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ABSTRACT 

 

     The increasing share of variable renewable energy sources, strict targets set for the 

reduction of greenhouse gas emissions and the requirements on the improvement of 

system security and reliability, are calling for important changes in our energy systems.  

In South Africa, distributed renewable energy systems have emerged as effective ways in 

improving the quality of energy service. 

     The integration of distributed renewable energy, such as solar photovoltaic systems 

(PV) and micro-grids, is significantly increasing the coupling and interactions between 

sources and between supply and end use, at various scales, from multinational, national, 

and community scale, down to building level. 

     In a South African context, power produced from the renewable energy that is not 

consumed by the load, needs to be stored for later use, or discarded, as the power utility, 

as well as the municipalities do not generally allow the power to be sold, or shared through 

the national grid.  

In the case where various small generation units residing on the same land (estates or a 

block of townhouses), the power generated from the PV may be shared between the 

various consumers on the same land. 

Consumers on the same land having different load patterns as not everyone uses electricity 

simultaneously connecting them in a micro-grid may allow the power to flow between the 

different generation systems and consumers. This will decrease the size of the storage 

systems, as well as the amount of power dumped and lost when it is not in use. On the 

other hand, the reliance on the grid power will further decrease. With the increasing 

installation of distributed generation at the demand side, more and more consumers 

become prosumers, that may both generate and consume energy. The high penetration of 

sporadic renewable energy may cause severe problems to power systems. Therefore, in 

order to facilitate the self-consumption of local generation, the export price at which the 

prosumers sell electricity to the utility grid is usually designed to be significantly lower than 

the retail price at which electricity is being purchased. 

This is the major motivation for prosumers to share excess electrical energy amongst each 

other, rather than to feed it back to the utility grid at a significantly reduced cost. The 
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decreasing tariff rate of the feed-in tariff in most countries, does make this incentive a 

significantly more attractive approach. 

     The mathematical modelling of the operation of Peer-to-peer (P2P) energy sharing 

model between two dissimilar load profiles, will be discussed. These profiles are of typical 

commercial and residential nature. The P2P system consists of two prosumers: the 

residential prosumer that has a roof mounted PV system that is fixed at a 30° angle, with 

energy storage capabilities and commercial prosumer, with a solar tracking system.   

A description of the system is discussed in detail, with all the relevant components outlined. 

In order to evaluate the cost effectiveness of the hybrid system, in terms of money spent, 

a baseline system was established, consisting solely of energy supplied by the grid.  The 

optimal operation of the proposed system was simulated and compared to the baseline 

system. A life cycle cost (LCC) analysis was conducted for a period of 20 years, for both 

the baseline and the optimally controlled P2P energy sharing scheme. In addition, two 

electrical energy storage technologies were evaluated for the proposed system.  These 

technologies include lead acid and lithium ion energy storage configurations.  Results from 

the analysis indicated that, if the system were to use lead acid batteries as a storage medium, 

the proposed system would break-even in 5.304 years, with an approximate saving of 57%, 

translating into savings of R 1,972,277.98.  The proposed system with Li-ion battery 

storage, indicated a break-even point of 5.131 years, with an expected saving of 54%, 

translating into cost savings of approximately R 1,861,939.36 at the end of the evaluated 

life cycle period.  

     Based on the results from the study, it was observed that the optimally controlled P2P 

energy sharing scheme has shown to be economically feasible, in the South African context.  
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CHAPTER I: INTRODUCTION  

 

1.1 BACKGROUND 

 

     The increasing share of variable renewable energy sources, strict targets set for the 

reduction of greenhouse gas emissions and the requirements of improvement of system 

security and reliability, are calling for important changes in our energy systems.  

     In South Africa, distributed renewable energy systems have emerged as effective ways 

in improving the quality of energy service [1]. The integration of distributed renewable 

energy, such as solar photovoltaic systems (PV) and micro-grids, is significantly increasing 

the coupling and interactions between sources and between supply and end use, at various 

scales (from multinational, national, and community scale down to building level) [2]. The 

need for energy storage and flexible demand is further increasing to improve the business 

case for their deployment. The issues should be addressed, to solve the challenges of 

intermittent power generation and the mismatching of energy supply and demand, over a 

time scale. 

     In the South African context, power produced from the renewable energy, not 

consumed by the load, should be stored for later use or discarded, as the power utility, as 

well as the municipalities, do not generally allow the power to be sold or shared through 

the national grid.  

In the case where various smaller generation units on the same land (estates or a block of 

townhouses), the power generated from the PV may be shared between the different 

consumers on the same land. 

Consumers on the same land and that have various load patterns, as not everyone uses 

electricity simultaneously, connecting them in a micro-grid may allow for the power to flow 

between the different generation systems and consumers. This will decrease the size of the 

storage systems, as well as the amount of power that will be discarded and lost, when it is 

not used. On the other hand, the reliance on the grid power will further decrease. 

     With the increasing installation of distributed generation at the demand (consumer’s) 

side, more and more consumers become prosumers, both generating and consuming 

energy. The high penetration of sporadic renewable energy, may cause severe problems to 
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power systems. Therefore, in order to facilitate the self-consumption of local generation, 

the export price at which the prosumers sell electricity to the utility grid is usually designed 

to be significantly lower than the retail price, at which electricity is being purchased [3, 4]. 

The main motivation for prosumers to share excess electrical energy amongst each other 

rather than to feed it back to the utility grid at a much reduced cost; the decreasing tariff 

rate of the feed-in tariff in most countries, makes this incentive a significantly more 

attractive approach [5]. 

     Inspired by the requirements of such systems, a rapidly growing number of projects 

have been started by utilities and high-tech start-ups [6].  A number of projects supporting 

this model, referred to as Peer-to-Peer energy sharing initiative, have been undertaken 

around the world. There are: 

• Piclo (UK) [7] 

• Vandebron (Netherland) [8] 

• SonnenCommunity (Germany) [9] 

• Yeloha and Mosaic (US) [10] 

Other projects, such as PeerEnergyCloud and Smart Watts in Germany, focused on the 

information and communication technologies supporting the energy sharing [5]. 

     The energy sharing models may be grouped into three categories, according to the 

manner in which prosumers exchange and trade energy with one another: 

• Energy sharing, conducted by one centralized authority. 

• Energy sharing, achieved by the interaction between an operator (price maker) and 

a group of prosumers (price-takers). 

• Energy sharing, achieved by the interaction of a group of prosumers, i.e. the P2P 

energy sharing. 

With the increase of distributed renewable energy systems, there is a need to investigate 

new avenues, such as a P2P energy sharing model, particularly for micro-power producers, 

operating in the South African context. 
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1.2 PROBLEM STATEMENT  

 

     Due to the mismatch between the load demand and energy produced from renewable 

energy sources (excess or deficit), smaller energy producers experience challenges, such as 

discarding excess energy, or unused energy or requiring back up power, such as an energy 

storage system or the grid; this back-up configuration will result in a high cost of the 

renewable energy system. 

Storage systems (such as batteries), to help with power dispatch, constitute the highest cost 

of a Photovoltaic System. 

 

1.3 RESEARCH AIM AND OBJECTIVES  

 

     The main aim is to develop a P2P energy sharing model, allowing the optimal power 

flow configuration, with the aim of reducing the amount of power wasted (discarded) or 

stored in batteries, as well as increasing the availability of onsite generated power. 

     The objectives of this study are: 

• To develop a mathematical model that will assist in assessing the potential of energy 

and cost saving of prosumers in a P2P sharing configuration, by optimally managing 

the flow of power to and from another consumer in the South African context (on 

the same area of land). 

• To analyse the techno-economic impact of the P2P energy sharing system in the 

size reduction of the onsite generation as well as a battery storage system. 

 

1.4 RESEARCH METHODOLOGY  

 

The following methodology will be used in this research: 

 

1.4.1 Literature review 

 

     A comprehensive study of the literature related to P2P energy sharing models in a South 

African context, as well as the applicability and viability of this model. A forecast model of 
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the impact P2P energy sharing paradigm will have on the economy and the result it will 

have on prosumers of energy. 

 

1.4.2 System description 

 

     To assess two dissimilar loads that are in a P2P energy sharing model and compare the 

various electricity demands. Fig.1.1 is a generic layout of two dissimilar loads in a P2P 

energy sharing model. There is a multitude of load configurations for an energy sharing 

model. One example of a configuration is that Load 1 may have a PV generation and a 

battery storage system, where Load 2 may only have a load and PV generation and energy 

sharing, from Load 1 to Load 2 may take place. 

Figure 1.1: Typical layout of a P2P energy sharing model 
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1.4.3 System modelling 

 

     This includes the development of a mathematical model of a P2P sharing model, with 

photovoltaic and a battery bank, under variable loads, observing the effect that the P2P 

system will have on prosumers of energy, as well as the monetary effect this model may 

have in a South African context. The model will comprise of the following: 

• The objective function 

The control objective to be minimized is the net electricity cost (drawn from the grid), 

under a given period. 

• System Constraints 

- Power balance 

At any given time, the load demand (from one prosumer) should be met, however, the 

combination of the power from the grid, the renewable source, the storage system and the 

power from the other prosumer. 

- Dynamics of battery state of charge.  

During charging and discharging, the state of charge (SoC) of the battery bank, should be 

maintained between its minimum and maximum values. 

- Power flow limitations 

For equipment safety purposes, all power flows (from PV, battery, inverters) should be 

kept within minimum and maximum limits, according to the design specifications, 

provided by the manufacturer. 

- Exclusive power flow 

Power cannot flow in and out of a prosumer’s system at the same time. Also, the battery 

cannot be charged and discharged simultaneously. 

 

 1.5 CASE STUDY 

 

     To evaluate the effectiveness of the developed model, a case study will be selected with 

historical data from the loads and renewable energy resources. Alternative data, such as 

PV, inverter and battery size, will be obtained from optimal sizing tools, such as HOMER. 
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From the nature of the optimisation problem, the case study will be simulated utilizing a 

suitable optimization solver of the matlab optimization toolbox. 

     As a baseline, so as to study the effectiveness of the developed model, the net energy 

cost achieved through optimal energy control of the load under the P2P system, will be 

compared to the energy cost, incurred by the customer, without P2P and operating on a 

flat tariff. 

 

1.6 PUBLICATIONS DURING THE STUDY 

 

Conference papers:  

• Jordan, E. A., K. Kusakana, and L. Bokopane. "Prospective architecture for local 

energy generation and distribution with Peer-to-Peer electricity sharing in a South 

African context." In 2018 Open Innovations Conference (OI), pp. 161-164. IEEE, 

2018. 

 

Journal papers submitted:  

• E.A. Jordan, K. Kusakana, L. Bokopane, P.A. Hohne “Peer-to-Peer energy sharing 

model in a South African model and economic analysis of lead acid and lithium ion 

battery storage system”. 

   

 

1.7 DISSERTATION LAYOUT  

 

     This dissertation is divided into five Chapters, the main research results are presented 

in Chapter III and IV. 

     Chapter I presents the background of the work, underlines the challenges and provides 

the objectives and methodology. 

     Chapter II reports a thorough review of advancements in P2P energy sharing schemes 

and technologies, achieved in other parts of the world, where they have been implemented. 

This Chapter further outlines the advantages and disadvantages of such systems as well the 

monetary benefits. 
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     Chapter III illustrates the P2P energy sharing system and all of its components. It 

further comprises of the mathematical model used to simulate, obtaining the results, as 

well as the energy cost per day for a baseline system, completely reliant on the electrical 

grid for power, as well as the proposed system cost per day when electrical energy is shared 

between two prosumers. 

     Chapter IV is the evaluation of the economic feasibility of the P2P system and to 

present the break-even point, as well as the life-cycle cost analysis of the system. In this 

Chapter, three cases have been analysed. These cases are as follows:  

• Baseline system: fully reliant on the grid for power. 

• P2P energy sharing system, residential prosumer has a PV panel and lead-acid 

batteries for a storage system; commercial prosumer that has PV tracking 

capabilities. 

• P2P energy sharing system: residential prosumer has a PV panel and lithium-ion 

batteries for a storage system; commercial prosumer that has PV tracking 

capabilities. 

     Chapter V concludes the work of this dissertation. In this Chapter, an overview, as well 

as future recommendations for future studies, are discussed. 
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CHAPTER II:  A COMPREHENSIVE               

REVIEW OF PEER-TO-PEER ENERGY 

SHARING  PARADIGMS  AND TECHNOLOGIES  

 

2.1 INTRODUCTION 

 

     In this Chapter we will observe the literature on P2P energy sharing and the various 

works that have been done and experimented with. This Chapter further outlines the grid 

law of connected renewable energy in South Africa. We will state that municipalities around 

South Africa have been attempting to urge the population to generate their own electrcity 

through renewables and sell the surplus energy not used back into the grid. However, this 

will be sold back into the grid at a signficantly reduced cost that the very same electricity 

units have been purchased for. The purpose of this Chapter is to illustrate that the rest of 

the world has, by now, embraced P2P energy sharing in a multitude of companies and 

startups, that all have their unique method of sharing energy between prosumers.  

 

2.2 LAWS OF GRID CONNECTED RENEWABLE ENERGY IN SOUTH 

AFRICA 

 

     The Electricity Regulation Act, 2006 (Act No. 4 of 2006) (‘the Act’), stipulates that no 

person may operate a generation facility without a license from the Energy Regulator, except 

for activities listed on Schedule 2, of the Act, namely:  

• Any generation plant constructed and operated for demonstration purposes only 

and not connected to an inter connected power supply. 

• Any generation plant constructed and operated for own use. 

• Non-grid connected supply of electricity, except for commercial use. 

• The small-scale embedded generators that are connected to the grid and operated 

for commercial purposes must, therefore, be licensed or registered by the Energy 

Regulator.  
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• Zero or net consumption customers should too be licensed or registered, due to 

connection to the grid [11]. 

     Municipalities in the Western Cape province presently have rules and tariffs in place for 

feeding into the grid when installing a PV system. The remaining municipalities across the 

province are supported by the Western Cape Government and GreenCape, to design and 

implement appropriate feed-in tariffs and approve the necessary regulations [12]. 

 

2.3 PEER-TO-PEER ENERGY SHARING 

 

     In Reference [13], the authors state that, as the installation of distributed generation at 

the demand side is increasing continuously and an increasing number of energy consumers 

further develop into prosumers, through stimulating energy sharing and demand response. 

In some countries, energy consumers have the option to sell surplus energy back to the 

electrical grid, albeit at a considerably reduced price, compared to purchased electricity. 

Hence, a new energy sharing model has been designed to convert the consumers into 

prosumers, allowing them to sell unused energy, which would otherwise have been lost, to 

the next energy prosumer. This initiative is called a Peer-to-Peer (P2P) energy sharing 

model. A three stage evaluation methodology is suggested, to assess the financial 

performance of the P2P energy sharing paradigms. Joint, as well as individual optimization, 

are established to identify the value contained in the energy sharing region. 

The overall energy bill of the prosumer population is estimated through an agent based 

modelling, with reinforcement learning for each prosumer. 

Performance index is defined to quantify the economic performance of P2P energy sharing 

models. Energy sharing is a relatively new business model at the demand side of power 

distribution systems and this new model will bring greater benefits to prosumers. In the case 

of conventional business model, the suppliers purchase electrical energy from the utilities 

in the wholesale market and, further, sell it to the end users, or the consumers, of the 

electrical energy. In this ‘older’ model, prosumers will trade with the suppliers separately, by 

purchasing and selling the energy to and from suppliers, at retail prices. However, as the 

prosumers sell surplus energy to the grid, it will be at a particularly low rate Figure. 2.1. 
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Figure 2.1: Conventional Model 

 

With the current energy sharing model, prosumers exchange and trade energy with each 

other directly in an energy sharing region, as shown in Figure 2.2. In a South African context, 

this will solely be possible if all the prosumers are connected in one area of land, for instance, 

a block of flats or townhouse complex. An energy sharing coordinator manages the internal 

sharing of energy between prosumers and, will further act as an agent of the prosumers 

when they trade/sell surplus energy to the grid, however, at a significantly lower rate. P2P 

energy sharing models specify at which prices prosumers will trade energy with each other 

and as to how to calculate the energy bill for the prosumers. 
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Figure 2.2: P2P energy sharing model 

 

     In Reference [14], it is stated that P2P energy trading is a system that allows for people, 

or prosumers, to generate their own electrical energy from Renewable Energy Sources 

(RESs), in residents, offices and factories sharing it with one another locally. An architecture 

model was proposed, to present the design and interoperability aspects of components for 

P2P energy trading, in a micro-grid. A specific customer-to-customer business model was 

introduced in a benchmark grid-connected micro-grid, based on the architecture model. 

The test results have shown that a P2P energy trading model is able to balance the local 

generation and demand, hence, it has a potential to enable a large penetration of RES’s in 

the power grid. 

     It was stated in Reference [15] that, P2P energy sharing models have grown significantly 

around the world, with various projects and trails. A focus study, as well as the outcomes 

of these projects, has been carried out and a comparison of the similarities and differences 

of the various projects have been documented. The results have shown that many of the 
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trails’ focus on the business models are acting in a similar fashion, compared to the role of 

the suppliers’ in the electricity sector. Further it is of importance to design, or develop 

necessary communication and control networks, enabling P2P energy trading in or amongst 

local micro-grids. What follows is a list of current P2P energy sharing models that are 

currently utilised around the world. 

• Piclo is a company based in the UK. This model allows business consumers to 

purchase electricity from local renewables (household generators). The various 

electricity generators have complete control and visibility as to who purchases 

electricity from them. Electricity consumers are further able to select and prioritize 

from which generators to buy electricity. Piclo matches generation and consumption, 

according to preferences, as well as locality, providing customers with data 

visualizations and analytics [16]. 

• Vandebron is based in the Netherlands. This model allows energy users to purchase 

electricity directly from independent producers, such as farmers, that have wind 

turbines in their fields [17]. 

• PeerEnergyCloud in Germany, has developed cloud-based technologies for a local 

electronic trading platform, dealing with local excessive production. The company 

was established in order to investigate state-of-the-art recording and forecasting 

processes, for device specific electricity consumption, creating a virtual marketplace 

for electricity trading and to develop value added services, within a Microgrid [18]. 

• Smart Watts is a German company that developed and tested new approaches for 

energy optimizing energy supply, using modern information and communication 

technologies [19]. 

• Yeloha and Mosaic are US companies, allowing interested consumers, such as 

apartment owners and those who do not posess solar systems, to pay for a small 

portion of the solar energy generated by the host’s solar system [20, 21]. 

• SonnenCommunity is a storage manufacturer in Germany. It is a community of 

SonnenBatery owners, who share self-generated energy with others. As a result, there 

is no further need for a conventional energy supplier. With a SonnenBatterie and a 

Photovoltaic system, members can entirely cover their personal energy requirements 

on days with lack of cloud cover; often actually generating a surplus. This surplus is 
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not fed into the traditional power grid, but into a virtual energy pool, serving other 

members in times when they are unable to generate enough energy, due to 

unfavourable weather. A central software links up and monitors all 

SonnenCommunity members, whilst balancing energy supply and demand [9]. This 

idea is particularly similar to Piclo’s and Vandebron’s, however, SonnenCommunity 

clearly highlights the importance of a storage system [22]. 

• Lichtblick Swarm Energy is a unique IT platform in the energy market. On this 

platform, the procedures of an increasingly complex world of energy to customer-

friendly products and services, for residential and business customers, are combined. 

Customers’ local power plants and storages are optimized. Swarm Energy allows for 

a meaningful interaction of distributed and renewable energy sources [23]. 

• Transactive Grid is a community energy market. It is a combination of software and 

hardware that allows members to purchase and sell energy from one another securely 

and automatically, utilizing smart contracts and the blockchain. The current 

prototype uses the Ethereum blockchain [24].  
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Table 2.1: Comparison and key finding on past P2P projects 

Authors Highlights P2P 
Configuration 

Key Findings 

Community First! 
Village 

Energy 
sharing 
from 
donations 

Commercial 
to Residential 

A master planned 
community that 
provides affordable, 
permanent housing and 
a supportive community 
for the disabled and 
homeless 

Electron  Energy 
metering 
and billing 
platform 
using 
blockchain 

Energy 
network, 
ICT, 
Commercial  

A new platform for gas 
and electricity metering 
and billing system, that 
runs on a blockchain. 
The platform will be an 
open source for the 
benefit of all users. 

Lichtblick Swarm 
Energy  

IT 
platform 
for energy 
markets 
and 
customers  

Energy 
network, 
ICT, 
Commercial, 
Residential   

The processes of an 
increasingly complex 
world of energy to 
customer-friendly 
products and services 
for residential and 
business customers, are 
combined  

PeerEnergyCloud Cloud-
Based P2P 
energy 
trading 
platform, 
Smart 
Homes 

Energy 
network, ICT 

Cloud-based 
technologies for a local 
electronic trading 
platform. It was 
established in order to 
explore advanced 
recording and 
forecasting procedures, 
for device specific 
electricity consumption  

Picolo P2P energy 
trading 
platform 
from 
suppliers 
perspective 

Commercial 
to Residential 

Meter data, generator 
pricing and consumer 
preferences’ information 
is used to match 
electricity demand and 
supply, every half hour. 

Smart Watts  Optimizing 
energy 
supply via 
ICT 

Energy 
network, ICT 

New approaches for 
optimizing energy 
supply through the use 
of modern information 
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and communication 
technologies  

SonnenCommunity  P2P energy 
trading 
with 
storage 
system  

Energy 
network, 
Commercial, 
Residential  

SonnenCommunity is 
developed by 
SonnenBatterie. It a 
community of 
SonnenBatterie owners 
who share self-produced 
energy with others in the 
community  

TransActive Gird  P2P energy 
trading 
within 
microgrids 
using 
blockchain 

Energy 
network, 
Commercial, 
Residential 

Energy market with a 
combination of software 
and hardware, enabling 
members to buy and sell 
energy from each other 
securely and 
automatically, using 
smart contracts and the 
blockchain  

Vandebron P2P energy 
trading 
platform 
from 
suppliers 
perspective 

Commercial, 
Residential 

Energy consumer 
purchases electricity 
directly from 
independent producers. 

Yaloha, Mosaic Solar 
sharing 
network 
for lower 
energy bills  

Commercial, 
Residential 

Interested consumers 
not ppossesing solar 
systems to pay for a 
portion of the solar 
energy generated by the 
host’s solar system and 
receive a reduction on 
their utility bill 
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2.4 WORK DONE UNDER PEER-TO-PEER ENERGY SHARING 

 

     Reference [25], states that the shared solar market is poised for growth in the U.S. This 

is boosted by initiatives that are supported by state and federal agencies, customers, 

contractors and utilities. Adoption of these energy sharing models will require addressing 

political and economic barriers, varying between states and program models. Investor-

owned utilities will work closely with regulators, defining enabling policies in the coming 

years, whilst municipal and cooperative utilities will likely continue to pilot these shared 

programs, benefiting all involved in this shared solar initiative. 

     The authors in Reference [26], state that an important element are the prosumers in a 

smart grid. Prosumers not only use energy, but further share surplus energy generated by 

renewable energy sources, with grid and/or with other consumers, in a community. The 

prosumer concept is illustrated in Fig.2.3. This phenomenon helps address the 

environmental, social and economic concerns, related to increasing energy demand. To 

manage the prosumers in an energy sharing system, smart grid permits consumers to form 

communities, according to various measures, such as energy consumption behaviour. It is 

further stated that it is necessary that a prosumer based Energy Management and Sharing 

system (PEMS), is investigated and reviewed, along with the related challenges. The 

procedure of energy sharing amongst prosumers, comprises of two key elements, namely: 

information and communication technologies and optimization techniques. 

Figure 2.3: Description of prosumer interaction 
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     In Reference [27], the authors state that the sustainability of the Smart Grid (SG) energy 

sharing process is heavily dependent on the participation of prosumers. This causes the 

prosumer contribution and management systems table crucial, within the energy sharing 

approaches. A novel concept is introduced in participating and managing the prosumers in 

the SG energy sharing process, in the form of autonomous, intelligent goal-driven virtual 

communities. Hence, the prosumers in that community may collectively increase the 

amount of power to be auctioned or purchased, offering a higher bargaining power to the 

community.  

An initial step in building an effective prosumer-community, is the identification of those 

prosumers, of whom would be suitable to form efficient prosumer communities. Identifying 

parameters that influence the energy sharing behaviours of prosumers. 

      It is stated in Reference [28], that the objective of “PeerEnergyCloud” is to research and 

develop cloud-based technologies for just such a trading platform. Techniques were 

demonstrated for a future energy scenario, necessary as a basis for a civil marketplace for 

trading renewable energies.  

     Reference [29], declares that successful sharing should achieve enhanced utilization 

efficiency of demand-side energy resources (DER’s), voluntary participation of prosumers 

and sharing-enabling aggregator. A mathematical model has been formulated, with 

equilibrium constraints (MPEC) for DER’s evaluation, within a sharing community. The 

aggregator coordinates DER operations in real-time; it solves this MEPC problem after 

each billing period. The aggregator evaluates two operating costs for each prosumer: 

Actual cost, under coordination of Counter-factual cost if the prosumer independently 

traded power with the aggregator. 

     The authors in Reference [30], state that, in order to build real smart cities, heterogeneous 

data from various sources should be correctly collected, integrated and shared. An actual 

district scale example of an urban sharing ecosystem based on coopetition, is presented. 

This digital ecosystem enables data sharing that may be holistically applied to different 

sectors relevant to the urban context, for example, energy and transportation, in order to 

create innovative solutions for energy monitoring, citizen engagement, evaluation and 

monitoring, at district and city level.  

     Reference [31] states that renewable energy harvested from the environment, is an 

attractive option, however, the intermittent nature of this renewable energy results in a 
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mismatch when these sources are generated and when homes or consumers are in demand 

of it. An alternative approach is currently being devised, where nearby homes explicitly share 

energy with one another balancing the local energy being harvested and demanded in micro-

grids. A novel approach is developed in energy sharing, determining which homes should 

share energy and at which times. This is carried out to maximize system-wide efficiency 

losses. Evaluation of this approach is a real time simulation, using actual traces of solar 

energy harvesting and home consumption data. The system shows that: 1) energy loss is 

reduced on the AC line by 60%, without requiring of large batteries; 2) performance is 

improved with large batteries; 3) robust to changes in the micro-grid topology. 

 

2.5 MAJOR WORKS CARRIED OUT ON PEER-TO-PEER ENERGY 

SHARING FROM 2015 – 2019 

 

     The authors in Reference [32], have specified that the feasibility of applying P2P energy 

trading to decrease costs for energy consumers and to increase income for DER producers 

in a community microgrid, was investigated. Three representative market paradigms were 

recommended, i.e, bill sharing, mid-market rate and an auction-based pricing strategy. Each 

of these specified detailed business models, local energy exchange prices, as well as 

quantified individual customer energy costs.  

    In Reference [33], the authors propose that an optimization problem aiming at 

minimizing the overall energy cost and the P2P energy sharing losses, in a distribution 

system, consisting of multiple microgrids (MGs) and openly incorporates the practical 

constraints (e.g., power balance and battery's operational constraints). The proposed 

optimization problem is challenging to solve directly due to the non-convex constraints. 

Nevertheless, motivated by the very recent result in radial distribution networks, the 

projected non-convex optimization problem may be eased to a second-order cone 

programming (SOCP) problem, without incurring any loss of optimality. The proposed 

problem was applied to a radial distribution network testbed and obtained the 

corresponding optimal energy management strategy, exploiting the diversified energy 

consumption profiles, dynamically coordinating multiple MGs and reducing the total 

energy bill of all MG’s. Moreover, an interesting observation from the simulation results, 
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is that the cooperation scheme in the P2P sharing network, is significantly affected by the 

MG’s relative locations, in the distribution network. 

     The authors in Reference [34], describe a new concept of P2P energy sharing producing 

a marketplace for electricity. This marketplace is for individuals who are able to afford 

power generating sources, such as solar panels, selling electricity to individuals who are 

unable to afford generating sources, or who might have access to electricity but require 

more electricity at certain times. These ad-hoc microgrids, created by the sharing of 

resources, provide affordable electricity and are enabled by a Power Management Unit 

(PMU). 

     In Reference [35], the authors strive to provide a theoretical study for energy production 

and distribution. The evolution of energy systems technologies and their impact on the 

global socio-economic structure has been analysed and discussed in detail. Further critically 

analysed, was the evolution of the energy production infrastructure and a review of the 

renewable and decentralized energy production technologies, while focusing on the 

concept of microgrids. It was proposed that an alternative model, inspired by the 

commons-oriented practices, currently observed in the production of information, that 

utilizes microgrids in order to create a peer-to-peer energy grid and then discuss the 

conditions necessary for the “energy commons” to emerge.  

     Reference [36], states that an architecture paradigm was proposed, presenting the 

design and interoperability aspects of components, for P2P energy trading in a microgrid. 

A specific Customer-to-Customer business model was introduced in a standard grid-

connected microgrid, based on the architecture model. The core element of a bidding 

system, called Elecbay, was further proposed and simulated, using game theory. The test 

outcomes show that P2P energy trading is able to balance local generation and demand, 

therefore, having a potential to enable a large penetration of RES’s in the power grid. 

     Reference [37], presents an innovative P2Penergy trading system between two sets of 

electric vehicles, which significantly reduces the impact of the charging process on the 

power system, during business hours. This trading system is further economically beneficial 

for all users involved in the trading process. An activity-based model is utilized in predicting 

to predict the daily agenda and trips of a synthetic population for Flanders (Belgium). These 

drivers are primarily classified into three sets; after discarding the set of drivers short of 

energy, without taking chances, due to their tight schedule, we focus on the two remaining 
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relevant sets: those who complete their daily trips, with an excess of energy in their batteries 

and, those who need to (and can) charge their vehicle during some daily stops, within their 

scheduled trips. The last pair of drivers have the opportunity to individually optimize their 

energy cost in the time-space dimensions, taking into account the grid electricity price and 

their mobility constraints. Thereafter, collecting all the available offer/demand information 

amongst vehicles parked in the same area, simultaneously, an aggregator determines an 

optimal P2P price per area and per time slot, allowing customers with an excess of energy 

in their batteries to share the benefits with the other users who require a charge for their 

vehicles, during their daily trips. Results show that, whilst applying the proposed trading 

system, the energy cost paid by these drivers at a specific time slot and in a specific area, 

may be reduced up to 71%. 

     In Reference [38], the authors have stated that prosumers are agents that both consume 

and produce energy. With the growth in small and medium-sized agents, using solar 

photovoltaic panels, smart meters, vehicle-to-grid electric automobiles, home batteries and 

other ‘smart’ devices, prosuming offers the opportunity for consumers and vehicle owners 

to re-evaluate their energy practices. As the number of prosumers increases, the electric 

utility sector of today is likely to undergo significant changes in the approaching decades, 

offering possibilities for greening of the system, however, further bringing many unknowns 

and risks that require identification and management. To develop strategies for the future, 

policymakers and planners require information of how prosumers could be integrated 

effectively and efficiently into competitive electricity markets. Here, we identify and discuss 

three promising potential prosumer markets, related to prosumer grid integration, P2P 

models and prosumer community groups. We further caution against optimism, by laying 

out a series of caveats and complexities. 

     The authors in Reference [39], have formulated numerous original energy exchange 

optimization complications, minimizing the global energy loss during the exchange in 

various situations, then developing an efficient and privacy‐preserving scheme, to solve the 

energy exchange optimization challenges, without private information disclosure. They 

have further extended the privacy‐preserving scheme, to a collusion‐resistant scheme in 

which the microgrids are unable to learn any additional information, through conspiring 

with one another. The performance of the proposed approaches is experimentally validated 

on real microgrid data. 
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     Reference [40], made reference to the feed-in tariff, encouraging local consumption of 

photovoltaic (PV) energy. The energy sharing among neighboring PV prosumers in the 

microgrid could be more cost-effective than the independent operation of prosumers. For 

microgrids of P2P PV prosumers, an energy-sharing model with price-based demand 

response, is suggested. Firstly, a dynamic internal pricing model is formulated for the 

operation of energy-sharing zone, which is defined based on the supply and demand ratio 

(SDR) of shared PV energy. Furthermore, since the energy consumption flexibility of 

prosumers, an equivalent cost model is designed in terms of economic cost and the users' 

willingness. As the internal prices are coupled with SDR in the microgrid, the algorithm 

and implementation technique, for solving the model, is designed on a distributed iterative 

way. Finally, through a practical case study, the effectiveness of the method is verified in 

terms of saving PV prosumers' costs and improving the sharing of the PV energy 

     In Reference [41], the results express that, although many of the trails focus on the 

business models acting similarly to a supplier's role in the electricity sector, it is further 

necessary to design the essential communication and control networks, that could enable 

P2P energy trading in, or among, local microgrids. 

     The authors in Reference [42], proposed a three-stage evaluation methodology, to assess 

the economic performance of P2P energy sharing models. Firstly, joint and individual 

optimization are established, identifying the value contained in the energy sharing region. 

The overall energy bill of the prosumer population is estimated through an agent-based 

modelling, with reinforcement learning for each prosumer. Finally, a performance index is 

defined, to quantify the economic performance of P2P energy sharing models. Simulation 

results verify the effectiveness of the proposed evaluation methodology and compare three 

existing P2P energy sharing models, in a variety of electricity pricing environments. 

     In Reference [43], the authors proposed a new framework for the time-slotted P2P 

energy sharing and coordination in Energy Internet, aiming to accomplish flexible and 

efficient distributed energy management and control. Users in this framework are equipped 

with distributed generators (DG’s), distributed energy storage systems (DES’s) and smart 

meters; the P2P energy sharing fashion is supported, where users can buy or sell electricity 

to and from a utility company and neighbouring users. The energy sharing and 

coordination problem is formulated as a convex optimization problem, with the objective 

to minimize the economic cost of users. A distributed algorithm is proposed, in 
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combination with alternating direction method of multipliers (ADMM). On the basis of a 

real-world dataset of renewable energy and real-time electricity price, both analytical and 

numerical results show the effectiveness of the proposed framework and algorithm, in 

terms of, not only fast convergence in a time slot, but further economic saving prominently 

for an extended application. 

     In Reference [44], the authors stated that the simulation framework is composed of 

three types of agents and three corresponding models. Two techniques, i.e. step length 

control and learning process involvement and a last-defence mechanism were proposed to 

facilitate the convergence of simulation and contend with the divergence. The evaluation 

indexes include three economic indexes, i.e.: value tapping, participation willingness and 

equality and three technical indexes, i.e.: energy balance, power smoothness and self-

sufficiency. They are normalised and further synthesized to reflect the overall performance. 

The planned methods were applied, simulating and evaluating three existing P2P energy 

sharing mechanisms, i.e.: the supply and demand ratio (SDR), mid-market rate (MMR) and 

bill sharing (BS), for residential customers in current and future scenarios of Great Britain. 

Simulation results showed that, both of the step length control and learning process 

involvement techniques improve the performance of P2P energy sharing mechanisms, with 

moderate ramping/learning rates. The results further showed that P2P energy sharing has 

the potential of bringing both economic and technical benefits for Great Britain. In terms 

of the overall performance, the SDR mechanism out-performs all other mechanisms and 

the MMR mechanism has acceptable performance, with moderate PV penetration levels. 

The BS mechanism performs at a similar level as the conventional paradigm. The 

conclusion on the mechanism performance is not sensitive to season factors, day types and 

retail price schemes. 

     In Reference [44], it is presented that an all-inclusive review of Transaction-based energy 

(TE), involving P2P energy trading and further covering the concept, enabling technologies, 

frameworks, active research efforts and the prospects of TE. The formulation of a regular 

approach for TE management modelling is challenging, given the diversity of circumstances 

of prosumers, in terms of capacity, profiles and objectives. This has resulted in divergent 

opinions in the literature. This study identified that the majority of the techniques in the 

literature exclusively formulate energy trade problems as a game, an optimization problem 

or a variational inequality problem. It was further observed that, none of the existing works 

© Central University of Technology, Free State



23 
 

have considered a unified messaging framework. This is a potential area for further 

investigation. 

     In Reference [46], the authors states that the P2P energy exchange and sharing (ETS) 

network derives from the conventional smart-grid systems. The smart-grids operate smart 

meters, that may be equipped with both wireless and powerline communication standards. 

In this study, we extend this communication strategy to a hybrid wireless-powerline 

communication scheme, operating in cooperation and involves transmitting the same 

information over these two channel infrastructures, combining the received signals, using 

maximal ratio combining (MRC) at the receiver. To maximize the received signal strengths, 

with improved bit error ratio (BER) at the receiver side, the characteristic channels formed 

into a matrix and used singular value decomposition (SVD), to process the signals. 

Compared to either zero-forcing (ZF), or minimum mean square error (MMSE) detection 

scheme, the proposed SVD processing achieves 5dB and 7dB more effective than ZF and 

MMSE, respectively, at 10-5 BER performance, when operated with 10-2 impulsive noise 

probability. 

     The authors in Reference [47], propose a model that achieves demand response, by 

providing incentives to discharging plug-in hybrid electric vehicles (PHEV), balancing local 

electricity demand, for their own self-interests. Nonetheless, since transaction security and 

privacy protection issues present serious challenges, we explore a promising consortium 

blockchain technology, improving transaction security, without reliance on a trusted third 

party. A localized P2P Electricity Trading system, with consortium blockchain (PETCON) 

method is proposed, to illustrate detailed operations of localized P2P electricity trading. 

     In Reference [48], the authors design an agent-based control framework, ensuring the 

coordinated power management within the microgrids, through effective utilization of 

electric vehicles (EV). The required agent communication framework is adhered to the 

graph theory, where the control agents interact with each other, using local, as well as 

neighbouring information and their distributed coordination successfully steers the 

proportional sharing of real and reactive powers among the inverter-interfaced EV’s to 

maintain the stability of microgrids. The well-known Ziegler-Nichols method is utilised, to 

tune the proportional-integral (PI) controller of the inner current control loop within each 

individual control agent, to perform necessary shared control tasks. A microgrid, with solar 

photovoltaic (PV) and vehicle-to-home (V2H) systems, is chosen to illustrate the results 

© Central University of Technology, Free State



24 
 

and observed that the proposed scheme improves the system performance in a smarter way, 

through information exchange. Furthermore, the proposed framework is further validated 

by a comparison, with an existing traditional approach and it is found that the proposed 

scheme provides excellent, robust and faster performance. 

     The authors in Reference [49], provide a view to P2P approach for smart grid operation, 

adopted in P2P-SmarTest project. It provides an overview of solutions, proposed for 

distributed P2P energy trading, P2P grid control and wireless communication, enabling the 

proposed P2P operation.  

     In Reference [50], describes the design, build and demonstration of a scaled down (100 

W) P2P microgrid system, providing a low-cost, modular, safe, portable testing 

environment, for new smart energy management system (EMS) algorithms. The paradigm, 

nonetheless, has realistic behaviour, in terms of control interfaces, measurements and 

dynamics and, therefore, provides a valuable insight into EMS implementation that cannot 

be obtained through simulations alone. Three microgrid emulators were built and they 

communicate with each other via transmission control protocol/internet protocol 

(TCP/IP), enabling development and demonstrations of distributed forecasting, control 

and optimisation algorithms. 

     The authors in Reference [51], propose an evaluation model to analyse the impact of 

microgrid topologies on self‐sufficiency, for a given size of batteries and photovoltaic (PV) 

panels (resources). Three topologies are evaluated for a community of 19 houses: centralized 

resources (ideal case), stand‐alone resources and a multi‐microgrid topology, with 

autonomous exchange. Depending on the ratio of PV and battery size, the topology with 

stand‐alone resources has a clear disadvantage, in terms of self‐sufficiency, compared to the 

centralized, ideal topology. To counteract this, a hybrid topology was proposed: households 

are interconnected, exchanging energy between one another based on an autonomous 

energy exchange algorithm developed. It is illustrated that, for a well‐chosen ratio of 

batteries and PV, the interconnected system may improve the stand‐alone design, by up to 

10%, without requiring any additional resources. This topology may approach performance, 

similar to that of a centralized microgrid, although the design is more flexible and resilient 

to failures or accidents. The evaluation model computes the self‐sufficiency ratio (SSR) for 

the three topologies, for 0–20 kWh batteries and 1–14 kWp PV sizes. Furthermore, seasonal 

© Central University of Technology, Free State



25 
 

differences in SSR, per topology, are analysed for an actual community, with actual 

resources. They further calculated the savings in PV and battery, due to the interconnected 

topology. Finally, the third topology's feasibility is demonstrated on a full‐scale platform in 

Okinawa, on which the autonomous energy exchange software was tested for over a year in 

a community of 19 houses. 

     In Reference [52], it is stated that P2P energy trading, characterizes direct energy trading 

between peers, where energy from small-scale DER’s in dwellings, offices, factories and the 

like, is traded amongst local energy prosumers and consumers. A graded system architecture 

model was proposed, identifying and categorizing the key elements and technologies, 

involved in P2P energy trading. A P2P energy trading platform was designed and was 

simulated using game theory. Test results in a LV grid-connected Microgrid show that P2P 

energy trading is able to improve the local balance of energy generation and consumption. 

Furthermore, the increased diversity of generation and load profiles of peers, is able to 

further facilitate the balance. 

     The authors in Reference [53], demonstrate how decentralization may be achieved, using 

P2P frameworks as underlying control structures and implemented a pure P2P eliminating 

single points of failure. For this, a direct current (dc) open energy system, compromised of 

the interconnection of standalone DC nanogrids, is utilized as an underlying microgrid. The 

power flowing between nanogrids, are controlled by a decentralized exchange strategy: each 

household may request or respond to energy deals with its neighbours without requiring 

system-wide knowledge, or control. Using DC, combined with a layered, modular software 

allows loose coupling, which increases flexibility and dependability. The system has been 

applied and tested on a full-scale platform in Okinawa, including 19 inhabited houses. 

Actual data analysis, as well as simulations, demonstrate improvements in self-sufficiency, 

compared to other types of systems. Resilience against utility blackouts, is proven in 

practice. 

     In Reference [54], it is stated that virtual power plants and P2P energy trading, offers 

various sources of value to prosumers and the power network and have been proposed as 

different potential structures, for future prosumer electricity markets. In this perspective, it 

is argued that it may be combined, to capture the benefits of both. Hence, it is proposed 

that, the concept of the federated power plant, a virtual power plant formed through P2P 

transactions, between self-organizing prosumers. This addresses social, institutional and 

© Central University of Technology, Free State



26 
 

economic issues, faced by top-down strategies, for coordinating virtual power plants, whilst 

unlocking additional value for P2P energy trading. 

     The authors in Reference [55], proposed a two-stage aggregated control, realizing P2P 

energy sharing, in community Microgrids, where solely the measurement at the point of 

common coupling (PCC) and one-way communication, are required. This method allows 

for individual prosumers to control their DER’s, via a third party entity, a so called energy 

sharing coordinator (ESC). Within the first stage, a constrained non-linear programming 

(CNLP) optimization, with a rolling horizon, was used to minimize the energy costs of the 

community. Within the second stage, a rule based control was carried out, updating the 

control set-points, according to the real-time measurement. The benefits of P2P energy 

sharing were assessed from the communities, as well as the individual customers’ viewpoint. 

The proposed method was applied to residential community Microgrids, with photovoltaic 

(PV) battery systems. It was revealed that P2P energy sharing is able to reduce the energy 

cost of the community by 30%, compared to that of the the conventional peer-to-grid (P2G) 

energy trading. The modified supply demand ratio-based pricing mechanism, ensures that 

every individual customer is better off and may be utilized as a benchmark for any P2P 

energy sharing model. For consumers, the electricity bill is reduced by -12.4% and for 

prosumers, the annual income is increased by £57, per premises. 

     In Reference [56], introduces real-time and forward markets, consisting of energy 

contracts, offered between generators with fuel-based sources, suppliers acting as 

intermediaries and consumers with inflexible loads and time-coupled flexible load. For each 

type of agent, utility-maximising preferences, for real-time contracts and forward contracts, 

are derived. It is shown that these preferences satisfy full substitutability conditions essential 

for establishing the existence of a stable outcome; an agreed network of contracts specifying 

energy trades and prices, which agents do not wish to equally deviate from. Important 

characteristics of energy trading are incorporated, including upstream–downstream energy 

balance and forward market uncertainty. Full substitutability ensures that a distributed price-

adjustment process may be used, which solely requires local agent decisions and agent-to-

agent communication, between trading partners. 

In Reference [57], the authors provide a summary of the use of game theoretic methods, 

for P2P energy trading, as a feasible and effective means of energy management. As such, 

it is further discussed that, various games and auction theoretic approaches, by following a 
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methodical classification, providing information on the importance of game theory for 

smart energy research. It further focuses on the P2P energy trading, describing its key 

features and providing an overview of an existing P2P testbed. Furthermore, it focuses on 

the detail of some specific game and auction theoretic models, recently used in P2P energy 

trading and discusses a few important findings of these schemes. 

     The authors in Reference [58], evaluate the Brooklyn Microgrid project, as a case study, 

of such a market, according to the required components. It is shown that, the Brooklyn 

Microgrid fully satisfies three and partially fulfils an additional three of the seven 

components. Furthermore, the case study demonstrates that, blockchains are an eligible 

technology to operate decentralized microgrid energy markets. However, current regulation 

does not allow the running of local P2P energy markets in most countries, hence, the 

seventh component is not able to be satisfied as of yet. 

     In Reference [59], the authors examined a P2P energy sharing method, allowing the 

surplus of DER’s to be shared between prosumers, in a neighbourhood. An aggregated 

control of many small-scale batteries was adopted, considering the energy requirement of 

the entire community. This method significantly reduces the amount of electricity fed back 

into the grid, allowing for individual prosumers to obtain economic benefits. Results 

showed that, with a moderate proportion (e.g. 40%) of customers, having individual 

photovoltaic (PV) systems, P2P energy sharing is able to reduce the energy cost of the 

community by 30%, compared to P2G trading. 

     Reference [60], proposes an original game-theoretic model for P2P energy trading, 

among the prosumers, in a community. The buyers may adjust the energy consumption 

behaviour, based on the price and quantity of the energy offered by the sellers. Two separate 

competitions exist during the trading process: (i) price competition amongst the sellers and 

(ii) seller selection competition amongst the buyers. The price competition amongst the 

sellers is modelled as a non-cooperative game. The evolutionary game theory is used to 

model the dynamics of the buyers, for selecting sellers. Furthermore, an M-leader and N-

follower Stackelberg game approach, is used in modelling the interaction between buyers 

and sellers. Two iterative algorithms are proposed for the implementation of the games, 

such that an equilibrium state exists, in each of the games. The proposed method is applied 

to a small community microgrid, with photovoltaic (PV) and energy storage systems. 

Simulation results illustrate the convergence of the algorithms and the effectiveness of the 

© Central University of Technology, Free State



28 
 

proposed model, handling the P2P energy trading. The results further show that P2P energy 

trading provides substantial financial and technical benefits to the community and is 

emerging as an alternative for cost-intensive energy storage systems. 

     In Reference [61] the authors proposed work attempts to address this problem, by 

developing an optimal P2P energy sharing, amongst the individual households, in a DC 

microgrid. A nonlinear optimization problem is formulated, aiming to minimize the power 

transmission loss and overall energy cost, in a distribution network, consisting of a number 

of households incorporating practical constraints (e.g., power balance and battery’s 

operational constraints). Three different aspects of operation viz., battery usage, power from 

the grid and P2P sharing, have been considered in order to facilitate maximum utilization 

of local distributed energy resources, thereby, saving the energy costs for all households. 

     Reference [62], explores the probability of social collaboration between prosumers 

within an energy network, in establishing their sustainable participation in P2P energy 

trading. In particular, a canonical coalition game (CCG), is utilized to propose a P2P energy 

trading scheme, in which a set of participating prosumers form a coalition group to trade 

their energy, if there is any, with one another. By exploring the concept of the core of the 

designed CCG framework, the mid-market rate is utilized as a pricing mechanism of the 

proposed P2P trading, confirming the stability of the coalition, as well as to guarantee the 

benefit to the prosumers, to form the social coalition. Furthermore, it introduces the 

motivational psychology models, relevant to the proposed P2P scheme and it is shown that 

the outcomes of the proposed P2P energy trading scheme satisfy the discussed models. 

Consequently, it is proven that the proposed scheme is consumer-centric and has the 

potential to corroborate sustainable prosumer participation, in P2P energy trading. Finally, 

a few numerical examples are provided, demonstrating the beneficial properties of the 

proposed scheme. 

     In Reference [63], a P2P energy trading mechanism is presented, using non-cooperative 

bidding among microgrids. Multidimensional readiness, including time pressure and counter 

behaviour, to mimick the personalized behaviours of microgrids, was taken into account, in 

the design of the bidding strategy. Under a parallel trading framework, based on a 

blockchain, the proposed multidimensional willingness bidding strategy, transcripts to be 

able to construct rational decisions, with adequate flexibility in the bidding process. The 

simulation results of a realistic case of microgrids, from the Guizhou Province, China, 
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authenticate that the proposed P2P energy trading mechanism is capable of raising the 

microgrids’ profits and renewable energy source utilization. 

     The authors in Reference [64], proposed two market designs, centred on the role of 

electricity storage. Therefore, focusing on the following questions: (1) What is the value of 

prosumer batteries in P2P trade? (2) What market features do battery system configurations 

need?, and (3) What electricity market design opens the economic potential of end-user 

batteries? These questions were addressed; an optimisation model was implemented to 

represent the P2P interactions, in the presence of storage for a small community in 

London, United Kingdom. The contribution of batteries located at the customer level, 

versus a central battery shared by the community, was investigated. Results illustrate that 

the combined features of trade and flexibility from storage, produce savings of up to 31% 

for the end-users. More than half of the savings derives from cooperation and trading in 

the community, while the rest is due to the battery’s flexibility in balancing supply-demand 

operations. 

     Reference [65], proposes two user-centric pricing strategies, for facilitating P2P energy 

trading, in residential microgrids: a Unified Pricing (UP) strategy and Identified Pricing (IP) 

strategy. The proposed strategies aim to maximize the profit of small-scale distributed 

energy resources owners, while taking into account the user's life convenience and solar 

photovoltaic uncertainty. UP strategy includes a centralized market pool, determining the 

market clearing price, at a regular time interval; IP strategy recognizes each energy 

transaction with variations on different time, based on the consumers' bid. The auction 

algorithm is utilized in solving the energy allocation, achieving the foremost social welfare, 

in the community microgrid. Numerical studies, based on fifteen simulated residential users, 

are conducted validating the reasonability and effectiveness of the proposed methods. 

     In Reference [66], the authors studied the energy management problem of multiple 

MG’s, interconnected by both the direct current (DC) energy exchange network and the 

alternating current (AC) traditional distribution networks. The identified problem; each 

microgrid (MG) is equipped with renewable energy generators, as well as distributed storage 

devices. In order to handle the non-convex power flow constraints, we exploit the recent 

results of the exact optimal power flow (OPF) relaxation method, which may equivalently 

transform the original non-convex problem, into a second-order cone programming 

problem and efficiently determine the ideal solution successfully. The objective for this 

© Central University of Technology, Free State



30 
 

problem, is to minimize the overall energy cost in a distribution network, consisting of 

multiple MGs, with the practical operating constraints (e.g., power balance and the battery’s 

operational constraints), explicitly incorporated. Considering the privacy and scalability, a 

distributed algorithm is proposed with convergence assurance, based on the alternating 

direction method of multipliers (ADMM). The method is further implemented, based on 

the model predictive control (MPC) approach, in order to manage the forecasting errors of 

the renewable energy generation. Simulations are carried out for various MG exchange 

topologies, on three radial distribution network testbeds. Numerical results establish that 

certain topologies are more favourable than others and the cooperation strategy for the 

energy exchange is significantly affected by the MG’s locations, within the distribution 

network. 

     In Reference [67], the economic influences of revising the tariff structure from energy-

based tariffs (EBT), to power-based distribution tariff (PBT), on customers participating 

in P2P community microgrids, with PV installations, were evaluated. We consider four 

seperate Finnish customer types and compare the benefits obtained by thirty-six customers 

of each type, after their EBT was replaced by PBT. We further apply PBT to the power 

supplied by prosumers, to their peers. Approximately the total of customers, expectedly 

benefited from electricity exchange, particularly for the typical PV system size of 5 kWp. 

When the PV system sizes were increased, the benefits decreased and became negative at 

PV system size ≥ 17.5 kWp. In particular, the savings in the EBT and PBT cases were 

similar, the tariff change from EBT to PBT did not significantly affect the customers' 

benefits from electricity exchange. 

     The authors in Reference [68], present a review of the key research topics revolving 

around P2P energy trading (P2P DET). Particularly, it presented a wide-ranging survey of 

existing demand response optimization models, power routing devices and power routing 

algorithms. It further identified some key challenges faced in realizing P2P DET. 

Furthermore, state of the art enabling technologies, such as Energy Internet, Blockchain 

and Software Defined Networking (SDN), providing provide insights into future research 

directions, has been discussed. 

     In Reference [69], the authors propose a two-stage energy sharing framework, for a new 

prosumer microgrid, with renewable energy generation, multiple storage units and load 

shifting. The first stage, a robust bi-level energy sharing model, is formulated, to deliver a 
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robust energy sharing schedule for prosumers and retailers, overcoming the impact of the 

uncertainties of market prices and renewable energy. Through proper linearization 

techniques, the bi-level optimization problem is transformed into a single-level, mixed 

integer linear programming (MILP) problem, which is practically solvable. The second 

stage, an online optimization model, is formulated for each prosumer, continually 

optimizing its energy schedule at each hour, according to the latest system state and the 

proposed penalty mechanism is embedded for prosumers, adjusting their previous energy 

sharing schedules. 

     In Reference [70], a technique to curtail the peaks of the domestic power demand and 

share the surplus energy with neighbours in need, are proposed. The method utilizes PV’s, 

electric vehicled and battery storage at the domestic point and manages these based on a 

few predefined algorithms. The proposed method is tested in a Australian power 

distribution network and has proved to minimize the domestic peak load demand of the 

owner and their neighbours substantially, hence, it is expected to reduce the energy costs. 

     In Reference [71], the authors proposed attempts to address this problem, by developing 

an optimal P2P energy sharing, amongst the individual households in a DC microgrid. A 

nonlinear optimization problem is formulated, aiming to minimize the power transmission 

loss and overall energy cost, in a distribution network, consisting of a number of households 

incorporating practical constraints (e.g. power balance and battery’s operational 

constraints). Three distinct aspects of operation, viz. battery usage, power from grid and 

P2P sharing, are considered, in order to facilitate maximum utilization of local distributed 

energy resources, thereby saving in energy costs for all households. 

     The authors in Reference [72], evaluate the bearing of P2P energy trading, amongst the 

smart homes, within a microgrid. Current tendencies illustrate that the households are 

gradually adopting renewables (e.g., photovoltaics) and energy storage (e.g., electric 

vehicles), in their premises. This research addresses the energy cost optimization problem 

in the smart homes, connected together for energy sharing. Firstly, it is proposed that a 

near-optimal algorithm, named Energy Cost Optimization via Trade (ECO-Trade), 

coordinating P2P energy trading amongst the smart homes, with a Demand Side 

Management (DSM) system. The results show that, for actual datasets, 99% of the solutions 

generated by the ECO-Trade algorithm, are optimal solutions. Secondly, P2P energy trading 

in the microgrid potentially results in an unfair cost distribution amongst the participating 
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households. It is further addressed that this inequitable cost distribution problem, by 

enforcing Pareto optimality, ensures that no households will be worse off, improving the 

cost of the others. Finally, it is evaluated that the impact of renewables and storage 

penetration rate in the microgrid. The results show that cost savings do not always increase 

linearly with an increase in the renewables and storage penetration rate. Rather they decrease 

gradually after a saturation point. 

     In References [73] and [74], the authors made contributions with an overview of these 

new P2P markets, starting with the motivation, challenges and market designs moving to 

the potential future developments in this field, providing recommendations whilst 

considering a test-case.  

 

2.6 SUMMARY 

 

     As observed in the literature above, the current legislation and laws concerning the 

existing grid, as well as grid connected renewable sources, does not allow for energy to be 

shared amongst direct neighbours. Although the four quadrant smart meter exists in homes 

across Southern Africa, in the current market and sharing of electricity or power, is not 

possible for dwellings or homes not connected on the same earth; the current legislation 

states that “one earth, one meter” approach. Some municipalities in South Africa, for 

example a company called GreenCape in Cape Town, have adopted a new system; as the 

consumer generates their own electricity they have the option to sell it back to the National 

grid, however, this will be at a significantly reduced rate, compared to the original cost. P2P 

energy sharing may solely be possible for a block of flats, or in a complex of townhouses, 

where there are many meters in one erf. Further observed in the literature, is that there are 

many iterations on P2P energy sharing across the world, working and saving the prosumer 

money, or, brought their electricity costs down, in a significant manner, within a P2P 

paradigm. P2P may be a feasible approach in South Africa, with the natural climate for 

optimal renewable generation, as well as storage concepts. P2P may further be a resolution 

for our ever-changing economic climate, as well as the dire situation that our national 

electricity generator is currently in. This situation does call for newer and innovative 

technologies of generating and distributing electricity.  
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CHAPTER III: A MODEL OF AN OPTIMAL PEER-

TO-PEER ENERGY SHARING BETWEEN 

PROSUMERS IN A SOUTH AFRICAN CONTEXT 

 

3.1 INTRODUCTION 

 

     In this Chapter, the mathematical modelling of the operation of a P2P energy sharing 

model, between two dissimilar load profiles, will be discussed. The P2P system consists of 

two prosumers, the residential prosumer, with a roof mounted PV system that is fixed at a 

30° angle with energy storage capabilities and the commercial prosumer, with a solar 

tracking system.   

     In Section 3.2, a description of the system is discussed in detail, with all the relevant 

components outlined. In section 3.3, the mathematical model developed is discussed. The 

case study of two prosumers, with dissimilar loads and the effect the P2P energy sharing 

model will have on the sharing of energy in Section 3.4. The effects of costs will be 

discussed in the economic analysis in Section 3.5. 

     The model is developed and presented, with the aim to minimize the reliance on the 

grid as the only source of power for both prosumers, taking into account the time-of-use 

(TOU) tariff. In Section 3.5.5, a daily economics analysis is further illustrated and discussed. 

 

3.2 SYSTEM DESCRIPTION  

 

     In this paradigm, the case of two prosumers operating on the same premises are 

observed, with various load demand patterns. Both of the prosumers are generating 

electricity, using solar PV systems, however, only one of the prosumers has the capability 

of storing energy.  

     The various power flows between the two selected residential and commercial 

prosumers, are shown in Fig.3.1. From this Figure, it may be seen that the load-demand 

from the residential prosumer, is primarily met by the power from its own photovoltaic 

system. If there is surplus power than which the residential prosumer requires, the excess 
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is either used to recharge the battery, or to supply the load demand of the commercial 

prosumer.  

In another instance, where the PV power from the residential prosumer is not sufficient to 

supply its own load demand, power from the commercial prosumer 2 if the commercial 

load has excess, may be used as a first backup option; the battery is used as a second backup 

option and the power from the grid may be used as a third backup option.  

The battery from the residential prosumer may be recharged from residential prosumer’s 

PV power; from the commercial prosumer’s PV power or from the grid, as the last option. 

The same operating scenario observed for the residential prosumer, may be observed for 

the commercial prosumer. The main difference is that; the commercial prosumer does not 

have a battery storage system. 

The various power flows from Fig. 1 may be defined as follows: 

• P1: Power from the residential prosumer’s PV, used to supply its load demand. 

• P2: Power from the residential prosumer’s battery, used to supply its load demand. 

• P3: Power from the residential prosumer’s PV, used to recharge the battery. 

• P4: Power from the grid, used to supply the residential prosumer’s load demand. 

• P5: Power from the residential prosumer’s PV, used to supply the commercial 

prosumer’s demand. 

• P6: Power from the residential prosumer’s battery, used to supply the commercial 

prosumer’s demand. 

• P7: Power from the commercial prosumer’s PV, used to supply its own load 

demand. 

• P8: Power from the commercial prosumer’s PV, used to supply the residential 

prosumer’s demand. 

• P9: Power from the residential prosumer’s PV, used to recharge the residential 

prosumer’s battery. 

• P10: Power from the grid, used to supply the commercial prosumer’s load demand. 

• P11: Power from the grid, used to recharge the residential prosumer’s battery. 
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Figure 3.1: P2P energy sharing between prosumers 

 

3.2.1 PV Peak capacity  

 

     The magnitude of a solar PV system is primarily dictated by the budget, energy saving 

target and available mounting space. In this case, the maximum penetration is taken as the 

size selection principle. A PV system, with a capacity not exceeding 5 kWp, is to be installed 

for single-phase residential buildings. With this, the minimum and maximum limits on 
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power exchanged with the grid are set, respectively, as 𝑃𝐸𝑋𝑃
𝑚𝑖𝑛 = 0 kW and  𝑃𝐸𝑋𝑃

𝑚𝑎𝑥= 5 kW. 

For the commercial building a 5kWp, dual axis solar tracking system is proposed. This will 

provide the maximum solar radiation throughout a standard working day, as well as 

standard working hours. A 5kVA Victron Multiplus-II inverter, for the commercial as well 

as the residential building, is proposed [75]. A PV array, with peak power of 5 kWp, is to 

be installed for the residential building, according to the Victron inverter manufacturer. 

For the commercial side, a 3kWp solar tracking system will be installed, according to the 

inverter specifications, and the potential for future expansion. The power flow limits on 

the MPPT (Maximum Power Point Tracking) boost converter, are set to 𝑃𝑀𝑃
𝑚𝑖𝑛 = 0 kW and 

𝑃𝑀𝑃
𝑚𝑎𝑥 = 5 kW, for the residential building and 𝑃𝑀𝑃

𝑚𝑖𝑛 = 0 kW and 𝑃𝑀𝑃
𝑚𝑎𝑥= 5kW, for the 

commercial building. By choosing Peimar Monocrystalline 310 W PV panel, the total 

number of panels to be installed is obtained to be sixteen for the residential building and 

ten for the commercial property. The residential prosumer has a larger installed capacity, 

in terms of the number of PV panels due to the difference in cost of installing a PV tracking 

system, compared to a PV system without tracking capabilities. 

 

3.2.2 Battery bank sizing 

 

     Based on best practice, the battery bank in PV systems is sized in such a way that the 

charging current is between 10% and 20% of the total battery capacity. The maximum 

charging current of the Victron SmartSolar MPPT charge controller is 100A; a maximum 

battery capacity of 200 A h may be used. In this study, a total battery capacity, Cn, of 200 

A h is considered. 12–200 (12 V 200 Ah) Synerji sealed Acid Gel Battery, from Heroldt’s 

Group [76], is proposed. For a nominal charging voltage of 48 V and required battery 

capacity of 200 A h, five batteries are connected in series. Hence, the battery capacity may 

be expressed in kWh, as 200 × 48 = 9.6 kWh. The battery power flow limits are 

calculated, based on the maximum level of charging and discharging currents, respectively, 

25 A and 80 A and the charge controller nominal voltage (48 V). Hence, the battery 

maximum charging and discharging power flow limits are obtained to be 𝑃𝐵
𝑚𝑎𝑥 =

48𝑉 × 25𝐴 = 1.2𝑘𝑊 and 𝑃𝐵
𝑚𝑖𝑛 = −48𝑉 × 80𝐴 = −3.84𝑘𝑊. The round trip battery 

efficiency, 𝜂𝐵, is assumed to be 94%.  
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3.2.4 PV Power output 

 

     The PV power output is predicted, based on the on the following model: 

 

PPV =  PPV,STCNPVsNPVp
It

1000
[1 − α(TC − 25)]     (3.1) 

With: 

  

TC = Ta +
It

800
(NOCT − 20)       (3.2) 

 

 Where 𝑃𝑃𝑉 is the PV power output, is the PV output, PPV,STC at the maximum power point 

and standard test condition (STC), NPVs and NPVp are, respectively, the number of PV 

panels in series and parallel. It is the solar irradiance on a tilted surface, 𝛼 is the temperature 

coefficient of power, TC is the cell temperature, Ta is the ambient air temperature, and 

NOCT is the nominal operating cell temperature. It is calculated, based on the following 

equation [77]: 

 

It = Idcosθβ + Idif (
1+cosβ

2
) + ρIg (

1−cosβ

2
)     (3.3) 

 

Here, Idif is the diffuse horizontal irradiance (DHI), Id is the direct normal irradiance 

(DNI), Ig is the global horizontal irradiance (GHI), 𝛽 is the tilted angle, 𝜃𝛽 is the incidence 

angle of solar radiation on a tilted surface and 𝜌 is the reflectance of the surrounding area. 

The different values of all input parameters, used to predict the PV power output are given 

as follows: PPV,STC = 0.31 𝑘𝑊𝑝, NPVs = 8, NPVp = 2, α = 0.0045℃, NOCT = 46℃, 

ρ = 0.2, 𝛽 = 30°. This is for the stationary PV system, for the solar PV tracking system 

for the commercial building: PPV,STC = 0.31 𝑘𝑊𝑝, NPVs = 5, NPVp = 2, α = 0.0045℃, 

NOCT = 46℃.  
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3.3 MATHEMATICAL MODEL DEVELOPMENT  

 

3.3.1 Objective function 

 

     The main objective of the developed optimal energy management model, is to minimize 

the daily operating cost function, while enhancing the internal sharing of energy between 

prosumers, for a considered simulation horizon. In this specific case, the cost of power 

from the grid to supply the load-demands, or to recharge the battery, is considered to be 

main component, carrying some operation costs for the considered optimization horizon. 

This is mathematically expressed as follows: 

 

𝑓1 = 𝑚𝑖𝑛 ∑ [𝜌𝑗(𝑃4(𝑗) + 𝑃11(𝑗)) + Ψ𝑗(𝑃10) ] ∆𝑡𝑁
𝑗=1     (3.4) 

 

Where: f1 is the cost function to be minimised, it results from the different power flows 

from the grid; 

𝜌𝑗: is the cost of energy for single phase residential building from the grid, which is defined 

by the Time of Use tariff (ToU); 

Ψ𝑗: is the cost of energy for single phase commercial building from the grid, which is 

defined by the ToU; 

 j : is the considered jth optimization sampling interval;  

N : is the total number of sampling intervals;  

Δt: the considered simulation sampling time. 

Additionally, the different internal power flows between the prosumers are considered to 

be free. Therefore, each prosumer should maximise the usage of its own power generated, 

while minimizing the amount of power shared with the other prosumer. This is expressed 

as: 

 

𝑓2 = 𝑚𝑖𝑛 ∑ [(𝑃5(𝑗) + 𝑃8(𝑗))𝑁
𝑗=1 ] ∆𝑡 + 𝑚𝑎𝑥 ∑ [(𝑃1(𝑗) + 𝑃3(𝑗) + 𝑃7(𝑗))]𝑁

𝑗=1  ∆𝑡 (3.5) 

 

The different load power balances that are to be observed in the studied system, are 

expressed as follows: 
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𝑃𝐿1(𝑗) = 𝑃1(𝑗) + 𝑃2(𝑗) + 𝑃4(𝑗) + 𝑃8(𝑗)      (3.6) 

 

𝑃𝐿2(𝑗) = 𝑃5(𝑗) + 𝑃6(𝑗) + 𝑃7(𝑗) + 𝑃10(𝑗)      (3.7) 

 

Equation (3.6) states that for each sampling time “j”, the prosumer 1’s load demand should 

be met, by a combination of the different variables P1, P2, P4 or P8. 

Equation (3.7) states that for each sampling time “j”, the prosumer 2’s load demand must 

be met, by a combination of the different variables P5, P6, P7 or P10. 

 

3.3.2 Generator output power  

 

     At any sampling time (j), for both prosumers, the sum of instantaneous PV power for 

supplying both load-demands, or for charging the battery, should be less, or equal to the 

maximum PV power generated by each prosumer, for the considered specific time interval. 

For each prosumer, this condition is mathematically expressed as:  

 

𝑃1(𝑗) + 𝑃3(𝑗) + 𝑃5(𝑗) ≤ 𝑃𝑃𝑉1(𝑗)
𝑚𝑎𝑥 ;       (3.8) 

 

𝑃7(𝑗) + 𝑃8(𝑗) + 𝑃9(𝑗) ≤ 𝑃𝑃𝑉2(𝑗)
𝑚𝑎𝑥 .       (3.9) 

 

     Furthermore, for each sampling interval (j), the sum of powers from the battery to 

supply the load of both prosumers should be less than the rated power that is allowed to 

be drawn from the battery. This can be mathematically expressed as: 

 

𝑃2(𝑗) + 𝑃6(𝑗) ≤ 𝑃𝐵𝑎𝑡
𝑅𝑎𝑡𝑒𝑑         (3.10) 

 

3.3.3 Battery state of charge  

 

     At any given sampling interval (j), the battery state of charge (SoC), may be expressed 

as follows: 
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𝑆𝑜𝐶(𝑗) = 𝑆𝑜𝐶(0) +
∆𝑡

𝐶𝑛
× [𝜂𝐶ℎ × ∑ (𝑃3(𝑗) + 𝑃9(𝑗) + 𝑃11(𝑗))𝑁

𝑗=1 −
∑ 𝑃2(𝑗)+𝑃6(𝑗)

𝑁
𝑗=1

𝜂𝐷𝑖𝑠𝑐ℎ
](3.11) 

 

Where: 𝑆𝑜𝐶(0)is the initial state of charge at the beginning of every sampling time; 

𝐶𝑛 is the nominal capacity of the battery storage system; 

𝜂𝐶ℎ  and 𝜂𝐷𝑖𝑠𝑐ℎ  are the battery charging and discharging efficiencies respectively. 

 

3.3.4 Variable boundaries  

 

     For safety purposes, the power flow from the separate generators, as well as from the 

storage, should be operated within their minimum and maximum limitations, according to 

the design specifications from the manufacturer. For all the control variables linked to the 

prosumers, these constraints may be expressed as:    

 

0 ≤ 𝑃𝑖(𝑗) ≤ 𝑃𝑖(𝑗)
𝑚𝑎𝑥         (3.12) 

 

Where: i represents the different control variables; 

max

)( jiP is the maximum power that is produced by the PV generators and which depends on 

the resources. However, the maximum power may be written as Rated

jiP )( in the case of control 

variables linked to the battery. As the state of charge is the only considered state variable in 

the system, the boundaries linked to this variable may be written as: 

 

𝑆𝑜𝐶0 ≤ 𝑆𝑜𝐶(𝑗) ≤ 𝑆𝑜𝐶𝑚𝑎𝑥        (3.13) 

 

3.3.5 Exclusive power flows  

 

     It is a well-known fact that power cannot flow in and out of the battery simultaneously; 

the product between the battery’s input and output powers should be zero, as expressed in 

the equation below: 

 

(𝑃2(𝑗) + 𝑃6(𝑗)) × (𝑃3(𝑗) + 𝑃9(𝑗) + 𝑃11(𝑗)) = 0     (3.14) 
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3.3.6 Fixed-final state condition  

 

     In order to repeatedly implement the optimal control of the P2P energy model between 

prosumers, the SoC at the end of the control horizon should be equal to the SoC at the 

beginning of the control horizon. This may be mathematically expressed as: 

 

∑ (𝑃2(𝑗) + 𝑃6(𝑗) − 𝑃3(𝑗) − 𝑃9(𝑗) − 𝑃11(𝑗)) = 0𝑁
𝑗=1                (3.15) 

 

3.3.6 Solver selection 

  

     Given the non-linear nature of Equation (3.15), the whole model developed may be 

treated as a nonlinear programming problem. Therefore, the problem, with the developed 

objective function, as well as operation constraints, may be solved, using any solver able to 

deal with non-linear problem. In this case, “fmincon” (find minimum of constrained 

nonlinear multivariable function) optimization solver of the matlab optimization toolbox, 

has been selected, with the algorithm “interior-point” [78]. 

 

3.4 CASE STUDY DESCRIPTION  

 

3.4.1 System sizing 

 

     The size of the generator on both prosumers’ sides is dictated by the available 

investment of funds, implementing the project which is closely related to the energy saving 

target. With this, the size (rating) of the system’s various components are given in Table 

3.1. Additional details on the PV and battery sizing methodology may be found in 

References [79 and 80]. 
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Table 3.1: Simulation parameters 

Item Figure 

Sampling time (Δt) 10 min 

PV1 rated power 3.5 kWp 

PV2 rated power 5 kWp 

Battery nominal capacity 13 kWh 

𝜌𝑘 residential  183.60c/kWh 

𝜌0 residential 129.50c/kWh 

𝜌𝑠 residential 142.50c/kWh 

𝜌𝑘 commercial 239.85c/kWh 

𝜌0 commercial 124.21c/kWh 

𝜌𝑠 commercial 133.84c/kWh 

SoC0 82% 

SoCmax 100% 

SoCmin 50% 

ηCh 94% 

ηDisc 94% 

 

 

3.4.2 Power from the utility grid  

 

     The considered cost of energy the grid, is defined by the ToU. For the selected season, 

the ToU structure has three periods, namely, peak, standard, and off-peak pricing [81]. 

Where: 𝜌𝑘, 𝜌0, 𝜌𝑠 are the costs of energy in the peak, off-peak and standard pricing period 

respectively.  

 

𝜌(𝑡) = {

𝜌𝑘; 𝑡𝜖𝑇𝑘 , 𝑇𝑘 = [7,10) ∪[18,20)

𝜌0; 𝑡𝜖𝑇0; 𝑇0 = [0,6) ∪[22,24)

𝜌𝑠; 𝑡𝜖𝑇𝑠; 𝑇𝑠 = [6,7) ∪[10,18) ∪ [20,22)

    (3.16) 
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3.4.3 Load profiles and resources  

 

     In the recommended case study, two dissimilar load demands are selected for each of 

the prosumers. Prosumer 1 has a load profile of a residential type, whilst prosumer 2 has a 

load profile of a commercial type. The two profiles are represented in Fig.3.2. More info 

on the solar resources used are found in Reference [82]. 

Figure 3.2: Residential and commercial prosumers’ load profiles 

 

3.5 SIMULATION RESULTS AND DISCUSSION  

 

     The optimal control problem in this work has been solved as an open loop over a 

control horizon of 24, hours by means of the sampling time given in Table 1. This means 

that the optimal solution over the proposed control horizon is obtained once and, 

thereafter, applied to plan the future operation/outputs of the controlled system. In other 

words, the control actions are applied ahead of time to the process, due to the off-line 

nature of the open-loop optimal control strategy. 

     In this Section, the simulation is performed on the proposed P2P energy sharing model, 

applied to the case study of the selected prosumers in Bloemfontein (South Africa). The 

results are compared to the case where the electrical grid is used as a baseline, supplying 

the electrical demands of the selected residential and commercial loads. The simulation is 

performed for the worst case condition, a day in the winter season, where the solar resource 
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is low, while the load-demands and the grid electricity costs are high. Data for diffuse 

horizontal, diffuse normal, global horizontal irradiance and air ambient temperature of a 

typical winter day in June and a summer day in January, are plotted in Figs. 3.3 and 3.4.  

The data was collected from the weather station located at the University of the Free-State 

(latitude: -29.11074, longitude: 26.18503 and elevation: 1491 m), in Bloemfontein [83, 84].   

     Referring to Fig. 3.3 and Fig. 3.4, it should be noted that most summer days in 

Bloemfontein are overcast. This may be attributed to the fact that Bloemfontein obtains 

its rain in the summer months, unlike most winter days, when clear skies are apparent. 

However, the 2nd of January was a perfect day, with no cloud cover.  Furthermore, it may 

clearly be observed that the solar irradiance representing the two seasons vary in 

magnitude, with the summer irradiance having a larger magnitude than the winter 

irradiance.   

Figure 3.3: Summer solar irradiance 
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Figure 3.4: Winter solar irradiance 

 

3.5.1 Baseline: loads exclusively supplied from the grid  

 

     Figs.3.5 and 3.6, present the simulation results in the case where the grid is used 

exclusively to supply the demand for the considered residential and commercial loads, 

respectively. In this case, there are no prosumers present, as the PV system for both 

commercial, residential buildings, as well as storage systems, on the consumer’s side, are 

not considered. It may be noted that the grid power profile is following a pattern of both 

demands for the various pricing periods. The baseline system is a true reflection of the 

effect that the grid will have on both commercial and residential loads. As well as the power 

required throughout the day, for both load demands. 
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Figure 3.5: Baseline for residential demand exclusively supplied by the grid 

Figure 3.6: Baseline for commercial demand exclusively supplied by the grid 

 

3.5.2 Grid-connected residential prosumer with PV generation and storage system 

 

     In this Section, the power flows related are for the separate prosumers. These are 

investigated, based on the renewable power generation, power storage, imported power 

from the grid, as well as from the power shared between prosumers’ point of views. The 

main objective is to minimize the power from the grid to the residential prosumer, as well 

as to minimize the power from grid to the commercial prosumer.      

A representation of the optimal PV systems fixed on the roof of the residential prosumers 

at an angle of 30°. This angle is chosen so that the solar panels may have maximum 

penetration. This may be clearly observed in Fig.3.7; the PV system starts generating power 
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at the earliest hours of the day and steadily increases throughout the day. This happens 

until the system reaches its peak. This is normally between the hours of 12H00-14H00. 

This is when the PV system will generate at its peak which in this case is 3.5 kW. The PV 

will generate whether or not the power is being used. Hence, most of the ‘unused’ 

generated power will be shared with the commercial prosumer and the battery, for storage 

of power, that could be used at a later stage by the residential prosumer, when the demand 

for power is at its peak. This peak demand is usually at the end of the day between 16H00-

20H00. This is coincidentally the peak time for TOU. Meaning the electricity is at its highest 

for both prosumers.  

Figure 3.7: Representation of solar power generated by a fixed PV system with an angle 

of 30° 

 

From Figures 3.8-3.11, the optimal power flows for the residential prosumer are illustrated 

during the first off-peak and standard pricing periods lapsing from 00h00 to 07h00, there 

is no PV generation. Hence, the load is mainly supplied by the battery, Fig.3.8 (through 

P1), as well as from the grid. The supply from the grid is particularly low during this period, 

Fig.11 (through P4), as the price of electricity is low. During this period, there is no power 

shared from this prosumer’s PV system to the commercial prosumer’s load demand. This 

is because between this time the residential load will be in high demand, as the population 

prepares for the day. 

The first peak pricing period coincides with the starting of power generation from the PV, 

due to the availability of solar resources. Therefore, from 07h00, up until the end of the 

second standard pricing period, occurring at 18h00, as well as overlapping into the peak 
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period, the load demand of the residential prosumer is mainly supplied by Fig.3.8 (P1), from 

its own PV system.  

It may further be seen that, from 07h00 to 18h00, the output power from the battery, 

Fig.3.9 (P2), is zero. Therefore, the battery is not being used to supply the load. This may 

be attributed to the fact that there is little or no demand for power from the residential 

prosumer. 

However, there is power flowing from the commercial prosumer to supply the load of the 

residential prosumer as shown by the power flow, Fig.3.10 (P8), this power flow is very 

small. 

The involvement from the grid, Fig.3.11 (P4), towards contributing to the residential 

prosumer’s demand satisfaction is minimal. The reliance on the grid is almost negated by 

the energy sharing scheme. It solely picks up minimally, as the population come back to 

their residents. Starting from the second peak pricing period up to the last off-peak pricing 

period (18h00-24h00), there is no power produced from the residential prosumer’s PV 

system. Therefore, the power flows from the PV to the residential prosumer’s demand (P1), 

as well as from the commercial prosumer (P8). There is a significant contribution from the 

battery bank (P2), while the contribution from the grid (P4), is small. This is due to the 

process of energy sharing, between the commercial PV (P8) sharing energy to the residential 

prosumer, as well as charging the battery when not in use, as the demand on the residential 

prosumer is not high.   
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Figure 3.8: Power flow from residential PV to house 

Figure 3.9: Power flow from battery to residential prosumer 

Figure 3.10: Power flow from PV tracking system to residential prosumer 
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Figure 3.11: Power flow from grid to residential prosumer 

 

3.5.3 Grid-connected commercial prosumer with PV generation  

 

     Except for the fact that their load patterns are different, the main difference between 

the two, is that the commercial prosumer does not have a battery storage system. It may 

further be observed that the size of the commercial prosumer’s PV generation is smaller 

than that of the residential prosumer. Further it is equipped with solar tracking capabilities, 

making the generation much greater, due to the fact that it is constantly tracking the sun 

from the very first solar rays in the morning, to last light in the evening. Figures 3.12-3.16 

illustrate the operation of a solar tracking system. From 5H00, there is power generation 

and it gradually increases, as the tracking system is constantly seeking for maximum 

penetration from the sun on the PV panels. Unlike a fixed PV system, that is found on the 

residential prosumers’ roof. Peak generation is reached at 9H30. The dips in the graph are 

due to cloud cover, or they may be attributed to shadows falling on the panels. The tracking 

system will immediately adjust its position to further obtain maximum solar penetration. It 

may further be seen in Fig.3.12, that in this system the generation solely decreases at 19H00, 

when there is no optimum solar penetration. However, the tracking capabilities of the 

commercial PV system constantly adjusts its position, to keep on generating. Generation 

ceases to happen just before 20H00.  
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Figure 3.12: Representation of solar power generated by the commercial solar tracking 

PV system 

 

From Fig.314, it may be noted that, from 00h00 to 07h00, due to the lack of solar resources, 

the load at about 0.05 kW is mainly supplied by the battery (through P6). This may be 

attributed to the fact that the essential equipment is constantly on and should never be 

switched off. This may be equipment like fridges and computer servers, supplemented by 

the grid, Fig.3.16 (through P10 approximately 0.01 kW); a small quantity of power that is 

being supplied. The commercial prosumer is solely receiving power from the residential 

battery system. 

From 07h00 to 08h00, the cost of electricity from the grid is high. Therefore, the 

commercial prosumer’s demand is mainly supplied by the PV system of the residential 

prosumer, through Fig.3.13 (P5) and by its own production, through Fig.3.15 (P7). This 

operation strategy is implemented during the second standard pricing period, from 08h00 

until 18h00, where the load demand of the commercial prosumer is mainly supplied by 

(P7), from its own PV tracking system, as well as (P5) from the residential prosumer. The 

commercial prosumer is mainly supplied by its own PV tracking system. (P5) is solely 

supplementing the load if there is a sudden rise in demand. The small contribution from 

the grid, (P10), to the commercial prosumer, is further observed, as the load demand is high. 

In this pricing period, the battery contribution, (P6), to the commercial prosumer, is zero. 

Therefore, the battery is not being used to supply the load of the commercial prosumer. 
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From 18h00 to 24h00, it may be observed that (P7) continuously supplies the commercial 

prosumer, due to the PV tracking system being exceedingly effective. It may further be 

observed that Fig.3.16 (P10), as well as (P6), supply the commercial property. This may be 

credited to the lack of solar resources. However, due to the fact that the load demand is 

decreasing, (P10) is contributing a small amount of power to the commercial prosumer. 

Figure 3.13: Power flow from residential PV to commercial prosumer 

Figure 3.14: Power flow from battery to commercial prosumer 
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Figure 3.15: Power flow from solar tracking PV system to commercial prosumer 

Figure 3.16: Power flow from grid to commercial prosumer 

 

3.5.4 Battery storage system 

 

     Figures 3.17-3.20, illustrate the different sources of power, utilized in recharging the 

battery. These are from the residential prosumer’s share of the PV production, Fig3.17 (P3), 

the commercial prosumer’s share of PV production Fig3.18 (P9), as well as from the grid 

Fig.3.19 (P11). These power flows depend on the resources, prosumers’ load demands, 

Time of Use (ToU) as well as the battery state of charge, Fig.3.20 (SoC).  

From Fig.3.17, it may further be seen that, for the two first pricing periods, there is a small 

amount of power flow linked to (P3), (P9) and (P11), while the SoC is decreasing. This 
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implies that the battery is being used to supply the two prosumers, as shown by (P2) in Fig. 

3.9 and (P6) in Fig.3.14.  

From 07h00, the battery (SoC) is at its minimum the result of being used by both 

prosumers. Therefore, it is being recharged by (P3), (P9) and (P11), to reach a maximum, 

catering for the second peak pricing period. 

From 18h00 to 24h00, when the demand is at its highest for both prosumers, a huge 

amount of power is being utilized from the battery, supplying the two prosumers, as shown 

by (P2) and (P6) respectively. The majority of the power used from the battery, is being 

used by the residential consumer. Only a small amount of power is used by the commercial 

prosumer, as the demand is decreasing. This may further be seen in (P2) and (P6), 

respectively. (P11) is giving the most power to charge the battery in the off-peak pricing 

period. This the stage at which electricity is most affordable.  

The operation of the battery is carried out in a way so as to respect the final SoC condition 

expressed in Fig.3.20. This is to have the battery at the same stage SoC just above 80% 

SoC, for the beginning and final stage (P12). This is further carried out while staying in the 

boundary constraints of the battery, which is at 100% and 50% depth of discharge.  

Figure 3.17: Power flow from residential PV system to battery 
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Figure 3.18: Power flow from PV tracking system to battery 

Figure 3.19: Power flow grid to battery 

Figure 3.20: State of charge for battery 
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3.5.5 Daily economic analysis  

 

     Table 3.2 provides a summary on the cost saving that may be realized by using the 

proposed prosumers in an optimum P2P energy sharing paradigm, instead of supplying the 

load demands exclusively by the grid. In Table 3.2 it may be seen that an overall daily saving 

of R 62.85 for summer and a saving of R41.43 for winter. This is proof of how efficient 

the P2P energy sharing scheme may be, if implemented correctly. An in depth investigation 

of the economic analysis is conducted and discussed in Chapter IV.  

 

Table 3.2: Daily cost comparison summer (ZAR) 

Supply option Daily operation cost (ZAR) 

Load exclusively supplied by the grid  71.15 

P2P energy sharing  8.30 

Savings  62.85 

Percentage savings 88.33% 

 

Table 3.3: Daily cost comparison winter (ZAR) 

Supply option Yearly operation cost (ZAR) 

Load exclusively supplied by the grid 108.08 

P2P energy sharing 66.65 

Savings 41.43 

Percentage savings 38.33% 

 

 

3.6 SUMMARY  

 

     In this Chapter the mathematical model for simulating the case for P2P energy sharing 

model is discussed in detail. An fmincon solver in matlab was used, simulating cases for 

energy sharing in winter (high demand) as well as summer (low demand) periods, between 

the baseline, where the electrical grid is the sole supply for power for both the residential 

and commercial buildings and the proposed P2P system, where the consumers of electricity 
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are no longer just consumers. However, they produce their own energy and have the 

capability to share it with another consumer with the same system. The various power 

flows were set out in Fig.3.1 and the effects the P2P sharing system have on them. All the 

power flows had a significant impact on the system when power being shared between the 

two prosumers. The P2P system was designed in such a way that, the batteries are charged 

when the price of electricity is particularly low and when there is surplus power from the 

two systems. A small economic analysis illustrated the effect that the P2P system has on 

the daily energy cost. For the summer baseline case a daily energy cost of R71.15 was 

obtained and R8.30 for the proposed system, with a significant saving of R62.85. For 

winter, the baseline cost is R108.08 and for the proposed system R66.65, that equates to a 

substantial saving of R41.43. The different power flows for the case that has the lithium 

ion battery as storage system, is illustrated in Appendix A. 
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CHAPTER IV: ECONOMIC ANALYSIS  

 

4.1 INTRODUCTION  

 

     In order to evaluate the cost effectiveness of the hybrid system, in terms of money 

spent, several economic performance indicators exist. These indicators may include the 

simple payback period (SPP), life cycle cost (LLC), benefits-to-cost ratio (BCR) and initial 

rate of return (IRR). The SPP is the simplest to understand, due to its simplified cost 

calculation. However, limitations exist in the sense that it does not take into account future 

inflation that may affect the total cost over the lifetime of a project. An added drawback 

of the SPP, is that it does not account cash flows beyond the payback period (PBP), as the 

project lifetime is not taken into consideration. This reduces the accuracy of the economic 

analysis and leaves investors with an approximate cost or profit prediction. With this in 

mind, methods, such as the BCR, LCC and IRR, offer a more precise cost analysis, when 

compared to SSP, due to the fact that inflation and project lifetime are taken into account 

[82]. Therefore, for increased accuracy, a total lifecycle cost evaluation is done, followed 

by a break-even point (BEP) analysis, in terms of the baseline and proposed hybrid system. 

The lifecycle costs will further be compared, calculating the savings over a specific project 

lifetime. The project lifetime for this case study was chosen to be 20 years.  

 

4.2 INITIAL INSTALATION COST OF THE PROPOSED PEER-TO-PEER 

ENERGY SHARING SYSTEM 

 

     For the proposed system detailed in Chapter III, two separate cases for an in-depth 

economic analysis were considered. In the first case, the PV system will have 26 solar 

panels, 16 Peimar Monocrystalline 310W PV modules for the residential prosumer and 10 

Peimar Monocrystalline 310W PV modules for the commercial prosumer. Two Victron 

Smart Solar MPPT charge converters, for both prosumers, as well as Victron Multi Plus 

inverters. The solar energy storage system will be located on the residential prosumer’s 
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free-standing building, for this five Synerji Sealed Acid Gell Battery 200Ah will be optimal 

for demand for the residential prosumer. The reason that the battery bank is situated at the 

residential prosumer, is because of the fact that the residential prosumers is at the time that 

the demand for the commercial prosumer is decreasing and the residential prosumers’ 

demand is increasing simultaneously. The cost of both systems are detailed in Table 4.1, 

with the total cost amounting to R169 482.65. For the second case, the systems are precisely 

the same, as with the first case, the solely change is that, instead of Lead Acid batteries, one 

SolarMD Advanced Li-ion Battery 7.4kWh was chosen. The reason for this change is that 

a cost analysis will be carried out on how the change in battery technology will have an 

effect on cost through the entire life cycle for the 20-year period of the system. Table 4.2, 

is a detailed outline of the proposed system, with the Lithium-ion Battery, which drives up 

the cost to amount to R 201 451.15. 

Table 4.1: Bill of quantity for lead acid storage system 

Component Description  Quantity  Net Price (ZAR) 

Peimar Monocrystalline 310W PV module  26 46735.2 

Synerji Sealed Acid Gell Battery 200Ah 5 26911.5 

Victron Smart Solar MPPT  2 28766.1 

Victron Multi Plus inverter  2 64400 

Solar Cable 100m 1 1425.71 

Male Connector  26 606.97 

Female Connector  26 637.17 

Total (ZAR) initial investment cost   169482.65 

 

Table 4.2: Bill of quantity for lithium-ion storage system 

Component Description Quantity Net Price (ZAR) 

Peimar Monocrystalline 310W Pv module 26 46735.2 

SolarMD Advanced Li-ion Battery 7.4kWh 1 58880 

Victron Smart Solar MPPT 2 28766.1 

Victron MultiPlus inverter 2 64400 

Sola Cable 100m 1 1425.71 

Male Connector 26 606.97 
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Femal Connector 26 637.17 

Total (ZAR) initial investment cost 
 

201451.15 

4.3 CUMULATIVE COST COMPARISON 

 

     Calculating the cumulative costs incurred over a specific project lifetime, in this case 

20-years, some factors should be taken into consideration. Described in Section 5.2, the 

initial cost of implementation cannot be seen as cumulative, due to the fact that the cost 

implementation is a once off amount, incurred only at the inception of the project.  With 

this in mind, the annual costs incurred, which include replacement costs and operation & 

maintenance (O & M) costs, after each year since the starting point of the project, may 

directly be added to the initial implementation cost, in order to obtain the total cumulative 

cost over the project’s lifetime.   

     The salvage costs for these cases were not included, as the entire system may still be 

utilised with appropriate maintenance. 

  

4.3.1 Cumulative energy cost  

 

    In order to calculate the daily cumulative energy cost, the primary objective function 

may be adapted from Chapter III, so that Eq. (4.1) may be used in this instance: 

     

𝐶𝑑𝑎𝑖𝑙𝑦 = 𝑡𝑠 . 𝑃𝑔 ∑ (𝐶𝑇𝑂𝑈𝑘)𝑁
𝑘=1            (4.1) 

Where: ts: is the sampling time; 

𝑃𝑔: is the power supplied from the grid; 

𝐶𝑇𝑂𝑈𝑘 : is the time-based cost of electricity at each kth interval defined in Chapter III, 

Section 4.2.2, Table 4.2 in ZAR/kWh; 

keS : is the switching status of the electric resistive element. 

     With this, the daily cumulative daily cost values (ZAR), were obtained and illustrated in 

Sections 4.3.1.1. - 4.3.1.2. and compared in Section 4.3.1.3, for the summer and winter 
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cases, respectively.  In section 4.3.1.4, the annual cumulative costs were calculated, using 

the total daily energy cost values, obtained in terms of the low and high demand seasons, 

defined by Eskom. 

4.3.1.1 Winter cumulative energy cost comparison 

 

     The cumulative cost for the winter period, is shown in Fig. 4.1. The cumulative costs 

are calculated throughout the day. The ToU tariff is further taken into account, in the 

calculation of the cumulative energy cost per day. The high demand period should have a 

higher price tariff time interval is further considered for this calculation. The cumulative 

energy cost for the baseline, that is represented by the red line in the graph. The case where 

the storage system is represented by the green line and for the blue line, the lithium-ion 

battery is the storage option. There is a significant difference in price in the three cases. 

The net energy cost for the baseline case at the end of the day, equals to the amount of R 

108.08 (ZAR), and for lithium-ion, the net energy cost per day is R 65.12 (ZAR). The 

lowest cost of R49.46 (ZAR), is observed in the case where the lead-acid battery is the 

storage option. It may further be observed that there are sharp increases in the cumulative 

energy cost for the three cases, at 06H00, as well as 16H00. This is because of the fact that 

these time periods are when electricity most expensive, as it is in the peak time, set out by 

Eskom as well as the local municipality.  

Figure 4.1:  Winter cumulative energy cost 
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4.3.1.2 Summer cumulative energy cost comparison  

 

     The cumulative cost for the summer period, is shown in Fig. 4.2. The cost calculation 

is carried out precisely the same as it is done for the winter (high demand) period. The 

solely difference, is the ToU tariff, hence the low demand tariff utilised in this period.  The 

baseline for summer will be represented by the red line and the lead-acid case will be 

illustrated by the green line. Lastly the blue line represents the case in which the storage 

option is in the form of lithium-ion battery. The cumulative energy cost per day, without 

any PV panels for a summer day, will be R 71.14 (ZAR). The cost comparison for both 

lithium-ion and lead-acid cases are R8.07 and R7.81, respectively. The baseline case follows 

the equivalent pattern as the winter case, the solely difference is the net cost, at the end of 

the day. For the cases in which PV panels are introduced, the graphs follow a steady but 

not steep increase in price. It is seen in the graphs that there is a slight difference in price, 

between the lead-acid and the lithium-ion cases. 

Figure 4.2: Summer cumulative energy cost 

 

4.3.1.3 Energy costs and saving 
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     The cumulative costs for the three cases are shown in Tables 4.3 and 4.4, as well as 4.5. 

The cases are as follows: Baseline, Lead-acid battery storage and, lastly, Lithium-ion 

storage. The tables will, in the three cases, show the daily, monthly, as well as yearly energy 

costs. In both cases, where PV panels and storage are introduced, a massive saving in 

electricity cost per day, as well as per year, is observed. These savings underline the 

importance of the P2P energy sharing system, when it is implemented appropriately and 

either with a lead-acid battery bank, as well as a lithium-ion battery storage system. A yearly 

saving of 72%, for the case in which lead-acid is the proposed storage system and a saving 

of 73% for the lithium-ion storage option. In terms of money saved year on year, taking 

into account that the electricity price will increase by 15%, the option for P2P energy 

sharing is an attractive one. Further in terms of longevity of the system, it will also be an 

attractive option.  

 

Table 4.3: Cumulative energy cost: Baseline 

Energy Cost Month Number of days  Monthly Energy Cost  

71.14803 January 31 2205.59 

71.14803 February  28 2091.75 

71.14803 March 31 2426.15 

71.14803 April 30 2454.61 

71.14803 May 31 2734.93 

108.0832 June 30 4215.24 

108.0832 July 31 4355.75 

108.0832 August 31 4154.72 

71.14803 September 30 2454.61 

71.14803 October 31 2426.15 

71.14803 November 30 2241.16 

71.14803 December 31 2205.59 

Annual Baseline Energy Cost  33966.25 
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Table 4.4: Cumulative energy cost: Lead-acid 

Energy Cost Month Number of days  Monthly Energy Cost  

8.2965 January 31 257.19 

8.0932 February  28 237.94 

7.9825 March 31 272.20 

8.3324 April 30 287.47 

4.736 May 31 182.05 

54.8862 June 30 2140.56 

66.6561 July 31 2686.24 

57.1496 August 31 2196.83 

8.4178 September 30 290.41 

8.2592 October 31 281.64 

8.05669 November 30 253.79 

7.92917 December 31 245.80 

Annual Proposed System Energy Cost 9332.13 

 

Table 4.5: Cumulative energy cost: Lithium-ion 

Energy Cost Month Number of days  Monthly Energy Cost  

8.067887 Jan 31 250.10 

7.609033 Feb 28 223.71 

7.89279 Mar 31 269.14 

8.017329 Apr 30 276.60 

7.373697 May 31 283.44 

53.57025 Jun 30 2089.24 

65.12154 Jul 31 2624.40 

54.98622 Aug 31 2113.67 

8.112144 Sep 30 279.87 

8.001003 Oct 31 272.83 

7.887719 Nov 30 248.46 
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7.762701 Dec 31 240.64 

Annual Proposed System Energy Cost 9172.11 

 

4.4 LIFE CYCLE COST ANALYSIS 

 

     In order to reduce the margin of error, a project lifetime of 20 years was chosen for the 

P2P energy sharing system.  The 20-year lifetime was chosen based on the replacement of 

several factors that require replacement. At five year intervals, the lead-acid batteries should 

be replaced and lithium-ion batteries require replacing every ten years, as well as the inverter 

and charge controller that require replacement after fifteen years. However, several reports 

have shown the lifetime reaching over 30 years for the PV panels, unless they are damaged 

and require replacing.  Hence, the average number of years between guaranteed and actual 

reported lifespan, was selected.   

       The salvage costs were excluded for both cases as the residential, as well as the 

commercial PV systems, may be upgraded, to include more prosumers in future.  

       The replacement cost is calculated, using Eq. (4.1).  With the average inflation rate, the 

future costs of components are predicted, by assuming that the average inflation rate will 

be equal to the interest rate [85, 86].   

 

𝐶𝑟𝑒𝑝 = ∑ 𝐶𝑐𝑎𝑝. 𝑘(1 + 𝑛𝑟)𝑁
𝑘=1        (4.2) 

 

Where: 

𝐶𝑐𝑎𝑝: is the initial capital cost for each component (given in Table 5.3), 

𝑁𝑟𝑒𝑝: is the number of component replacements of the 20-year lifetime,  

𝑛: is the lifespan for a specific component (years),  

𝑟: is the average inflation rate shown as 5.49%. 

 

4.4.1 Baseline lifecycle cost analysis 
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     For the baseline, no replacement costs are calculated because of the complexity of the 

system. The municipalities generally carry out the maintenance and replacement for the 

electrical grid. 

Total lifecycle replacement cost (𝐶𝑟𝑒𝑝−𝐵𝑇𝐶), is equal to the replacement costs of the P2P 

sharing project, as represented in Eq. 4.2.  

𝐶𝑟𝑒𝑝−𝐵𝑇𝐶 = 𝐶𝑟𝑒𝑝         (4.2) 

 

Eq. 4.2 is used to calculate the total replacement cost ( rep ESTWHC − ) over the project lifespan. 

      The cumulative electricity costs incurred over a 20-year lifespan for the baseline system, 

is shown in Appendix B.  The cumulative cost of energy for the first year was taken from 

Table 5.3.  The cost at the end of year 20, equates to the total cumulative electricity cost 

( )ECC , with an increase of 15% annually taken into account, shown in Eq. 5.4. 

 

𝐶𝐸𝐶 = ∑ 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝐸𝐶 . 𝑘(1 + 𝑎)20
𝑘=1        (4.3) 

 

Where: 

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝐸𝐶 : is the cumulative cost of energy at the end of year one (ZAR), 

𝑘: represents the year in which the cumulative cost should be calculated (years), 

𝑎 : is the annual increase of 15%. 

 

    The operation and maintenance costs at the end of each year ( i ) of the optimal P2P 

system may be taken as 1% of the initial implementation cost, so that Eq. (4.4) will be: 

 

𝐶𝑂𝑀 = ∑ 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑂𝑀 . 𝑘(1 + 𝑟)20
𝑘=1        (4.4) 

 

     The initial cost of implementation (𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙), salvage cost (𝐶𝑠𝑎𝑙𝑣𝑎𝑔𝑒) is 20% of the initial 

implementation cost (𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of the P2P PV system, can be calculated using Eq. 4.5. 

However, for this case, the salvage cost calculation is not used. 

 

𝐶𝑠𝑎𝑙𝑣𝑎𝑔𝑒 = 0.2. 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙         (4.5) 
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     The addition of Eqs. (4.2-4.5) and the subtraction of the salvage cost (𝐶𝑠𝑎𝑙𝑣𝑎𝑔𝑒), will be 

equal to the total lifecycle cost for the P2P system in Eq. (4.6):  

 

𝐿𝐶𝐶𝑃2𝑃 = 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐶𝑟𝑒𝑝−𝐵𝑇𝐶 + 𝐶𝐸𝐶 + 𝐶𝑂𝑀 − 𝐶𝑠𝑎𝑙𝑣𝑎𝑔𝑒    (4.6) 

         

     The total lifecycle cost value 𝐿𝐶𝐶𝑃2𝑃 (ZAR), using Eq. (4.6), is shown in Table 5.5.  

over a 20-year project lifetime 

 

4.4.2 P2P PV system with lead-acid battery bank 

 

Table 4.6: Total replacement cost for PV system and lead-acid battery bank 

Parameters  Lead-acid Value Lithium-ion Value 

P2P energy sharing system lifetime, n(years) 20 20 

Synerji Sealed Acid Gel Battery (years) 5 10 

𝑁𝑟𝑒𝑝−𝑏𝑎𝑡 5 1 

𝐶𝑟𝑒𝑝−𝑏𝑎𝑡 (ZAR) 134557.5 58880 

Victron Smart Solar MPPT (years) 15 15 

𝑁𝑟𝑒𝑝−𝑀𝑃𝑃𝑇 1 1 

𝐶𝑟𝑒𝑝−𝑀𝑃𝑃𝑇 (ZAR) 27046.05 27046.05 

Victron Multi Plus inverter (years) 15 15 

𝑁𝑟𝑒𝑝−𝑖𝑛𝑣 1 1 

𝐶𝑟𝑒𝑝−𝑖𝑛𝑣 (ZAR) 67942 67942 

 
229545.55 153868.05 

 

          In the case of the P2P energy sharing system, several more components exist with 

different life expectancies, so that the total replacement costs ( repC ), calculated using Eq. 

4.1, over the 20-year project lifespan for all the hybrid system’s components, shown in 

Table 4.5 are added, in order to receive the total lifecycle replacement costs ( rep TCC − ), 

denoted in Eq. (4.7):   
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𝐶𝑟𝑒𝑝−𝑇𝐶 = 𝐶𝑟𝑒𝑝−𝑆𝐶 + 𝐶𝑟𝑒𝑝 + 𝐶𝑟𝑒𝑝−𝐶𝑂𝑁𝑇 + 𝐶𝑟𝑒𝑝−𝐴𝑅𝑉 + 𝐶𝑟𝑒𝑝−𝐶𝑃 + 𝐶𝑟𝑒𝑝−𝑇𝑀𝑉 (4.7) 

 

     The same method for cumulative electricity costs, with an annual 15% increment, was 

calculated for the hybrid system, using Eq. (4.3), as well as for the salvage cost (which is 

not included) and the cumulative operation and maintenance costs for the P2P system, in 

Eq. (4.4) and (4.5), respectively.  Eq. (4.8) shows the calculation of the life-cycle cost for 

the P2P energy sharing system. 

    

𝐿𝐶𝐶𝑃2𝑃 = 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐶𝑟𝑒𝑝−𝑇𝐶 + 𝐶𝑂𝑀 + 𝐶𝐸𝐶 − 𝐶𝑠𝑎𝑙𝑣𝑎𝑔𝑒    (4.8) 

 

Table 4.7: Total lifecycle cost for the P2P energy sharing system 

Cumulative cost Value (ZAR) lead-acid Value (ZAR) Lithium-ion 

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙  169482.65 201451.15 

𝐶𝑟𝑒𝑝  322750.95 389974.2 

𝐶𝑂𝑀  59095.7494 70242.6276 

𝐶𝐸𝐶  132812.751 132812.751 

𝐶𝑠𝑎𝑙𝑣𝑎𝑔𝑒  0 0 

𝐿𝐶𝐶𝑃2𝑃 684142.1 794480.729 

 

     The total lifecycle cost value𝐿𝐶𝐶𝑃2𝑃 (ZAR), using Eq. (4.8), with the data shown in 

Table 4.6, is calculated. Over a 20-year project lifetime, a total amount of approximately 

R684 142.1 will be spent, in the case where lead-acid batteries are used as a storage option 

and for lithium-ion case the total amount spent will be R794480.729, with an optimal P2P 

energy sharing system applied. 

 

4.4.3 Break-even point (BEP) 

 

     The break-even point is determined when the total implementation and operating costs 

of two systems incurred, are equal.  In this case, the baseline, where the sole source of 
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electrical power is the national electrical grid, is compared to the proposed P2P energy 

sharing system, with the optimal energy management scheme, in terms of the total 

cumulative annual energy cost in the project lifetime of 20 years.   

     The cumulative cost curves, which contains the initial investment cost and the total 

annual costs incurred over this period for the baseline and optimal P2P system is plotted 

on the same axis for both cases, respectively.  The intersect point of these two curves shows 

the point in time (years) at which the two systems break even.   

Table 4.1 and 4.2 outline the initial total cost of implementation of the P2P system for 

lead-acid storage, as well as the lithium-ion storage is R169482.65 and R201451.15, 

respectively.  These values are therefore starting points of the two curves in Figs. 4.3 and 

4.4.  After the first year has passed, the total annual cost of energy is added to the initial 

investment cost, which is the total present cost of energy, shown in Tables 4.1and 4.2.  This 

equates to the total cumulative cost for the first year after implementation.  For the second 

year after application, a 15% increase in the price of electricity is taken into account, to 

calculate the annual energy costs. This amount is, furthermore added to the previous total 

cumulative cost of the first year.  The same method is followed for years 3 to 10 in Fig. 

4.3.  In this curve, the replacement costs and lifetimes of all the components are taken into 

account, for increased accuracy of cumulative cost representation.  From Fig. 4.3, as well 

as Fig.4.4, a clear observation may be made that the break-even point occurs early in the 

project lifetime, for both cases. For lead-acid, the break-even point occurs in 5.34 years 

after initial implementation of the P2P system. The cost at that point will amount to 

R296600.00. Lithium-ion in Fig.4.4, the break-even point will occur within 5.131 years and 

R293800.00. In both cases, there is a clear indication between the proposed system and the 

baseline system that can be observed.  
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Figure 4.3: Break-even point illustration for lithium-ion storage system 

 

Figure 4.4: Break-even point illustration for lead-acid storage system 
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4.4.4 Lifecycle cost comparison  

 

      The lifecycle costs for the traditional electrical grid to supply power, only as well as the 

two P2P energy sharing schemes, are compared in Tables 4.7 and 4.8.  The break-even 

point analysis shows the time it will take for cumulative cost equalization.  The difference 

in LCC is calculated in order to note the savings in cost, at the end of the project lifetime.    

 

Table 4.8: Life cycle cost comparison lead-acid storage system 

LCC  Value (ZAR)                                               

𝐿𝐶𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (ZAR) 3,479,624.22 

𝐿𝐶𝐶𝑃2𝑃 (ZAR) 1,507,346.24 

Total savings over 20 years (ZAR) 1,972,277.98 

 

Table 4.9: Life cycle cost comparison lithium-ion storage system 

LCC  Value (ZAR)                                               

𝐿𝐶𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (ZAR) 3,479,624.22                                                                        

𝐿𝐶𝐶𝑃2𝑃 (ZAR) 1,617,684.86 

Total savings over 20 years (ZAR) 1,861,939.36 

 

    From Table 4.7, as well as Table 4.8, a conclusion may be made that in the long run 

(over the 20-year project lifetime of the system), an approximate savings of R1,972,277.98 

and R1,861,939.36, respectively, may be made if either of the P2P energy sharing system 

were implemented.  This renders savings of 57% and 54%, for the two cases, that were 

investigated. The detailed lifecycle cost breakdown is shown in Appendix B, illustrating the 

cumulative costs after each year. 
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4.4 SUMMARY  

 

     The cost effectiveness of the P2P energy sharing system has been analysed and 

evaluated. Two cases were evaluated, namely: Lead-acid and Lithium-ion storage systems. 

The differences in cumulative energy consumption and costs were noted, so that the annual 

energy usage and cost savings comparisons could be made.   

     A break-even point analysis was carried out in order to calculate as to when the 

proposed system would have an equivalent cumulative cost, compared to the baseline 

system. The evaluation showed that after 5.131 years (li-ion) and 5.34 years (lead-acid), the 

cumulative costs were lower for the proposed system, as opposed to the baseline.  It was 

detected that, after the break-even point, the difference in cumulative costs significantly 

increased with the baseline cost, following an exponential trend. 

     The break-even point analysis was followed by a thorough lifecycle cost evaluation, so 

that the savings over a project lifetime of 20 years could be calculated. The LCC 

comparison of the proposed system, with respect to the baseline presented a R1,972,277.98 

(lead-acid) and R1,861,939.36(li-ion) savings in cost over the project lifetime.  In order to 

put this into perspective, savings of 57% and 54% in cost, was calculated. This percentage 

signifies a significant saving once the break-even point has been reached. This further 

means, that once the break-even point has been reached, solely the savings may be noticed 

for the entire lifecycle of the project. A 15 % increase in electricity costs may further can 

also be seen as a conservative assumption, due to the fact that past increments in cost were 

much higher in comparison. 
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Chapter V: Conclusion  

 

5.1 FINAL CONCLUSIONS  

 

     This Chapter serves as a conclusion of the research that has been carried out on an 

optimally designed P2P energy sharing system. As seen in Chapter II, the P2P energy 

sharing system has worked throughout the world, where it has been implemented. The P2P 

system consists of two prosumers. The first being a single-phase residential building, the 

other being a single phase commercial building. According to the grid code in South Africa, 

all excess energy from prosumers, if not used, should be dumped or stored for later use. It 

is in this context that the P2P energy sharing scheme between prosumers, has its value, as 

no energy will be lost.  

     The aim of the developed model, is to assess the energy cost saving, that may be realized 

by prosumers, if energy not used by one consumer may be shared in a P2P scheme. A 

model has been developed to minimize the reliance from the grid, whilst optimizing the 

power-flow between the generation loads as well as storage of prosumers. Using two 

prosumers in the South African electricity pricing, as well as with the grid operation 

restriction; the simulation results have revealed that, using the developed model to 

optimally manage the power flows in the P2P energy sharing scheme may substantially 

reduce the prosumers’ operation cost, by maximizing the local renewable energy 

production and storage management, whilst minimizing the reliance on the grid. In this 

Chapter, solely the Time of Use tariff linked to the electricity consumed from the grid was 

considered to have the main cost component to be minimized. The ToU tariff has two 

pricing options which was included in the simulated results; one for low demand period 

(summer) and the other for the high demand period (winter). In both instances, a 

significant saving of the cost for energy per day, was seen. Based on the fact that the energy 

shared between the prosumers was considered to be free, the controller managed the two 

prosumers as a single unit, giving equal importance to all the shared internal power flows. 

     In Chapter IV, the economic feasibility and the lifecycle cost have been evaluated. 

Operation and maintenance cost have been calculated as 1% of the initial investment cost. 

Inflation rate for the future replacement costs of 5.5% and an annual increase of 15% for 
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the electricity price. Two cases were proposed in this case: P2P system with Lead -acid 

battery, as the preferred mode of storage and the other Lithium-ion battery, for storage. 

The initial cost of investment was R169482.65, for the lead-acid and R201451.15, for li-ion 

battery storage. The economic analysis was carried out for a period of 20 years. The break-

even point for the lead-acid case was reached in 5.304 years and an overall cost savings for 

the twenty-year period amounts to R 1,972,277.98. For the li-ion battery storage system, 

the break-even point was reached in 5.131 years and an overall savings of R1,861,939.36.  

In order to put this in perspective, saving of 57% and 54% in costs was calculated. This 

percentage signifies a substantial saving after the break-even point has been reached. This 

further means that once the break-even point has been reached, only savings will be noticed 

for the entire lifecycle of the project.  From the data collected and the simulation of the 

optimal operation control of the P2P energy sharing schemes, using various energy storage 

configurations, it has been noted that the system was economically feasible in the South 

African context in terms of energy cost savings.  Therefore, these systems may be 

recommended for commercial and residential buildings sharing, the same earth.   

 

5.2 SUGGESTIONS FOR FUTURE RESEARCH 

 

     A change in the South African grid code should be made, allowing prosumers that are 

not on the same “earth” to be in a P2P sharing scheme. This will allow anyone who wants 

to save on energy cost in the future and has the capital available to them to invest in a P2P 

energy sharing system.  

A further constraint should be added to the model, with the aim of coordinating the 

internal energy sharing between the prosumers, while allocating a cost component to all 

these transactions. This could be carried out at a significantly lower rate, compared to the 

grid prices. This may assist each prosumer in maximizing its own production, while 

minimizing the amount of energy procured from the other prosumer, as well as the reliance 

on the electrical grid alone for power. 
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APPENDICES 

APPENDIX A: EXCLUSIVE POWER FLOWS FOR LITHIUM-ION 

BATTERY  

Figure A I: Residential and commercial prosumers’ load profiles 

Figure A II: Representation of solar power generated by a fixed PV system with an angle 

of 30° 
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 Figure A III: Power flow from residential PV to house 

 Figure A IV: Power flow from battery to residential prosumer 

Figure A V: Power flow from PV tracking system to residential prosumer 
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Figure A VI: Power flow from grid to residential prosumer 

 

Figure A VII: Representation of solar power generated by the commercial solar tracking 

PV system 
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 Figure A VIII: Power flow from residential PV to commercial prosumer 

 Figure A IX: Power flow from battery to commercial prosumer 

Figure A X: Power flow from solar tracking PV system to commercial prosumer 
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 Figure A XI: Power flow from grid to commercial prosumer  

 Figure A XIII: Power flow from residential PV system to battery 

Figure A XIV: Power flow from PV tracking system to battery 
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 Figure A XV: Power flow grid to battery 

Figure A XVI: State of charge for battery 
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APPENDIX B: ANNUAL ENERGY AND CUMULATIVE COSTS (LCC) 

 

B1: Annual energy and cumulative costs for lead-acid battery storage 

 

Year Baseline Lead-Acid O&M Baseline  Lead-acid 

 

energy cost 
after each year 

energy cost 
after each year 

energy cost 
after each year 

Annual 
cumulative 
cost 

Annual 
cumulative 
cost 

 (ZAR) (ZAR) (ZAR) (ZAR) (ZAR) 

0 0.00 0.00 0.00 0.00 169482.65 

1 33966.25 9332.13 1694.83 33966.25 180509.61 

2 39061.19 10731.95 1788.04 73027.44 193029.60 

3 44920.36 12341.74 1886.38 117947.80 207257.73 

4 51658.42 14193.00 1990.14 169606.22 223440.87 

5 59407.18 16321.95 2099.59 229013.40 275501.79 

6 68318.26 18770.25 2215.07 297331.66 296487.11 

7 78566.00 21585.79 2336.90 375897.66 320409.79 

8 90350.90 24823.65 2465.43 466248.55 347698.87 

9 103903.53 28547.20 2601.03 570152.08 378847.10 

10 119489.06 32829.28 2744.08 689641.15 454787.72 

11 137412.42 37753.67 2895.01 827053.57 495436.40 

12 158024.28 43416.72 3054.23 985077.85 541907.36 

13 181727.93 49929.23 3222.22 1166805.78 595058.81 

14 208987.12 57418.62 3399.44 1375792.89 655876.86 

15 240335.18 66031.41 3586.41 1616128.08 944636.30 

16 276385.46 75936.12 3783.66 1892513.54 1024356.13 

17 317843.28 87326.54 3991.76 2210356.81 1115674.44 

18 365519.77 100425.52 4211.31 2575876.59 1220311.26 

19 420347.74 115489.35 4442.93 2996224.32 1340243.54 

20 483399.90 132812.75 4687.29 3479624.22 1507346.24 
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B2: Annual energy and cumulative costs for lithium-ion battery storage 

 

Year Baseline Li-ion O&M Baseline  Lead-acid 

 

energy cost 
after each year 

energy cost 
after each year 

energy cost 
after each 
year 

Annual 
cumulative 
cost 

Annual 
cumulative 
cost 

 (ZAR) (ZAR) (ZAR) (ZAR) (ZAR) 

0 0.00 0.00 0.00 0.00 201451.15 

1 33966.25 9332.13 2014.51 33966.25 212797.79 

2 39061.19 10731.95 2125.31 73027.44 225655.05 

3 44920.36 12341.74 2242.20 117947.80 240239.00 

4 51658.42 14193.00 2365.52 169606.22 256797.52 

5 59407.18 16321.95 2495.63 229013.40 275615.10 

6 68318.26 18770.25 2632.89 297331.66 297018.24 

7 78566.00 21585.79 2777.69 375897.66 321381.72 

8 90350.90 24823.65 2930.47 466248.55 349135.84 

9 103903.53 28547.20 3091.64 570152.08 380774.68 

10 119489.06 32829.28 3261.68 689641.15 508129.65 

11 137412.42 37753.67 3441.08 827053.57 549324.40 

12 158024.28 43416.72 3630.34 985077.85 596371.46 

13 181727.93 49929.23 3830.00 1166805.78 650130.69 

14 208987.12 57418.62 4040.65 1375792.89 711589.97 

15 240335.18 66031.41 4262.89 1616128.08 956946.47 

16 276385.46 75936.12 4497.35 1892513.54 1037379.94 

17 317843.28 87326.54 4744.70 2210356.81 1129451.18 

18 365519.77 100425.52 5005.66 2575876.59 1234882.36 

19 420347.74 115489.35 5280.97 2996224.32 1355652.69 

20 483399.90 132812.75 5571.43 3479624.22 1617684.86 
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