
Motivational Value of Code.org’s Code
Studio Tutorials in an Undergraduate

Programming Course

Guillaume Nel1(B) and Liezel Nel2

1 Department of Information Technology, Central University of Technology,
Free State, Bloemfontein, South Africa

guilnel@cut.ac.za
2 Department of Computer Science and Informatics, University of the Free State,

Bloemfontein, South Africa
nell@ufs.ac.za

Abstract. As part of an instructional strategy to improve undergradu-
ate software development students’ basic understanding of programming
constructs, students completed a selection of Code Studio tutorials dur-
ing the first three weeks of their programming course. Block-based envi-
ronments, such as the one used by the Code Studio tutorials, typically
make it easier for students to learn programming as they can focus on
concepts instead of syntax. Students are, however, less likely to regard
an instructional strategy as meaningful if it presents no motivational
value for them. In this paper, Keller’s ARCS Model is used to organize
the knowledge gained regarding student motivation and the motivational
strategies supported by the Code Studio tutorials. Results obtained from
analysis of numeric and narrative data collected through a paper-based
self-completion questionnaire confirm the high motivation value of the
Code Studio tutorials. The results provide insights regarding students’
perceptions of Code Studio tutorials as a motivational instructional strat-
egy in an undergraduate programming course. Since students perceive
the Code Studio tutorials to have some educational value, further inves-
tigations should be conducted to consider more appropriate and effective
ways to integrate Code Studio tutorials with undergraduate program-
ming curricula.

Keywords: Block-based programming · Motivation · ARCS model
Undergraduate students

1 Introduction

The difficulties experienced by undergraduate Computer Science students in
introductory programming courses have been documented extensively. Some stu-
dents, especially those with little or no prior programming experience, struggle
to form a sufficient understanding of the process of programming and the work-
ing of various control structures [5,25,26]. The amount of theoretical concepts
c© Springer Nature Switzerland AG 2019
S. Kabanda et al. (Eds.): SACLA 2018, CCIS 963, pp. 173–188, 2019.
https://doi.org/10.1007/978-3-030-05813-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05813-5_12&domain=pdf
http://orcid.org/0000-0003-1750-0960
http://orcid.org/0000-0002-6739-9285
https://doi.org/10.1007/978-3-030-05813-5_12

174 G. Nel and L. Nel

and techniques students need to master can also lead to a loss of interest in pro-
gramming [3]. Numerous studies have been conducted to identify instructional
strategies that could be used to improve students’ understanding of basic pro-
gramming concepts [7,9,16,24]. The past decade has seen a renewed focus on
student engagement as a possible strategy to enhance teaching and learning in
higher education [27]. This interest in student engagement is grounded in a sound
body of literature that has already established a connection between students’
involvement in educationally meaningful activities and student success [2,27].
Barkley described student engagement as both “a process and a product” that
results from “the synergistic interaction between motivation and active learn-
ing” [2] (p. 8). It is therefore not enough for students to just be actively involved
in meaningful learning activities. They also need to be motivated to engage
in such activities. In order to sustain motivation, instructional designs should
incorporate strategies to address critical aspects related to attention, relevance,
confidence, and satisfaction (ARCS) [11]. Before any learning can occur, how-
ever, students’ attention must be grabbed. One of the attention-grabbing strate-
gies suggested by Keller is to address students’ lack of interest [13]. In order to
capture software development students’ interest, Kelleher and Pausch suggest a
change in the programming environment used by beginners [10]. Various studies
have been conducted to explore the potential of block-based programming tools
such as ‘Alice’ [28], ‘Scratch’ [4,5,21], ‘MIT App Inventor’ for Android [20] and
‘Hour of Code’ [6,19] as introductory programming environments. The ‘Hour
of Code’ challenge was launched by Code.org in December 2015 as a one-hour
introduction to Computer Science.1 It was originally designed to show that any-
body can learn the basics of programming and to broaden participation in the
field of Computer Science. In addition to the ‘Hour of Code’ event, Code.org has
since developed an extended catalog of tutorials and courses that can be accessed
via their Code Studio website.2 The main aim of the Code Studio tutorials is
to teach additional Computer Science subjects and programming principles to
school pupils up to the age of 18 years.

As part of an instructional strategy to improve undergraduate software devel-
opment students’ basic understanding of programming constructs, students com-
pleted a selection of Code Studio tutorials during the first three weeks of their
programming course. This paper attempts to answer the following two questions:

1. What is the motivational value of Code Studio tutorials for undergraduate
programming students?

2. What are students’ perceptions regarding Code Studio tutorials as a motiva-
tional instructional strategy in an undergraduate programming course?

A short review of relevant literature is in Sect. 2, followed by a discussion of the
research design and method in Sect. 3. Data analysis and results are presented
in Sect. 4. The paper concludes with a discussion of our findings in Sect. 5 and
recommendations for future work in Sect. 6.

1 https://hourofcode.com/za.
2 https://code.org.

https://hourofcode.com/za
https://code.org

Motivational Value of Code Studio Tutorials 175

2 Related Work

2.1 Strategies to Stimulate Motivation in Educational Environments

‘Motivation’ is often regarded as a vague concept, especially by instructors who
want to design learning environments aimed at enhancing students’ motivation.
In addition to a good understanding of what motivation entails, these instruc-
tors also need to consider which motivational strategies are best suited for their
teaching and learning contexts, and how best to incorporate the chosen strategies
as part of their instructional designs. Keller’s ARCS model [12] captures four
critical aspects (dimensions) that should be addressed in order for students to
be motivated to learn: attention, relevance, confidence and satisfaction. He also
provides practical strategies that can be used by instructors to achieve each of
the four requirements. In using the ARCS model for instructional design [11,13],
instructors should first consider strategies to capture students’ interest, stimu-
late inquiry and maintain attention. In order to establish relevance, instructors
should set clear goals that are related to the learning material, match students’
interests, and provide links to students’ prior and future experiences. The sug-
gested confidence strategies should be used to create a learning environment that
sets up positive attitudes and boosts students’ believes that they can succeed
and are in control of their own success. The satisfaction aspect relates students’
continued desire to learn to their satisfaction with the process and results of
the learning experience [11]. Strategies to promote feelings of satisfaction should
describe ways in which intrinsic satisfaction, rewarding outcomes and fair treat-
ment can be promoted. Intrinsic satisfaction is promoted when students feel that
“they have achieved success while studying topics that were personally meaning-
ful to them” [11] (p. 188). Strategies linked to extrinsic reinforcement (e.g. verbal
praise, symbolic rewards and incentives such as marks) can result in rewarding
outcomes for students. Instructors should also incorporate strategies to ensure
that any rewards given are equitable to the amount of work done by students,
and that all students are treated fairly.

2.2 Block-Based Programming Environments as Motivational Tools

In the past decade there has been a steady increase in the use of block-based
programming environments to introduce students to programming [29]. These
environments aim to make it easier for students to learn programming by focus-
ing on concepts instead of syntax [23]. In this style of programming, blocks
(in different shapes and colors) are used to represent the various elements of
a programming language (e.g. a control structure, an operator, a variable or a
function). Drag-and-drop actions are used to assemble the various blocks (like jig-
saw pieces) “according to a certain planned logic to form a computer program”
[21] (p. 1480). Given the popularity of block-based programming environments,
numerous studies have been conducted to explore their use as motivational tools
in programming courses of various levels.

176 G. Nel and L. Nel

Scratch is an open source environment developed by the Lifelong Kinder-
garten Group at the MIT Media Lab.3 It facilitates the development of interac-
tive stories, games, and animations that can be shared with others in the online
Scratch community. Korkmaz conducted a comparative study to evaluate the
effects of Scratch-based game activities on Computer Programming students of
an Engineering faculty [14]. The results indicate high levels of motivation but
also high levels of negative attitudes towards programming in general. In [5],
where Scratch was used in two Computer Science courses for the first three
weeks of a 15-week course, the majority of students found the environment to be
motivating, funny or easy. A small minority, however, described it as ‘difficult’
or ‘normal’. In [20], where pupils used Scratch for seven weeks, measurements of
motivation transition over the 7-week period revealed increased “intrinsic goal
orientation, task value, control of learning beliefs and self-efficacy” (p. 1042)
however no change in extrinsic motivation.

Studies comparing the motivation levels of students using Scratch versus
students using traditional text-based programming environments indicated that

– Scratch students were more motivated [5,21];
– Scratch students found the programming environment less boring [21];
– Scratch students were more creative as well as more inclined to create games

in their own time [21];
– Scratch students were more motivated to continue with Computer Science

studies [4,21];
– The Scratch environment makes it easier for instructors to identify struggling

students [5];
– There are no noteworthy differences in retention rates between Scratch and

text-programming students [5].

De Kereki urges instructors to consider the impact that an additional learning
tool such as Scratch (that is only used for a few weeks at the beginning of a
course) will have on students [5]. Students invest time in familiarizing them-
selves with Scratch, and after a few weeks they have to start anew (without
Scratch) in a completely different environment to develop ‘real’ programs. Such
a strategy might have a negative impact on students’ motivation towards Scratch
and programming in general.

Hour of Code started as a one-hour introduction to Computer Science with
the aims to ‘demystify code’, to show that anybody can learn the basics, and
to broaden participation in the field of Computer Science. Although the official
‘Hour of Code’ event takes place annually in December during ‘Computer Sci-
ence Education Week’, all tutorial materials can be accessed throughout the year.
The biggest difference between the ‘Hour of Code’ environment and Scratch is
that students cannot create their own programs. In the ‘Hour of Code’ tutorials,
students are confronted with a visualized puzzle-based problem (e.g. a character
that needs to move through a maze). Video instructions are used to explain the

3 https://scratch.mit.edu.

https://scratch.mit.edu

Motivational Value of Code Studio Tutorials 177

aim of the lesson and to introduce new command blocks (representing program-
ming constructs). Students must then move the relevant blocks from a toolbox
to a work space and assemble them in the correct order to create an ‘algorithm’
that will solve the given puzzle. Students can test their ‘algorithm at any stage.
During testing, students can observe the character’s movements as each of the
command blocks in their work space are executed. The Code Studio tutorials (an
extension of ‘Hour of Code’) use the same block-based environment as the ‘Hour
of Code’ tutorials. Instructors can use the Code Studio dashboard to build cus-
tom courses for their students by selecting tutorials for different subjects and age
groups. The tutorials feature popular themes such as ‘Star Wars’, ‘Minecraft’, or
Disney’s ‘Frozen’ world. An extensive internet search revealed only a small num-
ber of studies that investigated motivational aspects of ‘Hour of Code’ activities.
The following two of those studies are of particular relevance:

The study of [19] investigated the learning motivation of high school pupils
and first-year university students (non-Computing majors) during ‘Hour of Code’
activities. The self-reported Situational Motivation Scale (SIMS) [8] was used to
measure four motivational components: Intrinsic motivation (doing an activity
because it is interesting or enjoyable); Identified regulation (doing an activity
because of its perceived importance and value); External regulation (complying
with external demands); and Amotivation (the lack of motivation). Both groups
showed high levels of intrinsic and identified regulation. The high school pupils
found the activities more intrinsically motivated as these activities are probably
“better suited to their lower age level” [19] (p. 745). Although both groups
showed low levels of external regulation and amotivation, the university group
showed significantly higher levels of amotivation. Their high levels of amotivation
could be attributed to the fact that they were non-computing students who are
“more oriented in their chosen field of studies and may not be interested much
in programming” [19] (p. 745). Overall, Nikou and Economides regard the ‘Hour
of Code’ tutorial as a valuable example of a well-designed educational activity
because of its high level of intrinsic motivation [19], but suggest that it should
rather be used for students of lower ages.

In [6], 116 undergraduate students studying different majors (including busi-
ness, accounting, criminal justice, allied health sciences, geography, hospitality
tourism management, and psychology) at two universities completed one ‘Hour
of Code’ tutorial. Pre- and post-surveys were used to determine if the tutorial
had any effect on the students’ attitudes towards programming and if it improved
their basic programming skills. The results showed a significant positive impact
on the students’ attitude but no significant changes in their programming skills.
Based on these experiences, Du, Wimmer and Rada recommend that instructors
who want to use the ‘Hour of Code’ tutorials for programming skill development
should “appreciate the learning objectives of the ‘Hour of Code’ and integrate
the tutorials appropriately into their teaching” [6] (p. 65).

178 G. Nel and L. Nel

3 Research Design and Method

We followed a mixed methods approach based on the Framework of Integrated
Methodologies (FraIM) as suggested by Plowright [22]. The context of this paper
was an introductory (first-year) programming course (OPG1) in the Department
of Information Technology at a selected South African University of Technology.
This is a foundation course aimed at introducing students to basic computer
programming principles and constructs through the use of the C# programming
language. The main source of data in the study was the population of the 221
students registered for this course. Students were divided into two class groups
with two 85-min theoretical sessions (in a traditional lecture hall) and two 85-min
practical sessions per week allocated to each group. During the first three weeks
of the semester, four practical sessions (two in week 1 and one each in weeks 2 and
3) were set aside for students to work on Code Studio tutorials. The instructor
set up a class group for the ‘Accelerated Intro to CS Course’ on the Code Studio
dashboard. This is a 20-h course originally designed for use with pupils between
the ages of 10 and 18. It covers core Computer Science and programming con-
cepts and incorporates selected exercises from the Code.org ‘CS Fundamentals’
syllabus. Each student had to personally register on the Code Studio website
and enroll for the custom course set up by the instructor. Although students
were encouraged to complete as many of the tutorials as possible during the four
dedicated practical sessions, they did not receive any ‘rewards’ in the form of
marks for the completion of these tutorials. Students were also not required to
continue working on the tutorials outside of their practical sessions. It should
be noted that the majority of the selected Code Studio tutorials were related
to programming concepts that were much more advanced than those covered in
the first three weeks of the introductory programming course. However, for the
remainder of the semester, the instructor intentionally referred back to specific
Code Studio examples whenever she discussed new C# programming concepts
related to selection, iteration and OO-methods.

In order to collect data on the students’ Code Studio experiences, a survey
strategy was deemed most appropriate to manage this relatively large data source
[22]. As part of this strategy, data was collected by means of ‘asking questions’
in a paper-based self-completion questionnaire containing both closed and open-
ended questions. The questionnaire was distributed at the end of the semester
(week 13) for completion during one of the normal lecture sessions. 148 students
(the sample) voluntarily completed the questionnaire.

The questionnaire consisted of three sections: Sect. 1 was based on the
Reduced Instructional Materials Motivation Survey (RIMMS) [17]. The original
Instructional Materials Motivation Survey (IMMS) [11] is a 36-item situational
measure of participants’ reactions to self-directed instructional materials they
have used. After conducting an extensive validation study of the IMMS, Loor-
bach, Peters, Karreman and Steehouder devised the 12-item RIMMS [17] which
they regarded as a more appropriate post-test tool in their instructional setting
than the IMMS. The 12 RIMMS items consist of 3 items for each of the four
sub-scales of the ARCS model—attention, relevance, confidence, and satisfac-

Motivational Value of Code Studio Tutorials 179

tion. For the RIMMS, responses are recorded on a 5-point Likert scale with the
response scales ranging from 1 (not true) to 5 (very true). Where necessary, the
wording of the RIMMS items we adapted to make it more relevant to the con-
text of our study. Care was, however, taken not to change the substance of the
items as these relate to specific attributes of the ARCS model [11]. Section 2 of
the survey consisted of open-ended questions aimed at soliciting students’ views
regarding (1) what motivated them to continue with the Code Studio tutorials
outside of class; (2) their reasons for abandoning the Code Studio tutorials; and
(3) what they regarded as the main educational value of the Code Studio tuto-
rials. The final section of the questionnaire, Sect. 3, was used to collect basic
demographic data from the participants. Numerical data collected through the
questionnaire was analyzed in ‘SPSS 24’ while narrative data was analyzed in
‘NVivo 11’.

4 Data Analysis and Results

A total of 148 participants completed the survey. There were 105 (70.9%) male
participants and 43 (29.1%) female participants. Although students were not
required to work on the Code Studio tutorials outside of their scheduled practi-
cal sessions, 33 students (22.3%) indicated that they continued to work on the
tutorials in their own time.

4.1 Numeric Data: RIMMS

This sub-section describes the analysis and results of the data collected in Sect. 1
of the questionnaire—the RIMMS questions. Reliability estimates were calcu-
lated to show the internal reliability of the scales and a correlation analysis was
conducted to determine the relationship between the four ARCS categories. The
internal consistency estimate for the overall set of 12 items, based on Cronbach’s
alpha, shows high internal consistency with a satisfactory value of 0.899 for the
total scale: see Table 1. The reliability estimates for the attention, relevance and
satisfaction scales were satisfactory (>0.6). The low value for the confidence
scale (0.591) can be regarded as questionable and might serve as an indication
that the three confidence items did not necessarily measure the same underly-
ing concept in the context of this study. It was, however, decided to retain the
confidence data for further analysis since the recorded value is very close to 0.6.

The calculated inter-factor Pearson’s correlation coefficients indicate a sig-
nificant positive relationship between all the ARCS dimensions: see Table 2. The
highest correlation was between the confidence and satisfaction dimensions (r =
.720) and the lowest between attention and relevance (r = .595). The students’
motivation levels were analyzed for each of the four ARCS dimensions as well as
for each of the individual items in these dimensions: see Table 3.

In the attention dimension, the total mean score was 3.737, indicating pos-
itive motivation levels. Students were positive about how information arrange-
ment (Q1.5; M = 3.811) and quality of the tutorial graphics and sounds (Q1.2;

180 G. Nel and L. Nel

Table 1. RIMMS reliability estimates and descriptive statistics (N = 148)

Scale Cronbach’s alpha Cronbach’s alpha (standard. items) Mean SD # items

Attention .732 .739 3.7365 0.89785 3

Relevance .686 .687 3.7703 0.89582 3

Confidence .591 .592 3.7095 0.82596 3

Satisfaction .808 .808 3.6757 1.03085 3

Overall .899 .900 3.6700 0.78927 12

Table 2. RIMMS correlations between ARCS dimensions

Scale Attention Relevance Confidence Satisfaction

Attention 1 .595** .621** .663**

Relevance .595** 1 .696** .678**

Confidence .621** .696** 1 .720**

Satisfaction .663** .678** .720** 1

**Correlation is significant at the 0.01 level (2-tailed)

M = 3.743) helped to keep their attention. They were, however, less positive
about the role that the variety of the tutorials and characters (Q1.9; M = 3.655)
played in this regard.

In the relevance dimension, the total mean score was 3.770. Students were
most positive about the relation between the tutorials and the concepts they
already knew (Q1.1; M = 3.966). The students were, however, less positive about
the worthiness (Q1.7; M = 3.676) and usefulness of these tutorials in their pro-
gramming course (Q1.10; M = 3669).

The total mean score of the confidence dimension was 3.710. By doing the
tutorials, students were positive that they could learn the related programming
concepts (Q1.3; M = 3.764) and were mostly confident that they would be able
to pass a test on it (Q1.8; M = 3.709). They were slightly less positive about how
the organization of the tutorials helped them to learn the related programming
concepts (Q1.11; M = 3.655).

For the satisfaction dimension, the total mean score was 3.676—the lowest
of the four dimensions. Students were most positive about how their enjoyment
of the tutorials fueled their interest in programming (Q1.4; M = 3.750). Overall,
they enjoyed doing the well-designed tutorials (Q1.6; M = 5.61 and Q1.12; M =
3.716).

4.2 Narrative Data

This sub-section describes the analysis and results of the narrative data collected
in Sect. 2 of the questionnaire through mostly open-ended questions. Inductive
analysis [18] was used to make sense of the students’ responses. This analysis
strategy was chosen as it allowed for the emergence of categories from the data
itself. For each question the individual responses (or response segments) were

Motivational Value of Code Studio Tutorials 181

Table 3. RIMMS motivation level per ARCS dimension (N = 148)

Dimension item Mean SD

Attention 3.737 .8979

Q1.2: The quality of the tutorial graphics and sounds
helped to hold my attention

3.743 1.2185

Q1.5: The way the information is arranged for each tutorial
helped keep my attention

3.811 1.0456

Q1.9: The variety of the tutorials and characters helped
keep my attention

3.655 1.0672

Relevance 3.770 .8958

Q1.1: It is clear to me how the tutorials are related to the
programming concepts I already know

3.966 1.1394

Q1.7: The way in which the tutorials were presented convey
the impression that the related programming concepts is
worth knowing

3.676 1.1618

Q1.10: The programming concepts covered by the tutorials
will be useful to me in OPG1

3.669 1.1272

Confidence 3.710 .8260

Q1.3: As I worked on the tutorials, I was confident that I
could learn the programming concepts

3.764 1.0777

Q1.8: After working on the tutorials for a while, I was
confident that I would be able to pass a test on it

3.709 1.1737

Q1.11: The good organization of the tutorials helped me be
confident that I would learn the related programming
concepts

3.655 1.0862

Satisfaction 3.676 1.0309

Q1.4: I enjoyed the tutorials so much that I would like to
know more about programming

3.750 1.2392

Q1.6: I really enjoyed doing the tutorials 3.561 1.2078

Q1.12: It was a pleasure to do such well-designed tutorials 3.716 1.1898

coded based on the main aspect it related to. The resulting initial codes were then
compared for duplication and overlapping. Similar codes were grouped together
and, where necessary, unrelated codes were re-coded. Refining of the coding
system continued until the remaining codes could be grouped into a small set
of categories. Responses that were deemed irrelevant to the asked question were
omitted from the analysis.

Motivation to Continue. Since participation in and completion of the Code
Studio tutorials were not compulsory, students were asked to indicate what moti-
vated them to continue with these tutorials. 83 students (56.1%) responded to
this question. Inductive analysis led to the identification of 96 motivational rea-

182 G. Nel and L. Nel

sons that were grouped into nine categories. Table 4 provides a summary of
these motivational categories together with the number of response segments
that relates to each category.

Table 4. RIMMS motivational categories for continuation

Category Count

Learn/improve skills 20

Relate to subject content 19

Fun 16

Engaging 9

Situational interest 9

Challenge 8

Achievement 7

Subjective norm 6

Ease of use 2

The main motivational aspect identified relates to the way in which the Code
Studio tutorials helped students to learn or improve various skills such as pro-
gramming skills and logical thinking skills. Students were also motivated as they
could see the relation between the tutorials and the OPG1 subject content:
“This can be useful to me in OPG1” and “I learn more skills that I can apply
on OPG1”. The ‘fun’ aspect also motivated students as they regarded the tuto-
rials as entertaining, enjoyable and “a game”. Three students in particular com-
mented on how the tutorials helped “to make programming fun”. While some
students were motivated by the engagement provided by the tutorials (“inter-
esting”, “keeps me focused”, “keeps me motivated”, “is addictive”), others were
motivated by the challenge presented by the tutorials (“increasing level of dif-
ficulty”, “challenging stages”, “I had to think outside the box”). As students
became “curious” and “intrigued”, the tutorials sparked situational interest as
in [15], since they wanted to “lean more about programming”. One student, who
had no prior programming knowledge, confirmed that the tutorials “helped to
get started with programming” while another student explained how the tuto-
rials helped to give him a better idea of the skills required to be a successful
programmer. Some students were only motivated by achievement. These stu-
dents said that “getting a trophy was the best feeling”. They were driven by
the prospect of “progress to higher levels” and “wanted to finish all the tutori-
als”. On the other hand there were students who noted that they were driven
by subjective norm (i.e. a perceived social pressure [1]) to complete the tutori-
als. These students regarded their influencers as “the OPG1 lecturer”, “all the
famous people who kept on talking about how exiting programming is” (in the
Code Studio introductory video) or even their “friends” and “fellow classmates”.

Motivational Value of Code Studio Tutorials 183

Two students remarked that they were motivated by the “ease of use” of the
Code Studio interface as it was “very intuitive”.

Reasons for Stopping. Although the students were scheduled to continue
with the Code Studio tutorials until the end of the third week of the semester, 83
students (56.1%) indicated that they stopped doing the tutorials before the time.
Inductive analysis of the response segments revealed 83 reasons for stopping.
These reasons were grouped into seven categories: see Table 5.

Table 5. RIMMS motivational categories for stopping

Category Count

Needed time for other subjects 25

Needed time for OPG1 21

Lost interest 12

No challenge 8

Unrelated to subject 7

Too difficult 6

Learned enough 4

As the semester progressed and “workloads increased”, most of the students
who responded to this question (54.8%) mentioned that the time they were
spending on the non-compulsory Code Studio tutorials could be put to better
use. They either needed more time to work on their other subjects or they used
the scheduled Code Studio sessions to “catch up on OPG1 practical assign-
ments”. Students explained that they were “struggling with the OPG1 work” or
“falling behind” and needed to “do additional C# exercises” or “attend extra
classes” in order to improve their OPG1 marks. Some students lost interest in the
tutorials since they were either “no longer motivated to continue”, or felt that
the exercises were becoming “boring” as “some of the things keep repeating”.
While some students stopped doing the tutorials because they were “becoming
too easy” or “no longer presented a challenge”, others stopped because they
became “too difficult” or “complicated” for them. The relations between OPG1
and the Code Studio tutorials were also no longer as obvious for some students.
They could either not see how the tutorials helped with programming or saw
no improvement in their programming skills and OPG1 performance. A small
number of students indicated that they stopped doing the tutorials because they
had “learned enough”.

Educational Value. In the third open-ended question of Sect. 2, students were
asked to give their views on the educational value of the Code Studio tutorials.

184 G. Nel and L. Nel

Table 6. RIMMS motivational categories for educational value

Category Count

Related to subject content 65

Improve logical thinking/problem solving skills 39

Easy/fun way to learn 17

Unsure 3

Analysis of the 115 responses (from 77.7% of students) revealed 124 response
segments that were ultimately grouped into four categories: see Table 6.

Although some of the students were unsure (3; 2.6%), the majority of the
responding students (65; 56.5%) attributed the educational value of the Code
Studio tutorials to the relation it had with the OPG1 subject content. Some of
these students made specific mention of the role the tutorials played in improv-
ing their “overall understanding of programming” as well as their understand-
ing of “selection structures”, “repetition structures” and “methods”. 39 of the
responding students (33.9%) linked the educational value of these tutorials to
their ability to improve “logical thinking” and/or “problem solving skills”. For
others it was just a “fun” and “easy way to learning programming”.

5 Discussion

The numeric data indicate that students’ overall motivation level when doing
the Code Studio tutorials was high. There were also strong positive correlations
between all four of the ARCS dimensions showing that the motivational elements
of each dimensions played an important role in influencing students’ overall
motivation. High motivation levels were reported for the attention, relevance and
confidence dimensions with a slightly lower motivation level for the satisfaction
dimension.

From the narrative data it became apparent that the Code Studio tutori-
als managed to grab the students’ attention as the entertaining environment
captured their interest and added a fun element to programming. It also man-
aged to stimulate inquiry as they were curious and wanted to learn more about
programming. The ‘addictive’ tutorials helped to keep them focused and main-
tained their attention. The tutorials also produced relevance as students could
see the relation between the Code Studio tutorials and the programming con-
cepts they were studying in OPG1. The tutorials also matched their personal
goals to learn more about programming. In addition, the tutorials also helped
students to improve their programming and logical thinking skills. Motive stim-
ulation was provided through the ‘social pressure’ students experienced from
various individuals (either role models or fellow students). Through completion
of the Code Studio tutorials, students were able to build confidence as the intu-
itive and easy to use interface increased their believe that they could successfully
complete the given tasks. The tutorials also helped students to develop a sense of

Motivational Value of Code Studio Tutorials 185

personal responsibility as they were required to work at their own pace and could
measure their own progress. The challenging tasks that gradually increased in
level of difficulty also provided students with numerous opportunities to succeed.
Finally, the Code Studio tutorials also managed to generate satisfaction through
the provision of intrinsic satisfaction and extrinsic rewards. Students were able
to achieve a desirable level of success while learning more about programming
concepts—a topic that was personally meaningful to them. The students wanted
to progress to higher levels and finish all the exercises. They were also motivated
by the ‘trophies’ they could earn for correctly completing the tutorials. Since
students’ solution attempts to each of the Code Studio tutorial exercises were
evaluated by the system (and not by a human assessor), the assumption can be
made that all attempts were evaluated according to the same standards—i.e.:
fair treatment of all students.

Despite the initially high motivation levels reported for the Code Studio tuto-
rials, students’ satisfaction levels did not remain high throughout. Due to increas-
ing workloads in OPG1 and their other subjects, students no longer regarded the
intrinsic and extrinsic rewards provided by the Code Studio tutorials as equi-
table to the amount of work they had to put in to complete the tutorials—see
[11] for comparison. Some of the students could no longer see the relevance of
the tutorials to the OPG1 content. The decline in relevance is not surprising as
the more advanced Code Studio tutorials focused on concepts such as repetition
structures and OO-methods that would only be covered later in the OPG1 syl-
labus. Levels of confidence also declined as the tutorial tasks became either too
difficult or too easy. Attention levels declined as students became bored with the
elements that kept repeating in the tutorials. The drops in confidence and atten-
tion could be related to Nikou and Economides’ observation that these ‘Hour of
Code’ type tutorials are better suited for students of lower age levels [19]. Given
Korkmaz’s warning about the possible negative impact that a move between
programming environments (e.g. from Scratch to text-based) could have on stu-
dents’ motivation [14], it should be noted, however, that none of the students in
this study reported any negative attitudes towards programming in general. One
significant difference between the ‘Hour of Code’/Code Studio and the Scratch
environments is that students do not have to invest a significant amount of time
to familiarize themselves with the ‘Hour of Code’ environment. Students are,
therefore, much less likely to experience problems in moving over to a com-
pletely different environment (like Microsoft Visual Studio) after first spending
a few weeks in the ‘Hour of Code’ environment. It should also be noted that
the students in this study already started working in Microsoft Visual Studio
environment in the second week of the semester (after only one week of Code
Studio tutorials).

Another aspect of this study, which should not be overlooked, is the fact
that students only completed the questionnaire at the end of the semester, 10
weeks after conclusion of the Code Studio activities. At that stage their normal
C# lectures and practicals already covered most of the programming constructs
that were included in the selected Code Studio tutorials. Students were therefore

186 G. Nel and L. Nel

in a much better position to evaluate the educational value of the Code Studio
tutorials with regard to the overall OPG1 course syllabus. They could see the
relation of the Code Studio tutorials to the OPG1 course content, the opportu-
nities it provided to students to improve their programming and logical thinking
skills, and the way in which the entertaining environment managed to capture
their interest.

While the students worked on the Code Studio tutorials, we observed that
students tended to follow one of three approaches to solve the puzzle problems.
In the first approach, students used a process that included detailed planning and
analysis of the whole problem before they started to assemble their command
blocks in the work space. The second approach can be linked to ‘chunking’
where students solved the problem in parts with testing conducted after each
iteration. The third approach can be described as trial-and-error. The students
who followed this approach would randomly place command blocks in the work
space and then make changes based on the test execution results.

6 Conclusions and Future Work

The main aims of this paper were (1) to determine the motivational value of
Code.org’s Code Studio tutorials for undergraduate programming students, and
(2) to gain insights into these students’ perceptions of the Code Studio tutorials
as a motivational instructional strategy. In this regard, Keller’s ARCS Model
[11–13] provided a typology to organize the knowledge gained regarding stu-
dent motivation and the motivational strategies supported by the Code Studio
tutorials. Initially, a change in programming environment was identified as a
possible attention-grabbing strategy to capture students’ interest in program-
ming. Analysis of the numeric data confirmed the high motivational value of the
Code Studio tutorials for the targeted group of students. Evidence gathered from
the richer narrative data was used to illustrate how integration of the selected
Code Studio tutorials served as a motivational instructional strategy. Analysis
of the gathered student perceptions also revealed that this particular Code Stu-
dio integration attempt was successful in incorporating the following of Keller’s
suggested motivational strategies [11,13]:

– Strategies to generate and sustain attention: Capture interest, stimulate
inquiry and maintain attention.

– Strategies to establish and support relevance: Relate to goals, match interests
and tie to experiences.

– Strategies to build confidence: Explain success expectations, provide success
opportunities and develop personal responsibility.

– Strategies to promote feelings of satisfaction: Provide intrinsic reinforcement,
provide rewarding outcomes and fair treatment.

It can therefore be concluded that this Code Studio integration attempt was suc-
cessful in achieving each of Keller’s four main requirements for motivation: atten-
tion, relevance, confidence, and satisfaction [13]. Given the variety of strategies

Motivational Value of Code Studio Tutorials 187

followed by students in solving the Code Studio exercises, future research could
investigate the influence that this type of block-based programming environment
could have on students’ development processes in a conventional development
environment (like MS Visual Studio). The real learning value of the Code Stu-
dio tutorials on students’ understanding of basic programming constructs such
as selection, iteration and methods should also be investigated. Since numerous
students pointed out the game-like feel created by the Code Studio environment,
the influence of gamification on long-time motivation in Code Studio tutorials
could also be investigated.

As noted by Du (et al.), instructors who want to use ‘Hour of Code’ type
tutorials for programming skill development, should “appreciate the learning
objectives of the ‘Hour of Code’ and integrate the tutorials appropriately into
their teaching” [6] (p. 65). Based on the insights gained from this study, a more
detailed investigation could be conducted to consider more appropriate and effec-
tive ways to integrate Code Studio tutorials with undergraduate programming
curricula.

References

1. Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process.
50(2), 17–211 (1991)

2. Barkley, E.F.: Student Engagement Techniques: A Handbook for College Faculty.
Jossey-Bass, San Francisco (2010)

3. Bennedsen, J., Caspersen, M.E.: Exposing the programming process. In: Benned-
sen, J., Caspersen, M.E., Kölling, M. (eds.) Reflections on the Teaching of Pro-
gramming: Methods and Implementations. LNCS, vol. 4821, pp. 6–16. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77934-6 2

4. Coravu, L., Marian, M., Ganea, E.: Scratch and recreational coding for kids. In:
14th RoEduNet International Conference – Networking in Education and Research
(RoEduNet NER), pp. 85–89. IEEE (2015)

5. De Kereki, I.F.: Scratch: applications in computer science 1. In: 38th Annual Fron-
tiers in Education Conference Proceedings, pp. 7–11. IEEE (2008)

6. Du, J., Wimmer, H., Rada, R.: ‘Hour of Code’: can it change students’ attitudes
toward programming? J. Inf. Technol. Educ. Innov. Pract. 15, 52–73 (2016)

7. Eranki, K.L.N., Moudgalya, K.M.: Program slicing technique: a novel approach to
improve programming skills in novice learners. In: Proceedings of the 17th Annual
Conference on Information Technology Education (SIGITE 2016), pp. 160–165.
ACM (2016)

8. Guay, F., Vallerand, R.J., Blanchard, C.: On the assessment of situational intrinsic
and extrinsic motivation: the situational motivation scale (SIMS). Motiv. Emot.
24(3), 175–213 (2000)

9. Guzdial, M.: Programming environments for novices. In: Fincher, S., Petre, M.
(eds.) Computer Science Education Research, pp. 127–154. Taylor & Francis (2004)

10. Kelleher, C., Pausch, R.: Lowering the barriers to programming: a taxonomy of
programming environments and languages for novice programmers. ACM Comput.
Surv. 37(2), 83–137 (2005)

11. Keller, J.M.: Motivational Design for Learning and Performance: The ARCS
Model Approach. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-
4419-1250-3

https://doi.org/10.1007/978-3-540-77934-6_2
https://doi.org/10.1007/978-1-4419-1250-3
https://doi.org/10.1007/978-1-4419-1250-3

188 G. Nel and L. Nel

12. Keller, J.M.: Motivational design of instruction. In: Reigeluth, C.M. (ed.)
Instructional-Design Theories and Models: An Overview of their Current Status,
pp. 383–433. Lawrence Earlbaum Associates (1983)

13. Keller, J.M.: Strategies for stimulating the motivation to learn. Perform. Instr.
26(8), 1–7 (1987)

14. Korkmaz, O.: The effect of scratch- and lego mindstorms Ev3-based program-
ming activities on academic achievement, problem-solving skills and logical-
mathematical thinking skills of students. Malays. Online J. Educ. Sci. 4(3), 73–88
(2016)

15. Krapp, A., Hidi, S., Renninger, K.A.: Interest, Learning and Development. In:
Renninger, A., Hidi, S., Krapp, A. (eds.) The Role of Interest in Learning and
Development, pp. 3–25. Lawrence Erlbaum Associates (1992)

16. Lahtinen, E., Ala-Mutka, K., Järvinen, H.: A study of the difficulties of novice
programmers. In: Proceedings of the 10th Annual SIGCSE Conference on Innova-
tion and Technology in Computer Science Education (ITiCSE 2005) (2005). ACM
SIGCSE Bull. 37(3), 14–18 (2005)

17. Loorbach, N., Peters, O., Karreman, J., Steehouder, M.: Validation of the instruc-
tional materials motivation survey (IMMS) in a self-directed instructional setting
aimed at working with technology. Br. J. Educ. Technol. 46(1), 204–218 (2015)

18. McMillan, J.H., Schumacher, S.: Research in Education: Evidence-Based Inquiry,
6th edn. Pearson Education, London (2006)

19. Nikou, S.A., Economides, A.A.: Measuring student motivation during ‘The Hour of
Code’ activities. In: Proceedings of the 14th International Conference on Advanced
Learning Technologies (ICALT), pp. 744–745. IEEE (2014)

20. Nikou, S.A., Economides, A.A.: Transition in student motivation during a Scratch
and an App Inventor course. In: Proceedings of the Global Engineering Education
Conference (EDUCON), pp. 1042–1045. IEEE (2014)

21. Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., Lahmine, S.: Learning basic
programming concepts by creating games with scratch programming environment.
Procedia Soc. Behav. Sci. 191, 1479–1482 (2015)

22. Plowright, D.: Using Mixed Methods: Frameworks for an Integrated Methodology.
SAGE, Thousand Oaks (2011)

23. Price, T.W., Barnes, T.: Position paper: block-based programming should offer
intelligent support for learners. In: Proceedings of the Blocks and Beyond Work-
shop (B&B), pp. 65–68. IEEE (2017)

24. Sentance, S., Csizmadia, A.: Computing in the curriculum: challenges and strate-
gies from a teacher’s perspective. Educ. Inf. Technol. 22(2), 469–495 (2017)

25. Soloway, E., Bonar, J., Ehrlich, K.: Cognitive strategies and looping constructs: an
empirical study. Commun. ACM 26(11), 853–860 (1983)

26. Spohrer, J.C., Soloway, E.: Putting it all together is hard for novice program-
mers. In: Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, pp. 728–735. IEEE (1985)

27. Trowler, V.: Student Engagement Literature Review. Higher Education Academy,
York (2010)

28. Wang, T.C., Mei, W.H., Lin, S.L., Chiu, S.K., Lin, J.M.C.: Teaching programming
concepts to high school students with Alice. In: Proceedings of the 39th Frontiers
in Education Conference (FIE 2009), pp. 955–960. IEEE (2009)

29. Weintrop, D., Wilensky, U.: To block or not to block, that is the question: students’
perceptions of blocks-based programming. In: Proceedings of the 14th International
Conference on Interaction Design and Children, pp. 199–208. ACM (2015)

