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Zero Carbon Emissions in Buildings:
A Systems Thinking Modeling Approach

Michael G. Oladokun'-? and Fidelis A. Emuze'
Abstract

Empirical evidence suggests that many variables affect energy use and carbon emissions in buildings. The var-
iables interrelate in a sophisticated manner and constitute a socio-technical problem. While previous observa-
tions about the interrelationships among the factors stem from building physics and numerical simulations,
gaps exist in the articulation of the socio-technical issues. This article argues for a paradigm shift in the modeling
approach through the development of a systems thinking model (STM) for evaluating carbon emissions in build-
ings. The methodology for this research involved using the literature and knowledge elicitation of stakeholders in
the housing sector to build the initial systems thinking model (iSTM), especially where the relationships could not
be established empirically. The final systems thinking model (fSTM) was developed by subjecting the iSTM to
experts’ review based on a focus group approach by way of knowledge elicitation of the experts. The findings
indicate a population of causal variables influencing carbon emissions in dwellings and show the complexity in-
volved among the variables. The study concludes that the approach used in building the model has the capability
of improving the accuracy and credibility of the developed STM for evaluating carbon emissions for zero carbon

homes.
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Infroduction

Over the years, the housing sector has
been at the epicenter of the sustain-
ability agenda for many nations.' This
is due to the enormous amount of
energy use and carbon emissions that
are attributed to this sector. According
to the report from the United Nations
Department of Economic and Social
Affairs (UNDESA), about one-third
of carbon emissions from all sectors
is attributable to the housing sector.®
Considering the devastating effects
of human-caused climate change,

the need is great to find means of
ameliorating energy use and carbon
emissions in dwellings.

This notion is in line with the United
Nations conventions on climate
change in 1992, 1997, 2009, and 2015.
South Africa is one of the signatories
to the agreements reached during
these conventions, and through state
law, has subsequently cut down on its
generation of carbon emissions.” For
example, South Africa has set ambi-
tious targets to cut carbon emissions
by 34 percent by 2020 from business as

usual 1994 emissions, and by 42 per-
cent by 2025 through the “intended
nationally determined contribution”
plan.* Reduction of the energy con-
sumption patterns in dwellings is one
of the targets for cutting total emis-
sions. Many comprehensive studies
have been conducted within the
South African energy sector as dem-
onstrated by the works of Beute,
Energy Research Centre (ERC),’
Arndt, Davies, and Thurlow,” Alton
et al,® and Senatla,” among others.
However, there is limited evidence
to suggest that the literature is
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keeping pace with the changes in the
domain of energy studies and the
attendant carbon emissions within
the housing sector in South Africa.

Quite a number of studies have es-
tablished that there are multiple fac-
tors affecting energy consumption
and, invariably, carbon emissions
in dwellings, as documented in the
works of Motawa and Oladokun,'®
Gram-Hanssen,'! Tweed et al,'?
Chartered Institution of Building
Services Engineers (CIBSE),"® Abra-
hamse and Steg,'* Kelly,"”” Yun and
Steemers,'© Isaacs et al.,'” and Hitch-
cock,'® among others. Some of those
variables according to Hitchcock are
dwelling size, stock of appliances,
dwelling’s internal temperature, hot
water usage, materials, appliance use,
occupants’ thermal comfort, occu-
pants’ behavior, and heating system,
among others.'® Motawa and Olado-
kun'® aptly mapped these variables
into three systems consisting of the
dwelling system, occupants’ system,
and environmental system. Motawa
and Oladokun'? also argued that the
variables in each of the systems in-
teract and interrelate in a sophisticated
manner, which signifies the need for a
suitable approach capable of capturing
this kind of complexity.

The majority of energy studies in the
housing sector relating to modeling
have utilized approaches that involve
the building physics and numerical
simulations and consider the amount
of hard data collected on individual
dwellings as demonstrated in the
studies of Mhalas et al.,*° Jenkins,*'
Fung,22 and Johnston,? among
others. These approaches are quan-
titative and deterministic,' while real-
world modeling with this kind of
system involves capturing both the
quantitative and qualitative variables.
Often, however, the qualitative vari-
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ables lack empirical data to support
the relationships among the variables,
and this has been reported to pose
problems to studies within this re-
search area. As such, this article re-
ports the development of a causal
model of variables influencing carbon
emissions in dwellings using the ex-
perts’ knowledge elicitation approach
within the systems thinking modeling
paradigm.

Materials and Methods

The study reported here adopted the
systems thinking method (STM) as-
sociated with the system dynamics
(SD) modeling approach. The STM
ensures that complex interactions
among variables in a model are cap-
tured in an integrated manner. This
method is considered adequate for
better understanding of the cause and
effect mechanism that enables in-
sights into the behavior of the model.
The philosophical foundation of the
SD approach stems from a pragmatic
worldview of research®® and is de-
signed to ensure that two or more
research strategies are employed to
solve the research problem posed by
the study. The STM of the SD mod-
eling technique employs the experts’
knowledge elicitation method under
the participatory SD as follows.

The Systems Thinking Approach

According to Sterman,”> the STM is
capable of analyzing and drawing
insights from the dynamics of com-
plex systems. It is, indeed, one of the
approaches and tools capable of
modeling complex systems qualita-
tively.”>*” Historically, the STM is
rooted in the SD approach as pro-
pounded by Jay W. Forrester in the
early 1960s.>® The technique com-
bines engineering and management.
That is, by drawing from the con-
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cepts of control engineering and
cybernetics in combination with
management theory, the approach
provides a formidable technique ca-
pable of analyzing the behavior of
complex systems. One of the critical
features of the STM is the causal
feedback structure, which involves
the conceptualization of the system
under study through use of feedback
loops to capture the interrelation-
ships of variables in the model.”
These feedback loops are regarded as
dynamic hypotheses that produce
insights about the behavior of a sys-
tem. The insights produced from the
feedback loops can then be used to
resolve the policy problems within
the research domain.*

Over the years, the STM has been
utilized to resolve several complex
problems in many subjects, including
those in the housing sector.”® For ex-
ample, Forrester’s renowned work,
Urban Dynamics,28 was the first to use
the approach to address the problem
of urban growth and decay within the
housing sector. Since then, this ap-
proach has proved to be an essential
methodology and tool with applica-
tion to research related to housing
problems.3 ! For instance, the STM has
been applied in housing energy and
environmental studies,>* > housing
energy efficiency research,® and
housing energy policy evaluation.’”>*

Modeling using STM can be realized
in many ways. In one method, known
as the participatory technique, stake-
holders are involved in various stages
of the modeling process.’® This, by
implication, means that the mental
knowledge elicitation of those in-
volved in the modeling exercise is
conducted through focus groups that
use the group model-building tech-
nique as elucidated by Forrester.”
Through this approach, the model can
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be developed to identify the model
variables, the model boundary, the
causal loops structure, and the model
parameter values estimation for those
that are not available empirically.
Based on this approach, a produc-
tive dynamic hypothesis can be for-
mulated diagrammatically by using
the already-structured scripts for the
mental knowledge elicitation exercise.

Experts’ Knowledge Elicitation

As previously posited, experts’
knowledge elicitation falls within
the purview of participatory STM,
hence, its application in this reported
research. This study explored the dy-
namic interrelationships among the
trio of the dwellings, occupants, and
environmental systems in an attempt
to capture the causal structure of dif-
ferent variables regulating energy and
carbon emissions in buildings. It is
important to note that while the in-
terrelationships among those variables
can be developed and verified empir-
ically for some of the variables incor-
porated within the model according to
building physics and numerical sim-
ulations, some of them have to evolve
from the stakeholders and experts
based on their experiences.

The experts’ knowledge elicitation
approach builds upon earlier studies
of Macmillan et al.*° and Macmillan,
Davies, and Bobrova,*! both of which
used participatory STM. In those
studies, a wide range of stakeholders
and experts were used in the devel-
opment of comprehensive causal
feedback loops.

In this study, experts and stakehold-
ers were used to develop the causal
model of carbon emissions in South
African homes. The causal maps were
first developed by using the iSTM
involving the content analysis of ex-
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Figure 1. The systems thinking method used for the study

tant literature on the subject and the
mental knowledge elicitation of the
relevant stakeholders. Following on,
12 experts, purposively drawn from
industry (four), academia and re-
search institutes (four), and govern-
ment agencies (four), took part in
the mental knowledge elicitation pro-
cess regarding the already-developed
causal diagrams of variables affect-
ing carbon emissions in dwellings
through the final system thinking
method (fSTM). Specifically, the iSTM
was subjected to experts’ review and
validation in order to produce the
final causal loop diagrams through
the fSTM.

The approach followed is represented
using a flowchart diagram as shown
in Figure 1. In subjecting the initial
causal model to experts’ review, the
links were examined by the experts.
For each link involving two variables
at a time, the experts examined the
relationship between the two vari-
ables. If the experts determined that
there is a relationship, then the
strength of that relationship was
further described as strong, reason-
able, or weak. Additionally, the di-

rection of the relationship between
variables, as presented by the re-
searcher, was examined. The experts
indicated that they agreed or dis-
agreed with the direction of the re-
lationship proposed and also whether
or not there were links not captured.
To conclude the exercise, the experts
were asked to suggest other variables
that require inclusion in the model.
Further details of this approach have
been elaborated in Oladokun and
Aigbavboa.>

Results and Discussion

Based on the approach used for the
research in this study, the following
are the findings in the form model
conceptualization involving the main
variables influencing carbon emis-
sions in dwellings.

Model Conceptualization

The model conceptualizing the
variables influencing carbon emis-
sions in dwellings was developed
using a modular system. As such, the
high-level model shown in Figure 2
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Figure 2. The high-level model showing the sub-models

disaggregates the dynamics of energy
and carbon emissions into six dif-
ferent sub-models. The complexity of
the interdependencies and interrela-
tionships among the sub-models is
illustrated in Figure 2. The sub-models
are issues that are based on the in-
teraction of the dwellings, occupants,
and environmental systems, and the
sub-models involve dwelling internal
heat, occupants’ thermal comfort,
population and household, climatic-
economic-energy efficiency interac-
tion, household energy consumption,
and household carbon emissions.

The Main Causal Diagram

This study developed a population
of variables influencing carbon emis-
sions in dwellings, which was verified

and validated based on knowledge
elicitation from a focus group. One
finding was that all experts who par-
ticipated in the focus group attested to
the fact that there are many vari-
ables affecting carbon emissions in
dwellings. The participants based their
arguments on the fact that the vari-
ables identified have complex inter-
dependencies and interrelationships.

The causal model was developed
based on different sub-models before
being combined into the single ho-
listic causal model shown in Figure 3.
A causal tree (see Figure 4) was
generated from the causal model
shown in Figure 3 for occupants’
thermal comfort as an example of the
analysis that can be performed from
the model.
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In order to be in a position to ade-
quately read the causal model pre-
sented in Figure 3, the causal loop
diagram was developed based on
different variables already identified
for the study. The diagram indicates
how the variables in the model are
related to one another. By way of
annotation, two variables are se-
lected at a time, and the relation-
ship between them is based on the
arrow connecting them. The arrows
are polarized with a plus (+) sign
depicting a positive relationship,
which by implication means that “an
increase in arrow tail variable would
cause an increase in arrowhead
variable and vice-versa, whereas a
minus (—) sign depicting a negative
relationship, which means an in-
crease in arrow tail variable would
cause a decrease in arrowhead var-
iable and vice-versa” according to
Sterman. (p. 138)%

It is equally significant to note that
the feedback loops (Figure 3) create
the kind of complexity and dynamics
in the system that was the focus of
this research. Figure 3 shows both
positive and negative loops with plus
(+) or minus (—) signs inside a cir-
cular arrow; the former depicts a
positive feedback loop, or what is
known as a reinforcing loop, and the
latter depicts a negative feedback
loop, or what is known as balancing
loop. The positive loop means that
there will be an indefinite growth of
decay within the system, whereas the
negative feedback loop tends to bal-
ance or stabilize the system over
time. In order to achieve the polarity
of the loops within the model, the
negative signs on the variables within
the model are counted. An even
number of the total negative signs
gives a positive or reinforcing loop,
whereas an odd number of the total
negative signs gives the negative or
balancing loops.
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Figure 3. Causal model of variables influencing carbon emissions in dwellings

Conclusions that goes beyond building physicsand ~ the theory that will eventually emanate
numerical simulations by incorporat-  from the causal diagrams regarding

In the midst of calls for an approach  ing the variables that are difficult to  interdependencies and interrelation-

capable of modeling the dynamics of =~ model quantitatively. Consequently,  ships of variables influencing carbon

carbon emissions within the housing  the value and implications of the study ~ emissions in dwellings.

sector, especially by capturing both  for research and policy purposes are

the quantitative and qualitative var-  profound. The experts’ knowledge  This study is, therefore, capable of

iables, the research reported in this elicitation technique within the SD  spurring research activities within this

article is a step forward. This study ~ approach has the capability of im-  research domain. Also, in a real-world

demonstrates a modeling approach  proving the accuracy and credibility of  situation, the causal tree shown in
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Figure 4 demonstrates that this study
is capable of being used to make in-
formed decisions regarding policy
interventions about energy and car-
bon emissions in dwellings in the
South African housing sector. This
will further aid a clear understand-
ing of the variables influencing
energy consumption and carbon
emissions within the housing sector
by relevant stakeholders. Further
work for the research would involve
translating the developed causal
model to a simulation model to de-
velop algorithms for the relation-
ships among the model variables in
readiness for simulation. Afterward,
the output of the simulation from
the model would be presented, and
validation of the model could be
conducted appropriately to build
confidence in the output.
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