate Worker
and Request Parts

HIGH

All parts
collected

Broadcast worker
free message

yes

nono

yes

Simulation of job s
assembling time

Job completedNext job in list?

yes

End, all jobs
completed

no

Figure 3.2 System's Flow chart

The flowchart in Figure 3.2 above illustrates the logical operation assembly line system.

After the assembly line is started, it initializes the task database then share the list of all

the job that it will perform with the other assembly line that are connected to the network.

© Central University of Technology, Free State

32

A task will only start after the list sharing process is completed. Then, the system will

compare the priority level of all the tasks being started on all the assembly lines in the

network. If that priority is lower, it will follow the left path where it will wait for the

resources to be free. If the priority is higher, it will follow the right path where it will take

control over the resources until all the parts required for the job are collected. Then it

will release its control over the resources, simulate the task assembly time, complete

the job, and then move to the next job on the list.

3.2.1 Communication

Using Figure 1.1 System layout in chapter 1 of this document as a reference, it reveals

that the communication is the main and only link between the different parts of this

project (assembly lines, AGV and Storeroom). Therefore, the creation of a proper

communication link is key to the success of this project. A client/server application is

developed and programmed in the next units of this section. It will allow a good

communication amongst the separate components.

The assembly line’s application contains 2 different servers that are in constant

communication with each other. The main server deal with the communication between

the 2 assembly lines while the secondary sever deals with the communication between

the assembly lines, the storeroom, and the AGV.

Each severs uses a pre-set range of socket to listen for new client’s connection and

create a communication thread that is particular to each client. This means that, if 10

clients are connected to the server, there will be 10 different communication threads

running on the server. Figure 3.3 below is a visual illustration of the concept mentioned

above[41].

© Central University of Technology, Free State

33

Figure 3.3 Server Application and Client sockets

The Figure 3.3 above an illustration of the operation of a client server application

operation as explained in the paragraph preceding the figure.

3.2.1.1 AVG and Storeroom communication sever design

This server serves as a bridge for the communication between the different

programming platforms used in this project. We used C# for the assembly line’s

software, LabVIEW for the AGV, Total integrated automation (TIA portal 2012) for the

storeroom system.

The common factor for all these platforms, is that they can make use of a TCP/IP

connection to send a byte or a sequence of bytes over a network link. Hence, this server

translates messages from the assembly lines to a byte or a sequence of bytes that can

be used to perform specific actions on LabVIEW (AGV) or on TIA Portal (storeroom

system PLC). The bytes received from the AGV or the storeroom are also translated

into a comprehensive message that can be used by the assembly lines to determine

their next actions.

This server operates in the following manner:

• When started, the AVG and Storeroom communication server will initialize all of

its attributes and properties

• Next it will set its IP address to the local host (computer that is running the

program IP address)

SERVER APPLICATION

CLIENT SOCKET CLIENT SOCKET CLIENT SOCKET
LISTENER
SOCKET

CLIENT APP-1 CLIENT APP-2 CLIENT APP-3
NEW CONNECTION

FROM CLIENT

© Central University of Technology, Free State

34

• Start the listening for client connection on a specified socket range (10000). This

is done so that the clients connecting to the AVG and Storeroom communication

server don’t clash with the communication on the primary sever.

• After a client connection is accepted, the server assigns a socket to the

communication with that client.

• Each message is converted to binary before being sent to clients.

• Each message received from the client is a single byte that is converted to a

number that points to a message in the decoder array.

• The converted message is stored in a string variable that is constantly monitor

by the primary sever for changes.

© Central University of Technology, Free State

35

start

Initialize server’s
components

TCP LISTENNER
SET TO LISTEN

ON PORT
10000 FOR

ANY IP
ADDRESS

START
LISTENING FOR

CLIENT
CONNECTION

NEW CLIENT
CONNECTED

ACCEPT CLIENT &
ADD IT TO THE
LIST OF CLIENT

YES

NO

NEW
MESSAGE FROM

CLIENT

CONVERT MESSAGE
FROM BYTE TO

STRING THEN SEND
IT TO PRIMARY

SERVER

YES

NO

NEW MESSAGE
FROM MASTERS

NO

CONVERT MESSAGE
FROM STRING TO

BYTE THEN
BROADCAST IT ON
THE NETWORK FOR

THE AGV & THE
STOREROOM

YES

Figure 3.4 AVG and Storeroom communication server flowchart

Figure 3.4 above is the flowchart to the AVG and Storeroom communication server.

After the start, it initializes the server’s components, then starts the listening process on

port 10000 for any IP address. If there is a new client attempting to connect to the server

it will accepted and the check for messages from client. If there are no new messages,

it will go back to the listening for client process until there a new client or a new message

from client already connect to the server. If a new message is received from the client,

it will be converted from byte to string then sent to the primary server. If a message is

© Central University of Technology, Free State

36

received from the server, it will be converted from strings to bytes then broadcasted

over the network to all clients connected.

3.2.1.2 Primary server design

The AVG and Storeroom communication sever is a slave to the primary sever. This

means that, if the primary sever doesn't start, the AVG and Storeroom communication

sever won't start as well because it dependent on the primary sever.

The primary server main function is to ensure proper communication between the two

assembly lines. It is capable of handling a large message that is sent between the

assembly lines without crashing.

© Central University of Technology, Free State

37

start

Initialise server
components

START AVG and

Storeroom

communication

server

START LISTENING
FOR NEW CLIENT

CONNECTION

TCP LISTENNER
SET TO LISTEN
ON PORT 8000

FOR
ANY IP

ADDRESS

NEW CLIENT
CONNECTED

ACCEPT CLIENT &
ADD IT TO THE
LIST OF CLIENT

YES

NEW
MESSAGE FROM

CLIENT

NO

CHECK FOR
KEY WORD

YES

KEY WORD =
AGV or

STOREROOM

USE
SECONDARY
SERVER TO

SEND
MESSAGE TO
THE AGV OR

THE
STOREROOM

SYSTEM

YES

SEND
MESSAGE TO
ALL MASTERS
CONNECTED

NO

NO

NEW
MESSAGE FROM

SEC. SERVER

YES

NO

Figure 3.5 Primary server flowchart

Figure 3.5 above is the primary server’s flowchart. After it starts, the server’ components

are initialized, the AVG and Storeroom communication server is started, then the

listening process starts on port 8000 for any IP address. If there is a new client

attempting to connect, it is accepted. If there is a new message from client, it is checked

for key words that triggers event in the program. If the key word is AGV or storeroom,

the AVG and Storeroom communication server is used to forward the message to the

S
e
c
tio

n
 1

S

e
c
tio

n
 2

S
e
c
tio

n
 2

© Central University of Technology, Free State

38

AGV and the Storeroom. Otherwise, the message is broadcasted to all the client

currently connected to the main server. If there is a new message from the AVG and

Storeroom communication server, it will be forwarded to all the client on the

main/primary server

This server monitors client connection on the socket port 8000, this is done to avoid and

prevent collision with the AVG and Storeroom communication server’s communication

that runs on the socket port 10000.

After this server initialization, it starts the second sever and monitors the messages

received by it. This server mainly consists of three main threads. Each thread controls

a specific function of the server.

• The first thread, shown in section 1 in the flowchart in Figure 3.5, is the thread

that controls the function of the server that is in charge of listening for client’s

connections.

• The second thread, shown in section 2 in the flowchart in Figure 3.5, is a thread

used by the server to monitor and control the communication between the two

assembly lines. In this thread, the server receives messages for assembly lines

and analyses them for key words that are used to direct messages to their correct

destination. This thread handles the communication between two Assembly

lines, or Assembly line and AGV, or Assembly line and Storeroom.

• The third and last thread, is the thread that monitors the changes in the

messages coming from the AVG and Storeroom communication server. These

messages are the decrypted messages coming from the AGV or the Storeroom

system.

3.2.1.3 The client

The client application connects to the server and sends messages that are broadcasted

to all the other clients or devices that are connected to the server. The client is the heart

of the assembly line program because that the part of the program where all the data in

the system are received, analysed, and processed.

© Central University of Technology, Free State

39

3.2.1.3.1 Client’s Operation

• At its start, the client sends a request to connect to the server using its computer

name (Assembly line1 or Assembly line2). The server accepts the request and

broadcast the list of all clients and devices currently connected to its network.

• Next, one of two cases happen:

1. If the new client connected is the only client on the server, the client will

wait for three min for the second client or assembly line to connect or else,

it will start performing all the tasks on its list.

2. If there is already another client connected to the server, then the two

clients will share the list of task that they have to perform.

• After all the tasks have been shared successfully, both assembly lines will start

with the execution of their first task.

© Central University of Technology, Free State

40

Figure 3.6 Client's basic operation flowchart

The flowchart above in Figure 3.6 illustrates the operation of the client. After its start, it

requests for connection to the server, then as soon as it connected, it will receive the

list of all the client connected to that sever. If the list received has more than one item,

the list of tasks to be executed is sent to the other client on the server. Else, it waits for

three minutes, then check if a new client to send the task list to or to start with the tasks

execution.

START

REQUEST
CONNECTION

TO SERVER

RECEIVE LIST
OF CLIENT

FROM SERVER

LIST ITEMS>1 YES
SEND LIST OF
TASKS TO BE
EXECUTED

NOWAIT 3 MIN

NEW CLIENT
CONNECTED

YES

NO

START STASK
EXECUTION

END

© Central University of Technology, Free State

41

3.2.2 Assembly line’s operation

Once started, the assembly line will follow a set of steps that will allow it to perform the

list of tasks or jobs that are preloaded into its memory. The assembly line’s main

operation happens entirely in the client part of the assembly line’s program (application).

The assembly line’s software is designed to be able to share its information with other

assembly lines and negotiate on resource management. While analysing the system’s

design, three different scenarios had to be implemented in order for the assembly line

to be able to work at its full potential.

The following are the three main cases:

• Scenario 1: when only one assembly line is running in the system

In this case, the assembly line that is first to be started runs the server application

that will listen and monitor new network connection. It will wait for the other

assembly line to get started and connected to the server.

However, if after three minutes the second assembly line is still not connected,

this assembly line will start with the performance of the tasks in its list. It will

continue going through the task list until there is a notification that the other

assembly line is online and that will bring us to the second case.

• Scenario two: When both assembly lines are running at the same time

© Central University of Technology, Free State

42

Master 1 assembly line Master 2 assembly line

List if tasks from master 1

List of task from master 2

Starting with next task on M2 the list
database

Check task level of
priority Start task

Waiting for M1 task completionList of Tasks List of Tasks

database

Check task level of
priority

Starting with next task on M1 the list

Figure 3.7 Assembly lines basic operation

© Central University of Technology, Free State

43

Referring to Figure 3.7, in this case of the assembly line’s program, it operates

in the following manner:

✓ Connect to a network: the user starting the assembly line’s application

has the option to start a new server or to connect to an already running

server using its IP Address.

✓ Share a detailed list of the task or jobs that it has to perform: this is a

preloaded list of jobs that the assembly line as to perform. It will be used

as a reference for the resources sharing and decision making between

the assembly lines.

✓ Star the execution of the tasks: at this point, the assembly lines will each

start with the execution of the tasks according to the order in which they

are on the list.

✓ Decide on the utilization of the resources: each task performed by the

assembly line has a level of priority based on the time that it requires to

be assembled. The job taking the longest time will have the highest

priority level.

✓ Use/wait for resources: depending on the level of priority of the task that

the assembly line is starting, it can take control of the resources (AGV

and Storeroom system) or wait for the other assembly line to be done

using the resources.

• Scenario three: when one of the assembly lines completes all the tasks on its list

and the other one is left with more than one task on its list:

In this case, the assembly line that is not yet done with its tasks will share its

remaining task with the assembly line that is done.

The client makes use of a state machine to execute different functions of the assembly

line. Each case in Figure 3.8 below will run indefinitely until the condition to trigger the

start of the next case is met. These cases allow the assembly line to function in a

sequential flow. Because some of the functions of the assembly line are crucial, this

state machine forces the execution of specified cases to avoid crashing or code

malfunction.

© Central University of Technology, Free State

44

Start
CASE 0

CASE 2CASE 8

CASE 7

CASE 1

CASE 6 CASE 4

CASE 3

CASE 9

CASE 5

Only this master is online Second master online

Task list share and received

Starting next task on the list

Priority level check done

Task has higher priority
Start/continue part collection

Task has lower priority

Part delivered

Task completed

Task completed

All task completed on the other master
And this task list items > 2

Or Temporary control activated

All task completed on the other master
And this task list items <= 2

Last task on the this list is completed

Task added to this list

Second master connection detected

Part delivered

Figure 3.8 Client State Machine

© Central University of Technology, Free State

45

Figure 3.8 above displays the client’s state machine. It shows the ten cases used and

their relationships that are further discussed in the next section below.

3.2.2.1 State machine cases overview

3.2.2.1.1 Case 0 and 9

Case 0 is the starting case of the state machine shown in Figure 3.8. Its purpose is to

wait and monitor the server’s messages to know if the other assembly line is connected

to the network. Depending on which condition is met, this case triggers 2 other cases.

Case 9 is a case in which only one assembly line is running on the network or is left with

uncompleted task/jobs on its list. Figure 3.9 below is a flowchart describing the steps

followed in case 0 and 9.

© Central University of Technology, Free State

46

START
CASE 0

WAIT FOR
NEW

MASTER S
CONNECTION

CONECTEDNOGOTO CASE 9 YES GOTO CASE 1

CASE 9 START

CHECK AGV
AND

STOREROOM
AVAILABILITY

AVAILABLE

NO

YES START TASK

START/
CONTINUE

PART
COLLECTION

ALL PARTS
COLLECTED

NO

TASK
COMPLETED

MESSAGE
BROADCASTED

REMOVE
COMPLETED
TASK FROM

LIST

CASE 1 START

LIST ITEMS > 0 NO
ALL TASK

COMPLETED

YES

END

Figure 3.9 Case 0 & 9 Flowchart

Figure 3.9 is the flowchart of the first and ninth cases of the state machine. It shows that

after the start of the case 0, the assembly line waits for the server to let it know if there

no other assembly lines connected to the same server. This results to the start of case

1 or 9 depending on whether there are other assembly lines online. Case 9 start by

checking the availability of the AGV and the storeroom, and then starts with the

execution of the task in the list. The task’s parts collection stars right after that and does

not stop until all the needed parts are collected from the storeroom by the AGV. The

process done by case 9 is executed from the start of the case until all the task in the list

© Central University of Technology, Free State

47

are completed. However, this execution is interrupted at the instant that this assembly

line is no longer the only assembly line connected to the server

3.2.2.1.2 Case 1

This case controls the function of the assembly line in which the list of tasks is shared

between the assembly lines. The list received will be stored and used as a reference to

know what task will be performed by the other assembly line.

CASE 1 START
SEND THIS
TASK LIST

WAIT TO
RECEIVE TASK

LIST FROM THE
OTHER

MASTER

LIST RECEIVED

NO

YES SAVE LIST START CASE 2

Figure 3.10 Case 1 flowchart

Figure 3.10 above is the flowchart of the case 1, it sends the list of tasks from the current

assembly line to the other mast, then waits the receive the list from the other assembly

line, save it and start the next case in the state machine.

3.2.2.1.3 Case 2

This case is used to broadcast a message to indicate that this assembly line is about to

start a new task from its list.

CASE 2 START
GET NEXT TASK ON

THE THIS LIST

BROADCAST
TASK NAME
OVER THE
NETWORK

START CASE 3

Figure 3.11 Case 2 flowchart

Figure 3.11 above shows the flowchart of case 2. When started, it selects the next task

on the list, shares it over the network, and then starts the next case.

3.2.2.1.4 Case 3

This assembly line makes use of this particular case to check for the level of priority of

the task that it is about to start compared to the one that is starting on the other assembly

line. Figure 3.12 shows a step by step flowchart of the operation of this case. It starts

by receiving the name of the task being started on the other assembly line, then uses

the task description database to get all details about that task. The task’s details contain

the priority level of the task. A priority level is a number ranging from 1 to 4 that is used

by the two assembly lines to know which one of them is executing the task with the

highest priority.

While programming this case, provisions were made to solve the following conditions

for the priority level check:

© Central University of Technology, Free State

48

✓ What should happen when Assembly line 1 is starting the task with the highest

priority (refer to Figure 3.12 section 1): if this assembly line has the highest

priority task, the state machine will continue to case 4 directly.

✓ What should happen when Assembly line 2 is starting the task with the highest

priority (refer to Figure 3.12 section 2): if this assembly line has the lowest priority

task, the state machine will also continue to case 4 directly.

✓ And what should happen when they are starting the same task (same priority

level) (refer to Figure 3.12 section 3): if both assembly lines have the same level

of priority, case 3 is rerouted to the section 3 on the flowchart below. They will

both randomly generate and share a number between 1 and 10, and the

assembly line with the highest generated number will take priority over the

resources usage while the other will wait.

© Central University of Technology, Free State

49

CASE 3 START

RECEIVE TASK
NAME

GET TASK
DETAILS FROM

DB

COMPARE
PRIORITY

LEVEL

THIS TASK >
RECEIVED TASK

NO

THIS TASK <
RECEIVED TASK

YES
SEND:

PRIORITY
HIGHER

YES
SEND:

PRIORITY
LOWER

START CASE 4

NO
SAME

PRIORITY
LEVEL

SEND:
RANDOM
NUMBER

BETWEEN 0
AND 10

RECEIVE:
RANDOM
NUMBER

BETWEEN 0
AND 10

THIS RANDOM NUM >
RECEIVED RANDOM NUM

THIS RANDOM NUM >
RECEIVED RANDOM NUM

NO

NO

YES

YES

Figure 3.12 Case 3 flowchart

Figure 3.12 above is the flowchart of case 3 and it operates as explained I the paragraph

above.

S
e
c
tio

n
 1

S
e
c
tio

n
 2

S
e
c
tio

n
 3

© Central University of Technology, Free State

50

3.2.2.1.5 Case 4

Referring to Figure 3.8, you can see that this case is started from case 3 or 5 depending

on the current operation that is being performed by the program. This section will go

through what happens when this case is started from case 3, then from case 5 referring

to Figure 3.13.

• When started from case 3:

At the end of the execution of case 3, the result of the priority check process is

shared as a message between the 2 assembly lines. The path followed by this

case is determined by this result. Therefore, if the result message says higher, it

means that the other assembly line will have control over the resources until the

completion of its task. This assembly line will go to case 6 and wait for the task

completion notification from the other assembly line. If the result message says

lower, this assembly line will take control over the resources and start with the

execution of the task.

Before the collection of part starts, a few conditions have to be met first.

1. The AGV must be online

2. The AGV current location must be the storeroom

3. The number of parts collected must be less than the total number of parts

needed for this task.

Only when all these conditions are met will the assembly line send a

message to the AGV to collect whatever part it needs. After the part

collection message is sent, the case 4 stops and the program will move to

case 5. Refer to Figure 3.13 section 1

• When started from case 5:

When the program goes from case 5 to case 4, they will be no need for priority

check because case 5 can only be executed when this task has the highest

priority and parts are being collected. Refer to Figure 3.8, Figure 3.13 section 1

and Figure 3.14.

The part collection and task execution process will go back and forth between case 4

and 5 until the task is completed (refer to Figure 3.13 section 1 and Figure 3.14) or all

the tasks on this list are completed (refer to Figure 3.13 section 2)

© Central University of Technology, Free State

51

RECEIVED
PRIORITY
MESSAGE

HIGHER

NO

LOWER

YES
THIS MASTER
IS IN WAITING

MODE
START CASE 6

YES
PRIORITY

CHECK
COMPLETED

TASK STARTED

AGV ONLINE = TRUE
AGV AT STOREROOM= TRUE

PARTS COLLETED < PARTS
COUNT

PARTS COLLETED =
PARTS_COUNT

TASK COMPLETED < TAST
LIST COUNT

NO

YES

SEND: AGV
COLLECT PART

PARTS COLLETED =
PARTS_COUNT

TASK COMPLETED = TAST
LIST COUNT

NO

YES

SEND: TASK
COMPLETED

YES

SEND: ALL
TASK

COMPLETED

START CASE 5START CASE 7

START HERE FROM
CASE 3

NO

START HERE FROM
CASE 5

Figure 3.13 Case 4 flowchart

Figure 3.13 above is the flowchart for case 4 and its functions are explained in the paragraph above.

S
e
c
tio

n
 1

S
e
c
tio

n
 2

© Central University of Technology, Free State

52

3.2.2.1.6 Case 5

The purpose of this case is to monitor the progress of the part collection. Each task has

a list of part that it requires to be completed. This simply points the program to the part

that has to be collected next or to the next task that has to be executed. Refer to Figure

3.14 for a descriptive flowchart of the base operation of this case.

CASE 5 START

MESSAGE
RECEIVED

PART DELIVERED NO
TASK

COMPLETED
YES

SELECT NEXT
PART

GOTO CASE 4

YES

SELECT NEXT
TASK

GOTO CASE 2

NO

Figure 3.14 Case 5 flowchart

Figure 3.14 displays the operation flowchart of case 5. It monitors the messages

received from the server to know if a part is delivered to the current assembly line. It the

message says that a part is delivered, the next part is select, and the state machine

goes back to case 4. If the message says task completed, the next task on the list is

selected and the state machine will go to case 2.

3.2.2.1.7 Case 6

This case gets started from case 4 when the current assembly line is starting a task that

has a lower priority level compared to the one started on the other assembly line. It is

used to wait and monitor the progress of the task that is being process on the other

assembly line. Depending on the message received, this case will follow one of two

paths:

1. Task completed: this message is sent by the other assembly line to notify that the

task in progress has been completed. Refer to Figure 3.15 section 1. The case will

stop the wait and go to case 2.

2. All task completed: this indicates that the other assembly line has completed all the

task on its list and it is entirely free. Refer to Figure 3.15 section 2. The wait will stop

© Central University of Technology, Free State

53

and will go to case 8 if the number of remaining task on this list is greater than 2 or

proceed to case 9 if otherwise.

CASE 6 START

MESSAGE
RECEIVED

TASK
COMPLETED

NO

ALL TASKS
FROM OTHER

MASTER
COMPLETED

YESSTOP WAITINGGOTO CASE 2

YES
THIS TASK LIST

COUNT >= 2
YES

REMOVE ½ OF
REMAINING
TASKS FROM

THIS LIST

GOTO CASE 8

GOTO CASE 9

NO

P.A.T > T.P.C.T

P.A.T= This is the assembling
time of the part collected for
the other master
T.P.C.T= This is the time it
takes to collect the next part
for this master

NO

YES

ACTIVATE
TEMPORARY
RESOURCE
CONTROL

REMOVE ½ OF
REMAINING
TASKS FROM

THIS LIST

Figure 3.15 Case 6 flowchart

Figure 3.15 above is the flowchart of case 6 and it operates as explained in the

paragraph preceding it.

3.2.2.1.8 Case 7

From case 4, when all the tasks on this list have been completed, the program jumps to

this case to check if the other assembly line has more than 2 task left on its list. The

program in this case monitors messages from the other assembly line that will say how

many tasks are left. This assembly line will then add half of those remaining tasks to its

own list. It will go to case 2 to start to completion of the added tasks. Refer to Figure

3.16 below.

S
e
c
tio

n
 1

S
e
c
tio

n
 2

© Central University of Technology, Free State

54

CASE 7 START
MESSAGE
RECEIVED

OTHER MASTER
HAS TASK LEFT

YES

ADD HALF OF
THE OTHER

MASTER
REMAINING

TASKS TO THIS
LIST

NO

GOTO CASE 2

Figure 3.16 Case 7 flowchart

Figure 3.16 above is the flowchart of case 7 and it operates as explained in the

paragraph above it.

3.2.2.1.9 Case 8

From case 6, if all the tasks on the other assembly line’s list are completed and this

assembly line has more than 2 task left on its list, referring to Figure 3.15 section 2, this

assembly line will send the quantity (number) of task left to the other assembly line and

then come to this case to wait for a message from the other assembly line that half of

this assembly line’s remaining task have been successfully added to the other assembly

line’s list. The program will then jump to case 2 to start with task execution. Refer to

Figure 3.17 below.

CASE 8 START
MESSAGE
RECEIVED

½ REMAINING TASK
ADDED TO OTHER
MASTER TASK LIST

NO

YES GOTO CASE 2

Figure 3.17 Case 8 flowchart

Figure 3.17 above is the flowchart of case 8 and it operates as explained in the

paragraph above it.

© Central University of Technology, Free State

55

3.3 The worker

The system’s layout shown in Figure 1.1 of the introductory chapter shows an AGV that

collects parts from the storeroom and delivers them to the assembly lines. The NI

LabVIEW Robotics Starter Kit was selected to be used as the AGV. It will be fitted with

line follower sensors and programmed to follow a black line on a white surface.

“It is designed to help prototyping an autonomous system and quickly get familiar with

the capabilities of LabVIEW Robotics software and NI reconfigurable I/O (RIO)

hardware” [42].

NI LabVIEW Robotics Starter Kit is a fully assembled mobile robot base starter kit with

an ultrasonic sensor, encoders, DC motors, and a 12V battery. It has a controller based

on NI Single-Board RIO with real-time decision making, FPGA-based I/O processing

and analogue and digital I/O on a single board. It can easily connect to a variety of

robotic sensors and actuators [43].

Figure 3.18 NI LabVIEW Robotics Starter Kit[44]

© Central University of Technology, Free State

56

Figure 3.19 the 9632 NI Single-Board RIO includes a real-time

processor, FPGA, and built-in digital and analogue I/O [45]

Figure 3.18 and Figure 3.19 show respectively the Robotic starter kit and its controller

board. Figure 3.19 also shows the different parts that makes the RIO board (the

processor, FPGA, and all the inputs and outputs)

The AGV will be autonomously capable of sensing its environment, process the

information, and make decisions depending on the commands received from the

assembly lines (assembly lines). The process followed by the worker is divided into four

different steps:

• Communication

• Sensing

• Decision

• Action

© Central University of Technology, Free State

57

Figure 3.20 LabVIEW robotics Starter kit (connections diagram)

Figure 3.20 shows the connection diagram of the robotic starter kit, starting from the battery to the proximity sensor, the servo and the motors.

© Central University of Technology, Free State

58

3.3.1 Communication

The worker (AGV) is in constant communication with the assembly line, sending

information about its location and receiving instructions about what it has to do and

where to go. The communication is done through a local area network in which the

entire the system is connected.

Figure 3.21 LabVIEW robotic starter kit fitted with Wi-Fi router

Figure 3.21 above show the project AGV design. It is a LabVIEW robotic starter kit fitted

with Wi-Fi router at the top and four digital line follower sensors at the bottom front.

The NI LabVIEW Robotics Starter Kit has an Ethernet port that allows it to perform

TCP/IP communication over a network of NI (National Instrument) device. Therefore,

the communication can also be established between the AGV (NI LabVIEW Robotics

Starter Kit) and a network of computer. A server/client communication application is

implemented between the assembly line and worker, where the assembly line is the

server and the worker is the client.

TCP/IP communication requires a server and a client. In this case, the worker (AGV) is

the client and assembly line is the server. Communication is initiated by the AGV by

requesting access to the server at a specified IP address (10.0.0.3) and Port number

(10000).

The server and client communicate by sending one byte of data over the network link,

which in turn is decrypted into commends or message that must be executed.

© Central University of Technology, Free State

59

Figure 3.22 AGV communication function diagram

Figure 3.22 above is the communication function diagram for the AGV. The description

and purposes of the labels 1 to 7 are described below:

• 1: Is a TCP OPEN function

• 2: is a TCP WRITE function, it is used to write messages onto the network

stream. Table 3.1 below better explain the communication process and

messages between the Assembly line and the AGV.

• 3: is also a TCP WRITE function, but it is utilized in a loop to send constant

messages to the server every time that a change is made to the client status. For

example: if the AGV is in the storeroom or traveling over the line…

• 4: is a comparator that is used to compare the message that is about to be sent

to the previous message and returns a TRUE value if the two messages are

different from each other. That value goes to a case statement where the

message is sent when it receives TRUE and nothing is sent when the value is

FALSE. This is done to avoid sending the same message more than once over

the network because of the endless loop in which the TCP Write function is

running.

• 5: is a TCP read function that constantly reads commands over the network for

the client (AGV) to execute

• 6 & 7: are TCP close connection that is used to terminate the connection to the

server.

© Central University of Technology, Free State

60

Figure 3.23 below shows the flowchart of the AGV communication function diagram

shown in Figure 3.22

START

SERVER S IP
ADDRESS &

SOCKET

CONNECTED
TO SERVER

START DATA
RECEIVING LOOP

START DATA
SENDING LOOP

YES

NO

REQUESR FOR
CONNECTION

TO SERVER

SERVER S
CONNECTION

STOPPED

SERVER S
CONNECTION

STOPPED

NO NO

ENDYES YES

SENT FIRST
MESSAGE

(0)

Figure 3.23 Communication flowchart

Figure 3.23 above is the communication flowchart related the function diagram shown

in Figure 3.22. The first step after the start is to set the server’s IP address and the

socket range, then request for a connection to the server. When the AGV connects to

the server, it sends a message to server that lets all the connected devices know that

the AGV is online. Afterward, two loops are simultaneously started. One on the left for

messages reception, and the other to the right for message broadcasting.

The TCP Read function require that the number of bytes to read from the network to be

set to a constant number. For example, if the byte to read input is set to ten and the

message received only has five bytes, nothing will be read until it receives ten bytes

and the application will stop running until all ten bytes are read. On the other hand, if

the byte to read is set to five and the message received contains ten bytes, only the first

five bytes will be read and the rest will be discarded.

© Central University of Technology, Free State

61

So to avoid that problem, the TCP Read function is set only to read one byte that is then

decrypted to a command using Table 3.1 below. Table 3.2 is utilized by the server to

decrypt messages from the client (AGV worker). This allows for a straightforward

communication between the server and the client without any crashing or

miscomprehension of messages.

Table 3.1 Server's messages Decryption

Commands from Server Decryptions comments

0 Stop This command from the

server stops all actions

being done by the AGV at

the moment that it is

received.

1 Go to Assembly line 1

location

This command instructs

the AGV to go from the

storeroom to the site of

assembly line 1 to deliver

the requested part.

2 Go to Assembly line 2

location

This command instructs

the AGV to go from the

storeroom the location of

assembly line 2 to deliver

the required part.

3 Go back to storeroom from

assembly line 1

The command is used to

tell the AGV to return to

the storeroom after

delivering a part to

assembly line1

4 Go back to storeroom from

assembly line 2

The command is used to

tell the AGV to go back to

the storeroom after

delivering a part to

assembly line2

© Central University of Technology, Free State

62

Communication is a two ways process. Therefore, the server needs to know if its

messages are received by the client and executed before sending the next command.

Hence, all the messages coming from the client needs to be decrypted and processed

to know when the client is ready to execute the next command. Table 3.2 below is the

decryption table used for messages coming from the client to the server.

© Central University of Technology, Free State

63

Table 3.2 Client's messages Decryption

Messages from Client Decryption comments

0 AGV online This message is sent to let

the server know that client

is online and ready to

receive commands.

1 Part Collected This tells the server that

the part requested by the

assembly line has been

collected from

successfully from the

storeroom and that the

AGV is ready to deliver

that part to the required

assembly line.

2 Part delivered to

Assembly line1

This tells the server that

the part needed has been

delivered to assembly

line1 and that it is ready to

return to the storeroom.

3 Part delivered to

Assembly line2

This tells the server that

the part needed has been

delivered to assembly

line2 and that it is ready to

go back to the storeroom.

4 AGV@StoreRoom This message informs the

server that the AGV is

back to the storeroom

location after delivering a

part to either assembly

line1 or assembly line2.

© Central University of Technology, Free State

64

3.3.2 Sensing

The AGV uses infrared sensors to follow a black line on a white surface. They are

sensors are digital and give an output of 1 when they are pointing on the white surface

and 0 when they are pointing on the black line.

These sensors have a very low range in which they can operate successfully. That is

why they will be placed at the bottom of the AGV at 10mm from the surface that they

have to read.

The AGV is required to follow a black line on a bright surface, hence, we made use of

Figure 3.24 below that shows the circuit diagram of the digital IR sensors used in this

project. The sensor requires the components listed in Table 3.3 to build them. The

operation of the sensor shows that it gives out an output of 1 when it is pointing to the

bright surface and 0 when it is pointing to the black line.

Table 3.3 List of components for IR sensor

Components Quantity Comments

IR LED 4 Emitter of the IR radiations

Photodiode 4 Receiver of the IR

radiations

150Ω resistor 8 Protection resistors

10KΩ resistor 4

10KΩ variable resistor 4 This resistor is used to set

the sensitivity of the

sensor

LM358M op-amp 4 This device has been used

to convert the analog

signal from the sensor to

the digital 1 or 0 used by

the AGV

© Central University of Technology, Free State

65

Figure 3.24 Digital IR sensor circuit

Figure 3.24 above, is the circuit diagram for the digital line follower sensors. it is

composed of an infrared LED that serves as the emitter, a photodiode that is used as

the receiver, a network of resistors (2 x 150 and 2 x 10 000 ohms), and an operational

amplifier (Op-Amp) used as a comparator.

In this project we made use of four sensors and each sensor plays a specific role in the

decision that the AGV make while following the line.

© Central University of Technology, Free State

66

Table 3.4 Sensors roles

Label Description Role comments

R1 Right sensor 1 Line following

sensor

This sensor is about 4cm on the

Right of the black. It has a default

value of 1 because it should always

point to the bright reflecting surface.

Every time that its value changes to

0, the AGV turns Right.

L1 Left sensor 1 Line following

sensor

This sensor is about 4cm on the Left

of the black. It has a default value of

1 because it should always point to

the bright reflecting surface. Every

time that its value changes to 0, the

AGV turns Left.

R2 Right sensor 2 Right check points

counter sensor

This sensor counts the check points

on the Right hand side of the line.

Refer to D. Decision on page 69 of

this section for more explanations

L2 Left sensor 2 Left check points

counter sensor

This sensor counts the check points

on the Left hand side of the line.

Refer to D. Decision on page 69 of

this section for more explanations

Each sensor forms an independent circuit that needs to be the connected to the AGV.

As shown in Figure 3.25 and Figure 3.26, the AGV has parallel connectors with reserved

pins in which a digital circuit can be connected.

© Central University of Technology, Free State

67

3.3.2.1 Connecting sensor to AGV

This project made use of parallel connector 5 on the NI rio board that controls the AGV

to connect our four sensors. Refer to Figure 3.25…

Figure 3.25 Connector P5, 3.3 V Digital I/O on NI sbRIO-9632/9632XT

[46]

Each sensor has three points that need to be connected to the AGV:

• VCC: the voltage supply of the sensor. If not connected the sensor will not work

• GND: the ground on the sensor circuit.

• Output: this is a digital bit that will allow the AGV to monitor the status of the

sensor.

© Central University of Technology, Free State

68

Table 3.5 Sensors Connections

Label Pins on

sensor

Connection

to P5

Pin number

on P5

R1 VCC 5V 50

GND D GND 48

OUTPUT Port3/DIO2 17

R2 VCC 5V 50

GND D GND 48

OUTPUT Port3/DIO3 19

L1 VCC 5V 50

GND D GND 48

OUTPUT Port3/DIO1 15

L2 VCC 5V 50

GND D GND 48

OUTPUT Port3/DIO0 13

Figure 3.26 LabVIEW robotics Starter kit (block diagram) with

sensors connection

© Central University of Technology, Free State

69

Figure 3.26 shows the block diagram of the NI LabVIEW robotic starter kit (AGV or

Worker) with the sensors connected to it.

Figure 3.27 AGV with line follower sensors

Figure 3.27 is a picture of the physical AGV showing the sensors connected to the AGV.

3.3.3 Decision and Action

This section of the worker describes how the commands from the assembly lines and

the inputs from the sensors are converted into decisions and actions that the AGV has

to perform and follow.

The first step of this section is to highlight all the possible actions that the AGV can

perform. The second step will be the decisions that the AGV can take based on the

commands form the assembly lines and the input of the sensor.

3.3.3.1 Step 1: Action

Five different type of actions can be performed by the AGV and all these actions depend

on the status of the motors.

Table 3.6 List of AGV actions

Actions Right motor Left motor comments

Stop No motion No motions

Move forward Turn clockwise Turn clockwise

Move backward Turn anticlockwise Turn anticlockwise

Turn Right Turn clockwise Turn anticlockwise

or no motion

Turn Left Turn anticlockwise

or no motion

Turn clockwise

© Central University of Technology, Free State

70

The AGV is programmed using NI LabVIEW. LabVIEW developers have provided an

entire section reserved for robotic. That part of the software allows users to develop

applications for a robotic starter kit. They provided users with some examples for some

of the core function that the robotic starter kit can perform

In this project we made use of the example where it shows how to control the motors

and monitor the ultrasonic sensor. To find these examples, you can follow the steps

shown below starting from Figure 3.28 to Figure 3.36.

LabVIEW robotics must be installed on the windows pc in for it to work.

Referring to Figure 3.28, the first step is to create a new robotic project using LabVIEW

robotics 2014. Note this process may differ depending on the version of LabVIEW that

the user may have.

• Open LabVIEW robotics 2015,

• Under create project, double click on robotics project.

Figure 3.28 labView robotics 2014

• The new robotics project shown in Figure 3.29 should appear that will allow you

to select the type of project that you would like to create.

© Central University of Technology, Free State

71

• Different types of robotics project may be set up at this point depending on the

platform that is being used. In project we made use of the Robotics Starter Kit

2.0. Therefore, in the project type list I have selected Robotics Starter Kit 2.0

as shown in Figure 3.29 below

Figure 3.29 New labView robotics project window

• For this next step, Robotics Starter Kit 2.0 should be connected to the computer

using an Ethernet cab. Its IP address needs to be entered in the controller IP

address text box. Refer to Figure 3.30 below. Then click on next.

Figure 3.30 Controller IP address window

© Central University of Technology, Free State

72

• In Figure 3.31 you will notice that there are different type of architecture that can

use as for starting up with the programming of a LabVIEW robotics starter kit.

These architectures are skeleton program that can be modified to suit the users

need. For this project, the best suited skeleton is the “starter kit 2.0 single loop”

as selected in Figure 3.31 below. This specific architecture gives you access and

control over the motors speed and at the same time monitors the ultrasonic

sensor data. Click next to move to the next step of the project creation.

Figure 3.31 robotics architecture window

• At this point every necessary settings have been made and the only left is to

enter the name of your projects and select the destination in which your project

will be saved then click finish. Referring to Figure 3.32 below.

© Central University of Technology, Free State

73

Figure 3.32project name and destination window

• The project explorer window in Figure 3.33, allows you to navigate and view

different parts of your project. Double click on the main.vi in starter kit 2.0 sbRio

(10.0.0.4) to see the front panel of the project shown in Figure 3.34.

Figure 3.33 project explorer window

• Figure 3.34 is the front panel of the project also known as the user interface.

Basic controller and monitors are placed in this panel to help the user operate

and comprehend how the starter kit works.

• Note that the start button has to be pressed in order for this program to start

working. The forward velocity controls whether the robot moves forward when it

© Central University of Technology, Free State

74

is adjusted to a value greater than zero, and move backward when the value is

less than zero.

• The angular velocity on the other end controls the rotation movement of the robot.

When adjusted to a value greater than zero, the robot will turn or rotate from left

to right. And when to a value less than zero, it will turn or rotate from right to left.

• To view the block diagram of the project, click on window in the toolbar and then

select view block diagram. A new window should open as shown in Figure 3.35.

Figure 3.34 project’s front panel

• The block diagram in Figure 3.35 shows all the elements and connection used to

make the project function properly. The aim of this section is to be able to control

the movement of the robot. Therefore, we only focus on the part of the block

diagram that deals with the movement as shown in Figure 3.36.

© Central University of Technology, Free State

75

Figure 3.35 project’s block diagram

o The forward velocity and angular velocity (referring to Figure 3.36) are our

main focus. In the final code that controls the AGV, they are changed into

variables that can be accessed from any part of the final block diagram. This

allows the AGV to perform all the actions mentioned in Table 3.6.

Figure 3.36 Motors control block diagram

After running a few tests, I have come to the conclusion that the optimum velocity for

the AGV to perform all of its action are as shown in Table 3.7 below.

Table 3.7 Optimum Velocity

Action Forward velocity Angular velocity

Stop 0 0

Move forward 3 0

Move backward -3 0

Turn right 0 1

Turn left 0 -1

© Central University of Technology, Free State

76

3.3.3.2 Step 2: Decision

The AGV is placed into an environment as shown in Figure 3.37, where it is required to

follow the black line on a white surface from one point to the other without getting lost

while do it.

Figure 3.37 AGV in its environment

From Figure 3.37 above the AGV is set to follow one of the following paths:

• From A to B

• From A to C

• From B to A

• From C to A

Note that there is no path set for the AGV to go form B to C or from C to B because

each point represents the location of components of the entire system.

• Point A: is the location of the storeroom

• Point B: is the location of the first Assembly line

• Point C: is the location of the second Assembly line

With that in mind, there is no need for the AGV to travel from one assembly line to the

other.

The decision process of the AGV mostly depends on the inputs of the sensors that are

used to follow the line. The commands form the assembly lines just tells the AGV where

it has to go.

From Figure 3.38 below, the AGV is placed on the line with two sensors on the left of

the line and two sensors on the right of the line. Table 3.4 explains the role of each

sensor.

© Central University of Technology, Free State

77

Figure 3.38 AGV on the line

Figure 3.38 highlights the location of the sensors compared to each other and the size

the line that the AGV follows.

To follow the line, the AGV makes use of only two sensors (R1 and L1). These sensors

have a default value of 1 and changes to 0 when the sensor passes over the black line.

Table 3.8 Decisions and Actions based on sensors input

R1

value

L1

value

Decision and action

0 0 Stop movement

0 1 Turn right

1 0 Turn left

1 1 Move forward

The other two sensors are used as check point counter. The check points next to the

black line are utilized by the AGV to determine its location compared to where it is going.

© Central University of Technology, Free State

78

Figure 3.39 AGV at the cross line

Figure 3.39 clearly highlights the 5 different check points that are next to the black line.

Now, based on the information obtained from Figure 3.37, the AGV has 4 different paths

and if we combine that with the information in Table 3.1 we get the decision and actions

table shown below in Table 3.9.

Table 3.9 Decision and actions based on Assembly lines Commands

and sensors

Assembly line’s

commands

Description Path to follow Check points in

Figure 3.39

0 Stop N/A N/A

1 Go to Assembly

line 1 location

A to B 1 and 3

2 Go to Assembly

line 2 location

A to C 2 and 5

3 Go back to

storeroom from

assembly line 1

B to A 3 and 1

4 Go back to

storeroom from

assembly line 2

C to A 5 and 2

© Central University of Technology, Free State

79

Table 3.9 is used a base reference for the programming of the AGV. The AGV program

is a case structured program in which each command from the assembly line triggers a

specific case that needs to be executed.

START

Master’s
CMD = 0

Master’s
CMD = 1

Master’s
CMD = 2

Master’s
CMD = 3

Master’s
CMD = 4

EXE CASE 1
A to B

YES

EXE CASE 2
A to C

YES

EXE CASE 3
B to A

YES

EXE CASE 4
C to A

YES

STOP ALL
MOVEMENTS

YES

GET CMD
FROM

MASTER

NO

CMD = COMMAND

Figure 3.40 AGV program flowchart

Each one of the cases shown in Figure 3.40 above is a subroutine of its own that

controls the AGV allowing it to follow a specific path. For example: in CASE 1, the AGV

will follow the Path from A to B.

Table 3.10 AGV program reference full table

 Assemb
ly line
cmd

descripti
on

the path
to follow

check point
count

sensor state
Action

 R1 L1

 0 stop N/A N/A X X stop

1 Go to M1 A to B 0
1 1

drive
forward

© Central University of Technology, Free State

80

C
A
S
E
1

1 0 turn left

0 1 turn right

0 0
drive
forward

1 X 0 turn left

X 1
drive
forward

2
1 1

drive
forward

1 0 turn left

0 1 turn right

0 0
drive
forward

3 X X turn left

4 X 0 turn left

X 1 stop

C
A
S
E
2

2 Go to M2 A to C 0
1 1

drive
forward

1 0 turn left

0 1 turn right

0 0
drive
forward

1 0 X turn right

1 X
drive
forward

2
1 1

drive
forward

1 0 turn left

0 1 turn right

0 0
drive
forward

3 X X turn left

4 X 0 turn left

X 1 stop

C
A
S
E
3

3 Go to
Storeroom
from M1

B to A 0
1 1

drive
forward

1 0 turn left

0 1 turn right

0 0
drive
forward

1 0 X turn right

1 X
drive
forward

2 0 X turn right

1 X
drive
forward

3
1 1

drive
forward

1 0 turn left

0 1 turn right

0 0
drive
forward

© Central University of Technology, Free State

81

4 X X turn left

5 X 0 turn left

X 1 stop

C
A
S
E
4

4 Go to
Storeroom
from M1

C to A 0
1 1

drive
forward

1 0 turn left

0 1 turn right

0 0
drive
forward

1 X 0 turn left

X 1
drive
forward

2
1 1

drive
forward

1 0 turn left

0 1 turn right

0 0
drive
forward

3 X X turn left

4 X 0 turn left

X 1 stop

Table 3.10 represent the way that the AGV program functions. It includes all the

essential details of the program’s operation with the exception of the left sensor 2 (L2)

and right sensor 2 (R2). Those two sensors as mentioned in the previous pages of this

document, are used to count the check points next to the line that is being followed.

Referring back to Figure 3.39, it has been shown that there are 5 different check points.

But, if we consider the case in which the AGV follow the path from A to C and using L2

to count the check points, we will notice that there will be a point where L2 will cross the

line that goes to B and will count it as a check point as well.

The actions perform by the AGV differs at different check points, for example: in case

1, the AGV must go from A to B. At the start, the check point count is equal to zero.

Therefore, the AGV uses the sensors R1 and L1 to follow the line

• From the moment that L2 reads the first check point, the check point count will

be incremented by 1 and will do so at every single check on it path.

• When the counter is equal to 1, the AGV knows that it is at the point where the

path to B and C crosses and it has to keep left to go to B. Therefore, all the data

coming from the sensors at the right side of the line are ignored.

• After keeping left, the AGV will come across another check point and the counter

will increment again bringing its value to 2. At this stage the AGV knows that it is

on its way to B and it will follow the line using both sensors (R1 and L1).

© Central University of Technology, Free State

82

• At each destination point of the line (A, B, and C), there is a T shape that the

AGV uses to know that it has reached its destination. When the AGV reads the

T at any of these points (A, B, and C), it will rotate to the left and reposition itself

to the line. This happens every time when the check point count reaches a value

of 3 and 4 in case 1, 2, and 4, for case 3 it does it for the values of 4 and 5.

• Every time that the AGV arrives at its destination and finishes to reposition itself

on the line, it stops all motions, sends a message to the assembly lines, and wait

for further commands to execute.

Figure 3.41 below is the flowchart of Case 1, but the same principle and codes are

applied to all the other cases in the AGV control program.

CASE 1 STARTED

CP COUNT= 0

CP COUNT= 1

NO

CP COUNT= 2

NO

CP COUNT= 3

NO

CP COUNT= 4

NO

FOLLOW THE
LINE

YES

IGNORE R1
VALUE

YES L1 = 0

TURN LEFT

yes

DRIVE
FORWARD

no

FOLLOW THE
LINE

YES

IGNORE R1
AND L1

YES

IGNORE R1
VALUE

YES L1=0

TURN LEFT

yes

STOP ALL
MOTION

no

AGV ARRIVED AT
DESTINATION

SEND MESSAGE
TO MASTER

NO

TURN LEFT

CP = CHECK POINT

Figure 3.41 Case 1 flowchart

© Central University of Technology, Free State

83

3.4 The storeroom

The storeroom operation mainly consists of three separate processes are the motion,

identification and the process control. This section covers each of the processes and

gives more detail on the work done in order to complete this section of the project. [9]

© Central University of Technology, Free State

84

Figure 3.42 Storeroom system connection diagram

© Central University of Technology, Free State

85

The above Figure 3.42 shows the storeroom system’s connection diagram. Its main

component is the PLC, and it serves as the brain of the entire system by monitoring its

input and updating its output according to the system’s requirement. The PLC is

programmed to control each and every process that happens in the storeroom

3.4.1 Main process (PLC Main program)

The main function of the PLC is to monitor the execution of the following storeroom

procedures:

• Parts/products identification

• Storage of Parts/products

• Retrieval of Parts/product from storage

The simple operation of the storeroom is as followed:

At the start of the storeroom system, PLC waits for the input signal that indicates that a

product is ready for pickup at the input conveyor belt. At the moment that the signal is

received, the PLC uses RFID scanner to identify the product, determine the specific

location where it has to be stored and finally uses the stepper motor to move to the

storage location and store the product.

The Figure 3.43 below gives a more detailed overview of the main program including

when an order is placed to the system.

© Central University of Technology, Free State

86

start

Receive product

Scan and update
database

Receive order

Check
availability

Storage full

Stack product

NO

YES

NO

Execute orderYES

NO

YES

Figure 3.43 Main Storeroom’s PLC program flow chart

Figure 3.43 above is the main storeroom’s PLC program flowchart. When started, it

receives products, and then scans them to update the products database, and finally

stacks the received product in the storage area. Afterward, if an order is received, the

system will check for availability before executing the order. And if the storage is full,

the system will constantly loop to wait for orders to be received.

From the main program flow chart, one can divide the program into three sub-processes

that will simplify the work load and improve troubleshooting of the code.

© Central University of Technology, Free State

87

Figure 3.44 PLC program break down structure

Figure 3.44 shows the breakdown of the PLC program. It shows the three parts namely:

Pick and Store, Pick and Deliver, and Execute Order. These parts are further explained

in the headlines below.

3.4.1.1 Pick and store

This is the part of the program that is in charge of the pick and store. Its basics

operations are as followed:

• It starts when a product is ready for storage at the input conveyor, the PLC

receives and process the input signal by retrieving the coordinate of the input

conveyor from its memory then sends it to the stepper motor drives. The stepper

motors controlled by the will then execute the motion and get ready for pick up.

• After the motion has been completed, the PLC receives a signal from the stepper

motor drives that lets it know that the motion is completed and the forklift is at the

pickup point. The product will then be picked up from the conveyor and the signal

will again be sent to the PLC to require for the storage place coordinate.

• The PLC will get once again the coordinate of the storage place from it memory

and send it to the drive for the motion execution.

• After the motion has been executed, the forklift will place and store the product

at the designated location provided by the PLC.

NB: The PLC has a list of designated area for each type of the goods / parts that are

stored in the storeroom. This makes it efficient for order execution and facilitates the

work of the storeroom manager to know the exact location of a specific product in the

entire storeroom and the specific amount of the goods / parts in stored.

Each product that comes for storage has an RFID tag on it that is specific to the type of

that product. The PLC, with the help of the RFID scanner, determines the storage

location of product using the information read on its RFID tag.

© Central University of Technology, Free State

88

Figure 3.45 Pick and store process flow

3.4.1.2 Pick and deliver

This part of the program is an exact replicate of the pick and store except for the fact that the PLC starts by sending the location of the product

that needs to be delivered first, then the location of the exit conveyor. All the motions are controlled by the drives and executed by the stepper

motors. Refer to Figure 3.46 below for more details.

© Central University of Technology, Free State

89

Figure 3.46 Pick and deliver process flow

3.4.1.3 Execute Order

The execution order of program mostly makes use of the pick and deliver portion of the PLC program. When an order is placed for a certain

amount of parts, it will first check if all the required parts are available. If not, the order will remain pending and the PLC will continue its

process until the required amount is met. The process will then be interrupted for the order to be executed.

© Central University of Technology, Free State

90

Figure 3.47 Execute order process flow

The whole system is monitor by a human machine interface (HIM) that serves to get the input (placing an order…) from the user and displays

the output (number of products/parts currently in the storeroom…) for the user to monitor. The order for parts collection can also be placed

over the network link between the storeroom and the Assembly lines. This network link allows for constant communication between the

assembly line and the storeroom

© Central University of Technology, Free State

91

4 TESTING AND RESULTS

This chapter reports on the sequence of tests that were carried out to verify the

operation of the system and its subcomponents.

The tests are designed to verify the vital system’s functions first, and then verify system

sub-processes, and finally testing the system as a unit. The tests and results have been

split into the next section:

• The assembly line: this section is dedicated to testing the main function of the

assembly line and analyze the results obtain after testing.

• The worker: in this segment, the tests and results of the AGV are discussed.

• The storeroom: the results and the tests for the storeroom are discussed in the

section.

• The system: the overall system’s tests and results are analyzed and discussed

in this chapter section.

4.1 The assembly line

The assembly line is an assembly line computer simulation as explained in literature

review chapter 2 (referring to 2.1 Assembly lines). It has been programmed to perform

information sharing, task management, and resource usage negotiation as described in

the methodology chapter 3.

This part of chapter is dedicated to the performance tests that will check the function of

the assembly lines and the evaluation of the obtained results.

4.1.1 Test

The tests in this section are meant to test the basic functionality of the assembly line.

The assembly line should be able to create or connect to a server, share the task list,

and negotiate on resources usage.

The test done bellow in 4.1.1.1 is made to test the communication and the task priority

negotiations.

4.1.1.1 Communication and task priority negotiations

This test is run to determine whether the assembly lines can successfully establish and

maintain a commutation line in which they will share information about the list of tasks

that they will perform. They will also use the network to share constantly the status of

the tasks that are performed and negotiate on resource management.

© Central University of Technology, Free State

92

Figure 4.1 Assembly line program User Interface

Figure 4.1 above is the user interface of the assembly line’s program. It allows the user

to see what is currently happening in the system. The user interface is divided into 3

different areas as followed:

• Area 1: this area is reserved for the messages shared between the assembly

lines. It allows the user to see the progress of the operation being performed by

either one of the assembly lines.

• Area 2: is used to display the list of assembly lines or Assembly line that are

currently connected to the system.

• Area 3: this part of the user interface shows the list of tasks that have to be

performed by the assembly lines. It shows the task list of whatever assembly line

selected in the second user interface area.

4.1.1.1.1 Test setup

Using Figure 4.1 as reference, the test is set in the following manner:

• The lists of tasks are loaded on the computers that will serve as assembly lines

• Start the first assembly line

• Start the server

• Connect the first assembly line to the server

• Start the second assembly line

• Connect the second assembly line to the server

© Central University of Technology, Free State

93

After the second assembly line is connected, the rest will run automatically until the

point where the AGV needs to be connected to the server for the process to continue.

The results of this test are discussed below in the next section.

4.1.2 Results

These are the results obtained from the tests done in the previous section. They have

been divided into sub-sections that are as follows:

- The result obtained after starting the server

- The result of the connection to the server

- And the communication and basic operation of the assembly lines

4.1.2.1 Starting sever

The assembly line is mainly a client server

application that runs on the same application

rather than two different apps (one app for the

server and one for the client). Only one server

can operate at the time. Therefore, this

message box purpose is to allow the user to

choose whether to start the server on this

assembly line or to connect to an already

running server.

When the user chooses to start a new server, the

following message box shown in Figure 4.3 will appear

as a result of a successful start of the server. It shows

the IP address of the server that the user will use to

connect another client to this server.

Figure 4.2 Start server

message box

Figure 4.3 Server’s IP

message box

© Central University of Technology, Free State

94

4.1.2.2 Connecting to server

The user interface in Figure 4.4 is used to set the

client’s connection to the server. The main settings are

the client’s name which in this case is Assembly line1

and the server’s IP address.

Note that each client is considered as an assembly

line on its own, so therefore, Assembly line1 is the

name of the first assembly line and assembly line2 will

be the second assembly line name. The IP address

will remain the same because they all have to be

connected to the same server in order for the system

to work.

4.1.2.3 Assembly lines communication and basic operation results

Figure 4.5 illustrates the operation test of the two assembly lines side by side. It clearly

shows the different steps take in the information sharing and resources management

process taken by the assembly line

Six results are shown in Figure 4.5 below in area 1 of the user interface (refer to Figure

4.1) are the following:

• Result 1: it is a message received from the server indicating that assembly lines

have been successfully connected to the server and are ready to share

messages.

• Result 2: this message is displayed after the list of tasks from the other assembly

line has been received and successfully saved to the current assembly line’s

program to be used later on as a reference. The list received can be seen by

selecting the assembly line where it is from on the second area of the user

interface. Refer to Figure 4.1 above on page 92

• Result 3: this is a message from the other assembly line that serves as a

notification that a task is about to be started.

• Result 4: is the name of the task that is about to start. The program uses this

information to compare the priority level to its own task and determine whether it

has priority over the resources usage.

Figure 4.4 Server

connection user

interface

© Central University of Technology, Free State

95

• Result 5: this is a message shared between the assembly lines as a result of the

priority level comparison process. Refer to section 4.4.2 of the result on page

109 for more details.

• Result 6: these messages between the assembly lines shows the results of the

negotiations where one assembly line takes control of the resources to execute

its task and the other waits for the assembly line with highest priority task to finish

with the utilization of the resources. The assembly line with the highest task

priority will wait for the AGV to be online before requesting for parts from the

storeroom.

Area 2 of the user interface shows the list of assembly lines currently connected to the

server. When an item is selected in the list shown in area 2, area 3 shows the task list

of the selected item. Refer to Figure 4.5.

© Central University of Technology, Free State

96

Figure 4.5 Assembly lines communication

Figure 4.5 shows a side by side view of the operation of the two assembly lines. Its functions are explained in the paragraphs preceding it.

© Central University of Technology, Free State

97

4.2 The worker

The worker is an AGV as described in chapter 1. Figure 1.1 in the introduction chapter,

shows that the AGV is the link between the assembly lines and the storeroom. It is

programmed to follow a black line on a white surface as explained in the third chapter.

This segment of this chapter focused on the test that will determine whether the AGV

operates correctly. The author also describes and analyses the results obtained are

each test.

4.2.1 Test

These tests are setup to test the main functions of the worker. The worker should be

able to effectively follow the line from the storeroom to the assembly lines and back. It

should receive commands over the network from the assembly lines and execute them

accordingly. The coming paragraphs explain how those test are set up.

4.2.1.1 Line following test setup

The AGV, in this test, is placed in an environment where it has to follow a black line on

a white surface. The purpose of this test is to check the line following code that is loaded

on the AGV’s motherboard to see if it will be able to correctly see and follow the line.

The test is conducted as following:

• Place the AGV on the line with the sensors on either side on the line.

• Turn on the assembly line switch Then wait about 10 to 30 seconds for the

program in the memory to initiate.

• Turn on the motors switch to start running the AGV.

© Central University of Technology, Free State

98

Figure 4.6 AGV side view

Figure 4.6 above is the worker’s side by side view. It serves as reference for the location

of the switches that control the LabVIEW robotic starter kit.

This test will also determine the optimum speed at which the AGV can properly follow

the line without going off track.

4.2.1.2 Communication and network command

This test is designed to check the communication between the AGV and the computer.

A simple application runs on the PC to send commands to the AGV to tell it where to

go. With each command received, the AGV performances a specific section of its control

code. This allows the author to not only to test the network communication but also the

AGV’s destinations repertory. Referring back to Table 3.1 on page 61.

4.2.2 Results

The following results obtained from the test ran in the previews section. The author first

discusses the AGV’s line following results then the communication and network

commands results.

4.2.2.1 Line following

The result of the line following test was as expected, the AGV followed the line

successfully. The accuracy of the line following however depends on the speed at which

the AGV is traveling. Referring to the calculations bellow, the maximum velocity of the

AGV was determined.

© Central University of Technology, Free State

99

max 𝐷𝐶 𝑚𝑜𝑡𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 152 𝑟𝑝𝑚

𝜔 =
152

60
𝑥 2𝜋 = 15.92 𝑟𝑎𝑑

𝑠⁄

𝑟 = 5 𝑐𝑚

𝑣 = 𝜔. 𝑟

𝑣 = 15.92 𝑥 5 𝑥 10−2 = 0.79 𝑚
𝑠⁄

𝑤ℎ𝑒𝑟𝑒:

𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑒𝑒𝑙

𝜔 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡ℎ𝑒 𝐴𝐺𝑉

𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝐴𝐺𝑉

The AGV control program is set in such a way that we use the linear speed to go forward

or backward depending on the sign of the number set to that variable (+ forward and –

backward). The angular velocity is used to control the direction in which the AGV turns

(+ right and – left).

Figure 4.7 Line following speed test results

Figure 4.7 above, shows that the line following accuracy decreases when the AGV

speed increases. It also indicates that the best speed setting to an accurate line

following ranges between 0.1 to 0.38.

© Central University of Technology, Free State

100

4.2.2.2 Communication and network command

The AGV and PC wireless communication work successfully, the sample program

application running on the PC successfully sent messages or commands to the AGV.

Figure 4.8 below is the user interface of the application designed to test the

communication and commands from the PC to the AGV. Each button represents a

command that is sent to the AGV when it is clicked. Refer to Table 4.1 bellow for the

description of each button on Figure 4.8 and the results of the reaction on the AGV when

they are clicked.

Figure 4.8 Communication and commands testing application

Figure 4.8 is the Communication and commands testing application as explained in the

paragraph above. The function and description of each buttons on the user interface

are discussed in the table below.

© Central University of Technology, Free State

101

Table 4.1 Application buttons and description

Button Label DESCRIPTION

AGV Action after

message reception

referring to Figure 4.9

below

M1 Go to assembly line 1 The AGV received the

command and

successfully travelled

from A to B

M2 Go to assembly line 2 The AGV received the

command and

successfully travelled

from A to C

RM1 Return to storeroom from

assembly line 1

The AGV received the

command and

successfully travelled

from B to A

RM2 Return to storeroom from

assembly line 2

The AGV received the

command and

successfully travelled

from C to A

stop Stop motors The AGV received the

command and

successfully stopped all

motion.

DRIVE Drive forward ignoring

sensors inputs

The AGV received the

command and

successfully executed it

LEFT Rotate left ignoring

sensors inputs

The AGV received the

command and

successfully executed it

RIGHT Rotate right ignoring

sensors inputs

The AGV received the

command and

successfully executed it

© Central University of Technology, Free State

102

The Table 4.1 above describes the functions and commands generated by the buttons

in the user interface shown in Figure 4.8. This table summarises the user interface,

describes the commands sent to the AGV by each button when clicked, and the results

obtain when the AGV receives the command. It is furthermore used to test the

communication and the response of the AGV and the command application. As results,

the third column of the above table show that the results of the tests were successful

for each of the buttons shown is Figure 4.8.

Figure 4.9 Line following AGV

Figure 4.9 above, shows the AGV following a black line on a white surface as explained

and designed in chapter 2 and 3 respectively. It has three distinctive location labelled

A, B, and C. Location A represents the storeroom, B is the first assembly line, and C is

the second assembly line’s location.

BACK Drive backward ignoring

sensors inputs

The AGV received the

command and

successfully executed it

© Central University of Technology, Free State

103

4.3 The storeroom

The storeroom is an automated storage and retrieval system and shown in Figure 1.1

of the introduction chapter and explained in the literature review in chapter 2. It has been

built and programmed to perform its main tasks as explained in the methodology in

chapter 3.

This section of this chapter discusses the operation and result of the storeroom.

Figure 4.10 Automated storage and retrieval system

Figure 4.10 above is the final is physical built of the storage and retrieval system that is

used in the storeroom of this study. The Table 1.1 in the introduction chapter shows that

each task is composed of four parts collected from the storeroom. To implement that

function, the author used the following:

• Part 1 is represented as a small box

• Part 2 is the medium box

• Part 3 is the big box and

• Part 4 is the combination of a small and big box.

4.3.1 Operation and results

The system shown in Figure 4.10 works in the following manner:

• Each box is fitted with an RFID tag that the system uses to know its properties

(box size: big, medium or small)

• The box received at the entry conveyor belt is scanned by the RFID reader. The

PLC uses the data from the RFID reader to allocation a storage location for the

scanned box.

• The box is then picked up using the motion combination of the pneumatic forklift

and the stepper motors and stored in the PLC’s allocated storage place.

• This will repeat until the all the storage system is full.

© Central University of Technology, Free State

104

When the assembly line requests for parts from the storeroom, the storeroom system

interrupts the packing process to execute the order placed only if all the parts required

are already stocked. If the parts required are not yet stored, the packing process will

continue until all the part ordered are in storage then will execute the pending order

placed.

Figure 4.11 below is the flowchart of the storeroom system. It shows a step by step

detailed operation of the system.

© Central University of Technology, Free State

105

START

PRODUCT RECIEVED

SCAN PRODUCT

BIG BOX
PLACE IN

BOTTOM SHELF
YES

MEDIUM BOX

NO

PLACE IN
MIDDLE SHELF

YES

SMALL BOX

NO

PLACE IN TOP
SHELF

YES

PLACE PRODUCT
AS UNKNOWN

NO

NEW ORDER
PLACED

YES

NO

IS PRODUCT
IN STORE

EXECCUTE
ORDER

STORAGE
FULL

NO

NO

YES

Figure 4.11 storeroom system’s operation flowchart

Figure 4.11 is the storeroom system’s operation flowchart. After the system starts, the

products reception process start, then each product is scan by the RFID scanner.

Afterward, the scan results go through a series of condition to determine the location in

which the product will be stored. Thereafter, the system will start checking if there are

orders for products already store. If there is a pending order, the system will check if all

© Central University of Technology, Free State

106

the products requested are in the storage area to start the execution of that order or

else it will continue with the reception of products until the order request is met.

Figure 4.12 Storage allocation

Figure 4.12 is the storage allocation used by the PLC to store and retrieve boxes when

they are received or requested by the assembly lines.

Figure 4.13 is the time chart result of the storage process. It shows the time that the

system takes to store different boxes. The time displayed in the chart below is measured

from the moment the box is picked up at the entry point to the moment it is placed in its

allocated storage place.

© Central University of Technology, Free State

107

Figure 4.13 storage time chart.

The storage system has been proven to be able to pack 18 boxes in 2 minutes and

15seconds without interruption and unpack the entire stack in 1 minute and 50seconds.

This proved to be efficient and will make a large impact in a bigger scale warehouse

system.

4.4 System’s operation

This section of this chapter focuses on the analysis of the tests and results obtained

when combining the entire system as shown in Figure 1.1 of the introduction chapter.

Each of parts of this system have been studied in the literature review (chapter 2),

developed, programmed or built in the methodology (chapter 3) and finally test in the

previous sections of this chapter. The rest of this chapter now will focus on testing the

main function of the system such as:

• The negotiation and sharing of resources and

• The execution all tasks loaded in the assembly lines

4.4.1 Test

The test discussed in this are used to determine whether the system developed in this

study if fully functional and meet all the different criteria and functions described in the

first chapter of this research. Three forms of test are run and described in the coming

section of this unit.

LOCATION1 LOCATION2 LOCATION3 LOCATION4 LOCATION5 LOCATION6 AVERAGE

BIG 5.83 5.4 5.23 5 4.69 4.5 5.11

MEDIUM 6.26 6.08 5.74 5.56 5.17 4.84 5.61

SMALL 6.75 6.48 6.3 6.01 5.6 5.27 6.07

0

1

2

3

4

5

6

7

8

TI
M

E
in

 s
e

co
n

d
s

Location in storage

Storage time chart

BIG MEDIUM SMALL

© Central University of Technology, Free State

108

4.4.1.1 Task execution without temporarily priority shift

In this test, the assembly lines are loaded with lists of tasks that they have to execute

while negotiating and sharing the usage of the resources. the aim of this trial is to see

how long it will take to the system to execute a certain amount of tasks by sharing the

resources based on this following rules

• Compare the level of priority of the tasks being started

• The task with the highest priority gets executed while the other waits

• The task waiting is compared to the next task on the assembly line with the

previous high priority task.

• The task with the highest priority gets executed while the other waits

These steps will repeat until all the tasks of both assembly lines are completed.

4.4.1.2 Task execution with temporarily priority shift

This test is similar to the test in 4.4.1.1 above, the main difference is that we enable the

temporary control of the resources. This allows the task with lower priority to be

executed almost at the same time as the one that has the higher priority on the other

assembly line. Table 1.1 in Chapter 1 on page 3 shows that each task has a number of

parts that it needs and each part has an assembling and collection time. Those time are

used to enable the temporary control function.

Function’s example:

To better understand this function, the author makes use of this example where 2

assembly line are simultaneously executing task while sharing resources.

Table 4.2 example

ASSEMBLY

LINE 1

ASSEMBLY

LINES 2

JOB1

PART2

JOB2

PART1

PART3 PART2

PART3 PART2

PART4 PART3

The first assembly line is starting job1 while the second is starting job2. Using Table 1.1

in chapter 1 as reference, we know the following factors:

• Job1 has a higher execution priority than Job2

• Job1 requires part2, 2x part3, and part4 to be completed.

© Central University of Technology, Free State

109

• Job2 requires part1, 2x part2, and part3 to be completed.

At the start of the tasks execution, the following execution sequence will be followed

repeatedly until all the required parts are collected. The system is at the state where

assembly line 2 is waiting for the task is assembly line1 to be completed and assembly

line 1 is in full control of the resources.

Every time that a part is delivered to assembly line 1, a subroutine is run in assembly

lines that compared the assembly time of the collected part to the collection time of the

part to be collected for assembly line 2. If the assembling time is greater than the

collection time, assembly line 2 will temporarily take control of the resources long

enough for the part that it need to be collect then priority will be restored back to

assembly line1 while assembly line 2 will also be busy assembling a part.

The results related to this test are shown and explained in section 4.4.2.2 of this chapter

below.

4.4.1.3 All task completed task sharing

For this test, one of the assembly lines is loaded with a list that contains only 1 task in

it while the other is loaded with 7 task. The assembly line with the largest amount of

tasks will share it remaining tasks at the moment that the other is done.

4.4.2 Results

In this section, the author shows and explains the results obtained from the tests

explained in the previous paragraphs above. It has been divided into 3 sub-sections for

better understanding of the purpose of the test and their results.

4.4.2.1 Task execution without temporary priority shift

Table 4.3 bellow, shows the list of task that was loaded to the assembly lines. The

orange dotted line indicates the order in which they were executed. Refer to Table 1.1

in chapter 3 for priority level of each task on the Table 4.3 below.

© Central University of Technology, Free State

110

Table 4.3 Task list

Task Name Part List A_T C_T W_T M1 Task NamePart List A_T C_T W_T M2

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

Part1 5 1 83 89 Part1 5 1 0 6

Part1 5 1 89 95 Part1 5 1 6 12

Part2 10 1 95 106 Part2 10 1 12 23

Part2 10 1 106 117 Part3 15 1 23 39

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

job_four
job_

th
ree

Part1 5 1 117 123 Part1 5 1 39 45

Part1 5 1 123 129 Part2 10 1 45 56

Part2 10 1 129 140 Part2 10 1 56 67

Part3 15 1 140 156 Part3 15 1 67 83

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

job_three
job_

tw
o

Part1 5 1 156 162 Part1 5 1 303 309

Part1 5 1 162 168 Part1 5 1 309 315

Part2 10 1 168 179 Part2 10 1 315 326

Part3 15 1 179 195 Part2 10 1 326 337

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

job_three
job_

four

Part1 5 1 195 201 Part1 5 1 337 343

Part2 10 1 201 212 Part1 5 1 343 349

Part2 10 1 212 223 Part2 10 1 349 360

Part3 15 1 223 239 Part2 10 1 360 371

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

job_two
job_

four

Part2 10 1 239 250 Part1 5 1 371 377

Part3 15 1 250 266 Part2 10 1 377 388

Part3 15 1 266 282 Part2 10 1 388 399

Part4 20 1 282 303 Part3 15 1 399 415

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t
job_one

job_
tw

o

Table 4.3 and Table 4.4 column abbreviation:

• A_T: Assembling Time

This is the time that it takes to assemble a part.

• C_T: Collection Time

This is regarded as the time that it take for the AGV to collect a part from

the storeroom to the assembly line’s location.

• W_T: Wait Time

It is the time that each part as to wait before being collected.

• M1 & M2: the total time that it takes to complete a task or part.

© Central University of Technology, Free State

111

Figure 4.14 Master 1 & 2 Comparison

NB: due to the fact that the life time of the battery on the AGV does not allow us to test

the system from start to the end, the AGV and Storeroom processes have been

simulated to get the results shown on this document. Therefore, all the collection times

have been changed to 1 minute.

Figure 4.14 above is a graph result of the comparison between the tasks execution on

assembly line 1 and assembly line 2. This chart clearly shows the large difference in the

operation of the 2 assembly lines and it is clearly seen that the system takes too long to

execute all the tasks.

4.4.2.2 Task execution with temporary priority shift

The Table 4.4 Task list below is the list of tasks that were loaded to the assembly lines,

it is the same table as the Table 4.3 in the previous point 4.4.2.1. The difference is that

in this table the priority to use the AGV and storeroom shifts depending on the

assembling and collection time of the parts on the list.

For example: the tasks to be executed are job_four on assembly line 1 and job_three

on assembly line 2. The first test is to check the priority level where job_three has the

higher priority. Then, every time that a part is collected to complete job_three, its

assembling time is compared to the collection of the part in job_four. If that assembling

time is greater than the collection time, then the AGV will collect that part for job_four

on assembly line 1 while assembly line 2 is busy assembling the part1.

© Central University of Technology, Free State

112

Table 4.4 Task list

Task Name Part List A_T C_T W_T M1 Task Name Part List A_T C_T W_T M2

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

Part1 5 1 1 7 Part1 5 1 0 6

Part1 5 1 7 13 Part1 5 1 6 12

Part2 10 1 13 24 Part2 10 1 12 23

Part2 10 1 24 35 Part3 15 1 23 39

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

job_
th

ree
job_four

Part1 5 1 39 45 Part1 5 1 39 45

Part1 5 1 45 51 Part2 10 1 45 56

Part2 10 1 51 62 Part2 10 1 56 67

Part3 15 1 62 78 Part3 15 1 67 83

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

job_
tw

o
job_three

Part1 5 1 83 89 Part1 5 1 84 90

Part1 5 1 89 95 Part1 5 1 90 96

Part2 10 1 95 106 Part2 10 1 96 107

Part3 15 1 106 122 Part2 10 1 107 118

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

job_
four

job_three

Part1 5 1 122 128 Part1 5 1 118 124

Part2 10 1 128 139 Part1 5 1 124 130

Part2 10 1 139 150 Part2 10 1 130 141

Part3 15 1 150 166 Part2 10 1 141 152

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t

job_
four

job_two

Part2 10 1 166 177 Part1 5 1 152 158

Part3 15 1 177 193 Part2 10 1 158 169

Part3 15 1 193 209 Part2 10 1 169 180

Part4 20 1 209 230 Part3 15 1 180 196

M

a

s

t

e

r

1

T

a

s

k

L

i

s

t

M

a

s

t

e

r

2

T

a

s

k

L

i

s

t
job_

tw
o

job_one

This process greatly improved the overall time that the system takes to complete all the

tasks loaded on the 2 assembly lines. The Figure 4.15 below can be compared to the

Figure 4.14 in the previous unit 4.4.2.1 above to see how greatly the system has

improved. The system takes almost half the time it took before to complete the same

amount of tasks has shown in Figure 4.15 below.

© Central University of Technology, Free State

113

Figure 4.15 Master 1 & 2 Comparison

4.4.2.3 All task completed task sharing

The list of task loaded to the assembly lines to perform this test and quickly get these

results have been modified to reduce their time in the following manner:

- Part1 assembling time was changed from 5 to 2 minutes

- Part2 assembling time was changed from 10 to 3 minutes

- Part3 assembling time was changed from 15 to 5 minutes

- Part4 assembling time was changed from 20 to 7 minutes

With these changes, the results obtained are shown the assembly lines logs in the

Appendixes Assembly line 1 log and Assembly line 2 log below. These logs are used to

explain the results the next paragraphs.

4.4.2.3.1 Task starting

The task starting on assembly line 1 is shown in Line 3 of the Assembly line 1 log and

on Line 5 of the Assembly line 2 log, we can also see the task starting on assembly line

2.

Assembly line 2 only has one task on its list and that task is completed on Line 50 of

Assembly line 2 log and Line 49 of Assembly line 1 log.

© Central University of Technology, Free State

114

Table 4.5 Task list before sharing

Assembly line 1 task list Assembly line 2 task list

Task name status Priority Task name status

Job_four Completed < Job_three Completed

Job_three

Job_three

Job_two

Job_three

Job_two

Job_four

Job_four

4.4.2.3.2 Remaining task sharing

Assembly line 1 has 8 tasks loaded to its list. At the moment that assembly line 2

completes its first and only task, assembly line 1 would already be done with its first

task too thanks to the temporary priority shift (refer to 4.4.2.2).

Line 51 of Assembly line 2 log is a message from assembly line 1 specifying the number

of uncompleted tasks in its list. Line 51 of Assembly line 1 log shows the number of

tasks that assembly line 2 has added to it list. The results of this process are shown in

Table 4.6 below.

Table 4.6 Task list after sharing

Assembly line 1 task list Assembly line 2 task list

Task name status Log

Line

Priority Task name status Log

Line

Job_four Completed 46 < Job_three Completed 50

Job_three Completed 94 < Job_two Completed 101

Job_three Completed 143 > Job_four Completed 141

Job_two Completed 193 > Job_four Completed 186

Job_three Completed 203

this conclude the series of test and results used to verify the system’s operation and the

next chapter will elaborate the author’s final conclusion, limitation and possible future

work related to this study.

© Central University of Technology, Free State

115

5 CONCLUSION

The principal objective of this study was to develop an intelligent single worker utilization

for component retrieval for multiple stationary assembly lines. To evaluate such an

intelligent system, a small manufacturing control environment consisting of 2 assembly

lines, an AGV, and a storeroom needed to be developed. The assembly lines are also

referred to in this document as the assembly lines, the AGV as the worker, and the

combination of the AGV and storeroom is referred to as the resources. The separate

system’s component mention above should be autonomous and independent from each

other. The 2 assembly lines share information and negotiate on the usage of resources

over a network link. They should be able to perform all the task assigned to them as

effectively and as efficiently as possible.

These objectives were met throughout this document, starting with the literature review

study done by the author in chapter 2. He researched manufacturing system’s

components such as assembly lines, AGVs, and automation in storage systems. These

researches were later on used in the development of the system in chapter 3. The

methodology chapter is divided into 3 main parts that consist of the subsystem of this

project. The first step to successfully develop these subsystems was the creation of a

network that will allow them to constantly communicate with each other. Next was the

development of the program algorithm that controls the assembly line. This algorithm

utilizes a state machine to control the assembly line’s functions such as the task sharing

process, the priority level check, and the task execution. Then was the implementation

of the line following AGV. The AGV used 4 digital sensors to follow a black line on a

white surface. The middle 2 sensors were used for line following, and the extreme 2

sensors the count the check points placed next to the followed line. This allowed the

AGV to easily follow multiple paths. And finally was the development of an automated

storage and retrieval system that is use in the storeroom. It used RFID to identify, store,

and retrieve parts from the storeroom according to their specifications. Each one of the

sub-systems were individually tested in chapter 4 to verify their main operations.

Afterwards, they were combined to form the main system. The last 2 units in chapter 4

were dedicated to test and verify whether the final system meets the objective set at the

start of this study. The author first tested the communication between the separate

components, then the task sharing process, after that, the priority check process, and

finally, the task execution process.

© Central University of Technology, Free State

116

The results obtained after the testing sequences were found satisfactory, therefore, the

proposed project in this study was develop successfully.

The project offers the following contribution:

• Autonomy

The manufacturing system in this project is composed of individual sub-system that

are capable of running on their own. This could allow the system manager to easily

maintain or fix the system without interrupting other system’s components.

• Task sharing and negotiation

The algorithm developed for the resources usage negotiations and tasks sharing

has been proven to be very efficient, therefore, it can be use in a larger

manufacturing system with more AGV and Assembly lines.

• AGV guidance system

In chapter 3 of this document, the author developed a guidance system that allowed

the AGV to follow multiple paths using only 4 digital line following sensors. This

model was implemented to reduce the number of digital sensor used to follow

multiple paths.

• Automated storage and retrieval system

This has been used as part of the storeroom and provides an effective method to

sort product according to their characteristics using RFID system.

The project developed in this study was done to test the working principles of a

manufacturing system consisting of 2 assembly lines, an AGV, and a storeroom. This

system, as illustrated throughout this document, was limited to the simulation of the time

that it took for a task to be completed.

For future work, the author would like to test this system in a real manufacturing

environment where all the data displayed in Table 1.1 will be tested and recorded to

analyse the system’s operations in real time and condition.

An automated charging system will have to be developed for the AGV to charge while

it is waiting for commands from the assembly lines. This charging system will have to

be place at the point where the AGV stops (collection point at the storeroom and delivery

point at the assembly lines).

© Central University of Technology, Free State

117

The addition of a monitoring system will also be beneficial to the user to monitor the

progress of all the operations on the assembly lines, the quantity of parts left in the

storeroom, and the battery level of the AGV. With this system, the manager will know

whether the storeroom in resupply, or the AGV battery needs charging, or even

add/remove tasks from the assembly lines while they are busy.

To conclude, modern manufacturing industries make use of automated systems to

improve their productivity, save time, and to gain a certain advantage in the market over

their competitor. These systems are often comprised of assembly line, a network of

AGV that transport materials in the factory, a storage area where completed or

uncompleted products are store, and a central control system that coordinate the

operation of all the other. As great as these automated systems are, researches are still

being done to improve and make them more efficient. The research conducted

throughout this document aimed to enhance existing automated manufacturing

systems. The author implemented a system that is made of two assembly lines, an AGV,

and a storeroom. Where each of these parts are autonomously adept to function on

their own without the need for a central control system. This allows the system to be

maintained with ease when needed. The assembly lines utilize a programmed algorithm

that sets the rules for information sharing, data backup, and negotiations for AGV and

storeroom usage. This project has for advantage that it greatly reduced the overall time

that a typical manufacturing system takes to complete the assembling of a given amount

of products while efficiently sharing the one AGV and storeroom. The author believes

that the implementation of this study to the manufacturing industries will significantly

improve their productivity, revenues, save them time, effectively manage their storage

space, and save them money by reducing the number of AGV needed per factories.

© Central University of Technology, Free State

118

6 REFERENCES

[1] R. Singh, Introduction to Basic Manufacturing Process and Workshop Technology. New Age
International, 2006.

[2] J. X. Wang, Cellular Manufacturing: Mitigating Risk and Uncertainty. CRC Press, 2015.
[3] J.-C. Spender and H. Kijne, Scientific Management: Frederick Winslow Taylor’s Gift to the World?

Springer Science & Business Media, 2012.
[4] S. Akpinar and A. Baykasoglu, "Modeling and solving mixed-model assembly line balancing

problem with setups. Part I: A mixed integer linear programming model," Journal of manufacturing
systems, vol. 33, no. 1, pp. 177-187, 2014.

[5] M. F. F. Rashid, W. Hutabarat, and A. Tiwari, "A review on assembly sequence planning and
assembly line balancing optimisation using soft computing approaches," The International Journal
of Advanced Manufacturing Technology, vol. 59, no. 1-4, pp. 335-349, 2012.

[6] M. Vilà and J. Pereira, "A branch-and-bound algorithm for assembly line worker assignment and
balancing problems," Computers & Operations Research, vol. 44, pp. 105-114, 2014.

[7] Ö. Mutlu, O. Polat, and A. A. Supciller, "An iterative genetic algorithm for the assembly line worker
assignment and balancing problem of type-II," Computers & Operations Research, vol. 40, no. 1,
pp. 418-426, 2013.

[8] A. Yolmeh and F. Kianfar, "An efficient hybrid genetic algorithm to solve assembly line balancing
problem with sequence-dependent setup times," Computers & Industrial Engineering, vol. 62, no.
4, pp. 936-945, 2012.

[9] A. Roshani, P. Fattahi, A. Roshani, M. Salehi, and A. Roshani, "Cost-oriented two-sided assembly
line balancing problem: A simulated annealing approach," International Journal of Computer
Integrated Manufacturing, vol. 25, no. 8, pp. 689-715, 2012.

[10] J. Rada-Vilela, M. Chica, Ó. Cordón, and S. Damas, "A comparative study of multi-objective ant
colony optimization algorithms for the time and space assembly line balancing problem," Applied
Soft Computing, vol. 13, no. 11, pp. 4370-4382, 2013.

[11] H. Bidgoli, The internet encyclopedia. John Wiley & Sons, 2004.
[12] S. Cass, "The top 10 programming languages Spectrums 2014 ranking [DataFlow]," Spectrum,

IEEE, vol. 51, no. 7, pp. 68-68, 2014.
[13] A. Hejlsberg, S. Wiltamuth, and P. Golde, C# language specification. Addison-Wesley Longman

Publishing Co., Inc., 2003.
[14] J. Gosling, The Java language specification. Addison-Wesley Professional, 2000.
[15] M. F. Sanner, "Python: a programming language for software integration and development," J Mol

Graph Model, vol. 17, no. 1, pp. 57-61, 1999.
[16] C. Jackson, Learning to Program Using Python. CreateSpace, an Amazon Company, 2011.
[17] B. Smith, Object-Oriented Programming. Springer, 2015.
[18] E. K. a. I. Krivy, "Object-Oriented Simulation of systems with sophisticated control," International

Journal of General Systems, pp. 313–343, 2011.
[19] J. Niemann, "Development of a reconfigurable assembly system with enhanced control capabilities

and virtual commissioning," Bloemfontein: Central University of Technology, Free State, 2013.
[20] P. Rao, Cad/Cam: Principles & Application (Mechanical engineering). the McGraw-Hill Companies,

2006.
[21] S. Automation. (2014, 29 June). AGV Basics [Online]. Available:

http://www.agvsystems.com/agvs-basics/basics-agvs/.
[22] R. A. P/L, "Industrial AGV's," AGVs, Ed., ed. Australia, 2015.
[23] A. Alavudeen and N. Venkateshwaran, Computer integrated manufacturing. PHI Learning Pvt.

Ltd., 2008.
[24] Roboteq. (2014, 19 june). Precision Magnetic Track Following Sensor with Optional Gyrosope

[Online]. Available: http://www.roboteq.com/index.php/docman/magsensor-documents-and-
files/mgs-documents-1/mgs-datasheets-1/37-mgs1600-datasheet/file.

© Central University of Technology, Free State

http://www.agvsystems.com/agvs-basics/basics-agvs/
http://www.roboteq.com/index.php/docman/magsensor-documents-and-files/mgs-documents-1/mgs-datasheets-1/37-mgs1600-datasheet/file
http://www.roboteq.com/index.php/docman/magsensor-documents-and-files/mgs-documents-1/mgs-datasheets-1/37-mgs1600-datasheet/file

119

[25] V. supplies. (2007, 19 june). Opto-electronic sensors [Online]. Available: https://vision-
supplies.com/Content/pdf/pdf_en_soex_en.pdf.

[26] V. Aggarwal. (2013, 13 october). maxEmbedded a guide to robotics, embedded electronics and
computer vision [Online]. Available: http://maxembedded.com/2013/08/how-to-build-an-ir-sensor/.

[27] N. Instruments. (2013, 19 JUNE). What is LabVIEW? [Online]. Available:
http://www.ni.com/newsletter/51141/en/.

[28] J. Travis. (19 june). Introduction to Graphical Programming with LabVIEW [Online]. Available:
http://www.informit.com/articles/article.aspx?p=662895&seqNum=3.

[29] M. Yu, "Enhancing Storeroom Performance by Efficient Order Picking," 2008.
[30] R. Bagve, V. Kumbhar, M. D. Bhat, S. V. Verleker, and J. Fernandes, "Automatic Packing Machine

& Material Handling using Programmable Logic Controller (PLC)," International Journal for
Innovative Research in Science and Technology, vol. 2, no. 10, pp. 24-29, 2016.

[31] J. Marshall, "Programmable Logic Controllers: Essential and Affordable," presented at the 120th
ASEE Annual Conference and Exposition, Atlanta, 23-26 June 2013, 2013.

[32] M. i. systems. (2007, 4 Febuary). Making Information Work [Online]. Available:
http://www.machine-information-systems.com/PLC.html.

[33] M. Morshed, "Effective protocols for privacy and security in RFID systems applications,"
Staffordshire University, 2012.

[34] U. A. Bakshi and A. V. Bakshi, Electrical Machines And Instruments. Technical Publications, 2007,
pp. 366-384.

[35] N. t. Corporation. (2014, 4 Febuary). The Step Motor and Stepper Motor Controller [Online].
Available: http://www.nmbtc.com/step-motors/engineering/basic-introduction-of-step-motors/.

[36] C. M. Kozierok, "TCP/IP Transport layer protocol," in The TCP/IP Guide: A Comprehensive,
Illustrated Internet Protocols Reference: No Starch Press, 2005, pp. 687-709.

[37] M. J. D. a. K. L. C. D. B. Makofske, TCP/IP Sockets in C# Practical Guide for Programmers. San
Francisco: Morgan Kaufmann Publishers, 2004.

[38] M. Rouse. (1 October). TCP/IP (Transmission Control Protocol/Internet Protocol) definition
[Online]. Available: http://searchnetworking.techtarget.com/definition/TCP-IP.

[39] N. Instruments. (30 September). Basic TCP/IP Communication in LabVIEW [Online]. Available:
http://www.ni.com/white-paper/2710/en/.

[40] N. Instruments. (2015, 30 September). TCP VI and Functions [Online]. Available:
http://zone.ni.com/reference/en-XX/help/371361M-01/lvcomm/tcp_vi_descriptions/#examples.

[41] H. i. Kalkan. (20011, 06 November). A Complete TCP Server/Client Communication and RMI
Framework in C# .NET - Implementation [Online]. Available:
http://www.codeproject.com/Articles/155282/TCP-Server-Client-Communication-
Implementation#ScsWhatIsTcp.

[42] N. Instruments. (2012, 19 june). NI LabVIEW Robotics Starter Kit for Prototyping [Online].
Available: http://sine.ni.com/nips/cds/print/p/lang/en/nid/208010.

[43] N. Instruments. (2012, 19 june). NI LabVIEW Robotics Starter Kit Robotics Platform for Teaching,
Research, and Prototyping [Online]. Available: http://sine.ni.com/ds/app/doc/p/id/ds-217/lang/en.

[44] N. Instruments. (2015, 19 May). Overview of the LabVIEW Robotics Module [Online]. Available:
http://www.ni.com/white-paper/11564/en/.

[45] N. Instruments. (2013, 19 May). LabVIEW Delivers Embedded Programming to New NI Single-
Board RIO Platform [Online]. Available: http://www.ni.com/newsletter/50452/en/.

[46] N. Instruments. (2014, September 2015). NI sbRIO-9632/9632XT [Online]. Available: Available:
http://zone.ni.com/reference/en-XX/help/373197D-01/sbriohelp/ni_9632/.

© Central University of Technology, Free State

https://vision-supplies.com/Content/pdf/pdf_en_soex_en.pdf
https://vision-supplies.com/Content/pdf/pdf_en_soex_en.pdf
http://maxembedded.com/2013/08/how-to-build-an-ir-sensor/
http://www.ni.com/newsletter/51141/en/
http://www.informit.com/articles/article.aspx?p=662895&seqNum=3
http://www.machine-information-systems.com/PLC.html
http://www.nmbtc.com/step-motors/engineering/basic-introduction-of-step-motors/
http://searchnetworking.techtarget.com/definition/TCP-IP
http://www.ni.com/white-paper/2710/en/
http://zone.ni.com/reference/en-XX/help/371361M-01/lvcomm/tcp_vi_descriptions/#examples
http://www.codeproject.com/Articles/155282/TCP-Server-Client-Communication-Implementation#ScsWhatIsTcp
http://www.codeproject.com/Articles/155282/TCP-Server-Client-Communication-Implementation#ScsWhatIsTcp
http://sine.ni.com/nips/cds/print/p/lang/en/nid/208010
http://sine.ni.com/ds/app/doc/p/id/ds-217/lang/en
http://www.ni.com/white-paper/11564/en/
http://www.ni.com/newsletter/50452/en/
http://zone.ni.com/reference/en-XX/help/373197D-01/sbriohelp/ni_9632/

120

7 Appendixes

7.1 Assembly line 1 log

Line 0: Assembly line1 : is connected

Line 1: AGV online

Line 2: Assembly line2 : is connected

Line 3: Tasks list received from : Assembly line2

Line 4: Assembly line2 task is Starting

Line 5: Job_three Task

Line 6: Assembly line2 task has higher priority

Line 7: Assembly line2 started task: Job_three

Line 8: Estimated waiting time: 16min

Line 9: AGV busy collecting Part1 for: Assembly line2

Line 10: Part delivered to Assembly line2

Line 11: 02:35 PM : Assembly line2 is Assembling Part1 time for completion: 2 Min

Line 12: AGV@StoreRoom

Line 13: AGV busy collecting Part1 for: Assembly line1

Line 14: Part delivered to Assembly line1

Line 15: AGV@StoreRoom

Line 16: 02:37 PM : Assembly line2 : Part1 Assembling process completed

Line 17: Assembly line2 is requesting the next Part on the list

Line 18: AGV busy collecting Part1 for: Assembly line2

Line 19: Part delivered to Assembly line2

Line 20: 02:37 PM : Assembly line2 is Assembling Part1 time for completion: 2 Min

Line 21: 2:37 PM : Assembly line1 : Part1 Assembling process completed

Line 22: AGV@StoreRoom

Line 23: AGV busy collecting Part1 for: Assembly line1

Line 24: Part delivered to Assembly line1

Line 25: AGV@StoreRoom

Line 26: 02:39 PM : Assembly line2 : Part1 Assembling process completed

Line 27: Assembly line2 is requesting the next Part on the list

Line 28: AGV busy collecting Part2 for: Assembly line2

Line 29: Part delivered to Assembly line2

Line 30: 02:39 PM : Assembly line2 is Assembling Part2 time for completion: 3 Min

Line 31: 2:39 PM : Assembly line1 : Part1 Assembling process completed

Line 32: AGV@StoreRoom

Line 33: AGV busy collecting Part2 for: Assembly line1

Line 34: Part delivered to Assembly line1

Line 35: AGV@StoreRoom

Line 36: 02:42 PM : Assembly line2 : Part2 Assembling process completed

Line 37: Assembly line2 is requesting the next Part on the list

Line 38: AGV busy collecting Part3 for: Assembly line2

Line 39: Part delivered to Assembly line2

Line 40: 02:42 PM : Assembly line2 is Assembling Part3 time for completion: 5 Min

Line 41: 2:42 PM : Assembly line1 : Part2 Assembling process completed

Line 42: AGV@StoreRoom

Line 43: AGV busy collecting Part2 for: Assembly line1

Line 44: Part delivered to Assembly line1

Line 45: AGV@StoreRoom

Line 46: 2:45 PM : Assembly line1 : Part2 Assembling process completed

Line 47: 02:47 PM : Assembly line2 : Part3 Assembling process completed

Line 48: Assembly line2 Job_three all parts collected

© Central University of Technology, Free State

121

Line 49: Assembly line2 : All tasks Completed

Line 50: Assembly line2 is free

Line 51: Assembly line2 has added 3 tasks form Assembly line1 to its list

Line 52: Assembly line2 task is Starting

Line 53: Job_two Task

Line 54: Assembly line2 task has higher priority

Line 55: Assembly line2 started task: Job_two

Line 56: Estimated waiting time: 17min

Line 57: AGV busy collecting Part1 for: Assembly line2

Line 58: Part delivered to Assembly line2

Line 59: 02:47 PM : Assembly line2 is Assembling Part1 time for completion: 2 Min

Line 60: AGV@StoreRoom

Line 61: AGV busy collecting Part1 for: Assembly line1

Line 62: Part delivered to Assembly line1

Line 63: AGV@StoreRoom

Line 64: 02:49 PM : Assembly line2 : Part1 Assembling process completed

Line 65: Assembly line2 is requesting the next Part on the list

Line 66: AGV busy collecting Part2 for: Assembly line2

Line 67: Part delivered to Assembly line2

Line 68: 02:49 PM : Assembly line2 is Assembling Part2 time for completion: 3 Min

Line 69: 2:49 PM : Assembly line1 : Part1 Assembling process completed

Line 70: AGV@StoreRoom

Line 71: AGV busy collecting Part1 for: Assembly line1

Line 72: Part delivered to Assembly line1

Line 73: AGV@StoreRoom

Line 74: 2:51 PM : Assembly line1 : Part1 Assembling process completed

Line 75: 02:52 PM : Assembly line2 : Part2 Assembling process completed

Line 76: Assembly line2 is requesting the next Part on the list

Line 77: AGV busy collecting Part2 for: Assembly line2

Line 78: Part delivered to Assembly line2

Line 79: 02:52 PM : Assembly line2 is Assembling Part2 time for completion: 3 Min

Line 80: AGV@StoreRoom

Line 81: AGV busy collecting Part2 for: Assembly line1

Line 82: Part delivered to Assembly line1

Line 83: AGV@StoreRoom

Line 84: 02:55 PM : Assembly line2 : Part2 Assembling process completed

Line 85: Assembly line2 is requesting the next Part on the list

Line 86: AGV busy collecting Part3 for: Assembly line2

Line 87: Part delivered to Assembly line2

Line 88: 2:55 PM : Assembly line1 : Part2 Assembling process completed

Line 89: 02:55 PM : Assembly line2 is Assembling Part3 time for completion: 5 Min

Line 90: AGV@StoreRoom

Line 91: AGV busy collecting Part3 for: Assembly line1

Line 92: Part delivered to Assembly line1

Line 93: AGV@StoreRoom

Line 94: 3:00 PM : Assembly line1 : Part3 Assembling process completed

Line 95: 03:00 PM : Assembly line2 : Part3 Assembling process completed

Line 96: Assembly line2 Job_two all parts collected

Line 97: Assembly line2 task : Job_two was Completed

Line 98: Assembly line2 task is Starting

Line 99: Job_four Task

Line 100: Assembly line2 task has lower priority

Line 101: AGV busy collecting Part1 for: Assembly line1

Line 102: Part delivered to Assembly line1

© Central University of Technology, Free State

122

Line 103: Assembly line2 is in control of the AGV temporarely

Line 104: AGV@StoreRoom

Line 105: AGV busy collecting Part1 for: Assembly line2

Line 106: Part delivered to Assembly line2

Line 107: 03:00 PM : Assembly line2 is Assembling Part1 time for completion: 2 Min

Line 108: AGV@StoreRoom

Line 109: 3:02 PM : Assembly line1 : Part1 Assembling process completed

Line 110: Assembly line2 is waiting

Line 111: AGV busy collecting Part1 for: Assembly line1

Line 112: Part delivered to Assembly line1

Line 113: Assembly line2 is in control of the AGV temporarely

Line 114: AGV@StoreRoom

Line 115: AGV busy collecting Part1 for: Assembly line2

Line 116: Part delivered to Assembly line2

Line 117: 03:02 PM : Assembly line2 is Assembling Part1 time for completion: 2 Min

Line 118: AGV@StoreRoom

Line 119: 3:04 PM : Assembly line1 : Part1 Assembling process completed

Line 120: Assembly line2 is waiting

Line 121: AGV busy collecting Part2 for: Assembly line1

Line 122: Part delivered to Assembly line1

Line 123: Assembly line2 is in control of the AGV temporarely

Line 124: AGV@StoreRoom

Line 125: AGV busy collecting Part2 for: Assembly line2

Line 126: Part delivered to Assembly line2

Line 127: 03:04 PM : Assembly line2 is Assembling Part2 time for completion: 3 Min

Line 128: AGV@StoreRoom

Line 129: 3:07 PM : Assembly line1 : Part2 Assembling process completed

Line 130: Assembly line2 is waiting

Line 131: AGV busy collecting Part3 for: Assembly line1

Line 132: Part delivered to Assembly line1

Line 133: Assembly line2 is in control of the AGV temporarely

Line 134: AGV@StoreRoom

Line 135: AGV busy collecting Part2 for: Assembly line2

Line 136: Part delivered to Assembly line2

Line 137: 03:07 PM : Assembly line2 is Assembling Part2 time for completion: 3 Min

Line 138: AGV@StoreRoom

Line 139: 03:10 PM : Assembly line2 : Part2 Assembling process completed

Line 140: Assembly line2 has completed Job_four

Line 141: 3:12 PM : Assembly line1 : Part3 Assembling process completed

Line 142: Assembly line2 waiting is deActivated

Line 143: Assembly line1 task : Job_three was Completed

Line 144: Assembly line2 task is Starting

Line 145: Job_four Task

Line 146: Assembly line2 task has lower priority

Line 147: AGV busy collecting Part1 for: Assembly line1

Line 148: Part delivered to Assembly line1

Line 149: Assembly line2 is in control of the AGV temporarely

Line 150: AGV@StoreRoom

Line 151: AGV busy collecting Part1 for: Assembly line2

Line 152: Part delivered to Assembly line2

Line 153: 03:12 PM : Assembly line2 is Assembling Part1 time for completion: 2 Min

Line 154: AGV@StoreRoom

Line 155: 3:14 PM : Assembly line1 : Part1 Assembling process completed

Line 156: Assembly line2 is waiting

© Central University of Technology, Free State

123

Line 157: AGV busy collecting Part2 for: Assembly line1

Line 158: Part delivered to Assembly line1

Line 159: Assembly line2 is in control of the AGV temporarely

Line 160: AGV@StoreRoom

Line 161: AGV busy collecting Part1 for: Assembly line2

Line 162: Part delivered to Assembly line2

Line 163: 03:14 PM : Assembly line2 is Assembling Part1 time for completion: 2 Min

Line 164: AGV@StoreRoom

Line 165: 03:16 PM : Assembly line2 : Part1 Assembling process completed

Line 166: Assembly line2 temporary AGV control is deActivated

Line 167: 3:17 PM : Assembly line1 : Part2 Assembling process completed

Line 168: Assembly line2 is waiting

Line 169: AGV busy collecting Part2 for: Assembly line1

Line 170: Part delivered to Assembly line1

Line 171: Assembly line2 is in control of the AGV temporarely

Line 172: AGV@StoreRoom

Line 173: AGV busy collecting Part2 for: Assembly line2

Line 174: Part delivered to Assembly line2

Line 175: 03:17 PM : Assembly line2 is Assembling Part2 time for completion: 3 Min

Line 176: AGV@StoreRoom

Line 177: 3:20 PM : Assembly line1 : Part2 Assembling process completed

Line 178: Assembly line2 is waiting

Line 179: AGV busy collecting Part3 for: Assembly line1

Line 180: Part delivered to Assembly line1

Line 181: Assembly line2 is in control of the AGV temporarely

Line 182: AGV@StoreRoom

Line 183: AGV busy collecting Part2 for: Assembly line2

Line 184: Part delivered to Assembly line2

Line 185: 03:20 PM : Assembly line2 is Assembling Part2 time for completion: 3 Min

Line 186: AGV@StoreRoom

Line 187: 03:23 PM : Assembly line2 : Part2 Assembling process completed

Line 188: Assembly line2 has completed Job_four

Line 189: Assembly line2 : All tasks Completed

Line 190: Assembly line2 is free

Line 191: 3:25 PM : Assembly line1 : Part3 Assembling process completed

Line 192: Assembly line2 waiting for new task to be added to its list

Line 193: Assembly line1 task : Job_two was Completed

Line 194: AGV busy collecting Part1 for: Assembly line1

Line 195: Part delivered to Assembly line1

Line 196: Assembly line2 is free

Line 197: AGV@StoreRoom

Line 198: 3:27 PM : Assembly line1 : Part1 Assembling process completed

Line 199: AGV busy collecting Part2 for: Assembly line1

Line 200: Part delivered to Assembly line1

Line 201: AGV@StoreRoom

Line 202: 3:32 PM : Assembly line1 : Part3 Assembling process completed

Line 203: Assembly line1 : All tasks Completed

Line 204: Assembly line2 waiting for new task to be added to its list

Line 205: All task in the system have been completed

Line 206: Assembly line2 disconnected

Line 207:

© Central University of Technology, Free State

124

7.2 Assembly line 2 log

Line 0: Assembly line2 : is connected

Line 1: Tasks list received from : Assembly line1

Line 2: Assembly line1 task is Starting

Line 3: Job_four Task

Line 4: Assembly line1 task has lower priority

Line 5: AGV busy collecting Part1 for: Assembly line2

Line 6: Part delivered to Assembly line2

Line 7: Assembly line1 is in control of the AGV temporarely

Line 8: AGV@StoreRoom

Line 9: AGV busy collecting Part1 for: Assembly line1

Line 10: Part delivered to Assembly line1

Line 11: 2:35 PM : Assembly line1 is Assembling Part1 time for completion: 2 Min

Line 12: AGV@StoreRoom

Line 13: 02:37 PM : Assembly line2 : Part1 Assembling process completed

Line 14: Assembly line1 is waiting

Line 15: AGV busy collecting Part1 for: Assembly line2

Line 16: Part delivered to Assembly line2

Line 17: Assembly line1 is in control of the AGV temporarely

Line 18: 2:37 PM : Assembly line1 : Part1 Assembling process completed

Line 19: AGV@StoreRoom

Line 20: AGV busy collecting Part1 for: Assembly line1

Line 21: Part delivered to Assembly line1

Line 22: 2:37 PM : Assembly line1 is Assembling Part1 time for completion: 2 Min

Line 23: AGV@StoreRoom

Line 24: 02:39 PM : Assembly line2 : Part1 Assembling process completed

Line 25: Assembly line1 is waiting

Line 26: AGV busy collecting Part2 for: Assembly line2

Line 27: Part delivered to Assembly line2

Line 28: Assembly line1 is in control of the AGV temporarely

Line 29: 2:39 PM : Assembly line1 : Part1 Assembling process completed

Line 30: AGV@StoreRoom

Line 31: AGV busy collecting Part2 for: Assembly line1

Line 32: Part delivered to Assembly line1

Line 33: 2:39 PM : Assembly line1 is Assembling Part2 time for completion: 3 Min

Line 34: AGV@StoreRoom

Line 35: 02:42 PM : Assembly line2 : Part2 Assembling process completed

Line 36: Assembly line1 is waiting

Line 37: AGV busy collecting Part3 for: Assembly line2

Line 38: Part delivered to Assembly line2

Line 39: Assembly line1 is in control of the AGV temporarely

Line 40: 2:42 PM : Assembly line1 : Part2 Assembling process completed

Line 41: AGV@StoreRoom

Line 42: AGV busy collecting Part2 for: Assembly line1

Line 43: Part delivered to Assembly line1

Line 44: 2:42 PM : Assembly line1 is Assembling Part2 time for completion: 3 Min

Line 45: AGV@StoreRoom

Line 46: 2:45 PM : Assembly line1 : Part2 Assembling process completed

Line 47: Assembly line1 has completed Job_four

Line 48: 02:47 PM : Assembly line2 : Part3 Assembling process completed

© Central University of Technology, Free State

125

Line 49: Assembly line1 waiting is deActivated

Line 50: Assembly line2 : All tasks Completed

Line 51: Assembly line1 has 7 tasks left

Line 52: Assembly line1 task is Starting

Line 53: Job_three Task

Line 54: Assembly line1 task has lower priority

Line 55: AGV busy collecting Part1 for: Assembly line2

Line 56: Part delivered to Assembly line2

Line 57: Assembly line1 is in control of the AGV temporarely

Line 58: AGV@StoreRoom

Line 59: AGV busy collecting Part1 for: Assembly line1

Line 60: Part delivered to Assembly line1

Line 61: 2:47 PM : Assembly line1 is Assembling Part1 time for completion: 2 Min

Line 62: AGV@StoreRoom

Line 63: 02:49 PM : Assembly line2 : Part1 Assembling process completed

Line 64: Assembly line1 is waiting

Line 65: AGV busy collecting Part2 for: Assembly line2

Line 66: Part delivered to Assembly line2

Line 67: Assembly line1 is in control of the AGV temporarely

Line 68: 2:49 PM : Assembly line1 : Part1 Assembling process completed

Line 69: AGV@StoreRoom

Line 70: AGV busy collecting Part1 for: Assembly line1

Line 71: Part delivered to Assembly line1

Line 72: 2:49 PM : Assembly line1 is Assembling Part1 time for completion: 2 Min

Line 73: AGV@StoreRoom

Line 74: 2:51 PM : Assembly line1 : Part1 Assembling process completed

Line 75: Assembly line1 temporary AGV control is deActivated

Line 76: 02:52 PM : Assembly line2 : Part2 Assembling process completed

Line 77: Assembly line1 is waiting

Line 78: AGV busy collecting Part2 for: Assembly line2

Line 79: Part delivered to Assembly line2

Line 80: Assembly line1 is in control of the AGV temporarely

Line 81: AGV@StoreRoom

Line 82: AGV busy collecting Part2 for: Assembly line1

Line 83: Part delivered to Assembly line1

Line 84: 2:52 PM : Assembly line1 is Assembling Part2 time for completion: 3 Min

Line 85: AGV@StoreRoom

Line 86: 02:55 PM : Assembly line2 : Part2 Assembling process completed

Line 87: Assembly line1 is waiting

Line 88: AGV busy collecting Part3 for: Assembly line2

Line 89: Part delivered to Assembly line2

Line 90: Assembly line1 is in control of the AGV temporarely

Line 91: 2:55 PM : Assembly line1 : Part2 Assembling process completed

Line 92: AGV@StoreRoom

Line 93: AGV busy collecting Part3 for: Assembly line1

Line 94: Part delivered to Assembly line1

Line 95: 2:55 PM : Assembly line1 is Assembling Part3 time for completion: 5 Min

Line 96: AGV@StoreRoom

Line 97: 3:00 PM : Assembly line1 : Part3 Assembling process completed

Line 98: Assembly line1 has completed Job_three

Line 99: 03:00 PM : Assembly line2 : Part3 Assembling process completed

© Central University of Technology, Free State

126

Line 100: Assembly line1 waiting is deActivated

Line 101: Assembly line2 task : Job_two was Completed

Line 102: Assembly line1 task is Starting

Line 103: Job_three Task

Line 104: Assembly line1 task has higher priority

Line 105: Assembly line1 started task: Job_three

Line 106: Estimated waiting time: 16min

Line 107: AGV busy collecting Part1 for: Assembly line1

Line 108: Part delivered to Assembly line1

Line 109: 3:00 PM : Assembly line1 is Assembling Part1 time for completion: 2 Min

Line 110: AGV@StoreRoom

Line 111: AGV busy collecting Part1 for: Assembly line2

Line 112: Part delivered to Assembly line2

Line 113: AGV@StoreRoom

Line 114: 3:02 PM : Assembly line1 : Part1 Assembling process completed

Line 115: Assembly line1 is requesting the next Part on the list

Line 116: AGV busy collecting Part1 for: Assembly line1

Line 117: Part delivered to Assembly line1

Line 118: 3:02 PM : Assembly line1 is Assembling Part1 time for completion: 2 Min

Line 119: AGV@StoreRoom

Line 120: AGV busy collecting Part1 for: Assembly line2

Line 121: Part delivered to Assembly line2

Line 122: AGV@StoreRoom

Line 123: 3:04 PM : Assembly line1 : Part1 Assembling process completed

Line 124: Assembly line1 is requesting the next Part on the list

Line 125: AGV busy collecting Part2 for: Assembly line1

Line 126: Part delivered to Assembly line1

Line 127: 3:04 PM : Assembly line1 is Assembling Part2 time for completion: 3 Min

Line 128: AGV@StoreRoom

Line 129: AGV busy collecting Part2 for: Assembly line2

Line 130: Part delivered to Assembly line2

Line 131: AGV@StoreRoom

Line 132: 3:07 PM : Assembly line1 : Part2 Assembling process completed

Line 133: Assembly line1 is requesting the next Part on the list

Line 134: AGV busy collecting Part3 for: Assembly line1

Line 135: Part delivered to Assembly line1

Line 136: 3:07 PM : Assembly line1 is Assembling Part3 time for completion: 5 Min

Line 137: AGV@StoreRoom

Line 138: AGV busy collecting Part2 for: Assembly line2

Line 139: Part delivered to Assembly line2

Line 140: AGV@StoreRoom

Line 141: 03:10 PM : Assembly line2 : Part2 Assembling process completed

Line 142: 3:12 PM : Assembly line1 : Part3 Assembling process completed

Line 143: Assembly line1 Job_three all parts collected

Line 144: Assembly line1 task : Job_three was Completed

Line 145: Assembly line1 task is Starting

Line 146: Job_two Task

Line 147: Assembly line1 task has higher priority

Line 148: Assembly line1 started task: Job_two

Line 149: Estimated waiting time: 17min

Line 150: AGV busy collecting Part1 for: Assembly line1

© Central University of Technology, Free State

127

Line 151: Part delivered to Assembly line1

Line 152: 3:12 PM : Assembly line1 is Assembling Part1 time for completion: 2 Min

Line 153: AGV@StoreRoom

Line 154: AGV busy collecting Part1 for: Assembly line2

Line 155: Part delivered to Assembly line2

Line 156: AGV@StoreRoom

Line 157: 3:14 PM : Assembly line1 : Part1 Assembling process completed

Line 158: Assembly line1 is requesting the next Part on the list

Line 159: AGV busy collecting Part2 for: Assembly line1

Line 160: Part delivered to Assembly line1

Line 161: 3:14 PM : Assembly line1 is Assembling Part2 time for completion: 3 Min

Line 162: AGV@StoreRoom

Line 163: AGV busy collecting Part1 for: Assembly line2

Line 164: Part delivered to Assembly line2

Line 165: AGV@StoreRoom

Line 166: 03:16 PM : Assembly line2 : Part1 Assembling process completed

Line 167: 3:17 PM : Assembly line1 : Part2 Assembling process completed

Line 168: Assembly line1 is requesting the next Part on the list

Line 169: AGV busy collecting Part2 for: Assembly line1

Line 170: Part delivered to Assembly line1

Line 171: 3:17 PM : Assembly line1 is Assembling Part2 time for completion: 3 Min

Line 172: AGV@StoreRoom

Line 173: AGV busy collecting Part2 for: Assembly line2

Line 174: Part delivered to Assembly line2

Line 175: AGV@StoreRoom

Line 176: 3:20 PM : Assembly line1 : Part2 Assembling process completed

Line 177: Assembly line1 is requesting the next Part on the list

Line 178: AGV busy collecting Part3 for: Assembly line1

Line 179: Part delivered to Assembly line1

Line 180: 3:20 PM : Assembly line1 is Assembling Part3 time for completion: 5 Min

Line 181: AGV@StoreRoom

Line 182: AGV busy collecting Part2 for: Assembly line2

Line 183: Part delivered to Assembly line2

Line 184: AGV@StoreRoom

Line 185: 03:23 PM : Assembly line2 : Part2 Assembling process completed

Line 186: Assembly line2 : All tasks Completed

Line 187: 3:25 PM : Assembly line1 : Part3 Assembling process completed

Line 188: Assembly line1 Job_two all parts collected

Line 189: Assembly line1 task : Job_two was Completed

Line 190: AGV busy collecting Part1 for: Assembly line1

Line 191: Part delivered to Assembly line1

Line 192: 3:25 PM : Assembly line1 is Assembling Part1 time for completion: 2 Min

Line 193: AGV@StoreRoom

Line 194: 3:27 PM : Assembly line1 : Part1 Assembling process completed

Line 195: Assembly line1 is requesting the next Part on the list

Line 196: AGV busy collecting Part2 for: Assembly line1

Line 197: Part delivered to Assembly line1

Line 198: 3:27 PM : Assembly line1 is Assembling Part3 time for completion: 5 Min

Line 199: AGV@StoreRoom

Line 200: 3:32 PM : Assembly line1 : Part3 Assembling process completed

Line 201: Assembly line1 Job_three all parts collected

© Central University of Technology, Free State

128

Line 202: Assembly line1 : All tasks Completed

Line 203: All task in the system have been completed

Line 204: Assembly line2 disconnected

Line 205:

© Central University of Technology, Free State

