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ABSTRACT 

Eskom, South Africa’s major electricity generation, transmission and distribution 

utility, is currently in a very difficult financial position. Electricity sales are declining, 

debt and primary energy costs are soaring, existing customers owe Eskom billions in 

debt while tariff increases on electricity sales are too low to recover costs for the 

generation, transmission and distribution of electricity. Consequently, Eskom is 

examining all its operations in order to identify areas where possible savings can be 

realised.  

 

Given the centrality of data in both informing prudent corporate decision making and 

advancing cost saving mechanisms, it is undeniable that inaccurate data can lead to 

inappropriate decisions and costly corporate blunders. There is sufficient evidence to 

demonstrate that an improvement in data quality can increase a company’s turnover 

by approximately 15%. Nevertheless, the reality is that data quality improvement 

strategies tend to focus on master data. As a result, the researcher sought to 

establish the exact effects that improvements in transactional data quality could have 

on monetary savings of Eskom Distribution Free State. 

 

Drawing on the aforementioned electricity utility, a survey was conducted on 

technical field staff’s perspectives regarding transactional data quality of customer 

calls relating to electricity supply problems (ESP) received from its call centre. In 

addition to the survey, historical transactional data on the entity’s ESP customer calls 

were also analysed to establish the influence of data quality on cost savings of this 

entity. The survey was conducted on 303 Eskom technicians during 2017. The 

historical data sets for the period April 2012 to March 2017 were also analysed. 

Since the assessments on monetary impact of the mentioned transactions are 

carried by Eskom rather than the customer, the perceptions of customers were not 

considered in this study. It was contended that the individuals directly involved in 

assessing the monetary effects of data quality would be ideally positioned to have 

logical and credible opinions on this subject rather than customers who were 

considered to have limited knowledge on this subject. 
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The results from the historical data analysis using mean, frequency distribution, 

cross tabulation, correlation analysis of survey data, and mean distribution, 

regression analysis and correlation analysis for historical data, revealed potential 

monetary savings of 17.18% arising from avoidable costs on transactions related to 

ESP customer calls. These monetary savings were dependent on Eskom’s ability to 

increase its transactional data quality on ESP customer calls from 81.31% to 100%. 

While it was acknowledged that avoidable costs could only be calculated from 

quantifiable operational costs, savings would potentially increase if the effects of 

improved customer service, faster supply restoration times and work hours saved to 

perform preventative maintenance to reduce overall fault volumes were quantified in 

monetary terms. It was also noted that if the costs of increasing data quality were 

lower than the 17.18% monetary savings potential established in the study, then 

such data quality improvement strategies would improve Eskom’s financial position. 

Furthermore, descriptive analysis on survey results revealed that an improvement in 

customer call transactional data quality at the source has the potential of creating 

savings of up to 47.7% for transactions related to customer calls requesting service 

for an ESP. This finding was however not supported by inferential analysis. 

Nonetheless, the study recommends that Eskom should continually identify and 

investigate high value transactional data quality as it offers significant savings 

potential through cost avoidance. 
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1.1 Introduction 

Most organisations, irrespective of their size, depend on data to conduct their daily 

business activities and utilise data as a key asset to create and sustain competitive 

advantage over their competitors. Similarly, global electricity utilities and 

organisations that generate, transmit and distribute electricity, utilise data in various 

formats and from different sources as their enablers to generate and sell electricity to 

their customers. In the United States alone, there are 3 200 utilities competing for a 

share of the electrical sales market worth around $400 billion (Martin, Chediak & 

Wells, 2013). In the South African context, the sole public electricity utility, Eskom 

Holding SOC Ltd, hereinafter referred to as Eskom, sold electricity for a total value of 

R175 billion (around $12.1 billion US) in the 2017-2018 financial year (Eskom 

Holdings SOC Ltd, 2018a). Eskom is a complex organisation that comprises an 

electricity business, investments and subsidiaries. The electricity business has 3 

core units and these are: 

 Eskom Generation: Responsible for the generation of electricity. 

 Eskom Transmission: Responsible for the transmission of generated 

electricity over long distances to distribution sites. 

 Eskom Distribution: Responsible for the distribution and sales of electricity to 

the bulk resellers and end consumers (Eskom Holdings SOC Ltd, 2018a). 

 

Despite the exceptional operational performance of its electricity business 

concerning generation plant availability and network performance during the 2017-

2018 financial year, Eskom is experiencing severe financial challenges attributed to 

multiple causes. Some of these challenges are, as articulated in Eskom’s 2018 

Integrated Report (2018a), a consequence of: 

 Irregular expenditure and senior executive financial mismanagement. 

 Increased debt related to the building of new generation capacity. 

 Increased costs of repayment of debt due to credit rating downgrades. 

 An effective 2.2% price increase from the National Energy Regulator of South 

Africa (NERSA), which was too low to recover costs for electricity generation, 

transmission and distribution. 

 Decreased electricity sales. 

 An increase in primary energy costs. 
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 The existence of a Municipal arrear debt of R13.6 billion. 

 

Regardless of Eskom's financial predicament, the South African government as the 

sole shareholder still expects the corporation to fulfil its strategic objectives as 

highlighted in the National Development Plan (NDP) (National Planning Commission, 

2012). These strategic objectives are encapsulated in Eskom's mandate of 

"providing a stable electricity supply in a sustainable and efficient manner, in order to 

assist in lowering the cost of doing business in South Africa and enabling economic 

growth" (Eskom Holdings SOC Ltd, 2018a:6). 

 

Eskom is scrutinising its operations for opportunities to realise savings and fulfil its 

mandate of improving its internal efficiency and remaining financially viable. Existing 

literature highlights that an increase in data quality has the potential to increase 

revenue (Batini & Scannapieco, 2016; Experian Data Quality, 2017). Nevertheless, 

while existing strategies of data quality improvement have a strong focus on the 

improvement of the quality of master data and its business benefits, less attention is 

devoted to the quality of transactional data, due to its volatile nature and perceived 

lower business value (Entity group, 2016). This study considers the aforementioned 

literature on the significance of data quality in the operations of corporations and cost 

reductions in promoting efficient business operations in the investigation of the 

influence of transactional data quality on monetary savings of Eskom Distribution 

Free State in South Africa, which is one of the nine Distribution Operating Units (OU) 

of Eskom’s electricity business. Eskom Distribution’s OU is located in one of South 

Africa’s nine provinces, Eastern Cape, Free State, Gauteng, Kwazulu Natal, 

Limpopo, Northern Cape, North West, Mpumalanga and Western Cape. The choice 

of this electrical utility is informed by the reality that this institution is confronted with 

deteriorating liquidity and profitability challenges that threaten its ability to remain 

viable in the long run (Eskom Holdings SOC Ltd, 2018a). 

 

1.2 Problem background 

When a business is confronted with financial difficulties, it has to implement 

measures to increase its income and lower expenses by reducing unnecessary 

spending and laying off excess staff (Sadgrove, 2015). Although it is an inexorably 

© Central University of Technology, Free State



4 
  

 
 

complex business operation endeavour, obtaining correct data concerning business 

operations and interpreting it appropriately is critical to implementing best financial 

decisions during times of economic downturn or recession (Bate, 2009). The same 

applies to Eskom, which due to its dire financial predicament, was compelled to 

implement various initiatives such as the Business Productivity Programme (BPP), 

Design to Cost (DTC) strategy and the prioritisation of capital expenditure within all 

sectors of the organisation. However, these strategies did not sufficiently curb 

operational costs and Eskom has recently started to review its organisational design. 

The engagements with senior executives regarding possible dismissals at their 

specific level have started. The objective of all this and other initiatives is to ensure 

that the corporation remain financially viable by reducing costs and improving 

liquidity (Eskom Holdings SOC Ltd, 2018a; Eskom Holdings SOC Ltd, 2018c). 

 

As one of the top 20 electrical utilities in the world, Eskom supplies approximately 

95% of South Africa's electricity and exports 45% of the electricity to many parts of 

Africa (Topco Media, 2014; Eskom Holdings SOC Ltd, 2015b). Electricity access and 

pricing play a major role in supporting industrialisation, economic growth and the 

overall improvements in people's living standards (Stern, 2010; Hu, 2013). While 

Africa has the lowest electricity supply in the world, its economies are mainly 

dependent on electricity (McDonald, 2009) thus, making electricity supply and 

access, sources of contention in communities and the broader society. Therefore, it 

is critical that Eskom remains economically viable and is able to supply electricity at 

affordable prices to support and grow the economies of South Africa and Africa. 

  

1.3 Problem statement 

Companies throughout the world face many difficulties in quantifying the costs of 

poor quality data due to tangible and intangible components that need to be 

considered in the calculation process (Wang et al., 2015). Although only operational 

costs can be reliably calculated (Redman, 2013a), which is an understatement of 

total costs, it is advisable to determine the totality of costs whenever high value data 

is concerned. The savings potential ingrained in the improvement of data quality can 

be quite significant as poor quality data has been estimated to cost companies up to 

20% of their revenue (Wang et al., 2015). Whilst considerable emphasis has been 
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placed on the quality of master data within the methodology and application of 

Master Data Management (MDM) (Loshen, 2010), transactional data quality issues 

are often ignored due to its high volume and inherent volatility (Entity group, 2016). 

 

A typical area uncovered by the researcher offers saving potential in faults caused 

by customers (rather than faulty Eskom equipment) that Eskom Distribution technical 

staff had to attend to. The origin of these faults is from customers who contact the 

Eskom contact centre to report an electricity supply problem (ESP). The Eskom 

contact centre agent (i.e. data creator) would verify the validity of the request, 

categorise the fault as an ESP and transactional data is captured in the contact 

centre system (i.e. source system) to invoke a process to fix the ESP. The process 

involves the creation of a workorder (based on the transaction data captured) in a 

downstream system, which triggers a technician (i.e. the data consumer) to execute 

the workorder by responding to the call. Such a response happens when the 

technician travels to the customer to fix the ESP. The financial cost of such 

workorders is solely carried by Eskom. Unfortunately, mistakes or misinformation 

causes incorrect categorisation of these calls and results in unwarranted cost 

implications on Eskom Distribution when manpower and transport are dispatched to 

fix a problem that is not the companies' responsibility. Fortunately, a feedback 

mechanism exists for Eskom Distribution technical staff as data consumers to 

indicate a problem they experience with a transaction, by marking such a transaction 

as a customer side fault.  

 

Figure 1.1: ESP capturing, execution and transaction data quality measurement areas 
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The problem, therefore, is the lack of knowledge on the exact impact of transactional 

data quality embodied in customer calls on the financial position (especially 

monetary savings) of Eskom Distribution. This stems from the fact that a detailed 

quantification of operational costs arising from problematic transactional data from 

customer calls has not yet been conducted. 

 

1.4 Research aim 

The aim of the study is to contribute to organisational efficiency, and resource and 

data management literature, through a broad understanding of how transactional 

data quality contributes to financial cost saving in a cash squeezed public electricity 

utility (Alrayes, 2015; Batini & Scannapieco, 2016). Based on the researcher’s 

knowledge, no empirical research has been conducted in South Africa on the effects 

of improvements in transactional data quality on monetary savings. 

 

1.4.1 Research objectives 

The following objectives were formulated to fulfil the aim of the study: 

The main research objective is to determine the influence of transactional data 

quality of customer calls on the monetary savings of Eskom Distribution Free State 

(see detailed conceptual framework in Figure 1.2 ).  

 

The secondary objectives of this study are to:  

1. Establish the quality of customer call transactional data captured at Eskom 

Contact Centres [V] from source system data quality measurements.  

2. Determine customer call transactional data quality based on technical field staff’s 

feedback [X] on transactions.  

3. Identify the costs related to ESP transactions at Eskom Distribution Free State 

[Y]. 

4. Determine the impact transactional data quality at the source system (Contact 

Centre) has on feedback produced by technical field staff for transactions 

executed based on source system data (that is [V] → [X]). 
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5. Analyse how transactional data quality from the source system (that is [V]) and 

feedback received from technical field staff (that is [X]), impact transaction costs 

(that is [Y]).  

6. Establish the influence of the calculated costs [Y] on the monetary savings [Z]. 

 

1.4.2 Research questions 

1.4.2.1 Main question 

1. What is the influence of transactional data quality of customer calls (measured 

from source system and field technicians’ feedback on transactions executed 

based on source system data ) on monetary cost savings of Eskom Distribution 

Free State (that is [V] → [Z] and [X] → [Z]) 

 

1.4.2.2 Sub questions 

1.1. What is the quality of transactional data captured from customer calls at 

Eskom Contact Centres based on source system measurement?  

1.2. How many downstream system transactions have field technicians’ feedback 

which indicates incorrect transactional data? 

1.3. What are the costs, which impact on ESP transactions at Eskom Distribution 

Free State? 

1.4. How does data quality measured at the source system influence feedback on 

transactions by field technicians (that is [V] →[X])? 

1.5. How do data quality measured at the source system and feedback received 

from field technicians affect costs on transactions (that is [V] → [Y] and [X] → 

[Y])? 

1.6. Overall, how do the calculated costs impact on monetary cost savings (that is 

[Y] → [Z])? 
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1.5 Research methodology 

A positivist paradigm was adopted for the execution of this research and as a result, 

a survey was considered as the appropriate research design. Even though the study 

examines a specific case involving one organisation in order to gain broad 

knowledge, the actual research approach and process of data collection process 

was based on a survey design. The survey was designed based on Eskom 

Distribution Free State, which is one of nine operating units in Eskom Distribution 

that all have similar standardised operating procedures. A quantitative approach was 

used to determine: 

 Transactional data quality measured at the source.  

 Transactional data quality from the receiver’s (field technicians) perspective. 

 Costs of labour hours and the kilometres travelled. 

 

Data for this study was collected from two sources. The first source, a historical 

dataset of all ESP transactions, was extracted by means of sequential query 

language (SQL) from 1 April 2012 to 31 March 2017. Data for the second source 

was gathered by means of a questionnaire which was administered during 2017 to 

the entire population of 303 technical staff members operating at the Eskom 

Distribution Free state. Both datasets were coded and captured into Microsoft Excel 

and exported to the Statistical Package for Social Sciences (SPSS) for detailed 

analysis. Both descriptive and inferential statistics were used to analyse the data. 

The specific descriptive statistical tools employed were mean, standard deviation 

and cross tabulation/contingency table analysis, whilst the inferential tools focussed 

on correlation and regression analysis. 

 

 The validity and reliability of data had to be ensured to maintain the credibility of the 

research. Face validity was ensured by carrying out a careful scrutinisation of the 

questionnaire items to ensure their correct wording for the target audience, and that 

each question was related to the objectives of this study. Content validity was 

ensured by making an in depth literature review the basis for the design of the 

questionnaire. It was also ensured by requesting the supervisor and the statistician 
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to scrutinise the questionnaire to establish if the breadth of the concepts had been 

covered sufficiently. 

 

Historical data validity was ensured by adhering to business rules during data 

extraction and excluding incomplete records that could not be normalised and thus 

prevent the generation of skewed results. The reliability of the secondary data was 

ensured through the performance of multiple extractions for the same time period. 

Record counts and completeness were checked and compared to ensure that a 

reliable dataset had been extracted. Finally, the reliability of the questionnaire was 

confirmed by adhering to external and internal consistency procedures such as: 

 A representative population. 

 Standardised testing conditions. 

 Consistent scoring. 

 Low test difficulty. 

 Calculated Cronbach’s alpha with a generally acceptable but moderate overall 

internal consistency of 0.638. 

 

1.6 Research ethics 

Clearance was received to access and analyse data from the Eskom’s Talent and 

Skills Management department. Survey participants were informed of the project 

goals, and that participation was voluntary and their anonymity guaranteed. The 

sensitive environment in which Eskom operates in compelled the researcher to 

aggregate historical results on financial information, technicians and customers, just 

as the anonymity of customers as well as technician information was assured. 

Finally, Data was stored on the Eskom network to ensure that it was safe and yet 

accessible to the researcher and statistician. 

 

1.7 Significance of the study 

This research contributes to an increased knowledge of how transaction data quality 

can yield an effective resource utilisation and monetary savings in the South African 

electrical Eskom Holdings SOC Ltd. It highlights the importance of quantifying the 

quality of transaction data from the data creator and the data consumer’s perspective 

in order to generate a balanced view of data quality. A feedback mechanism is 
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identified as a critical element in determining data quality from data consumers’ 

perspective. 

 

Insights gained from this study can assist Eskom Holdings SOC Ltd management to 

identify untapped areas of transaction datasets which offer potential for monetary 

savings. For business in general, it highlights the importance of not only focussing on 

master data quality to sustain or increase profits, but the need to also scrutinise 

transaction data quality in order to ensure that resource wastage does not occur 

during transaction execution. In addition, the provision of a feedback mechanism for 

data consumers and the closure of the feedback loop to data creators can assist in 

identifying transaction data issues, determine their costs and increase the ability to 

prevent future occurrences of data quality challenges. 

 

1.8 Proposed conceptual framework 

According to Cargan (2007:29), a conceptual framework "provides a clear concept of 

the areas in which meaningful relationships are likely to exist" and "works in 

conjunction with [the researcher’s] goals to justify the study". Therefore, the 

subsequent description and the illustration in Figure 1.2 present three conditions and 

the five relationships, which constitute the gist of this study: 

 Condition 1: Quality of transactional data is assessed by scrutinising quality 

measures at the source system [V] from a data creator’s (contact centre) 

perspective. 

 Condition 2: Quantifying feedback [X] will provide a perspective on 

transactional data quality but from a data consumer (field technician) 

perspective. 

 Condition 3: Costs[Y] will be determined by analysing the amount of 

kilometres travelled and work hours consumed that cause costs to be incurred 

during transactions. 
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 Relationship 1 – [V] → [X]: The one directional relationship between quality of 

transactional data of the source system [V] and quality of transactional data 

from feedback [X] will provide valuable insight into how [V] impacts [X].  

 Relationship 2 – [X] → [Y]: A one directional relationship between quality of 

transactional data from feedback [X] and costs[Y] incurred will determine how 

many transactions had feedback on customer faults and what the costs of 

these transactions are. 

 Relationship 3 – [V] → [Y]: Quality of transactional data of the source system 

[V] one directional relationship with costs [Y] will uncover how monetary cost 

calculation by means of identified costs is impacted by transactional data 

quality measurements at the source. 

 Relationship 4 – [Y] → [Z]: Costs [Y] will have a one directional relationship to 

monetary savings [Z] as the calculated monetary costs from identified costs 

will determine the amount of monetary savings. 

 Relationship 5 – [V] → [Z]: The one directional relationship between the 

quality of transactional data from the source system [V] and monetary savings 

[Z] will be investigated to determine the impact transactional data quality [V] 

has on monetary savings [Z]. 

 Relationship 6 – [X] → [Z]: The one directional relationship between quality of 

transactional data from the Feedback [X] and monetary savings [Z] will be 

investigated to determine the effect feedback on monetary savings [Z]. 
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Figure 1.2: Conceptual framework: The relationship between transactional data quality and 
monetary savings 

 

1.9 Outline of the dissertation 

This dissertation comprises six chapters and explores the influence of transactional 

data quality on the monetary savings of Eskom Distribution Free State. Below is a 

short description of each chapter: 

Chapter 1 outlines an orientation to the study. It explains the background, problem 

statement and research aim, as well as outline of the research methodology and 

limitations of the study. 

Chapter 2 reviews the literature on transactional data quality, feedback, costs, 

monetary savings and their application in Eskom. 

Chapter 3 outlines the methodology employed to undertake this research. 

Chapter 4 presents the research findings based on the data analysis conducted. 

Chapter 5 discusses and interprets the research findings. 

Chapter 6 offers the conclusion and recommendations from this study. 

 

1.10 Chapter summary 

This orientation of the study commenced with an introduction, followed by a research 

background and an unpacking of the problem. The chapter also outlined the 

research aim, formulation of objectives and questions, conceptual framework, the 

methodology and the study limitations. The next chapter reviews the literature on the 

four variables highlighted in the conceptual framework. 
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2 CHAPTER 2: CONCEPTUALISATION AND 

OPERATIONALISATION OF TRANSACTIONAL DATA QUALITY 

AND COST SAVINGS 
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2.1 Introduction  

The previous chapter rendered the motivation for conducting this study and outlined 

the main variables the study is anchored in. The constitution and the relationships of 

these concepts are illustrated in Figure 1.2, the conceptual framework. This chapter 

reviews current literature focusing on the four variables highlighted in the conceptual 

framework namely, transactional data quality (predictive variable), feedback 

(predictive variable), costs (mediating variable) and monetary savings (outcome 

variable), which form the foundation for this study. 

 

2.2 Transactional data quality 

Transactional data quality is a composite concept that integrates transaction and 

data quality. A full comprehension of this term can be achieved through referring to 

data and data quality, concepts that require definition. As such, the term data is 

foundational to unpacking the construct, transaction data quality.  

 

2.2.1 Defining data and data categories  

Data is defined as input into a computer programme/computer-based application, of 

unprocessed items such as text, images, numbers, video and audio, whereas 

information is processed/organised data (i.e. output) that has a coherent meaning in 

a specific context. Although data and information are often problematically used 

interchangeably in existing literature (Epstein, 2012; Vermaat, 2014), the 

aforementioned systems theory-based distinction implies that these terms are not 

synonymous. Data is referred to as an important but unique business asset that can 

be replicated and shared easily and cheaply (Redman, 2013b; McCafferty, 2016). 

 

Data can be categorised into master, transactional, reference, historical, temporary 

and metadata. Master data refers to vital business information about products, 

suppliers and customers, which normally has a low change frequency. Transactional 

data, the gist of this study, is that data, which is captured during an interaction that is 

combined with master and/or reference data to form a transaction at a specific time. 

Transactional data changes frequently and is hence, highly varied. Reference data 

serves to define a business entity such as a customer, product or supplier and does 

not change frequently. Historical data is data that relates to previous transactions, 
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which includes master, reference and transactional data and is retained for 

compliance purposes (Loshen, 2010; Borek et al., 2014). 

 

2.2.2 Definition of data quality and transactional data quality 

A generic definition related to overall data quality (DQ) and information quality (IQ) 

will be employed as it applies to all data types, including transactional data quality. 

Although there is no precise universally acceptable definition of data quality, Fürber 

(2015:21) states that DQ is defined as "the degree to which data fulfils requirements" 

set by "(1) individuals or groups of individuals, (2) standards, (3) laws and other 

regulatory requirements, (4) by business policies, or (5) even by expectations of data 

processing applications". As such, the fulfilment of institutional and global 

specifications and conformity to set standards is integral to the quality of data. 

Similarly, Redman (2013a:18) renders a comprehensive informative definition of DQ 

as "exactly the right data and information in exactly the right place at the right time in 

the right format to complete an operation, serve a customer, make decisions or set 

and execute strategy". 

 

While Redman’s definition seems to conflate information and data, it is conceptually 

rich to the extent it demonstrates that location, time, service delivered and data form 

are collectively fundamental to the determination of the acceptability of data quality. 

Data quality is also articulated via determined levels of data. Here, DQ is normally 

rated on 2 levels, where level 1 refers to high quality/good data and level 2 to low 

quality/bad/dirty data (Moskwa, 2015). An application of both definitions to 

transactional data quality means that data quality will be high when it meets the 

expectations of its stakeholders and fulfils certain expected requirements. 

Furthermore, data quality will be defined as low if it fails to conform to certain 

expectations and requirements. 

 

2.2.3 Perspectives on transactional data quality  

 A thorough comprehension of data quality dimensions is necessary in order to 

achieve a solid grasp of transactional data quality. The quality dimensions form a 

critical component within data quality frameworks. In addition, the frameworks and 

the root causes of poor transactional data as well as data quality improvement 
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methodologies provide valuable insights into how data quality issues can be 

identified and corrected to mitigate its debilitating effects on business operations and 

performance. The subsequent sections of this study explore each facet in greater 

detail. 

 

2.2.3.1 Dimensions of Data quality 

Data quality dimensions are attributes, criteria and facets of quality that allow a 

business to specify, measure and quantify the quality of its data. Numerous data 

dimensions exist and these lend themselves to measure a specific aspect of data 

quality. Some of the popular dimensions related to data values and presentation are 

depicted in Table 2.1. A certain amount of resources and effort is required to 

facilitate the appropriate measurement of each dimension. As a result, it is important 

to understand each dimension sufficiently in order to ensure that it is measurable, 

applicable to the data being measured, and worth the expenditure of resources 

required to bring about the assessment (Wang & Strong, 1996; McGilvray, 2008; Cai 

& Zhu, 2015). 

Table 2.1: Popular data quality dimensions 
Dimension Description Measurement example 

Uniqueness Only one instance of a data entity exists, thereby 
preventing duplication. 

Duplicate analysis testing. 

Accuracy How accurate does data represent the object it models. Comparison to an existing 
source of correct information. 

Consistency Different contexts for consistency exist. For example, data 
in two or more data sets must be consistent with one 
another or data formatting must be the same for all 
records in the database. 

Assessment on: Items across 
multiple datasets or on 
formatting within the same 
dataset or database. 

Completeness Mandatory data items should not have blank/null values. Measure the amount of 
blank/null values for mandatory 
items in a dataset. 

Timeliness Data must be available within a specified period. Time difference between when 
data is expected vs when it is 
available must be considered. 

Validity Data must conform to its defined formatting, specified in 
terms of its format, type and range. 

Conformance to the specified 
formatting. 

Source: (Loshen, 2010; DAMA UK Working Group, 2013; Rantala, 2016). 

 

Whenever a business employs these dimensions to measure data quality, it should 

devote its attention to the following aspects: 

 Identification of high value data, especially the ones that support business 

processes and decisions. 

 Agree on the quality assessment rules, based on: 
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o Organisational requirements for the identified data. 

o The most appropriate dimensions and the weight each dimension will 

carry towards measuring the total quality of identified data. 

o Value or range per dimension signifying high or low quality data. 

o Impact of non-compliance with the assessment rules (McGilvray, 2008; 

Loshen, 2010; DAMA UK Working Group, 2013). 

 

The identification of the appropriate data and quality assessment rules is followed by 

the development of measurement instruments based on the dimensions seeking to 

facilitate quality measurements. An application of the measurement instruments and 

subsequent analysis of their results will reveal if data complies with the assessment 

rule’s values/ranges. Any data with quality that is inadequate can be addressed by 

either applying short-term fixes such as data cleaning or finding a permanent 

solution by tackling the root cause of the poor data quality (McGilvray, 2008; Loshen, 

2010; DAMA UK Working Group, 2013). 

 

2.2.3.2 Eskom Dimensions of data quality 

Eskom subscribes to specific principles whenever it deals with data and information. 

These are: “Principles relating to the quality of data or information requiring 

data/information to be: C – complete; A – accurate; R – relevant; A – accessible; and 

T – Timely”, which are known as the CARAT principles)(Eskom Holdings SOC Ltd, 

2015a:6,7). The CARAT principles are actually data quality dimensions and three of 

these are mentioned in Table 2.1 that depicts some of the popular dimensions. An 

example of how Eskom applies these principles is found in Table 2.2 that is an 

extract from its record keeping and management bulletin. 

 

Table 2.2: Eskom applying CARAT principle 

C Completed records. 

A Accurate reporting. 

R Relevant and reliable records for all our activities in order to expedite decision-

making. 

A Availability and easy access to records is critical. 

T Timely completion of associated documentation is critical in preventing unnecessary 

delays. 

Source: (Eskom Holdings SOC Ltd, 2016:6,7) 
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2.2.3.3 Transactional data quality frameworks 

Some popular frameworks for determining data quality are: 

1) Wang and Strong’s (1996) framework of data quality that was developed to aid 

Information Security professionals in comprehending and meeting data quality 

requirements from the viewpoint of data consumers. The framework is 

expressed in a two level hierarchy consisting of four main categories where 

each category possesses its relevant data quality dimensions. The four 

categories and their individual dimensions are: 

a) Intrinsic data quality- Believability, accuracy, objectivity and reputation. 

b) Contextual data quality- Value addition, relevance, timeliness, completeness 

and appropriate amount of data. 

c) Representational data quality- Interpretability, ease of understanding, 

representational consistency and concise representation. 

d) Accessibility data quality- Accessibility and access security. 

 

2) The modified Information Quality Model developed by Bovee, Srivastava and 

Mak (2003), which seeks to improve on earlier data quality models by 

addressing obscurities contained within certain categories, redefining the 

categories, adding a user specified dimension and moving dimensions to their 

appropriate categories. The model is presented as a three-tier hierarchy, 

consisting of four main attributes with their relevant elements. Two of the four 

attributes’ elements are expanded by means of sub elements on the third level 

of the hierarchy. The attributes are: 

a) Accessibility- Time and cost. No third level. 

b) Interpretability- Intelligibility and meaningfulness. No third level. 

c) Relevance  

i) User specified- As many sub-elements as required by the user of the 

model can be used. 

ii) Timeliness- Currency and volatility. 

d) Credibility 

i) Accuracy- Known, assigned and measured. 

ii) Completeness- No third level. 

iii) Consistency- Discrete and continuous. 
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iv) Non-Fictitiousness- Records, attributes and values. 

 

3) The Big Data Quality Framework formulated by Cai and Zhu (2015) aspires to 

address the data quality issues inherent in huge amounts of data mined by 

businesses on a daily basis. The model proposes, in a way similar to the 

previous framework, a three level hierarchal framework that contains five 

dimensions, each with its sub level of elements. The third level contains 

indicators that are definitions for each element. Further offered, is an 

assessment process and its feedback mechanisms, which facilitate practical 

framework implementation. The first two levels of the hierarchy are presented 

below. 

a) Availability: Accessibility and timeliness. 

b) Usability: Credibility. 

c) Reliability: Accuracy, consistency, integrity and completeness. 

d) Relevance: Fitness. 

e) Presentation quality: Readability. 

 

A common thread within Eskom’s CARAT principles and the mentioned frameworks 

is that they strive to provide a list of data quality dimensions to use within specified 

boundaries, which render a data practitioner the ability to define the complete quality 

of data under evaluation. 

 

2.2.3.4 Root causes of poor data quality 

Data has a life cycle, which suggests that the root causes of poor data quality can 

affect data during various stages of its life cycle. A typical life cycle of data can 

consist of the following stages: Collection, pre-processing, processing, post-

processing, sharing, storage and archival, and data destruction (Arora, 2016). The 

life cycle, which can possess various formats depending on the type of organisation, 

adds significant complexity to the definition and comprehension of the causes of 

poor data quality. Fortunately, research on the root causes of poor data quality 

continues to develop and progress. Table 2.3 presents some of the common root 

causes of poor quality data. 

  

© Central University of Technology, Free State



20 
  

 
 

Table 2.3: Root cause of poor quality data 

Root cause Description 

Access quality Large data volumes can make on-time access difficult. 

Aging quality Too old information cannot be trusted. 

Entry quality 
Data not entering the system correctly at origin can be 
problematic. 

Identification quality When similar objects are identified differently. 

Integration quality 
All information not integrated correctly to provide an 
accurate representation of an object can be a challenge.  

Interpretation quality 
Subjectivity of data creator during data production can lead 
to incorrectly captured data values. 

Organisational quality 
When data cannot be reconciled between different systems 
within the organisations. 

Post creation testing 
quality 

Inadequate quality testing of data after its creation. 

Process quality Failure to maintain data integrity during system processing. 

Source quality 
When multiple sources exist with different versions of the 
same data. 

Training quality 
Poor training of data creators on data entry processes and 
procedures. 

Usage quality Information used and interpreted incorrectly by users. 

Source: (McKnight, 2009; Singh & Singh, 2010; Loshen, 2011; Wang et al., 2015) 

 

A business can shift its focus, after identifying the root causes of data quality 

problems, to improve or eliminate the causes or to minimise their impact. 

Nonetheless, the above examination of the general causes of data quality problems 

critically leads to the focusing on poor transactional data quality, which is the focus of 

this study. 

 

2.2.3.5 Root cause of poor customer transactional data quality within Eskom 

The customer transactional data considered in this study is related to calls made by 

customers to the Eskom Contact Centre while reporting loss of electricity supply. A 

customer’s call to report an electricity supply problem (ESP) is followed by the 

Eskom contact centre agent’s posing certain questions to the customer from a 

predefined call script (also called case based reasoning) in order to determine the 

cause of the problem. The agent’s interpretation of the customer’s feedback as an 

indication that the loss of electricity supply originates from Eskom’s equipment, 

results in the generation of a dispatch request to a technical person tasked with 
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resolving the issue. The dispatch request results in an automatic creation of a work 

order. The work order consists of master data that includes the customer’s 

information, the related equipment and the geographical location of the customer as 

well as transactional data such as the fault symptom and additional directions to the 

fault. 

 

The receivers of the work order will perform quality assurance (QA) on it, in order to 

determine its validity and whether it would be containing the minimum amount of 

information needed to execute the work. Unfortunately, the QA process does not 

verify whether the agent interrogated or interpreted the customer’s feedback 

correctly. This lack of agent interrogation verification gives rise to occasional 

scenarios where technical resources (.e.g. technical personnel, transport, and time 

invested) are devoted to sites where the ESP would not have been a consequence 

of the malfunctioning of Eskom’s equipment but customer’s erroneous configuration 

or equipment failure. These scenarios involving the generation of poor quality 

transactional data could be the result of the contact centre agent’s failure to follow 

the call script correctly, failure to interpret the customer’s feedback correctly or 

emanate from the customer’s provision of false or inadequate information. Table 2.3 

indicates that the agents generate poor DQ,s often due to training quality or 

interpretation quality. However, the false information supplied by the customer is not 

related to data quality as there is no way to verify the truth of the customer’s 

feedback before a technician and resources are dispatched to the site. 

 

2.2.4 Data quality improvement methodologies/strategies 

The measurement and improvement of DQ can be a very daunting task. Redman 

(2013a:16,24) rightly suggests that the best place to manage and consequently 

improve data quality is "at the points of data creation" and that the best practice for 

producing accurate results is "getting it [data capturing] right the first time.” A 

business has to follow a logical and methodical approach in order to improve its DQ 

and achieve accurate data capturing. Based on his vast industry experience, Loshen 

(2011) introduced a logical approach to improving DQ that emphasises the 

importance of building a business case that highlights the current state of DQ, the 

value a business derives from different data sources, the benefits the business will 
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realise from improving its DQ and the cost of improving DQ. He proposes the 

following steps for the implementation of his approach: 

1. Identification of and distinguishing DQ with high impact from that with a low 

impact on the business. 

2. Determination of the root cause of the DQ defects. 

3. Correction of faulty processes. 

4. Correlation of business value with source data quality, thereby establishing 

the value that a business derives from a specific data source. 

5. Institution of the best practices to address flawed data production. 

 

Batini and Scannapieco (2016) compared and analysed thirteen data quality 

methodologies created between 1998 and 2006. They created a new methodology 

based on the study results called the Complete Data Quality Methodology (CDQM), 

whose steps are listed in Table 2.4. Even though CDQM does not specifically 

mention the building of a business case, which Loshin (2011) emphasises, the focus 

from steps 6 to 10 highlights the importance of reducing overall costs when 

implementing techniques for improving data quality. The determination of 

improvement costs in relation to benefits realised can assist in the building of a 

business case in order to get the necessary approval and financial backing for the 

implementation of a data quality improvement programme. 
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Table 2.4: Complete Data Quality Methodology (CDQM) steps 

Phase Step 

1. State 
reconstruction 

1. Reconstruct the state and meaning of most relevant databases and 
data flows exchanged between organisations. Thereafter, build the 
database and dataflow/organisation matrices. 

2. Reconstruct most relevant business processes performed by 
organisations and build the processes /organisation matrices. 

3. Reconstruct the norms and organisational rules for each process or 
group of processes related to a macro process that regulate the 
macro process and the service provided. 

 

2. Assessment 

4. Check problems with users: Identify the most prevalent causes of 
poor DQ and the effect they have on data consumers. 

5. Identify relevant DQ dimensions and metrics, measure quality of 
databases and data flows, and identify their critical areas. 

3. 
Improvement 

6. Fix the new DQ levels for each database and data flow, to improve 
process quality and reduce costs under a required threshold. 

7. Conceive process re-engineering activities and choose DQ activities 
that may lead to DQ improvement targets set in step 6 that relate to 
data/activity matrix to clusters of databases and data flows involved 
in DQ improvement targets. 

8. Choose optimal techniques for the DQ activities. 
9. Find improvement processes in the data /activity matrix. 
10. Compute approximate costs and benefits for each improvement 

process defined in the previous step and choose the optimal one, 
checking that the overall cost-benefit balance meets the targets of 
step 6. 

Source: (Batini & Scannapieco, 2016:353-386) 
 

2.2.5 Global state of data quality 

Röthlin (2004) studied the perceptions on data quality (DQ) of information systems 

managers from 500 large Swiss companies using a questionnaire with a scale of -3 

(very bad) to 3 (excellent). He found out that master data from human resources was 

perceived to be of the highest quality compared to other forms of data whilst 

transactional data was of the lowest quality. A modification of his scale to 

percentages, reflected in Table 2.5, reveals that the quality of master data ranged 

from 74.5% to 84.3% (with a mean of 78.3%) whilst the quality of transactional data 

was 72%. 

 

Similarly, Experian’s (2013) global data quality research examined the opinions of 

executives, management and administrative staff who were intimately involved with 

data management from a wide range of industry sectors across Europe and the 
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United States. The findings reveal that these companies perceived their customer 

and potential client data quality to be 78%, which is very close to the mean of 

Röthlin’s (2004) study. Another important observation from this study is that big 

leaps in data volumes tend to erode data quality as quality levels measured over a 

12 month period signalled a 5% drop. In addition, 1400 data practitioners within 

various industries spread across 8 countries around the globe were surveyed in 

Experian’s (2017) research. Here, customer and potential client data quality was 

perceived to be 73%, implying a further 5% drop in data quality from 2013 to 2017. 

Table 2.5: Perceptions on DQ 

Data Description Data type 

Perception 
scale: 
-3(very bad) to 
+3 (excellent) 

Convert to % 

HR Data Master data 2.06 84.3% 

Costing data Master data 1.69 78.2% 

Supplier data Master data 1.57 76.2% 

Customer data Master data 1.47 74.5% 

Transaction Data 
Transaction 
data 

1.32 72.0% 

Source: (Röthlin, 2004:256) 

 

2.2.6 Data quality in South Africa 

The section explores the quality of South African data before finally shifting the focus 

to Eskom’s. According to Neil Thorns, Informatica's territory manager for sub-

Saharan Africa, the state of South African customer data quality is a big concern that 

hampers the quality of companies’ decision-making (Burrows, 2014). Thorns 

believes that the majority of South African companies have low data quality with an 

average accuracy of 50% or less. This is significantly lower than the 73% global 

mark as indicated by Experian’s (2017) latest survey on master customer data. The 

main reason for the low quality of data is contributed to the lack of business rules 

and automation during data capturing especially in some government departments 

and small, micro and medium enterprises (SMMEs) due to constrained high-

technology adoption and resource limitations (Burrows, 2014; Dlova, 2017). This low 

data accuracy subsequently makes it difficult to make proper decisions based on the 

analysis of customer data. 
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Inversely, World Economics compiled a Data Quality Index on the Gross Domestic 

Product (GDP) of 154 countries and employed 5 indicators, which are: base year, 

system of national accounts, the informal economy, quality of statistics and 

corruption. South Africa was ranked 49th with an overall score of 77.1% (World 

Economics, 2017), which is close to the 73% global mark as indicated by Experian’s 

(2017) latest survey on customer data. Taking into consideration that GDP is an 

important financial indicator within South Africa, it is understandable that its data 

quality will be t higher than the customer data of an average company as more 

emphasis will be placed on correct data capturing at national level. 

 

Statistics South Africa performed another measure of the quality of master data for 

the Data Quality Report in its 2016 Community Survey. Data quality was measured 

based on the percentage imputation performed, which is the replacement of missing 

values on the captured data. Overall imputation rates measured at 5%. Furthermore, 

precision of estimated key variables was determined by means of confidence 

intervals, which measure the uncertainty associated with a sample statistic. A 95% 

confidence level that was recorded expressed that estimates lay within the 

calculated lower and upper limit intervals (Statistics South Africa, 2016). The low 

imputation rates and high confidence level can be associated with rigorous 

automation, data validation and feedback mechanisms built into the data capturing 

stage by means of electronic surveys and quality assurance performed post 

capturing. 

 

The above indicates that data quality in South Africa varies widely and is dependent 

on the industry, importance of the master data and the capturing methods employed. 

Electronic capturing and the automation of business rules, data validation, feedback 

to the capturer and quality assurance performed on data post capturing, seem to 

deliver data of highest quality. 

 

2.2.7 Transactional data within Eskom 

The transactional data under focus here is that of Eskom, a national public company 

mandated to generate, transmit, and distribute electricity to industrial, mining, 

commercial, agricultural, redistributors, and residential customers (Rambe & Modise, 
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2016). Eskom’s size and complexity yields a large volume of transactions and these 

give rise to daily occurrences of transactional data within the company. Some 

transactions of a financial nature, such as procurement transactions or overtime 

hours, undergo a rigorous QA process to ensure that the data generated from these 

transactions is captured correctly before the transaction is processed further. The 

purpose of QA is to prevent Eskom from incurring unwarranted costs arising from 

data capturing errors or an incorrect interpretation and application of business rules. 

However, the QA process is expensive, as it requires additional hours of labour to 

verify the data. As such, it is not feasible to subject all transactions to a rigorous QA 

process. However, Eskom relies, for the generation of correct transactional data on 

non-QA transactions, on its information processing systems, business rules applied 

to the captured data and the transactional data creator’s ability to capture the data 

correctly. A technical glitch in Eskom’s data capturing systems, non-adherence to 

business rules or technical misjudgement of data capturers may compromise the 

quality of the transactional data and lead to serious financial implications for the 

organisation. 

 

2.2.8 Master and transactional data quality within Eskom Distribution 

The section focuses on the quality of data at Eskom Distribution in general, which 

are equally applicable to Eskom Distribution Free State. Consistent with its 

distribution environment, which involves the distribution and sale of electricity to the 

end consumer, Eskom Distribution also supplies monthly feedback on the state of its 

high value master data records to various internal stakeholders (i.e. employees, 

supervisors and senior management). Such customer data has a high business 

value since clientele transactions form a core constituent of Eskom Distribution’s 

transaction data. The customer data is, however, followed in importance by plant 

data, which is data concerning Eskom Distribution’s equipment. 

 

The reality that selected portions of Eskom Distribution’s transactional data are used 

to calculate key performance indicators (KPIs) of the organisation, suggests that 

poor transactional and master data can compromise the business operations. Eskom 

Distribution’s staff in the QA department and Data Officers from various departments 

actively monitor transactional data portions used to calculate KPIs, because the KPIs 
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must adhere to national and institutional regulatory standards. An example of such a 

KPI is the System Average Interruption Duration Index (SAIDI) score, which is a 

measure used to determine the average duration of service interruptions of the 

system. A SAIDI score of 39 or lower must be met as determined by the NERSA 

(Eskom Holdings SOC Ltd, 2017a). The transactional data related to the SAIDI KPI 

undergoes a rigorous QA process to ensure that each interruption is measured 

correctly. Nonetheless, the large volumes of master and transactional data flowing 

through Eskom Distribution’s information systems on a daily basis, undermines the 

feasibility of testing all data sets for their quality. Consequently, only data perceived 

to have high economic, operational and financial value is tested and verified for its 

quality. 

 

2.2.9 Impact and cost of poor data quality 

One key question that begs for an answer is: Why is data quality such an important 

issue? It can be argued that data supports decision making within businesses. The 

use of poor quality data results in poor operational and strategic decisions that 

negatively influence productivity and increase operational costs. Poor quality data 

also affects customer satisfaction and perceptions about the business, which results 

in loss of revenue. The increase in operational costs stems from the rework arising 

from the misuse of resources, such as people, time and equipment, and the costs 

incurred while making corrections to reported errors (Samitsch, 2014; Fürber, 2015). 

 

The Eppler Helfert classification (Batini & Scannapieco, 2016), categorises the 

monetary costs caused by poor data quality as either direct or indirect. Direct costs 

have an immediate measurable impact such as costs related to the re-entry of data, 

verification and compensation. In addition, indirect costs have a delayed impact such 

as, lower reputation, wrong decisions and sunk investments. Other costs involved in 

ensuring and/or improving data quality include prevention, detection and repair 

costs. Prevention costs focus on the creation phase of data and involve the training 

of data capturing staff, monitoring of compliance to institutional standards and the 

development and deployment of standards. Finally, detection costs encompass 

activities such as analysing data after its creation and reporting on findings, whereas 
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repair costs cover planning for data repairs as well as the implementation of repair 

plans. 

 

Findings from the 2015 Global Data Quality Research indicate that 92% of the 

companies surveyed experienced challenges in generating data of high quality 

mainly due to the role played by tangible and intangible objects (Experian data 

quality, 2015). In fact, research (Eckerson, 2002; Samitsch, 2014) shows that US 

businesses lose over $600 billion per year due to poor DQ. Therefore, improving 

data to a higher quality can result in good decision making and lower operational 

costs through increased operational efficiency, increased organisational performance 

and high revenue (Samitsch, 2014; Zhang, 2014). Batini and Scannapieco’s (2016) 

data quality improvement benefits classification in Table 2.6 proposes three 

categories where benefits can be realised when improving data quality and these are 

monetisable, quantifiable and intangible. 

 

Table 2.6: Data quality improvement benefits categories 

Category Description Example 

Monetisable 
 

Values can be expressed in 
monetary terms. Increased revenue. 

Quantifiable 

Cannot be expressed in 
monetary terms, but in other 
numeric terms. 

Hours saved to perform 
more productive work. 

Intangible 
Cannot be expressed in any 
numeric term. Improved reputation. 

Source: (Batini & Scannapieco, 2016:324) 

 

A further discovery from the Global Data Quality Research focusing on the 

monetisable benefit of improved data quality notes that organisational profits could 

increase by as much as 15% if data of the highest quality is generated (Experian 

data quality, 2015). It is important, when attempting to increase data quality, to 

identify data with high value within the context of decision making or business 

processes (DAMA UK Working Group, 2013). A cost-benefit analysis is also required 

in order to ensure that the envisaged savings will offset the costs involved to improve 

the data quality (Haug, Zachariassen & Van Liempd, 2011; Batini & Scannapieco, 

2016). Redman (2013a) proposes that, in the context of causal costs stemming from 

poor data quality, only operational costs can be estimated or determined with a high 
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level of accuracy. Thus, despite the fact that factors like disgruntled customers, poor 

decision-making, and inability to manage risks can drive operational costs higher 

than those calculated or anticipated, there are currently no reliable methods to 

determine the costs of such factors. 

 

The impact and cost of poor data quality present a valuable opportunity for Eskom to 

scrutinise its operations for saving opportunities. Much needed monetary savings 

and the consequent increased profits can be unlocked if high value data with low 

quality can be identified and improved. However, the costs incurred by Eskom for 

improving data quality should be less than calculated operational cost savings, 

otherwise the benefit of improved data quality will not be realised. 

 

2.2.10 Impact of poor transactional data quality on Eskom Distribution 

Eskom Distribution technicians are only responsible for reconnecting a customer’s 

power supply if the interruption was caused by a fault on Eskom’s electrical network. 

As mentioned in 1.3, incorrectly categorised customer calls by Eskom’s contact 

centre triggers unnecessary dispatching of technicians to faulty customer equipment 

and not faults related to Eskom’s electrical network. This incorrect categorisation is a 

direct result of poor quality of the transactional data captured from customer calls to 

Eskom’s contact centre. 

 

Poor quality transactional data on customer calls within Eskom Distribution, as the 

example above, impacts on the business negatively in various ways. These ways 

include: 

 Reduced customer satisfaction as customers requiring genuine and reliable 

service from a technician have longer waiting times. 

 Decreased ability to meet regulatory compliance (NERSA, 2002). 

 Staff morale is impacted negatively as technicians drive to resolve invalid 

faults. 

 Cost implications as each request for service results in the spending of 

resources like the paid hours that technicians’ spent attending to invalid faults 

and vehicle kilometres driven to address these matters. 

 Lost opportunity cost as planned maintenance could have been performed. 
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2.3 Feedback 

Feedback is a very helpful tool that can be utilised to the benefit of an organisation if 

used correctly. Therefore, understanding what feedback is and the value that is 

derived from it is explored in the subsequent section. 

 

2.3.1 Defining feedback 

Feedback is "Information about reactions to a product, a person's performance of a 

task which is used as a basis for improvement" and "the modification or control of a 

process or system by its results or effects" (Stevenson, 2010:640). Feedback is a 

very important mechanism that exists within both the natural and engineered world 

and can be utilised to improve performance, correct errors and achieve a desired 

result. A practical example of feedback is evident within a biological system, such as 

a human being, where the action of placing a hand on a hot object will result in 

feedback via the pain sensors that inform the brain that the hand is burning, resulting 

in an action that lifts the hand from the hot object. Feedback control is used within 

the context of science and engineering to correct or normalise a system's output 

when the measured feedback indicates a deviation from an expected output 

(Abramovici & Chapsky, 2000). Feedback within Eskom is generated from multiple 

sources such as staff observations, customer comments, results from monitoring 

equipment and analysis algorithms applied to certain datasets. This feedback offers 

potential benefits if it is applied to improve the business facets it is linked to. 

 

2.3.2 Perspectives on feedback 

2.3.2.1 Feedback loop 

The utilisation of feedback to improve performance via feedback control is achieved 

by means of feedback loops. The mere presence of feedback does not necessarily 

provide any benefit to a system. Instead, the processing of the feedback and 

reaction towards it, can be used to adjust a system to respond appropriately to future 

needs. Lidwell, Holden and Butler (2010:92,93) define a feedback loop as “a 

relationship between variables in a system where the consequences of an event 

feeds back into the system as input, modifying the event in the future”. Feedback 

loops are categorised into two systems and these are; closed loop and open loop. 
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Closed loop systems are interconnected in a cycle whereas the cycle is absent in an 

open loop system. An example of a closed loop system related to data quality is 

where users of data provide feedback to data creators as soon as a problem with the 

data is detected. Data creators will then use the feedback to identify the cause of a 

data issue and correct the issue to prevent future reoccurrence (Biehl, 2016). In 

addition, an open loop system is cheaper, simpler and more stable than a closed 

loop as it operates on set parameters during the input stage and therefore, the 

output will not have any effect on the input stage. Unfortunately, an open loop does 

not take advantage of any benefits that feedback may provide. Nevertheless, one of 

the main advantages of a closed loop system over an open loop is its ability to 

provide improved quality of control as open loop systems are often inaccurate due to 

a lack of error correcting ability. The single loop is the simplest form of a closed loop 

system, having only a single feedback channel, whereas multi loop systems are 

more complex and have two or more feedback channels (Chesmond, 2014). 

 

2.3.3 Application of feedback in organisations 

As stated earlier, feedback in itself does not necessarily bring about change in a 

system, but rather change is facilitated by means of feedback loops. The use of 

feedback via feedback loops within the data environment can create data, improve 

data quality, advance data processes and increase value generated from data 

(Alexopoulos, Loukis & Charalabidis, 2014). Human feedback is an important 

requirement when seeking to improve DQ by means of feedback loops. Human 

feedback can influence direct, indirect data or automatic DQ improvements which 

are described in more detail below (Wang et al., 2015; Brodie & Palmer, 2016). 

 Direct DQ improvements can occur if a human being identifies errors on a 

dataset. The identified error (feedback) can be used to correct the data 

immediately if the system or business rules allow it. The loop is thus closed 

when data is corrected due to an identified error (feedback). 

 Indirect DQ corrections can occur when a human identifies an error, but is 

prevented from performing a data correction due to system or business rules. 

Consequently, the feedback will be passed to another user with sufficient 

system and business privileges to address the problem. 
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 Automatic DQ improvement can occur if human feedback informs computer 

system algorithms responsible for correcting data/preventing data mistakes 

(Wang et al., 2015; Brodie & Palmer, 2016). 

 

2.3.4 Feedback on transactional data quality within Eskom Distribution 

Eskom Distribution has created a feedback channel for its technicians who deal with 

transactional data on customer faults related to an ESP. When a technician arrives 

on site and realises that the fault is on the customer’s side and not caused by 

Eskom’s electrical network or equipment, the option is available to mark the 

transaction as a customer side fault. This feedback will then be stored against the 

specific transaction and can be extracted later for further investigation. Some 

investigations are done sporadically but due to current system design restrictions, 

the feedback is not automatically looped back to the data originators for action, 

correction and improvement. Consequently, the value from a feedback loop is not 

optimally realised. 

 

2.4 Costs 

An understanding of the costs that are applicable to business processes can prove 

invaluable for any business that would be trying to optimise its operations and 

increase profits. The types of costs, their importance and calculation will be 

discussed in the following section. 

 

2.4.1 Defining costs 

It is important to have knowledge of the cost of a product or service in order to 

assess its impact on a business. Law (2016:156) defines costs as “An expenditure, 

usually of money, incurred in achieving a goal such as producing certain goods, 

building a factory or closing down a branch.” (Law, 2016:156). From an electrical 

utility perspective, Willies and Schrieber (2016:162) regard cost as “the total sacrifice 

that must be expended or traded in order to gain some desired product or end result. 

It can include money, labour, materials, resources, real estate effort, lost opportunity, 

and anything else that is given up to gain the desired end.” To measure costs from a 

common perspective, all the aspects mentioned are converted usually to money. 
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Some costs cannot be converted into money, which calls for complex evaluation 

methods in order to assess their impact on the business. 

 

2.4.2 Types of costs 

Various types of costs can exist within a business and usually a classification system 

is applied to categorise costs. Costs on a product/service are classified normally as 

direct or indirect. Direct costs, on the one hand, are tracked straightforwardly to the 

product/service. These direct costs, which include material and labour consumed 

during the manufacturing of a product, vary with the amount of product produced. 

Indirect costs, on the other hand, cannot be easily associated with the end 

product/service such as labour and material required to clean the premise where a 

service is delivered (Keller, 2015). 

 

Three types of costs can fall under the direct/indirect cost classification: 

1. Material: Cost of raw materials for product/service, spare parts, consumables, 

and office supplies. 

2. Labour: Remuneration costs such as salaries, overtime, bonuses and 

commission. 

3. Other expenses: These costs, which include premise rates and taxes, office 

furniture, general building repair costs, insurance, lighting and heating, do not 

fall under the material or labour categories (Mehta, 2016). 

 

Apart from the direct and indirect classification, a few other cost concepts need to be 

considered and these are: 

 Avoidable costs: Such costs can be avoided if certain strategies are 

employed. For instance, the discontinuation of a certain activity results in no 

direct costs related to the activity being incurred. 

 Controllable costs: Costs that a unit within an organisation has the authority to 

incur and can be influenced by a specific person within the lower and middle 

management of an organisation. 

 Uncontrollable costs: These costs cannot be controlled by a person in charge 

of a specific unit but rather by top management. 
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 Opportunity cost: This refers to the value of a sacrifice made due to a 

company executing one action at the expense of another. 

 Operational costs: Routine costs related to the day-to-day running of a 

business, like labour and equipment for operations, maintenance and service. 

 Overhead costs: This is the aggregate of all indirect costs and consists of all 

costs that cannot directly be linked to product or service grouped together 

such as premise rates and taxes, labour costs related to cleaning of the 

premise and insurance. 

 Postponable costs: Costs that can be deferred to a later point in time. 

 Fixed costs: These costs, such as insurance, monthly rent, monthly 

instalments and inspections, do not change when more or less goods or 

services are produced. 

 Variable costs: These are cost increases or decreases in items such as raw 

materials, product packaging and electricity in relation to the output of 

products/services. 

 Replacement cost: The cost incurred to replace an existing asset such as 

replacing outdated furniture (Holloway, 2016; Mehta, 2016; Willis & Schrieber, 

2016). 

 

2.4.3 Importance of costs 

In order for a business to stay profitable, it must ensure that the costs involved in 

making a product or service are lower than the selling price of the product or service. 

If a business is unable to achieve this feat, it will suffer a loss, which will eventually 

lead to bankruptcy. Therefore, having intimate knowledge of the operational costs 

enables a business to determine the correct selling price for its product/service. 

Furthermore, cost information assists businesses to determine the minimum 

acceptable order size, product profitability, most preferred suppliers, budgetary 

planning, product delivery options, conduct a cost benefit analysis, identify cost 

drivers and keep a project within budget (Clough et al., 2015; Ernst & Young LLP, 

2015; Shim, 2016). 
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2.4.4 Cost calculation 

The continuous making of the same type of product or service delivery makes the 

cost per unit of the product/service to stay constant. As a result, the volume of the 

output is employed as the prime parameter to determine the overall cost over a 

specific period. In such an instance, a process cost system will be utilised to 

determine the costs involved. However, if a variety of products is produced or each 

service delivered is unique, a process cost system cannot be used for cost 

calculation. In such circumstances, job order costing is a preferred method to 

calculate product costs (or cost of service), as the cost for each job completed will be 

different (Vanderbeck & Mitchell, 2015). Job order costing involves a job order cost 

sheet that will contain a unique number, the job details, as well as direct and 

overhead costs, and these are used to calculate the cost for each job (Vanderbeck & 

Mitchell, 2015). Figure 2.1 illustrates an example of a job order cost sheet. The sheet 

indicates the process cost method used by Brava Boards Co to manufacture a 

quantity of 1000 skateboards for its customer, Riders’ Warehouse. It contains a 

breakdown of direct materials and direct labour consumed during manufacturing. As 

35% of total factory utilisation is spent on manufacturing of skateboards, that 

percentage of factory overheads is charged against this specific job. In instances 

where indirect cost is difficult to calculate, the resource consumed the most, such as 

labour hours, is used as the cost allocation base for indirect cost assignment. This 

method implies that the overhead is proportionally divided to the highest consumed 

resource (Warren, Reeve & Duchac, 2015). 
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Figure 2.1: Job order cost sheet example 

Source: (Vanderbeck & Mitchell, 2015:33) 

 

2.4.5 Eskom Distribution costs on ESP faults 

Whenever an Eskom Distribution field technician is dispatched to an ESP fault, he is 

issued with a work order. A work order contains information such as a unique 

number, date of fault reporting, description of the fault, customer detail, location of 

the customer and the assigned technician. The real-time information related to the 

progression of the fault is captured during work order execution. The completion of 

the work linked to a work order is followed by the capturing of the actual labour hours 

and these are approved for financial processing. Thus, the major direct costs 

incurred during the execution of a work order are labour hours, distance travelled 

and material consumed. 

 

Furthermore, the work order can serve as a proxy to a job order cost sheet and the 

direct labour costs can be used to calculate the cost of a work order. Data 

enrichment on available geographical coordinates linked to a work order can be 

applied to calculate distance travelled and the cost associated with it. Unfortunately, 
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material consumed is captured in the enterprise resource planning system known as 

Systems Applications and Products in data processing (SAP) software and a reliable 

link back to the work order system called Maximo does not exist, therefore 

performing material costing per work order is not feasible. The overhead related to 

operations are shared between many operational functions within a Customer 

Network Centre (CNC), which also means that the overhead cannot be applied 

easily to an allocation base such as hours worked. 

 

2.5 Monetary savings 

Different strategies can by employed to achieve monetary savings. This section will 

unpack the meaning of monetary savings and the cost reduction strategies that can 

be implemented to achieve the savings. 

 

2.5.1 Defining monetary savings 

Savings are defined as the “avoidance of overspending, reduction in expenditure or 

cost, amount of money saved” (Editors Of Webster's II Dictionaries, 2005:1006). The 

terms savings and cost savings are often used interchangeably as evidenced in the 

overlap within the definitions. Cost saving is defined as "the fact of saving money or 

of spending less money than was planned" (O'Shea, 2011:185) and “a reduction in 

expenses, especially in business” (Oxford Online Dictionary, 2017:1). Savings are 

either hard dollar or soft dollar savings. On the one hand, hard dollar savings refer to 

planned costs that are saved (compared to a previous baseline) which affect the 

bottom line, such as increased productivity, reduction in overtime, less defective 

work and operational savings that include shorter processing times. Soft dollar 

savings on the other hand, describe cost avoidance savings such as process 

improvements and increased output without increased resource utilisation that is 

facilitated by improved efficiencies in production and process systems, customer 

retention and growth, improved space utilisation and capacity expansion (Kubiak, 

2013; Protzman et al., 2016). 

 

2.5.2 Monetary savings through cost reduction 

Cost reduction strategies are the primary method utilised to achieve monetary 

savings. Cost reduction is defined as “the achievement of real and permanent 
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reduction in unit cost of goods manufactured or services rendered without impairing 

their suitability for the use intended or diminution in the quality of the product” 

(Chakraborty, 2004:666). Effective utilisation of resources is of paramount 

importance to achieve cost reduction. Plans to reduce costs should be evaluated 

carefully and implemented strategically in order to achieve long-term savings and 

business benefits. The implementation of cost reduction strategies can have financial 

cost implications such as automation tactics where people are replaced by 

machines. The cost savings achieved from the reduced salary bill should offset the 

cost of implementing automation. Furthermore, cost reduction strategies, such as the 

outsourcing of key functions to external entities and laying off staff members that 

used to perform such functions can also damage company value by undermining 

some of its core abilities. Consequently, only strategies in which the benefit 

outweighs the overall cost and business impact should be considered when trying to 

achieve savings through cost reduction strategies. Some of the areas that can be 

scrutinised for potential cost savings are re-work, wastage, salaries, travel, 

administrative expenses, legal expenses, overproduction and impaired effectiveness 

(Murragapan, 2014; Mehta, 2016). 

 

A typical cost reduction strategy geared at achieving monetary savings is a reduction 

in salary expenses by reducing staff numbers. This strategy is, however, risky as it 

can erode some of a business’ core abilities and competencies. A combination of 

different strategies that retains critical skills can serve businesses well in the long 

run. Fabiani et al., (2015) in their study on the European firms’ response to the global 

economic crisis of 2009 highlight the way the firms made their human capital as 

important, such that they did not dismiss permanent employees during those trying 

times. The firms focused on freezing wages, cutting flexible pay components, 

reducing work hours, laying off temporary staff and reducing non-labour costs as 

much as possible. Thus, cost reduction strategies can achieve monetary savings and 

boost company earnings. This is exemplified by the case of Kenyan tea farmers who 

were able to increase profits in spite of a reduction in output, by focusing their cost 

reduction efforts on human resources (correct staffing, staff retention and proper 

training), optimisation of tools and technology, cost reduction during procurement 

and finding alternative and cheaper energy sources (Namu et al., 2014). 
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It is clear that, quality improvement can reduce costs by lessening reworks and 

recalling of products, but proper decision-making is dependent on quality data, 

hence this study. Therefore, whenever a business seeks to employ quality 

improvement strategies as a cost reduction mechanism, it has to ensure the data 

supporting its decisions is of good quality (DeOreo & Wish, 2015). 

 

2.5.3 Eskom’s monetary saving strategies 

Eskom currently employs various strategies to achieve its targeted monetary savings 

(Minister of Finance, 2015) and financial sustainability by means of cost reduction 

and increasing its sales. The five focus areas for savings and increased sales up to 

the year 2022 are to: 

1. Increase demand for electricity locally by 2.1% and exports by 8%. 

2. Reduce primary energy expenses by R53 billion. 

3. Use advanced analytics to deliver savings of R14 billion. 

4. Optimise capex by R65 billion. 

5. Release government guarantees of R105 billion by 2020. 

6. Workforce optimisation strategies to realise savings of R11.8 billion (Eskom 

Holdings SOC Ltd, 2017b; Eskom Holdings SOC Ltd, 2018b). 

 

Eskom’s correct application of its cost reduction strategies has the potential to 

prevent an erosion of core and critical skills, improve quality and increase profits 

even if its sales do not increase in the current financial climate of slow economic 

growth. All these benefits can be derived from good quality data that will help to 

ensure that correct decisions are taken when defining and applying its preferred cost 

saving strategies. 

 

2.6 Chapter summary 

The four variables namely transactional data quality: source system, transactional 

data quality: feedback, costs and monetary savings were unpacked to provide a 

deeper understanding into transactional data, feedback, costs and monetary 

savings. The chapter outlined further the relevance of each variable by describing 

the role that each plays within Eskom and Eskom Distribution. The chapter also 
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noted that an improvement of transactional data quality, by means of feedback, has 

the potential to enhance monetary savings through a reduction of costs and an 

improvement in operational efficiency. 

 

The next chapter focuses on the research methodology used in this study. 
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3 CHAPTER 3: METHODOLOGY  
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3.1 Introduction 

This chapter discusses the methodology that was utilised during this study. The 

chapter covers the research paradigm, research design, the study population (for 

technicians and historical data), sampling method, data collection, data analysis, 

validity and reliability and ethical considerations. 

 

3.2 Research paradigm 

A paradigm provides the broader research parameters of a given study and it shapes 

the philosophy guiding the researcher as they uncover phenomena. Although there 

is a general lack of consensus on what a paradigm really is, there is a general 

agreement in mainstream research literature that a combination of ontology, 

epistemology, and methodology forms the main basis for the paradigm that a 

researcher can adopt (Johnson & Christensen, 2010; Killam, 2013). Ontology studies 

the nature of being and includes claims or assertions on the nature of reality. 

Epistemology is concerned with the study of the nature of knowledge (i.e. whether it 

is conceived as subjective or objective) and determines the beliefs, foundations, 

extent and validity of knowledge. This study is founded on developing objective 

knowledge as it employs quantitative data on transactions in Eskom Distribution to 

establish if the quality of such data can affect the cost savings of this institution. A 

Positivist paradigm whose ontology assumes one objective reality and whose 

epistemology focuses on observable, objective facts or phenomena to gain 

knowledge (Potter, 2006; Lindgreen, 2008) was thus, adopted in this study. 

 

3.3  Research design 

A cross-sectional survey was administered on the key personnel of the Eskom 

Distribution Free State to determine the impact that transactional data quality from 

customer calls has on the monetary cost savings. Surveys are applied in quantitative 

research settings, wherein the population selected is studied in-depth to explore the 

aspect/s of interest (Marsden & Wright, 2010; Edmonds & Kennedy, 2016).. Data 

from a survey, which is normally summarised by means of descriptive statistics and 

insights, is also generalised to the entire population from which the data would have 

been drawn. A survey has two benefits and these are its low cost and generalisability 

to larger populations. However, the survey approach has some drawbacks and these 
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include encountering low response rates of between 15% to 25% and respondents 

not always answering questions truthfully (Marsden & Wright, 2010; Edmonds & 

Kennedy, 2016). Eskom Distribution has nine operating units with similar standard 

operating procedures, as a result, a survey of the for Free State Operating Unit 

(FSOU) was deemed desirable because it is similar to the other 8 Operating Units 

and closest to the researcher. The survey findings were enriched by analysing a 

large volume of historical data from the Eskom Distribution Free State customer 

network centres (CNC). The analysis of all data focussed on the accuracy of 

customer call transactional data, the financial costs associated with incorrect 

transactional data and the impact of incorrect transactional data on monetary 

savings. 

 

3.4 Research approach 

A quantitative approach was used to determine the transactional data quality at the 

source and the receiver as well as to determine the costs of labour hours and 

kilometres travelled. A quantitative approach was also used to gauge the field 

technicians’ perceptions of the quality of the transactional data and its impact on the 

unplanned hours and unplanned kilometres travelled. 

 

3.5 Population 

A population is the group of subjects (people, elements, objects) that is the focus of 

the study (Grove, Gray & Burns, 2014). Eskom has 9 Operating Units (OU), one per 

every South African Province with each containing multiple CNCs. The size and 

amount of CNCs per OU depends on the amount of customers and size of the 

electrical network that has to be maintained. The CNCs are located in such a way as 

to optimise travelling and customer service. For the purpose of this study, the focus 

was on the FSOU and all the CNCs contained within it. A CNC’s staff compliment 

comprises of a supervisor, technical staff with different skill sets who perform 

maintenance and repairs on the electrical network, and direct support staff. The 

researcher focused on the FSOU because he is employed in this operating unit and 

had easy accessibility to the customer transactional data. 
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The population consisted of 2 parts, a human population as well as a historical data 

population. A total of 303 technical staff members, residing at the FSOU CNCs, 

formed the human population as they interact with transactions from customer call 

transactional data. The historical data population comprised of the historical archive 

of records/work orders related to unplanned work undertaken by the CNC technical 

staff. This historical data consisted of over 800 000 work orders for the period 1 April 

2002 to 31 March 2017. One technical staff member is one element (unit) of the 

human population and a work order as one element of the historical data population. 

 

3.6 Sampling 

A sample, which is a subset of the population, is taken from the accessible 

population (population the researcher has reasonable access to) by utilising a 

specific sampling method. Each single unit of a sample is termed a subject and the 

findings from a study of the subjects of a sample are generalised or applied to the 

larger population (Sekaran & Bougie, 2013; Grove, Gray & Burns, 2014). Samples 

are desirable in research because it is not always economical, possible or necessary 

to study an entire population. It is however important to ensure that a sample is 

representative of the population to enable accurate generalisation (Cargan, 2007). 

Due to the small staff compliment (303 members) in the Free State Operating Unit 

CNCs, a census was deemed necessary. Consequently, information was generated 

from every unit of this population (Cottrell & McKenzie, 2010) that is all 303 

members. In addition, access to the historical data allowed the researcher to 

reference and analyse all records from April 2002 to March 2017. However, the 

sheer size of the historical data and a higher rate of incomplete records pre 2012 

meant that only data from April 2012 to March 2017, totalling 235 945 work orders, 

was analysed. 

 

3.7 Data collection 

 A structured questionnaire was used to gather primary data from the human 

population regarding technical staff's involvement and perceptions on the quality of 

customer call transactional data in 2017. The self-administered questionnaire 

comprised ordinal (specifically Likert scale, which is also seen as a rating scale) and 

ratio scales. Past experience indicated that response rates from field technicians are 
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very low, due to the long time they spend working in the field. However, precise 

wording ensured that technicians easily and correctly interpret and answer questions 

related to the concepts. In addition, two Eskom subject matter experts reviewed and 

verified the wording of the questionnaire so that it could be interpreted correctly. The 

researchers’ supervisor also reviewed the questionnaire with the student for 

accessibility and intelligibility. 

 

The research delivered the questionnaire via emails to each CNC supervisor who 

subsequently distributed it to their technical staff. The researcher also made one 

phone call to each supervisor seeking to explain the purpose of the questionnaire 

and enlist their cooperation and support. Three response options were offered to 

respondents and so they were allowed to complete any one of the following: 

1. A printed version of the questionnaire answered by hand that the respondent 

would scan and email to the researcher. 

2. An electronic version of the questionnaire on a word processor that the 

respondent would email to the researcher. 

3. Utilise a web browser (either via computer or smartphone) to complete a web 

based version of the questionnaire. 

 

Numerous follow-ups made to CNC supervisors and technicians sought to solicit a 

35% response rate (106 out of 303) from the population. Most of the feedback 

received was a scanned copy send via email. This data was coded and captured on 

an Excel spreadsheet and exported to SPSS for detailed data analysis. The 

historical data was extracted by means of SQL from the company's Maximo 

application database that houses all the work order records. All records were 

exported to an Excel spreadsheet for secondary data preparation and initial analysis 

before it was exported to the SPSS for detailed analysis. 

 

3.8 Data preparation 

A normalisation and enrichment of the data was performed to prepare the secondary 

data for analyses. For example: record descriptions were checked for the wording 

"Customer Fault" and any meaningful variations that indicated a customer fault. An 

interpretation of transaction dates allowed for fields to be added, categorise data 

© Central University of Technology, Free State



46 
  

 
 

according to Eskom's financial years, and to determine normal/overtime transactions. 

Global positioning systems (GPS) coordinates of records were used to calculate 

distance and to infer the time and cost per transaction. Eskom's minimum wage rate 

and overtime rules were applied to work orders to calculate the actual overtime 

hours and costs for each financial year based on the current monetary values. A 

precompiled report that indicates the mean of the transactional call, and quality per 

month was referenced to indicate transactional data quality at the source system per 

secondary data record. 

 

3.9  Data analysis 

Data was analysed by applying tools from both descriptive and inferential branches 

of statistics. A researcher uses descriptive statistics whenever they need to organise 

and summarise data based on sample demographics (Holcomb, 2016). In addition, 

inferential statistics are used to draw a conclusion about the population by 

determining the relationship among variables in a sample and making predictions 

about the population (McKenzie, 2014). Both branches were relevant in this study’s 

analysis, hence, a descriptive and inferential statistical analysis was conducted using 

Microsoft Excel and IBM SPSS version 25. 

 

The specific descriptive statistical tools that were employed are frequency 

distribution, mean and cross tabulation/contingency table analysis, whilst the 

inferential tools focussed on correlation and regression analysis. Each tool is 

described in more detail below: 

 

 Frequency distribution is a summary of data that is typically presented in 

tabular form and displays the number of observations per group/category. It 

assists researchers to gain a deeper understanding of data patterns due to 

the way data is grouped and summarised. An inherent disadvantage is that 

these grouped summaries can hide important information (Sharma, 2007). 

This study’s frequency distributions catered for the amount of work orders, 

data quality of source system, feedback, hour and distance costs and 

monetary savings. 
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 Mean, which is also known as the average value of a dataset, is part of the 

central tendency tools. This measure describes a set of data by supplying a 

value, which is the average of your dataset. The value supplied is calculated 

by adding all the values and dividing them with the number of these values. A 

disadvantage of the mean is that outlying values can influence its calculation 

(Lacrose & Lacrose, 2015). The study’s mean was established for the quality 

of source system data, feedback from technicians, cost of transactional data 

and monetary savings. 

 

 Cross tabulation or contingency table allows a researcher to study the 

relationship between multiple categorical variables. Data is grouped in a 

multidimensional table and can indicate how correlations change between 

different groupings of a variable. It is implemented to gain deeper insights on 

data by revealing specific trends, patterns or probabilities (Singh, 2007). This 

researcher performed a cross tabulation on questionnaire data to obtain a 

greater understanding of the quality of source system data, technician 

feedback, costs for correct and incorrect transactions during normal and 

overtime and monetary savings. 

 

 Correlation analysis sets out to determine whether a correlation exists 

between continuous variables such as interval or ratio scale types. Calculated 

correlation coefficients possess both strength and direction and can range 

from 1.00 to -1.00. The closer a coefficient value is to 1.00 or -1.00 the 

stronger the correlation between the variables, whereas the correlation gets 

weaker as it approaches 0. The direction of correlation can be either positive 

or negative. A positive coefficient value implies a positive correlation, which 

means that an increase or decrease in one variable yields a similar effect on 

the other. A negative correlation indicates that an increase or decrease in one 

variable results in an opposite effect on the other variable. Statistical 

significance is also calculated to verify if an identified correlation is significant 

enough to reject the null hypothesis. It is important to note that correlation 

does not imply causation (Urdan, 2011). Finally, the correlations established 

in the study were between data quality of source system and feedback, data 
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quality of source system and costs, data quality of source system and 

monetary savings, feedback and costs, and costs and monetary savings. 

 

 Regression analysis, which is a form of predictive analysis, studies the 

relationship between one or more independent/predictor variables and a 

dependent/outcome variable. The focus is on the significance of the impact 

that a change of an independent variable has on the dependent variable. A 

regression analysis can assist the researcher to make predictions either within 

or outside of the dataset (Gordon, 2015). The following variables from the 

dataset were regressed in this study; transactional data quality on 

transactional feedback, costs on transactional data quality and transactional 

feedback and monetary savings on source system data quality, feedback on 

correct transactions and total cost. 

 

3.10 Validity and reliability 

The plausibility of any research is measured by the validity and reliability of the data 

utilised. According to Kumar (2014:213,215), validity is “the ability of an instrument to 

measure what it is designed to measure” and a reliable tool is “consistent and stable, 

hence predictable and accurate”. Therefore, a valid and reliable tool will always 

measure the variables it sets out to measure and produce the same results 

consistently if conditions are kept the same. 

 

3.10.1 Validity 

There are three common types of validity and these are, face and content validity, 

concurrent and predictive validity, and construct validity. The highly specialised 

environment and concise requirements of the questionnaire meant that, the 

researcher had to rely on face and content validity. This type of validity verifies that 

questions are linked to study objectives and thus measure what they are supposed 

to measure. It is normally judged by the researcher and experts in the field (Kumar, 

2014). The researcher’s intimate knowledge of the historical data, environment in 

which the technicians operate in, and the digital tools used to capture transaction 

feedback, ensured the face and content validity of the study. Both the face and 

content validity were done through a careful examination of the questions and 
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subject matter experts in the work environment. The examination ensured that the 

questions were worded suitably for technicians to understand easily and that each 

question related to the objectives of this study. 

 

Historical data was extracted by adhering to business rules to ensure only work 

orders related to this study were extracted. Extracted data was also checked for 

completeness. Any records that were incomplete and could not be normalised were 

excluded from analysis as they had the potential to skew the final results. More so, 

the study leader and statistician appraised the questions for their relevance to study 

objectives and their completeness for the types of analysis to be conducted. 

 

3.10.2 Reliability 

An instrument’s reliability can be determined by external and/or internal consistency 

procedures (Sekaran & Bougie, 2014). The total FSOU field services technician 

population was approached to respond to the questionnaire, thus ensuring a 

representative population in order to guarantee statistical significance. However, 

repeated follow-ups were made to ensure a 35% nominal response rate from the 

population. The testing conditions were standard in the sense that all respondents 

were at work and received the same questions. In addition, scoring was constant 

due to the structured format of the questionnaire. The difficulty of the tests was low 

as the language used was clear and spoke directly to the technicians’ environment. 

 

The concise nature of the questionnaire meant that the Cronbach’s alpha could only 

be to be calculated in instances where multiple questions related to the same 

concept as per Table 3.1. According to Andrew, Pedersen and McEvoy (2011:202), 

the purpose of a Cronbach’s alpha is to measure “how well a set of variables or 

items measure a single, unidimensional latent construct”. Values can range from 0 to 

1, with a desired value between 0.7 and 0.9. One construct scored low at 0.114 and 

two high at 0.815 and 0.963. The overall internal consistency was generally 

acceptable but moderate at 0.638. Furthermore, the reliability of the secondary data 

was ensured through the performance of multiple extractions for the same t period. 

Record counts and completeness were checked and compared to ascertain that a 

reliable dataset had been extracted. 
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Table 3.1: Cronbach’s alpha coefficients on questionnaire 

Construct 
Number of 

items 
Cronbach's 

alpha 
Comment 

Transactional data quality - customer side fault 
2 0.114 

Low internal 
consistency Questions: 5, 8 

Travel distance costs on Correct and Incorrect 
data 2 0.963 

High internal 
consistency 

Questions: 9, 10 

Work orders performed during Normal and 
Overtime for Correct and Incorrect data 4 0.815 

High internal 
consistency 

Questions 11, 12, 13, 14 

Overall questionnaire  
15 0.638 

Moderate internal 
consistency Questions: 4 to 18 

 

3.11  Ethical considerations 

An ethical clearance was received from senior management of Eskom Free State 

Operating Unit to access and analyse data, with the understanding that the data 

would be used for academic purposes and kept confidential. Consequently, historical 

data was aggregated when reporting the results to ensure the confidentiality of 

customers and financial figures as well as the anonymity of technician information. 

Data was stored on the Eskom network to ensure it was safe yet accessible to the 

researcher and statistician. Technicians place a high premium on their anonymity 

when answering questionnaires. Therefore, anonymity was ensured and the 

questionnaire questions were kept short and concise r to obtain as many responses 

as possible. In addition, the respondents were informed of the goals of this project 

and that their participation was voluntary as well as that the findings from this study 

would be used for the exclusive purpose of producing the dissertation. 

 

3.12 Chapter summary 

The chapter outlined the methodology applicable to this dissertation. It also 

discussed the research paradigm, research approach, research design and data 

collection techniques adopted in this study. It is important to note that data from two 

different population types, namely work orders from a historical dataset, and that 

from technician feedback extracted via a structured questionnaire was analysed. 

Within the limitations of the population considered, every effort was made to ensure 

validity and reliability of the collected and prepared datasets. The chapter also noted 
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that a preliminary analysis was performed in Excel while a more detailed analysis 

was conducted in SPSS using both descriptive and inferential statistics. 

 

The following chapter presents results of the survey and historical dataset analysis 

via descriptive and inferential statistics. 
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4 CHAPTER 4: PRESENTATION OF FINDINGS 
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4.1 Introduction 

In the previous chapter, a breakdown of the methodology applicable to this 

dissertation was presented and the quantitative nature of this survey was 

emphasised. The study also described how the data was sourced and which 

statistical tools were employed to analyse the data. The focus of this chapter is to 

present results from the statistical analysis applied to the data collected using a 

questionnaire. The chapter also analyses the historical dataset. 

 

4.2 Survey results 

The chapter’s sections present the survey results and analysis drawn from 106 

responses made by the field technicians. The chapter also presents some 

descriptive data overview, and descriptive and inferential statistics. 

 

4.2.1 Overview of descriptive data and analysis of survey results 

A summary of the survey results organised according to the research questions 

posed in 1.4.2 is presented in the sections below in conjunction with the analysis 

performed on appropriate sections. 

 

4.2.1.1 Background variables 

The analysed background variables related to demographics and volume of work 

orders received on a monthly basis. Only two questions linked to demographics were 

posed to the respondents in order to ensure maximum anonymity. Age, race, 

experience, seniority and gender can all be used to determine who a person is, 

especially at smaller CNCs, consequently these questions were avoided to ensure a 

maximum response rate. The results from an examination of the years of experience 

at an Eskom CNC, shown in Figure 4.1 and Table 4.1, show that 40.6% of the 

technicians had 6-10 years, 27.4% had 0-5 years, 21.7% more than 20 years, 8.5% 

11-15 years and only 1.9% had 15-20 years. Nonetheless, most of the technicians 

had more than 5 years of work experience, which implies that the majority of the 

workforce had sufficient work exposure needed to gain the necessary skills required 

to fulfil their current responsibilities. 
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Figure 4.1: Distribution of years of experience at Eskom CNC 

 

Eskom adopted the Enterprise digital assistant (EDA) devices towards the end of the 

2011-2012 financial year. Thus, the maximum possible experience a technician has 

on EDA usage is around 5 years. The distribution analysis of EDA usage, depicted in 

Figure 4.2 and Table 4.1, reveals that only 8.5% of the technicians had EDA usage 

experience of 1 year or less, whilst 53.8% had more than 4 years of experience. The 

EDA usage experience is sufficient for effective utilisation of this tool based on this 

distribution analysis. 

 

 

Figure 4.2: Distribution of years of EDA usage 
 

Figure 4.3 and Table 4.1 indicate that the bulk of technicians received less than 20 

single customer dispatch work orders per month, 46.2% had 1-10 and 31.1% had 
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11-20 work orders. Therefore, 77.3% of the technicians received an average of one 

single customer dispatch work order per working day per month. This implies that 

technicians were not overburdened with single customer dispatch work orders and 

could properly evaluate work and provide feedback on the executed work. 

 

 

Figure 4.3: Distribution of single customer dispatch work orders received from dispatch per 
month 

 

Table 4.1: Background variables 

 Background variables Category Frequency Percent 

B1: Please indicate your years of work 
experience at your Eskom CNC. 

0-5 years 29 27.4% 

6-10 years 43 40.6% 

11-15 years 9 8.5% 

15-20 years 2 1.9% 

more than 20 years 23 21.7% 

B2: For how many years have you been 
using an EDA? 

Up to 1 year 9 8.5% 

2 years 6 5.7% 

3 years 14 13.2% 

4 years 20 18.9% 

more than 4 years 57 53.8% 

B3: How many single customer dispatch work 
orders do you receive from dispatch per 
month? 

1-10 49 46.2% 

11-20 33 31.1% 

21-30 14 13.2% 

31-40 5 4.7% 

more than 40 5 4.7% 
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4.2.1.2 Source system data quality 

Questions B4, B5 and B8 were, as shown in Table 4.2, used to measure the 

technician’s perceptions of the quality of data received from the source system. The 

average for B4 was 53.6% and represents overall quality of transactional data from 

the contact centre. B5 specifically focussed on customer side fault work orders and 

was posed in an inverse manner. A lower average percentage implies higher data 

quality percentage from the source system. The average was 31.5 % and this meant 

that 68.5% of the faults were not related to customer side faults and thus were of 

good quality. B8 also focussed specifically on customer side faults and 55.7% 

agreed or strongly agreed that the Contact Centre can improve their ability to identify 

customer side faults. 

 

Table 4.2: Source system data quality 

Source System Data quality  
 

Percentage Categories 

0-20% 21-40% 41-60% 61-80% 80-100% 
Average 

Percentage  

B4: On average, how accurate is the 
information on the single customer dispatch 
work orders you receive? 

Count 15 21 17 36 17 

53.6% 
% 14.2% 19.8% 16.0% 34.0% 16.0% 

B5: On average, what percentage of the 
single customer dispatch work orders that 
you receive per month, are caused by a 
fault on the customer side (thus no fault on 
Eskom side)? 
 

Count 37 37 22 7 3 

31.5% 

% 34.9% 34.9% 20.8% 6.6% 2.8% 

B8: Please indicate the extent to which you 
agree with whether the Eskom Contact 
Centre can do a better job to identify faults 
that are caused by the customer? 

  
Strongly 
Disagree 

Disagree Neutral Agree 
Strongly 

Agree 
Agree+ 

Strongly agree 

Count 15 6 26 37 22 
55.7% 

% 14.2% 5.7% 24.5% 34.9% 20.8% 

 

4.2.1.3 Feedback on transactional data 

Questions B6 and B7 focused on the appropriate usage of feedback that indicated a 

customer side fault as per Table 4.3. The responses to question B6 reveal that 

feedback indicating a customer side fault was used appropriately for the 52.8% of 

work orders that were handled. Consequently, in 47.2% of the work orders, customer 

side faults could not be indicated and thus went unnoticed. Conversely, an analysis 

of responses to question B7 illustrates that faults on Eskom’s side are incorrectly 

classified as a customer side fault in 25.3% of the cases. The customer side fault 

feedback indicator is thus not always used correctly. However, the incorrect 
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classification of Eskom faults in B7 tended to balance out the 47.2% of customer 

side faults which were not indicated as such. The accuracy of the customer side fault 

feedback indicator is questionable and reveals significant potential for improvement. 

 

Table 4.3: Feedback analysis 

Feedback analysis 
(Based on customer side fault) 

Percentage Categories 

0-20% 21-40% 41-60% 61-80% 80-100% 
Average 

Percentage 

B6: On average, what percentage of the single 
customer dispatch work orders that are caused 
by a fault on the customer side, do you mark as 
“Customer side fault” when putting the work-
order in MILE3? 

Count 23 26 10 7 40 

52.8% 
% 21.7% 24.5% 9.4% 6.6% 37.7% 

B7: On average, what percentage of the single 
customer dispatch work orders that are caused 
by a fault on Eskom side, do you mark as 
“Customer side fault” when putting the work 
order in MILE3? 

Count 65 21 8 4 8 

25.3% 
% 61.3% 19.8% 7.5% 3.8% 7.5% 

 

4.2.1.4 Cost of transactional data 

The main costs for work orders are labour and travel costs. Labour cost is more 

expensive during overtime when compared to normal work hours due to the higher 

overtime rates that are applicable. Travel costs comprise of time spent driving that 

has a higher cost if performed during overtime than normal work hours, and a vehicle 

cost per kilometre travelled, which is constant and not influenced by overtime or 

normal work hours. Data transactions are deemed to be correct if a work order is not 

marked with feedback of a customer side fault. An analysis of the responses to 

question B11 indicates that 53% of work based on transactions with correct data is 

performed during normal work hours, whilst those for B13 reveal that 48.9% of 

correctly captured transaction work is performed during overtime as shown in Table 

4.4. 
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Table 4.4: Correct data transactions during normal work time/overtime 

Correct Data transactions 
(During normal work time/overtime) 

Percentage Categories 

0-20% 21-40% 41-60% 61-80% 80-100% 
Average 

Percentage 

B11: On average, what percentage of the single 
customer dispatch work orders that are caused by 
a fault on Eskom side do you respond to during 
normal work time? 

Count 17 13 37 15 24 

53.0% 
% 16.0% 12.3% 34.9% 14.2% 22.6% 

B13: On average, what percentage of the single 
customer dispatch work orders that are caused by 
a fault on Eskom side do you respond to during 
overtime? 

Count 15 28 27 20 16 

48.9% 
% 14.2% 26.4% 25.5% 18.9% 15.1% 

Similarly, an analysis of the responses to question B12 shows, in Table 4.5 that, 

50% of incorrect data transactions are executed during normal work hours while 

45.5% are executed during overtime. Both correct and incorrect transactions show a 

similar distribution in terms of time executed. Consequently, work time and overtime 

should not significantly impact cost calculation of one category (read either correct or 

incorrect transaction) over the other. 

 

Table 4.5: Incorrect data transactions during normal work time/overtime 

Incorrect Data transactions 
(During normal work time/overtime) 

Percentage Categories 

0-20% 21-40% 41-60% 61-80% 80-100% 
Average 

Percentage 

B12: On average, what percentage of the single 
customer dispatch work orders that are caused 
by a fault on the customer side do you respond 
to during normal work time? 

Count 19 20 31 14 22 
50.0% 

% 17.9% 18.9% 29.2% 13.2% 20.8% 

B14: On average, what percentage of the single 
customer dispatch work orders that are caused 
by a fault on the customer side do you respond 
to during overtime? 

Count 18 31 29 13 15 

45.5% 

% 17.0% 29.2% 27.4% 12.3% 14.2% 

 

The analysis of travel distance for B9 and B10 (i.e. correct and incorrect 

transactions) in Table 4.6 indicates that travelling to execute correct transactions is a 

bit further than incorrect transactions, but the difference is small. Consequently, 

distance will not have a major impact on the cost calculation of correct versus 

incorrect transactions. However, the feedback in B15 is interesting. Technicians 

indicated that they expend further labour cost on 18.9% of incorrect transactions by 

fixing a customer’s fault, even though they are not supposed to. 
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Table 4.6: Total travel distance and additional costs incurred 

Total travel distance for correct or 
incorect data (km) 

Percentage Categories 

<20 Km 20-40 Km 40-60 Km 60-80 Km >80 Km 
Average 
Distance 

B9: On average, how many kilometres do you 
travel to a single customer dispatch work order 
that is caused by a fault on Eskom side? 

Count 6 14 19 30 37 
64.7 Km 

% 5.7% 13.2% 17.9% 28.3% 34.9% 

B10: On average how many kilometres do you 
travel to a single customer dispatch work order 
that is caused by a fault on the customer side? 

Count 7 17 17 29 36 
63.2 Km 

% 6.6% 16.0% 16.0% 27.4% 34.0% 

Extra labour costs incurred for customer side 
faults 

Never Rarely Sometimes Frequently Always 
% 

Frequently 
+ always 

B15: Please indicate the frequency at which 
you repair single customer dispatch work 
orders that are caused by a fault on the 
customer side (rather than just putting it on 
MILE3, with customer side fault feedback). 

Count 41 19 26 8 12 

18.9% 
% 38.7% 17.9% 24.5% 7.5% 11.3% 

 

The results from an analysis of responses to the question on whether f the feedback 

of customer side fault can be used to determine the cost of such work orders to the 

business (see statement B16 indicted in Table 4.7) show that, 52.8% of technicians 

agreed or strongly agreed that it is indeed possible. This figure concurs with the 

accuracy of the usage of the customer side fault indicator at B6 in Table 4.3, which is 

also 52.8%. However, only 37.7% felt that Eskom was actually using customer side 

fault feedback to determine the cost of such work orders (see statement B17). Thus, 

even though over 50% of the technicians indicated that the customer side fault 

feedback could be used to determine its cost impact on the business, the confidence 

levels in the business’ ability to utilise feedback in order to gain this insight was 

significantly lower. This lack of confidence could have an impact on the technicians’ 

motivation to provide appropriate feedback on work orders. 
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Table 4.7: Usage of feedback to determine cost 

Usage of feedback to determine cost  

Percentage Categories 

Strongly 
Disagree 

Disagree Neutral Agree 
Strongly 

Agree 

Agree+ 
Strongly 

agree 

B16: Please indicate the extent to which you 
agree that it is possible to use the MILE3 
feedback of customer side fault to determine 
how much such work orders cost the business. 

Count 7 10 33 31 25 
52.8% 

% 6.6% 9.4% 31.1% 29.2% 23.6% 

B17: Please indicate the extent to which you 
perceive Eskom to be using the MILE3 
feedback of customer side fault to determine 
how much such work orders cost the business. 

  Never Rarely Sometimes Frequently Always 
% Frequently  

+ always 

Count 19 11 36 13 27 

37.7% 
% 17.9% 10.4% 34.0% 12.3% 25.5% 

 

4.2.1.5 Monetary savings  

The main purpose of statement B18 was to determine if money could be saved by 

preventing the dispatch of a technician to a customer side fault. The results inTable 

4.8 indicate that the majority (67.9%) of technicians agree or strongly agree that 

money can be saved if they do not have to respond to a customer side fault. By 

implication, this signifies that an improvement in customer call transactional data 

quality can result in monetary savings, as it will prevent customer side faults being 

logged as ESP faults, thereby preventing costs associated with such transactions. 

 

Table 4.8: Monetary savings underlying the prevention of incorrect transactional data quality 

Monetary savings embedded within 
prevention of incorrect transactional 

data quality  

Percentage Categories 

Strongly 
Disagree 

Disagree Neutral Agree 
Strongly 

Agree 

Agree+ 
Strongly 

agree 

B18: Please indicate the extent to which you 
agree or disagree that it is possible for Eskom 
to save money if you do not have to go to 
single customer dispatch work orders that are 
caused by a fault on the customer side. 

Count 11 6 17 30 42 

67.9% 

% 10.4% 5.7% 16.0% 28.3% 39.6% 

 

The last question posed to technicians, B19, queried the amount of money in Rand 

value they perceived could be saved per month if they desist from responding to a 

customer side fault. Unfortunately, the answers varied widely and were often not in 

Rand value as requested, but rather statements such as, I do not know, thousands, 

a lot, plenty, millions etc. Consequently, no average could be computed from the 

answers supplied. The extent of the answers indicated that most technicians were 

unsure of the monetary costs involved to service ESP and customer side faults. 
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However, a cost comparison model could be generated from a combination of data 

supplied in the questionnaire and used to calculate the cost of valid ESP versus 

customer side faults. This data includes the average amount of work orders 

received, percentage of customer side faults versus percentage valid ESP faults, 

average travel distance, percentage of faults responded to during normal and 

overtime, average cost per km travelled to faults and the minimum labour rate per 

fault during normal and overtime. Table 4.9 shows that customer side faults 

contribute 47.7% to the total cost of work orders during a month, with the portion of 

29.1% of the costs contributed during overtime. 

 

Table 4.9: Monetary cost contribution of work orders with correct and incorrect data 

Monetary cost 
contribution of work 

orders with correct and 
incorrect data 

Time category 

Amount of 
Work 

orders per 
category 

Category 
Total Work 

orders 

% Cost 
contribution 

per 
category 

% of Total 
Cost 

Contribution 

Work orders for valid ESP 
Normal work hours 798 

1535 
20.3% 

52.3% 
Overtime 737 32.0% 

Work orders for customer side 
faults 

Normal work hours 730 
1398 

18.6% 
47.7% 

Overtime 668 29.1% 

  
2933 100% 

 

4.2.1.6 Descriptive analysis summary 

A descriptive analysis was performed on the questionnaire results. The findings from 

this descriptive analysis of the questionnaire results are as follows: 

 B5 in Table 4.2 indicates that 31.5% of the ESP calls logged transactions 

captured are related to customer side faults. Consequently, the money spent 

on 31.5% of the transactions can be avoided if transactional data quality at 

the source system is improved. 

 Feedback accuracy of customer side faults is 52.8% (see B6 in Table 4.3). 

Subsequently, the impact of customer side faults might be understated. 

Furthermore, there exists potential to improve feedback accuracy by up to 

47.2% (the percentage shortfall) on customer side faults. 

 The accuracy of feedback on ESP faults (see B7) can also be improved as 

25.3% of these faults are incorrectly tagged as customer side faults. The 

25.3% might assist in actual cost calculation through an understating of 

customer side faults. It is, however, preferable to increase accuracy of 

feedback. 
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 45.5% of customer side fault work orders are executed during overtime as per 

Table 4.5. This significantly inflates the cost of such work orders due to the 

labour cost increase experienced during overtime situations. 

 The average travel distance in Table 4.6 (see B10) for customer side faults is 

63.2km which is close to the travel distance of 64.7km (see B9) for ESP 

faults. 

 In Table 4.8, 67.9% of the technicians agreed or strongly agreed that there 

are monetary savings embedded within customer side faults. 

 Based on the results in Table 4.9, customer side faults contribute 47.7% of 

the total work order costs. Thus, an improvement of transactional data quality 

at the source system seeking to eliminate customer side faults can lead to the 

achievement of a 47.7% potential monetary saving on total work order costs 

by means of cost avoidance. 

 

4.2.2 Inferential statistics of survey results 

An inferential statistical analysis was applied after the descriptive summary and 

analysis to determine if any statistically significant relationships exist between the 

constructs under investigation. 

 

4.2.2.1 Relationship between source system data quality and feedback 

The relationship between source system data quality and transactional data quality 

was analysed using a correlation analysis of the questionnaire items that address 

both variables. The results, s in Table 4.10 below, show that there is no significant 

relationship between source system data quality and transactional data quality (p-

values>0.05). 
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Table 4.10: Correlations between Source system data quality and feedback 

Correlations 

B4: On average, how accurate is 
the information on the single 

customer dispatch work orders that 
you receive? 

Comment 

B5: On average, what percentage of the 
single customer dispatch work orders that 
you receive per month, are caused by a 
fault on the customer side (thus no fault 
on Eskom side)? 

Correlation -0.101 

Not 
significant 

p-value 0.305 

N 106 

B8: Please indicate the extent to which 
you agree or disagree whether the Eskom 
Contact Centre can do a better job to 
identify faults that are caused by the 
customer. 

Correlation -0.097 

Not 
significant 

p-value 0.325 

N 106 

 

4.2.2.2 Relationship between source system data quality and costs 

A correlational analysis was used to test the relationship between source system 

data quality and various costs. The tested costs were travel distance and percentage 

work orders for valid ESP and customer side faults during work hours and overtime. 

The results are presented in Table 4.11 and Table 4.12 and they show that no 

significant relationship exists between source system data quality and any of the 

tested costs. 

 

Table 4.11: Correlation between source system data quality and costs: Travel 

Correlations 

B4: On average, how accurate is 
the information on the single 

customer dispatch work orders that 
you receive? 

Comment 

B9: On average, how many kilometres do 
you travel to a single customer dispatch 
work order that is caused by a fault on 
Eskom side? 

Correlation 0.112 
Not 

significant 
p-value 0.253 

N 106 

B10: On average, how many kilometres do 
you travel to a single customer dispatch 
work order that is caused by a fault on the 
customer side? 

Correlation 0.099 
Not 

significant 
p-value 0.314 

N 106 
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Table 4.12: Correlation between source system data quality and costs: Percentage work orders 

Correlations 

B4: On average, how accurate is 
the information on the single 

customer dispatch work orders that 
you receive? 

Comment 

B11: On average, what percentage of the 
single customer dispatch work orders that 
are caused by a fault on Eskom’s side do 
you respond to during normal work time? 

Correlation 0.152 
Not 

significant 
p-value 0.121 

N 106 

B12: On average, what percentage of the 
single customer dispatch work orders that 
are caused by a fault on the customer 
side do you respond to during normal 
work time? 

Correlation 0.142 

Not 
significant 

p-value 0.145 

N 106 

B13: On average, what percentage of the 
single customer dispatch work orders that 
are caused by a fault on Eskom’s side do 
you respond to during overtime? 

Correlation 0.046 
Not 

significant 
p-value 0.642 

N 106 

B14: On average, what percentage of the 
single customer dispatch work orders that 
are caused by a fault on the customer’s 
side do you respond to during overtime? 

Correlation -0.038 
Not 

significant 
p-value 0.699 

N 106 

 

4.2.2.3 Relationship between feedback and costs 

The relationship between feedback and costs were tested by means of correlational 

analysis. The costs analysed were travel distance and percentage work orders 

related to ESP and customer side faults actioned during normal work time and 

overtime. No significant relationship exists between feedback and travel distance in 

Table 4.13. 

 

Table 4.13: Correlation between feedback and travel distance 

Correlations 

B5: On average, what percentage of 
the single customer dispatch work 
orders you receive per month, are 
caused by a fault on the customer 

side (that is, no fault on Eskom 
side)? 

Comment 

B9: On average, how many kilometres do 
you travel to a single customer dispatch 
work order that is caused by a fault on 
Eskom’s side? 

Correlation 0.150 
Not 

significant 
p-value 0.125 

N 106 

B10: On average, how many kilometres 
do you travel to a single customer 
dispatch work order that is caused by a 
fault on the customer side? 

Correlation 0.177 
Not 

significant 
p-value 0.069 

N 106 
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Table 4.14 shows that a significant positive relationship was established between 

feedback from technicians and work orders responded to during overtime. Thus, 

more work orders are handled during overtime if there is a higher occurrence of 

feedback indicating customer side faults. Nonetheless, the handling of more work 

orders during overtime will increase the overall transaction costs due to the inherent 

higher labour costs of overtime transactions. 

 

Table 4.14: Correlation between feedback and ESP, customer side faults during work hours 
and overtime 

Correlations 

B5: On average, what percentage of 
the single customer dispatch work 

orders that you receive per month, are 
caused by a fault on the customer 
side (that is, no fault on Eskom’s 

side)? 

Comment 

B11: On average, what percentage of the 
single customer dispatch work orders caused 
by a fault on Eskom’s side do you respond to 
during normal work time? 

Correlation 0.067 
Not 

significant 
p-value 0.496 

N 106 

B12: On average, what percentage of the 
single customer dispatch work orders caused 
by a fault on the customer side do you 
respond to during normal work time? 

Correlation 0.127 
Not 

significant 
p-value 0.195 

N 106 

B13: On average, what percentage of the 
single customer dispatch work orders caused 
by a fault on Eskoms side do you respond to 
during overtime? 

Correlation 0.240* 

Significant p-value 0.013 

N 106 

B14: On average, what percentage of the 
single customer dispatch work orders caused 
by a fault on the customer side do you 
respond to during overtime? 

Correlation 0.344** 

Significant p-value 0.000 

N 106 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

4.2.2.4 Relationship between costs and monetary savings 

Correlational analyses were used to determine the relationships between costs and 

monetary savings. The costs that were analysed were travel distance and 

percentage work orders related to ESP and customer side faults actioned during 

normal work time and overtime. No significant relationships were identified between 

any of the costs and monetary savings in Table 4.15 and Table 4.16. 
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Table 4.15: Correlation between costs on kilometres travelled and monetary savings 

Correlations 

B18: Please indicate the extent to 
which you agree or disagree that it is 
possible for Eskom to save money if 

you do not have to go to a single 
customer dispatch work order that is 
caused by a fault on the customer’s 

side. 

Comment 

B9: On average, how many kilometres do you 
travel to a single customer dispatch work 
order that is caused by a fault on Eskom’s 
side? 

Correlation 0.028 
Not 

significant 
p-value 0.775 

N 106 

B10: On average, how many kilometres do 
you travel to a single customer dispatch work 
order that is caused by a fault on the 
customer’s side? 

Correlation 0.018 
Not 

significant 
p-value 0.852 

N 106 

  

Table 4.16: Correlation between percentage work order costs and monetary savings 

Correlations 

B18: Please indicate the extent to 
which you agree or disagree that it is 
possible for Eskom to save money if 
you do not go to a single customer 

dispatch work order that is caused by 
a fault on the customer ,side. 

Comment 

B9: On average, how many kilometres do you 
travel to a single customer dispatch work 
order that is caused by a fault on Eskom’s 
side? 

Correlation 0.028 
Not 

significant 
p-value 0.775 

N 106 

B10: On average, how many kilometres do 
you travel to a single customer dispatch work 
order that is caused by a fault on the 
customer’s side? 

Correlation 0.018 
Not 

significant 
p-value 0.852 

N 106 

B11: On average, what percentage of the 
single customer dispatch work orders that are 
caused by a fault on Eskom’s side do you 
respond to during normal work time? 

Correlation -0.022 
Not 

significant 
p-value 0.826 

N 106 

B12: On average, what percentage of the 
single customer dispatch work orders that are 
caused by a fault on the customer’s side do 
you respond to during normal work time? 

Correlation -0.106 
Not 

significant 
p-value 0.277 

N 106 

B13: On average, what percentage of the 
single customer dispatch work orders that are 
caused by a fault on Eskom’s side do you 
respond to during overtime? 

Correlation 0.028 
Not 

significant 
p-value 0.777 

N 106 

B14: On average, what percentage of the 
single customer dispatch work orders that are 
caused by a fault on the customer’s side do 
you respond to during overtime? 

Correlation 0.163 

Not 
significant 

p-value 0.094 

N 106 

 

© Central University of Technology, Free State



67 
  

 
 

4.2.2.5 Relationship between quality of source system data and monetary savings 

A correlational analysis was performed in order to determine the relationship 

between the quality of source system data and monetary savings. The results of the 

analysis, depicted in Table 4.17, indicate that no significant relationship exists 

between the source system data quality and monetary savings. 

 

Table 4.17: Correlation between source system data quality and monetary savings 

Correlations 
B4: On average, how accurate is the 
information on the single customer 

dispatch work orders that you receive? 

Comment 

B18: Please indicate the extent to which you 
agree or disagree that it is possible for Eskom 
to save money if you do not have to go to a 
single customer dispatch work order that is 
caused by a fault on the customer side. 

Correlation 0.025 

Not 
significant 

p-value 0.795 

N 106 

 

4.2.2.6 Relationship between feedback and monetary savings 

A correlational analysis was also performed to determine the relationship between 

feedback indicating incorrect transactions and monetary savings. The results from 

the analysis, which are presented in Table 4.18, indicate that no significant 

relationship exists between feedback indicating incorrect transactions and monetary 

savings. 

 

Table 4.18: Correlation between feedback and monetary savings 

Correlations 

B5: On average, what percentage of 
the single customer dispatch work 

orders that you receive per month, are 
caused by a fault on the customer side 

(thus no fault on Eskom side)? 

Comment 

B18: Please indicate the extent to which you 
agree or disagree that it is possible for Eskom 
to save money if you do not go to single 
customer dispatch work orders that are 
caused by a fault on the customer side. 

Correlation -0.024 

Not 
significant 

p-value 0.803 

N 106 

 

4.2.2.7 Inferential analysis summary 

For all the relationships tested during inferential analysis, one relationship with 

statistical significance was uncovered between feedback and costs and this was, 

feedback and work orders responded to during overtime, as reflected in Table 4.14. 

One can infer that an increase in feedback on customer side faults received can 

result in increased costs for ESP and customer side faults. 

 

© Central University of Technology, Free State



68 
  

 
 

4.2.3 Summary of survey results 

The descriptive analysis revealed that, an improvement in customer call 

transactional data quality at the source can create savings of up to 47.7% for 

transactions related to customer calls requesting service for an ESP. Inferential 

analysis revealed one significant relationship between feedback and costs, but no 

significant relationship between source system transactional data quality and 

monetary savings. The conciseness of the questionnaire, moderate reliability 

indicated by Cronbach’s alpha test, most technicians’ inability to indicate a rand 

value for expected monetary savings and possible bias in technician’s opinion could 

all play a role in the lack of significant relationships amongst variables tested. 

Therefore, an analysis of the historical dataset can prove to be valuable as none of 

the factors influencing the questionnaire will influence the historical dataset analysis 

results. 

 

4.3 Results on historical data 

The historical dataset containing 235 945 records spanned from April 2012 to March 

2017. A financial year within Eskom starts on 1 April of a typical year and ends on 31 

March of the following year. Therefore, five financial years were analysed and these 

are, 2012/2013, 2013/2014, 2014/2015, 2015/2016 and 2016/2017. Eskom 

Distribution Free State comprises a hierarchical structure with three subsequent 

levels, which are Zones x 2, Sectors x 4 and CNCs x 25. 

 

4.3.1 Overview of data summary 

A descriptive overview of the data summary for all financial years combined and 

disaggregated per hierarchy level, displayed in Table 4.19, contains the following 

information: 

 Work order: Total amount of work orders analysed. 

 Percentage work order: Percentage contributed to the total amount of work 

orders. 

 Percentage work time: Percentage of total work orders that were actioned 

during normal work hours. 

 Percentage over time: Percentage of total work orders that were actioned 

during overtime. 
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 Source system data quality: Percentage quality of source system data 

measured for the work orders. 

 Percentage feedback correct transactions: Percentage of work orders that 

were marked as having correct transactional data. 

 Percentage travel distance: Percentage of total kilometres travelled for the 

work orders. 

 Percentage time cost: Percentage contribution to the overall time cost. 

 Percentage total cost: Percentage contribution to the total monetary cost 

after the conversion of costs to a monetary value. 

 

On a zone level, Bloemfontein contributes 60.89% to the total work order volume, 

which is 21.78% more than Bethlehem zone’s contribution of 39.11%. The 

Bloemfontein Sector has the highest work order contribution on a sector level with 

31.51% while the Kroonstad Sector has the lowest contribution at 13.58%. At CNC 

level, Bloemfontein zone has five CNC’s with a total work order contribution higher 

than 5% in comparison to Ladybrand, Selosesha, Hoopstad, Thabong and Welkom 

towns. The Bethlehem zone only has Bohlokong CNC contributing more than 5%. In 

addition, the Bloemfontein zone has 13 CNCs compared to Bethlehem Zone’s 11 

and 4 CNCs more than the Bethlehem Zone thus, contributing greater than 5% to the 

total work orders. It is therefore, understandable that Bloemfontein has a much 

higher total work order contribution than the Bethlehem Zone. 

 

The quality of source system data for all hierarchy levels has a very narrow 

distribution. It consists of a mean of 80%, a maximum deviation from the mean of 

0.2% and a minimum deviation of 0%. The feedback indicating correct transactions 

has a mean of 81.3% with the biggest deviation from the mean being 14% at the 

Virginia CNC and the closest deviation of 0.1% observed at Welkom Town CNC. The 

Bloemfontein Zone executed most (54.8%) of its work orders during normal work 

time, whereas the Bethlehem Zone performed the bulk (52%) of its work during 

overtime. The reality that labour performed during overtime is more expensive than 

that is done during normal work hours explains why the Bethlehem Zone’s time cost 

contribution of 42% is higher than its total work order contribution of 39.11%. 

Similarly, the Bloemfontein Zone’s time cost contribution of 58% is less than its total 
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work order contribution of 60.89%, which can be attributed to the fact that most if its 

work was performed during normal work hours. Travel distance contribution is 

affected by the travel distance from the CNC to its customers as well as the volume 

of work orders. CNCs with travel distance contributions higher than their overall work 

order contribution, indicate that the travel distance from these CNCs to their 

customers is greater than CNCs where the travel contribution is equal to or less than 

the total work order contribution. 

Table 4.19: Total work order volume distribution 
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4.3.2 Comparison of transactional data quality: source system with feedback 

Data quality measured at the source system is based on results from a quality 

assurance process performed on a 1% sample of the total transactions for a specific 

month. This quality assurance process consumes a lot of time. Therefore, no more 

than 1% of the total transactions can be assessed. The quality assurance process 

evaluates call professionalism when answering calls, whether correct steps were 

followed to: identify a customer, interpret his fault symptoms, send the fault to the 

correct department and lastly, if the call was concluded professionally. Call 

professionalism, which forms part of the score, does not directly associate with 

transactional data quality, but call content related to transactional data quality 

comprises 70% of the total score. As a result, most scoring relates to transactional 

data quality, which is the reason why this score is used as a proxy for transactional 

data quality at the source system. A comparison of transactional data quality with 

feedback from technicians reveals whether feedback is impacted by source system 

data quality or not. Transactional feedback from technicians in the field indicates the 

correctness of work order/transactional data quality if it describes a valid resolution 

to an ESP. Feedback stating a customer side fault indicates correctness of the work 

order/transactional data quality. Consequently, transactional feedback on correct 

transactions can also serve as a measurement of transactional data quality, but from 

the data consumer’s (field technician’s) perspective. 

 

Descriptive analysis was applied in Table 4.20 where each financial year’s source 

system transactional data quality and feedback on correct transactions is compared 

to its average for all years combined. A value higher than the average is highlighted 

in green whilst a value lower than the average is highlighted in pink. The colours for 

source system data quality and feedback indicating correct transactions correspond 

in the financial years 2014/2015, 2015/2016 and 2016/2017. From this 

measurement, 60% of the periods analysed showed a corresponding 

increase/decrease in both source system transactional data quality and feedback 

indicating correct transactions. 
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Table 4.20: Source system transactional data quality vs feedback on correct transactions per 
financial year 

Financial Year 
Source system 

transactional data 
quality 

 Feedback: % Correct 
transactions 

2012-2013 77.99% 81.37% 

2013-2014 80.51% 80.78% 

2014-2015 78.26% 80.42% 

2015-2016 81.76% 82.50% 

2016-2017 81.72% 81.50% 

Average 80.05% 81.31% 

 

Figure 4.4 displays data quality from both source system and transactions with 

feedback indicating correct data. Transactional data quality from the source system 

indicates an upward trend, with a noticeable slump during the 2014/2015 financial 

year. Data quality based on transactional feedback from the data consumer 

perspective also displays a general upward trend, but it has more declines than 

source system data quality. 

 

 
Figure 4.4: Source system and feedback based data quality per financial year 
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Logistic regression was used to assess inferentially the relationship between 

transactional data quality from the data creator (contact centre) and transactional 

feedback from the data consumer (field technician). This tool is preferred as the 

independent variable, Source system data quality, is a ratio-scale variable measured 

in percentages and the response variable, transactional feedback, is a binary value 

where 1=correct and 0=incorrect. The results in Table 4.21 show that transactional 

feedback is significantly dependent on source system data quality (Wald 

statistic=18.209, df=1, p-value=0.000). 

 

Table 4.21: Logistic regression of transactional data quality on transactional feedback 

Response Variable: Transactional Feedback 

 Variables in the Equation B S.E. Wald df p-value Exp(B) 

Source system Data Quality 0.008 0.002 18.209 1 0.000 1.008 

Constant 0.850 0.145 34.338 1 0.000 2.341 

 

4.3.3 Relationship between costs and transactional feedback received and 

transactional data quality: source system 

In this case, there are two response variables, viz., travel costs and total time cost 

and two independent variables, viz., transactional feedback and transactional data 

quality. Travel and time costs were converted to monetary value for analysis 

purposes. Two regression models, one for each of the response variables were 

fitted. 

 

4.3.3.1 Regression of travel cost on transactional feedback received and source 

system data quality 

The regression results to assess the effects of transactional data quality based on 

feedback and source system measurements on travel cost are presented in Table 

4.22 below. In this case, the independent variable, transactional feedback, is the 

binary, hence it will be a dummy variable while source system data quality is 

continuous. The results indicate that transactional feedback has a significant impact 

on travel cost (B=3.547, t=6.582, p-value=0.000). Source system data quality also 

has a significant impact on travel cost (B=0.729, t=10.098, p-value=0.000). Both 
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results indicate that an increase in transaction feedback and source system data 

quality leads to increased travel costs. 

 

Table 4.22: Regression of travel cost on transactional data quality and transactional feedback 

Dependent Variable: Travel Cost 

Unstandardised 
Coefficients 

Standardised 
Coefficients 

T p-value 

B 
Std. 
Error 

Beta 

(Constant) 59.720 5.796   10.304 0.000 

Transactional feedback 3.547 0.539 0.014 6.582 0.000 

Source system data quality 0.729 0.072 0.021 10.098 0.000 

 

4.3.3.2 Regression of time cost on transactional feedback received and: source 

system data quality 

The regression results in Table 4.23 below show that transactional feedback has 

significant impact on total time cost (B=24.067, t=31.502, p-value=0.000). A value of 

B=24.067 for transactional feedback means that, total time cost will be higher 

whenever the feedback is correct. Source system data quality also has significant 

negative impact on total time cost (B=-1.063, t=-10.382, p-value=0.000). A value of 

B=-1.063 means the higher the transactional data quality the lower the total time 

cost, hence, improved transactional data quality results in reduced total time cost. 

 

Table 4.23: Regression of total time cost on transactional feedback and transaction data 
quality 

Dependent Variable: 
Total time Cost 

 

Unstandardised 
Coefficients 

Standardised 
Coefficients 

T p-value 

B 
Std. 
Error 

Beta 

(Constant) 227.411 8.217   27.677 0.000 

Transactional feedback 24.067 0.764 0.065 31.502 0.000 

Source system data quality -1.063 0.102 -0.021 -10.382 0.000 

 

4.3.4 Compare cost impact of incorrect transactions to transactional data 

quality: feedback received and transactional data quality: source system 

Transactions performed on customer side faults are incorrect transactions as they 

should not have been executed. The mean contribution such transactions had to the 

total transaction cost is expressed in Figure 4.5. This contribution is then compared 

to the mean of transactional data quality: feedback received, which is transactional 
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data quality measured by quantifying correct feedback received from technicians, 

and the mean of transactional data quality: source system, for each financial year. 

The figure indicates that incorrect transactions had a lower impact on total 

transaction cost when transactional data quality: feedback received and transactional 

data quality: source system where higher. In 2015/2016, the mean of transactional 

data quality: feedback received and transactional data quality: source system were 

at their highest at 82.50% and 81.76% respectively. However, the cost impact of 

incorrect transactions was at its lowest at 15.7%. 

 

The 2014/2015 transactional data quality: feedback received, was at its lowest. It 

had an 80.42% and transactional data quality: source system was at its second 

lowest point of 78.26%. For the same period, the cost impact of incorrect 

transactions was at its peak with 18.08%. Therefore, an inverse relationship exists 

between transactional data quality: feedback and cost impact of incorrect 

transactions. There is also an inverse relationship between transactional data 

quality: source system and cost impact of incorrect transactions. 

 

 
Figure 4.5: Transactional data quality: source system and transactional data quality: feedback 
received compared to total cost impact of feedback indicating incorrect transactions 
 

© Central University of Technology, Free State



76 
  

 
 

In Table 4.24, the same dataset, as in Figure 4.5, is displayed for each financial year 

with the addition of a mean for each variable over all the financial years combined. 

For each variable, a value higher than the mean for all financial years combined is 

highlighted in green, whilst a value lower than the mean is highlighted in pink. In 80% 

of the time periods analysed, transactional data quality: source system and cost 

impact of incorrect transactions, confirmed the inverse relationship discovered in 

Figure 4.5. Similarly, transactional data quality: feedback received and cost impact of 

incorrect transactions illustrate a corresponding inverse relationship of 80%, but for 

different time periods. Consequently, an increase in transactional data quality: 

source system or transactional data quality: feedback received, can result in the 

lowering of the cost impact of incorrect transactions in 80% of the times. 

 

The observation from the above is that, incorrect transactions should be avoided as 

far as possible as they contributed an average of 17.2% to the total transaction cost 

for the analysed financial years. In other words, money can be saved by reducing or 

avoiding incorrect transactions. As a result, incorrect transaction costs can be used 

to gauge the savings potential embedded in the improvement of transactional data 

quality measured from a source system data quality or from feedback on correct 

transactions perspective. 

 

Table 4.24 : Transactional data quality: source system and transactional data quality: feedback 
received compared to total cost impact of transactions with feedback indicating incorrect 
transactions 

Fin Year 

Transactional 
data quality: 

source system 
(A) 

 Transactional 
data quality: 

feedback received 
(B) 

Cost impact of 
incorrect 

transactions 
(C) 

Inverse 
relationship 
confirmed: A 

and C 

Inverse 
relationship 
confirmed: B 

and C 

2012-2013 77.99% 81.37% 17.50% Yes No 

2013-2014 80.51% 80.78% 17.96% No Yes 

2014-2015 78.26% 80.42% 18.08% Yes Yes 

2015-2016 81.76% 82.50% 15.69% Yes Yes 

2016-2017 81.72% 81.50% 16.69% Yes Yes 

Averages 80.05% 81.31% 17.18% 80% 80% 
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4.3.5 Relationship between monetary saving, total cost, transactional data 

quality: source system and transactional data quality: feedback received 

As stated previously, the avoidance of costs related to incorrect transactions can 

translate into monetary savings and will be used as a proxy for monetary savings. 

Correlation and regression analysis were executed on a summarised version of the 

work order data analysed thus far. Summarisation was performed per CNC per 

month on the original dataset. Correlations were tested between monetary savings, 

transactional data quality: source system, transactional data quality: feedback 

received and total transaction cost, as shown in Table 4.25. 

 

Table 4.25: Correlation of monetary savings with transactional data quality: source system, 
transactional data quality: feedback received and total transaction cost 

Correlations 
 

Monetary Savings Comment 

Transactional data 
quality: source system 

Correlation 0.040 

Not significant p-value 0.131 

N 1442 

Transactional data 
quality: feedback 
received 

Correlation 0.515 

Significant p-value 0.000 

N 1442 

Total Transaction 
Cost 

Correlation -0.882 

Significant p-value 0.000 

N 1442 

 

The results indicate, no significant relationship between monetary savings and 

transactional data quality: source system, but a positive significant and strong 

correlation between monetary savings and transactional data quality: feedback 

received (correlation = 0.515, p-value = 0.000). There is also a significant strong but 

negative correlation between monetary savings and total costs (correlation= -0.882, 

p-value = 0.000). Thus, an increase in the total transaction cost can result in a 

reduction in monetary savings due to the negative correlation detected. However, an 

increase in transactional data quality: feedback will yield a corresponding increase in 

monetary savings as indicated by the positive correlation. 

 

Table 4.26 depicts the regression of monetary savings with transactional data 

quality: source system, transactional data quality: feedback received and total 

transaction cost. Monetary saving is significantly affected by both transactional data 

quality: feedback received (B=27969.543, t=36.479, p-value=0.000) and total 
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transaction cost (B=-0.169, t=-88.065, p-value=0.000). A B=27969.543 for 

transactional data quality: feedback implies that an improvement in transactional 

data quality measured via technician feedback will result in increased monetary 

savings, whereas B=-0.169 for total transaction cost suggests that an increase in 

total transaction cost will lead to decreased monetary savings. 

 

Table 4.26: Regression of monetary saving with transactional data quality: source system, 
transactional data quality: feedback received and total cost 

Dependent Variable: 
Monetary Saving 

Unstandardised Coefficients 
Standardised 
Coefficients 

t p-value 

B 
Std. 
Error 

Beta 

Transactional data quality: 
source system 

3259.311 1730.075 0.017 1.884 0.0598 

Transactional data quality: 
feedback received 

27969.543 766.728 0.335 36.479 0.0000 

Total Transaction Cost -0.169 0.002 -0.807 -88.065 0.0000 

 

4.3.6 Summary of historical dataset 

The descriptive statistics established from an analysis of the historical dataset 

indicated the following: 

 In Table 4.19 the mean of source system data quality and the mean of 

feedback for correct transactions differed by only 1.3%. Maximum deviation 

from the mean for feedback on correct transactions was however significantly 

higher than source system data quality. Costs are influenced by volume of 

work orders and distance travelled. Work performed during overtime seems 

to increase costs more than work order volume alone as per Bethlehem 

Zone’s time cost contribution vs work order volume results. 

 For 60% of the cases analysed, transactional data quality at the source and 

feedback on correct transactions depicted a similar increase/decrease when 

compared to the mean of each according to Table 4.20. 

  The trends for both the quality of source system data and feedback on 

correct transactions in Figure 4.4 indicate an upward trend, which suggests a 

steady improvement of transactional data quality.  

 A scrutiny of Table 4.24 revealed a possible 17.18% savings potential on 

total costs for ESP work orders embedded in the improvement of 

transactional data quality. 
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Inferential statistics on the historical dataset revealed that: 

 Transactional feedback indicating correct transactions is significantly 

dependent on the quality of source system data, as shown in Table 4.21. 

 According to Table 4.22, travel cost is significantly dependent on transactional 

data quality and transactional feedback. An increase in transactional data 

quality or transactional feedback will result in an increase in travel costs. 

 Time cost, as shown in Table 4.23, is significantly dependent on transactional 

data quality and transactional feedback. An increase in transactional data 

quality results in a decrease in time costs, whereas an increase in 

transactional feedback will result in increased time costs. 

 Correlation and regression analysis in Table 4.25 and Table 4.26 indicates 

that, on the one hand, an increase in transactional data quality: feedback, 

leads to a corresponding increase in monetary savings. On the other hand, an 

increase in total transaction cost will result in decreased monetary savings. 

 

4.4 Chapter summary 

This chapter presented the results of descriptive and inferential statistical analyses 

performed on both survey results gathered from field technicians and the historical 

dataset comprising ESP logged transactions over 5 financial years. The survey 

results are based on technician perceptions whereas the historical dataset is based 

on actual transactions executed and feedback captured against such transactions. 

The chapter uncovered various results and these are discussed in more depth in the 

next chapter. 
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5 CHAPTER 5: DISCUSSION OF FINDINGS 
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5.1 Introduction 

The results from statistical analyses of survey data and that from the historical 

dataset were presented in the previous chapter. This chapter discusses the findings 

derived from the analysis in relation with the objectives of this study as stated in 

Chapter 1. 

 

5.2 Objectives and outcomes 

The findings associated with each secondary objective and outcome are discussed 

before examining the results based on the primary objective. 

 

5.2.1 Quality of customer call transactional data captured at Eskom Contact 

Centres from source system data quality measurements and feedback 

The quality of customer call transactional data captured at Eskom Contact Centres 

relates to condition 1 [V] and feedback relates to condition 2 [X] of the conceptual 

framework in section 1.8. The analysis of survey data in Table 4.2 indicates that the 

overall quality of transactional data from the contact centres was perceived to be 

53.6%. Transactional data quality, judging from customer side faults, as an indicator 

of incorrect data was calculated as 68.5%. The 14.9% difference in Table 4.2 

between B4’s total transaction quality of 53.6% and B5’s transaction quality related 

to customer side faults of 68.5% suggests the existence of other data quality issues 

not related to customer side faults, which also emanate from the Contact Centre. 

The researcher’s informal discussions with technicians revealed that the other data 

quality issues were related to incorrect master data such as customer information 

and meter data. The majority (55.7%, See Table 4.2) of technicians agreed/strongly 

agreed that the contact centres can do a better job to identify and prevent customer 

side faults. The figures revealed that there is potential to increase transactional data 

quality from the contact centre to a much higher level than what it was during the 

time of the research. This resonates with Redman’s (2013a) suggestion to manage 

and improve data quality during its creation phase. 

 

The analysis of historical data, as reflected in Table 4.20 and Figure 4.4, revealed 

that transactional data quality measured at the source system had an average value 

of 80.05% whereas transactional data quality based on feedback was 81.31%. The 
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mean of both values only differ by 1.26% thus, implying that the metrics used to 

measure quality from the data creator’s perspective closely resemble the data 

experience from the data consumer. An important difference between the two values 

is embedded in the volume of data supporting each mean value. Source system data 

quality only focuses on a small sample of the data whereas feedback data quality is 

calculated from feedback per transaction. 

 

The difference between data quality measured using the survey and historical data 

can be ascribed to human perceptions and the granularity of the measurement scale 

used within the survey. Consequently, historical data can be a more accurate 

measurement of data quality as perceptions and feelings play a lesser role within this 

dataset. It is important to note that the customer side fault indicator is not always 

used correctly. According to Table 4.3, the indicator was only used correctly for 

52.8% of the time on actual customer side faults and used incorrectly 25.3% of the 

time on valid ESP faults. Therefore, the data quality issue is understated on actual 

occurrences of customer side faults, but overstated when marking a valid ESP as a 

customer side fault. Feedback from technicians is also data and its importance 

increases when it is used to improve data quality of transactions. The low 

percentage of correct usage signifies an issue with the accuracy dimension, due to 

erroneous interpretation of which feedback option to select. Therefore, technicians 

need to be educated on the correct usage of feedback to ensure that the root cause 

of interpretation quality is addressed (Loshen, 2010; DAMA UK Working Group, 

2013; Rantala, 2016). 

 

Customer call transactional data quality related to electricity supply problems (ESP) 

from the historical dataset perspective that is shown in Table 5.1 compares 

favourably with figures from literature studying international and South African data 

quality figures. The survey results however compare poorly to the same figures. 

Historical data reveals that data quality measured at source is on average, 8.77% 

higher than the average for literature measurements and data quality measured via 

feedback is 10.03% higher than the literature on average. Thus, the quality of 

transaction data of customer calls, from a historical data perspective, are better than 

local and international averages, Conversely, survey results indicate an overall 
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source system data quality that is 17.68% lower than literature average and data 

quality based on feedback is -2.78% lower. Therefore, the survey results indicate 

data quality of a lower standard, compared to local and international averages. 

 
Table 5.1: Literature on data quality compared to historical dataset and survey results 

Data Type 
Quality 

measured 
Source Data scope 

Comparison with Eskom 
ESP transactional data 
quality - Historical dataset 

Comparison with 
Eskom ESP 
transactional data 
quality - Survey results 

Source 
system 

measurement: 
80.05% 

Feedback 
on 

customer 
side fault: 

81.31% 

Overall 
source 
system 
quality: 
53.6% 

Feedback 
on 

customer 
side fault: 

68.5% 

Transactional 
and Master 

78.30% 
(Röthlin 
2004) 

International 1.75% 3.01% -24.70% -9.80% 

Master 78% 
(Experian 
2013) 

International 2.05% 3.31% -24.40% -9.50% 

Master 73% 
(Experian 
2017) 

International 7.05% 8.31% -19.40% -4.50% 

Master 50% 
(Burrows, 
2014) 

Local 30.05% 31.31% 3.60% 18.50% 

Master 77.10% 
 (World 
Economics, 
2017) 

Local 2.95% 4.21% -23.50% -8.60% 

Mean 71.28%     8.77% 10.03% -17.68% -2.78% 

 

5.2.2 Costs related to ESP transactions at Eskom Distribution Free State 

Costs refer to condition 3 [Y] in the proposed conceptual framework. The quantifiable 

costs identified are kilometres travelled and hours worked during normal and 

overtime conditions. These costs can be converted to monetary values for easy 

comparison and analysis. Overtime exerts a greater impact on the total cost than 

normal work hours. This occurs because rates for overtime are comparably higher 

than those for normal time as can be seen when analysing Bethlehem Zone’s total 

work order volume in relation to total cost contribution in Table 4.19. Technicians 

indicated in Table 4.6 that they performed additional work on 18.9% of customer side 

fault occurrences, which can potentially increase labour costs on such transactions. 

However, the additional work can also potentially curb future occurrences of 

customer side faults, especially if the technicians spent their time to educate 
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customers as a preventative measure. Informal discussions with technicians 

indicated that customers in general, and especially older customers, could not 

always interpret questions from the contact centre agents correctly. Due to this 

misunderstanding, customers could not give correct answers to the agents, thus 

causing calls to be logged incorrectly. Customers were empowered to identify issues 

on their side after technicians explained the issue to customers and showed them 

practically how to determine if the fault was on their side. 

 

5.2.3 Impact transactional data quality at source system has on feedback 

received for transactions 

This section investigates how transactional data quality measured at the source 

system [V] impacts feedback received on transactions [X]. No significant relationship 

was discovered within the survey data, but the historical dataset revealed a 

significant relationship between transactional data quality at the source system and 

feedback received on correct transactions (see Table 4.20). Consequently, an 

improvement in data quality during the data creation phase can translate into an 

improved data consumer experience based on the feedback from field technicians. 

This finding concurs with calls for improvements in data quality especially the 

popular data quality dimension of accuracy (Loshen, 2010; DAMA UK Working 

Group, 2013; Rantala, 2016) as the data creator has to accurately interpret and 

capture data during the progression of a transaction. From a root cause perspective, 

the cause of poor data quality is related to interpretation quality. This can be due to 

the individual subjectivity of the data creator, which leads to an incorrect 

interpretation and capturing of the cause for the loss of electricity experienced by a 

customer (McKnight, 2009; Singh & Singh, 2010; Loshen, 2011; Wang et al., 2015). 

The quality of customer call transactional data can be perceived as being of high 

value especially because it supports business processes and/or decisions. Hence, it 

will be worthwhile for Eskom to revisit the acceptable values/range of its call quality 

measurements to improve its accuracy dimension, if the benefit realised by this are 

to offset the cost of increases in customer call transactional data accuracy 

(McGilvray, 2008; Loshen, 2010; DAMA UK Working Group, 2013). 
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5.2.4 Ascertain whether transactional data quality affects transaction costs 

The survey data also sought to explore the influence of transactional data quality: 

feedback [X] on transaction costs [Y] as well as the impact of transactional data 

quality: source system [V] on transaction costs [Y]. The findings revealed that a 

positive statistically significant correlation existed between feedback received and 

overtime costs incurred (see Table 4.14). This positive correlation implies that an 

increase in feedback indicating customer side faults from technicians can lead to an 

increase in overtime costs. The historical data reveals a positive statistically 

significant correlation between travel cost and feedback received, as well as a 

positive statistically significant correlation between travel cost and source system 

data quality (see Table 4.22). Thus, an increase in either feedback indicating correct 

transactions or source system data quality will result in an increase in overall travel 

cost. 

 

One would assume an increase in data quality from the source system and 

increased feedback indicating correct transactions would result in decreased travel 

cost as it suggests improved data quality. Instead, the higher travel cost resulting 

from increased feedback could be explained from the premise that the volume of 

transactions with correct feedback inherently forms part of the total amount of 

transactions with correct feedback. Therefore, an increase in the total amount of 

transactions will impact the sum of correct feedback received. An increase in 

transactions results in rising costs due to an additional cost component per 

transaction, thus probably explaining the reason behind the rise in travel costs 

(Vanderbeck & Mitchell, 2015) despite the improved quality of query data capturing. 

Nonetheless, improved data quality from the source system’s resultant escalation in 

travel costs is a complex phenomenon to explain. 

 

Table 4.23 shows a positive statistically significant correlation that exists between 

total time cost and feedback received, whilst time cost has a statistically significant 

negative correlation with source system data quality. Therefore, increased feedback 

indicating correct transactions correlates to increased time cost. The expectation can 

be that an increase in feedback indicating correct transactions will result in a lower 

total time cost. Instead, the increase can also be influenced by a rise in the total 
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amount of transactions similar to the explanation for Table 4.22 above, resulting in 

increased total time cost. The negative correlation between time cost and source 

system data quality can be due to a possible reduction in amount of work orders, as 

increased source data quality contributes to a reduction in incorrect transactions 

(Samitsch, 2014; Zhang, 2014). 

 

5.2.5 Influence of the calculated costs on monetary cost savings. 

The study also sought to examine the influence of the calculated costs [Y] on 

monetary cost savings [Z]. No significant relationship between calculated costs and 

monetary savings could be established from the survey data. A significant negative 

correlation was established, from the historical dataset, between total costs and 

monetary savings, as shown in Table 4.25. Table 4.26 also indicates that overall 

costs have a significant negative impact on monetary savings. These findings point 

out that any overall costs increase will affect the savings negatively. Based on 

Metha’s (2016) classification, the overall cost consists of direct costs and is 

calculated from travel and labour costs per transaction. Increased work order volume 

will increase overall cost as there are costs involved per transaction (Vanderbeck & 

Mitchell, 2015). Therefore, the highlighted data quality issues indicate that higher 

costs, which can be linked to more work orders as per Table 4.19, will result in more 

customer side faults and in that way reduce savings which can be classified as 

avoidable costs (Holloway, 2016; Mehta, 2016; Willis & Schrieber, 2016). 

  

5.2.6 Influence of transactional data quality of customer calls on monetary 

cost savings 

The influence of the quality of transactional data measured at the source system [V] 

on monetary savings [Z] as well the impact of the data quality of transactions 

measured by means of quantifying correct feedback [X] on monetary savings [Z] 

were examined. The survey results’ descriptive statistics shows that, a possible 

47.7% savings seems embedded in the improvement of customer call transactional 

data. The inferential analysis, however, did not indicate any significant relationship 

between monetary savings and source system data quality in Table 4.17 or feedback 

indicating incorrect transactions in Table 4.18. As mentioned in section 4.2.3, the 

lack of significant relationships between variables from the questionnaire could be 
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influenced by the questionnaire’s brevity, moderately reliable Cronbach’s alpha test, 

technicians’ bias in opinion and their failure to supply a Rand value for anticipated 

monetary savings. 

 

The historical dataset’s descriptive statistics reveal that incorrect transactions had a 

17.18% impact on overall transaction costs over the five financial years analysed in 

Table 4.24. There is also an 80% corresponding increase/decrease between 

incorrect transaction cost and, either transaction data quality measured at the 

source, or data quality based on feedback. Inferential statistics revealed no 

statistically significant relationship between monetary savings and data quality 

measured at the source. However, feedback indicating correct transactions has a 

statistically significant positive correlation with monetary savings according to Table 

4.25. The fact that only data quality measured from feedback indicating correct 

transactions has a significant correlation with monetary savings may arise from the 

reality that data quality measured at the source is compiled from a small sample of 

data from a specific month and then applied to all transactions of that month. 

 

Data quality measured from feedback is, however done per transaction and thus has 

a much higher accuracy level compared to the small sample considered for source 

system measurement. Feedback indicating correct transactions in Table 4.26 also 

significantly impacts monetary savings. Therefore, the 17.18% impact that incorrect 

transactions have on overall costs, and the 80% relationship it has with feedback 

indicating correct transactions, is supported by the results from the correlational 

analysis of the relationship between data quality of transactions measured via 

feedback and monetary savings. Consequently, a 17.18% savings on ESP 

transactions exist in terms of avoidable costs, if Eskom increases its customer call 

transaction data quality by preventing instances of customer side faults from being 

dispatched. The observed 17.18% savings agrees with Experian’s (2015) data 

quality research, which discloses that organisational profits can increase by 15% on 

condition that high quality data has been generated. It also resonates with the 

findings by Wang et al. (2015) that poor data quality has been estimated to cost 

companies up to 20% of their revenue. 
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Based on data improvement benefit types defined by Batini and Scannapieco (2016), 

the 17.18% operational cost savings embedded in transaction data quality 

improvement forms part of the monetisable benefit category. Two other data 

improvement benefit categories also exist and these are quantifiable and intangible 

benefits. Two quantifiable benefits/savings that can be realised from an improvement 

of customer call transactional data are work hours saved, which could be spend on 

preventative maintenance, and an improvement in ESP restoration time performance 

as mandated by NERSA (2002). An important intangible benefit exists in the area of 

increased customer satisfaction, due to shorter waiting periods for supply to be 

restored and lower tariff increases, as monetary savings realised reduce operational 

costs and therefore the need to increase prices. Thus, the overall monetary savings 

potential could be higher than 17.18%, but as Redman (2013a) points out, there is 

no reliable method to convert quantifiable and intangible benefits into monetary 

savings. Ultimately, the decision to expend prevention costs (Batini & Scannapieco, 

2016) in order to fix customer call transactional data at the source during its data 

creation phase, should be based on a cost benefit analysis between savings 

potential and prevention costs as per Loshen’s (2011) recommendation. The fact 

that data quality measured at the source did not have a statistically significant impact 

on monetary savings, underscores the importance of creating a feedback 

mechanism for data consumers. Without the customer side fault feedback indicator, 

it would have been difficult to identify such transactions, determine the root cause 

and impact, and improve transaction data quality in order to prevent reoccurrence. 

(Alexopoulos, Loukis & Charalabidis, 2014). 

 

5.3 Chapter summary 

This chapter discussed the results from the previous chapter and linked them to 

findings from literature. Findings were examined and grouped as per the objective of 

the study. In general, the survey data’s descriptive analysis highlighted some 

interesting observations. However, it was not supported by subsequent inferential 

analysis performed. The historical dataset’s descriptive analysis was largely in 

accord with inferential statistical analysis and highlighted that an improvement in 

transactional data quality can contribute to savings on ESP transactions. Data quality 

measured at the source system did not offer statistically significant results to support 
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the savings, but the usage of feedback on correct transactions as a data quality 

measurement strongly supported the identified savings potential. 
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6 CHAPTER 6: CONCLUSION AN RECOMMENDATIONS  
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6.1 Introduction 

This concluding chapter presents a summary of the key findings discussed in the 

previous chapter and offers recommendations for Eskom and businesses. The 

chapter also highlights possible areas for further research and limitations to this 

study. 

 

6.2 Recapping research objectives and key findings 

An analysis of survey and historical transaction datasets using descriptive and 

inferential statistical tools revealed various insights regarding the main objective and 

six secondary objectives stated at section 1.4.1. Considered first are the findings 

regarding the secondary objectives. Thereafter, the focus shifts to the findings 

related to the main objective. 

 

Secondary objectives one and two sought to establish the quality of customer call 

transactional data. Objective one determined the data quality of transactions on 

customer calls from the source system data, whereas objective two verified 

transaction data quality from feedback provided by the field technicians. The key 

findings revealed that: 

 The ability of data consumers to provide feedback on executed transactions 

created the opportunity to measure data quality from a data consumer’s 

perspective. Feedback also served as an enabler to quantify costs of incorrect 

and correct transactions. 

 Mean data quality from a data creator perspective measured at the source 

system and data quality measured via feedback from the data consumer 

perspective differed by only 1.26%. The implication from a summarised 

assessment point is that, data quality measurements at the source system 

closely resembled the experience of data quality by data consumers. 

  Eskom’s transactional data quality from the historical dataset, measured at 

the source system was 80.05% and that measured via feedback was 81.31%. 

These percentages exceeded average data quality measurements found in 

literature. 
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 The overall quality of source system data, as observed from the survey 

results, measured at 53.6% and data quality based on feedback was 68.5%. 

Both were lower than literature’s average data quality measurement values. 

 

Objective three sought to identify the costs related to ESP transactions at Eskom 

Distribution Free State. The identified costs were labour costs to work and travel 

during normal time and overtime as well as the running cost per kilometre 

travelled. These costs were calculated per transaction in monetary value and 

expressed as a percentage of the total transaction cost. 

 

Objective four sought to determine the impact that transactional data quality at 

source system had on feedback received from technical field staff/data 

consumers on transactions. The results exposed that feedback on correct 

transactions from data consumers was significantly affected by data quality 

measured at the source system. Therefore, an improvement in data quality at the 

source system can trigger increased feedback indicating correct transactions, 

which in turn translate to a better data quality experience by data consumers. 

 

Objective five set out to analyse how transactional data quality measured from 

the source system and feedback received impact transaction costs. It was found 

out that: 

 Transaction data quality measured from the source system indicated that an 

increase in data quality resulted in decreased time costs but increased travel 

costs. An improvement in data quality causing a decrease in time costs 

makes sense as increased data quality should results in lower overall costs, 

but the increase in travel costs cannot be explained. 

 Transaction data quality measured from feedback resulted in a rise of both 

travel and time costs. Even though a rise in feedback indicating correct 

transactions signifies an increase in data quality. It can also be linked to an 

increase in the total amount of transactions, which can support the overall rise 

in costs. 
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Objective six set out to establish the influence of the calculated costs on the 

monetary savings. Increased overall costs negatively affected monetary savings. An 

important driver in overall costs is the volume of transactions. The observed current 

level of data quality of 80.05% at the source system and 81.31% measured via data 

consumer feedback indicates that an overall increase in transactions will increase 

the total amount of incorrect transactions, which will in turn reduce savings. 

 

The main objective of this study was to establish if improvements in transactional 

data quality could translate into financial savings for Eskom Distribution. Hence: 

 It was found that granularity of data quality measurements can cause potential 

analytical challenges. Inferential analysis indicated that only data quality 

measured from technician feedback had an impact on monetary savings, but 

not data quality measured at the source from the data creator’s perspective. 

This arises from the fact that data quality measured at the source was based 

on a small sample of data whereas feedback could be measured over the 

whole data population, thereby increasing its granularity and accuracy. 

 If transactional data quality based on customer call feedback could be 

increased from 81.31% to 100%, monetary savings of 17.18% can be 

achieved by means of cost avoidance on electricity supply problems (ESP) 

transactions. The savings relate to monetisable benefits exclusively, which 

were calculated from productivity costs. Quantifiable and intangible benefits 

could be identified, but could not be converted to monetary values; hence, 

total savings could actually be more than 17.18%. 

 

6.3 Recommendations 

 This section outlines the recommendations, based on the research outcomes, 

suggested for Eskom and businesses. In addition, the section explains the 

implications for future research. 

 

6.3.1 Recommendations for policy 

Whenever data quality of significant business value is improved, potential monetary 

savings and consequent profit increases can be realised because of such 

improvements. However, businesses tend to focus on quality of its master data and 
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often neglect transactional data quality due to its high volume, volatility and inherent 

challenges in measuring its quality. Therefore, the recommendation is that Eskom 

should continually identify and investigate high value transactional data quality as it 

offers significant savings potential through cost avoidance. In the case of Eskom, a 

17.18% cost saving potential on ESP transactions can be achieved, if its customer 

call transactional data quality could improve from 81.31% to 100%. It is also 

recommended that Eskom quantify the costs required to improve transactional data 

quality of its customer calls. The results of such improvements will determine if the 

savings potential will offset data quality improvement costs and thereby generate net 

saving outcomes. It should be acknowledged that achieving 100% data quality 

remains a daunting task. As such, it is better to show management what and where 

savings potential exists, that they need to determine for the cost involved to improve 

and verify whether the benefit of the savings will sufficiently justify the expenses 

required.  

 

Feedback on customer call transactions does not currently form a closed loop as it is 

supplied but not automatically used to detect and reduce unwanted feedback types. 

It is therefore, recommended that Eskom harnesses the power of closed feedback 

loops to leverage feedback received in order to transform data creator behaviour and 

generate higher quality transactional data. Eskom data capturers are expected to 

engage in detailed elicitation of customer faults information through probing and 

proper investigation to generate higher quality transactional data and to reduce the 

volume of customer side faults. The reduction of such customer side faults can 

contribute to reduce monetary costs on travel and labour hours, which translate to 

monetary savings. 

 

6.3.2 Recommendations for practice 

The ability to assimilate feedback from data consumers is an important capability any 

corporate entity needs to establish in order to measure its transactional data quality. 

Ideally, a closed feedback loop should be created in order to immediately notify a 

data creator of incorrect transactions so that they can identify and address the root 

cause. Feedback on transactions enables the measurement of both transactional 

data quality and the quantification of incorrect transactions. Therefore, large 
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businesses should build the human capital and technological capacity to quantify 

costs and establish where potential monetary savings resides within specific 

improvements in transactional data quality. 

 

6.3.3 Implications for further research 

The following implications for future research are offered: 

 Investigate the disparity between a data consumer’s perception of data quality 

and data quality measured from historical transaction data to uncover: 

o Reasons for this difference. 

o If perceptions or transaction data offer the most reliable depiction of 

data quality. 

 Examine whether an intervention to improve accuracy of feedback from data 

consumers yield improved feedback and how this will influence the calculation 

of transactional data quality and costs. 

 

6.4 Limitations of this study 

6.4.1 Costs for transactions 

Eskom’s main financial system, the Systems Applications and Products in data 

processing (SAP) is not currently configured to differentiate between overtime costs 

for planned and unplanned work, as the makeup hours are not referenced in these 

categories. Due to this limitation, a model based on the overtime rules was applied to 

the extracted transactions to determine costs. As it is against Eskom's human 

resource policy to reveal each resource's hourly rate, the hourly rate of the lowest 

graded technical staff that works on ESP work orders was applied to each hour work. 

The effect of this method will be an understatement rather than overstatement of the 

costs involved. Travel distance and time was not based on the actual route travelled, 

but rather on the direct line distance between two sets of GPS coordinates. This will 

further understate the costs involved as a route travelled will be longer than the 

direct line distance between two points. 

 
6.4.2 Validity of the feedback indicator 

The customer fault feedback indicator was used as a gauge of incorrect transactional 

data, based on the assumption that technical staff used the indicator correctly under 
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all circumstances. Informal discussions with technical staff revealed instances where 

there was an underutilisation and over utilisation of the indicator. This was also 

confirmed by the survey results in Table 4.3. 

 

6.5 Concluding remarks 

The study was presented in six chapters. Chapter One set the scene by defining the 

research problem, supplying a conceptual framework and stating the aim, research 

objectives and questions. Chapter Two offered insights from literature into the four 

variables defined in the conceptual framework and elaborated on how each variable 

plays a role within Eskom’s process of servicing customers who experience 

electricity supply problems (ESP). Thereafter, Chapter Three explained the research 

methodology in terms of the adopted paradigm and research design. It also 

described the population under investigation, sampling method, the data collection 

method, data analysis and how validity and reliability were determined. Chapter Four 

presented the results from descriptive and inferential statistical analysis. The 

analysis tools were applied to two datasets, which are survey results and historical 

data. Chapter Five presented findings on the results and recapped the objectives of 

the study. Chapter Six concluded the study and offered key findings and 

recommendations whilst highlighting limitations that need to be considered. 

 

The study realised its objectives and offered insights, which differed substantially 

when evaluating results from survey data and historical data perspectives. The main 

research question was answered from a historical data perspective as follows: 

Eskom Distribution Free State’s transactional data quality on customer calls related 

to ESP can positively impact monetary cost savings on such transactions by up to 

17.18%, if data quality can be enhanced from 81.31% to 100%. 
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8 APPENDICES 

 

8.1 APPENDIX A – Questionnaire 

Questionnaire for Eskom CNC technical staff 

 

Part A: Instructions to respondents 

 

This questionnaire aims to ascertain the relationship between transactional data 

quality of customer calls and monetary cost savings of Eskom Distribution Free 

State. Please answer all questions accurately and honestly by placing a tick in an 

appropriate box or by writing your answer in the space provided. The information that 

you supply will be treated as confidential. Thank you for your willing to complete this 

questionnaire! 

 

Part B: 

1.    Please indicate your years of work experience at an Eskom CNC   

1) 0-5 Years 2) 6-10 years 3) 11-15 years 4) 15-20 years 5) More than 20 
years 

2.    For how many years have you been using an EDA  ? 

1) up to 1 Year 2) 2 Years 3) 3 Years 4) 4 Years 5) More than 4 
years 

3.    How many single customer dispatch work orders do you receive from dispatch per month? 

1) 1-10 2) 11-20 3) 21-30 4) 31-40 5) More than 40 

4.    On average, how accurate is the information on the single customer dispatch work orders your 
receive? 

1) 0-20%  2) 21-40% 3) 41-60% 4) 61-80% 5) 81-100% 

5.    On average, what percentage of the single customer dispatch work orders you receive per month, 
are caused by a fault on the customer side (thus no fault on Eskom side)? 

1) 0-20%  2) 21-40% 3) 41-60% 4) 61-80% 5) 81-100% 

6.    On average, what percentage of the single customer dispatch work orders that are caused by a 
fault on the  customer side, do you mark as “Customer side fault” when putting the work-order in 

MILE3  ? 

1) 0-20%  2) 21-40% 3) 41-60% 4) 61-80% 5) 81-100% 

7.    On average, what percentage of the single customer dispatch work orders that are caused by a 
fault on Eskom side, do you mark as “Customer side fault” when putting the work order in MILE3? 

1) 0-20%  2) 21-40% 3) 41-60% 4) 61-80% 5) 81-100% 

8.    Please indicate the extent to which you agree or disagree whether the Eskom Contact Centre can 
do a better job to identify faults that are caused by the customer 

1) Strongly 
Disagree 

2) Disagree 3) Neutral 4) Agree 5) Strongly agree 
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9.    On average how many kilometres do you travel to a single customer dispatch work order that is 
caused by a fault on Eskom side? 

1) 0-20 km 2) 21-40 km 3) 41-60 km 4) 61-80 km 5) More than 80km 

10. On average how many kilometres do you travel to a single customer dispatch work order that is 
caused by a fault on the customer side? 

1) 0-20 km 2) 21-40 km 3) 41-60 km 4) 61-80 km 5) More than 80km 

11. On average what percentage of the single customer dispatch work orders that are caused by a 
fault on Eskom side do you respond to during normal work time?  

1) 0-20%  2) 21-40% 3) 41-60% 4) 61-80% 5) 81-100% 

12. On average what percentage of the single customer dispatch work orders that are caused by a 
fault on the customer side do you respond to during normal work time?  

1) 0-20%  2) 21-40% 3) 41-60% 4) 61-80% 5) 81-100% 

13. On average what percentage of the single customer dispatch work orders that are caused by a 
fault on Eskom side do you respond to during overtime? 

1) 0-20%  2) 21-40% 3) 41-60% 4) 61-80% 5) 81-100% 

14. On average what percentage of the single customer dispatch work orders that are caused by a 
fault on the customer side do you respond to during overtime? 

1) 0-20%  2) 21-40% 3) 41-60% 4) 61-80% 5) 81-100% 

15. Please indicate the frequency at which you repair single customer dispatch work orders that are 
caused by a fault on the customer side(rather than just putting it on MILE3, with customer side fault 
feedback). 

1. Never 2. Rarely 3. Sometimes 4. Frequently 5.Always 

16. Please indicate the extent to which you agree or disagree that it is possible to use the MILE3 
feedback of customer side fault to determine how much such work orders cost the business. 

1) Strongly 
Disagree 

2) Disagree 3) Neutral 4) Agree 5) Strongly agree 

17. Please indicate the extent to which you perceive Eskom using the MILE3 feedback of customer 
side fault to determine how much such work-orders cost the business. 

1. Never 2. Rarely 3. Sometimes 4. Frequently 5.Always 

18. Please indicate the extent to which you agree or disagree that it is possible for Eskom to save 
money if you do not have to go to a single customer dispatch work order that are caused by a fault on 
the customer side. 

1) Strongly 
Disagree 

2) Disagree 3) Neutral 4) Agree 5) Strongly agree 

19. On average, how much money can Eskom save per month if you did not have to go to single 
customer dispatch work order that are caused by a fault on the customer side 

Estimated amount: R 
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8.2 APPENDIX B – Permission to conduct research 
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8.3 APPENDIX C – Extension of permission to conduct research 
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8.4 APPENDIX D – TURNITIN report for plagiarism 
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