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Comparative analyses and 
structural insights of the novel 
cytochrome P450 fusion protein 
family CYP5619 in Oomycetes
Hans Denis Bamal1, Wanping Chen   2, Samson Sitheni Mashele1, David R. Nelson3,  
Abidemi Paul Kappo4, Rebamang Anthony Mosa4, Jae-Hyuk Yu5, Jack A. Tuszynski6,7 & 
Khajamohiddin Syed4

Phylogenetic and structural analysis of P450 proteins fused to peroxidase/dioxygenase has not 
been reported yet. We present phylogenetic and in silico structural analysis of the novel P450 fusion 
family CYP5619 from the deadliest fish pathogenic oomycete, Saprolegnia diclina. Data-mining and 
annotation of CYP5619 members revealed their unique presence in oomycetes. CYP5619 members 
have the highest number of conserved amino acids among eukaryotic P450s. The highest number 
of conserved amino acids (78%) occurred in the peroxidase/dioxygenase domain compared to the 
P450 domain (22%). In silico structural analysis using a high-quality CYP5619A1 model revealed 
that CYP5619A1 has characteristic P450 structural motifs including EXXR and CXG. However, the 
heme-binding domain (CXG) in CYP5619 members was found to be highly degenerated. The in silico 
substrate binding pattern revealed that CYP5619A1 have a high affinity to medium chain fatty acids. 
Interestingly, the controlling agent of S. diclina malachite green was predicted to have the highest 
binding affinity, along with linoleic acid. However, unlike fatty acids, none of the active site amino 
acids formed hydrogen bonds with malachite green. The study’s results will pave the way for assessing 
CYP5619A1’s role in S. diclina physiology, including the nature of malachite green binding.

Cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins, have been in the spotlight for the last 
five decades because of their critical role in organisms’ primary and secondary metabolism and their biotechno-
logical applications1, including their role as drug targets against pathogens2,3. P450s are found in species belong-
ing to different biological domains4, as well as in non-living entities such as viruses5. P450s are known to perform 
diverse catalytic reactions in a stereo- and regio-specific manner, apart from their primary mono-oxygenation 
reaction6,7.

P450s require two electrons to perform their enzymatic reactions: binding (first electron) and then reductive 
activation (second electron) of dioxygen8. These electrons are supplied by P450 redox proteins, which obtain elec-
trons from co-factors such as NADPH or NADH9. Some P450s are found to be fused to their redox proteins and 
also to other proteins10–12. The first P450 fusion protein was reported from the bacterium Bacillius megaterium 
and named CYP102A1/BM-313,14. Because of its fused nature, this P450 was found to be very efficient in cata-
lytic activity14–16. CYP102A1 is one of the most extensively studied P450s for structural and catalytic aspects of 
P450s and has also been extensively engineered to perform different catalytic reactions17. Apart from CYP102A1, 
studies have revealed the presence of different varieties of P450 fusion proteins in species belonging to different 
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biological kingdoms10,11. A detailed analysis of different types of P450 fusion proteins (fused to redox proteins or 
others) has been documented in the literature2,10,11.

A recent study reported the presence of a novel P450 fusion protein in the deadliest fish pathogenic oomycete, 
Saprolegnia diclina12. This novel P450 fusion protein has been assigned to the CYP5619 family12. Six members of 
CYP5619 found in S. diclina are fused to a heme peroxidase/dioxygenase protein. However, the combination of 
fusion is different compared to the fungal P450 families CYP6001-CYP600512. In the CYP5619 family, the heme 
peroxidase/dioxygenase protein is fused at the C-terminal end to the P450, whereas in the CYP6001-6005 fami-
lies the heme peroxidase/dioxygenase protein is fused at the N-terminal end to the P45012. Among the CYP6000 
series family members, CYP6001A1 from Aspergillus nidulans has been shown to be a fatty acid hydroxylase18. 
CYP6001A1 was found to be a bifunctional P450 fusion protein performing oxidation and isomerization reac-
tions by forming psi factors18.

To date, structural analysis of the CYP5619 family members or other similar fusion proteins, in terms of 
structural motifs, CYP6001-CYP6005 family members, has not been reported. Furthermore, it is not known if the 
CYP5619 family is present in any other organisms apart from oomycetes. In this study, we present phylogenetic 
and in silico structural analysis of the CYP5619 family, including the in silico structural and functional analysis of 
CYP5619A1 from S. diclina. Furthermore, we report on the CYP5619 family’s conserved nature and insights into 
its P450 motifs, EXXR and CXG. Results from this study will pave the way for functional characterization of this 
novel P450 family member and thus the role of this family in oomycetes’ physiology.

Methods
Data mining for CYP5619 homologs.  To identify CYP5619 homologs in other organisms, protein blast 
(BLASTP) was performed at NCBI using six members of the CYP5619 family, namely CYP5619A1, CYP5619B1, 
CYP5619B2, CYP5619C1, CYP5619D1 and CYP5619D212. The six CYP5619 family members’ protein sequences 
were retrieved form published data12 and used for BLASTP. For each CYP5619 used for BLASTP, a set of 100 hit 
proteins was downloaded. The hit proteins were subjected to NCBI Batch Web-search tool19 for classification 
into superfamilies based on conserved domains. The domains were searched against the database (CDD–50369 
PSSM)19, at a cut-off E-value of 0.01, with a composition-corrected scoring. Hit proteins exhibiting the presence 
of both P450 and peroxidase/dioxygenase domains were retained for further analysis. Furthermore, the proteins 
that showed a different arrangement of P450 and peroxidase/dioxygenase motifs compared to CYP5619 family 
members were removed from the analysis. Detailed information on hit proteins and their screening using the 
NCBI Batch Web-search tool is presented in Supplementary Dataset 1 where CYP5619 P450s and their homologs 
are highlighted.

Annotation of P450s.  The above selected hit proteins were then subjected to P450 family and subfamily 
annotation as described elsewhere20,21. For assigning the family and subfamily names, the standard rule set by 
the International P450 Nomenclature Committee22 was followed, i.e. P450s within a family share more than 40% 
amino acid identity and members of subfamilies share more than 55% amino acid identity. P450s that are less 
than 40% identical to named P450s are assigned to new P450 families. Considering that the P450s are fused pro-
teins, only the P450 motif was used for assigning P450 family and P450 subfamilies to the hit proteins.

Phylogenetic analysis.  The phylogenetic tree of CYP5619 P450s and their homologs was constructed as 
follows: first, the protein sequences were aligned by MUSCLE embedded in MEGA 723; then, the best-fit substitu-
tion model for alignment was determined by the IQ-TREE web server (http://iqtree.cibiv.univie.ac.at/)24. Finally, 
the tree was constructed in MEGA 7 by the maximum likelihood method, along with the best-fit substitution 
model and 100 bootstrap replications25.

Analysis of amino acid conservation.  Analysis of amino acid conservation in CYP5619 family members 
was carried out as described elsewhere26. Briefly, the annotated CYP5619 family members were subjected to 
PROfile Multiple Alignment with Local Structures and 3D constraints (PROMALS3D)27 to identify the number 
of invariantly conserved amino acids28. The conservation index follows numbers above 4, where 9 is the invari-
antly conserved amino acid across the input sequences. The total number of conserved residues indicated by the 
number 9 was recorded. The conserved nature of the CYP5619 family was compared to other P450 families from 
different biological kingdoms as reported elsewhere26.

Generation of EXXR and CXG sequence logos.  P450 motifs EXXR and CXG sequence logos were gen-
erated as described elsewhere12,29. Briefly, CYP5619 family members were aligned using ClustalW multiple align-
ment using MEGA725. After sequence alignment the EXXR and CXG region amino acids (4 and 16 amino acids 
respectively), were selected and entered in the WebLogo program (http://weblogo.berkeley.edu/logo.cgi). As a 
selection parameter, the image format was selected as PNG (bitmap) at 300 dpi resolution. The generated EXXR 
and CXG logos were used for analysis and compared to the different P450 family EXXR and CXG logos that have 
been published and are available to the public12,29.

Homology modeling.  The Molecular Operating Environment (MOE, Chemical Computing Group) was 
used to build a 3D model of the CYP5619A1’s P450 domain. Among all templates, CYP120A1 (PDB ID: 2VE3) 
showed the lowest E-value of the Hidden Markov Model profile and was therefore selected as the template to 
build the 3D model of CYP5619A1. Homology modeling of CYP5619A1 was performed using a restrained-based 
approach implemented in MOE. The amino acid sequence of CYP5619A1 was aligned with that of CYP120A1. A 
set of 10 models was constructed for the target enzyme. The coordinates of the heme in the model were obtained 
from the crystal structure of CYP120A1 and the homology model was constructed along with those coordinates. 
The resulting 3D models were optimized and a final model was obtained.

http://iqtree.cibiv.univie.ac.at/
http://weblogo.berkeley.edu/logo.cgi
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Energy minimization and validation.  The 3D model of CYP5619A1 was optimized using the tleap and 
sander programs of the AMBER suite30. Energy minimization was performed to minimize stearic collisions and 
strains without significantly altering the overall structure. Energy computations and minimization were carried 
out using the Amber14 force field. After optimization the quality of the 3D model of CYP5619A1 was verified 
using the Protein Structure Analysis (ProSA-Web)31,32, ERRAT33 and VERIFY 3D34,35 programs available from the 
Structural Analysis and Verification Server (SAVES) (http://nihserver.mbi.ucla.edu/SAVES).

Molecular docking.  The software MOE was used on the final model, to assess the binding sites. A set of sites 
was found to be likely to accommodate the substrates. Among the sites, the one with more residues, and which 
appeared to contain the heme group, was selected for docking studies. Three-dimensional structures of fatty acids 
of different lengths and saturation states alongside with the organic compound malachite green were obtained 
from PDBeChem: Ligand Dictionary (www.ebi.ac.uk/pdbe-srv/pdbechem/) and used in the docking of the target 
model. Ligands used in the study are listed in Table S1. The CYP5619A1 model was prepared for docking in MOE 
and AutoDockTools 1.5.636. MOE was used to correct the protonation and to remove the solvent. The different 
ligands were all prepared for docking in AutoDockTools, following the same steps as the target protein: protona-
tion, addition of charges, merging of non-polar H+ and assignment of atom types. Partial charges of ligands and 
protein were generated using the Gasteiger method with the aid of AutoDockTools. Non-polar hydrogens were 
merged and a AD4 atom types were assigned. A cubic grid having 60 × 60 × 60 grid points per side and spacing of 
0.375 Å was set around the substrate recognition site of the target P450 model. The grid was positioned onto the 
substrate access channel extending into the binding pocket of the model. Affinity maps of the grid were calculated 
using the AutoGrid program. The AutoDock 4.0 program was used to dock 12 ligands into the active-site cavity 
of the target model using the Lamarckian genetic algorithm, consisting of 200 runs and 270 000 generations, 
with the maximum number of energy evaluations set to 2.5 × 106. The resulting docked conformations within 
2.0 Å root mean square deviation (RMSD) tolerance were clustered and analysed using AutoDockTools. The best 
results were selected according to the outputted clustering histogram. Therefore conformations with the lowest 
binding energies of the biggest cluster and with the closest interaction to the heme iron were selected for each 
ligand. The representative conformation for each cluster was chosen as the best pose for each ligand and the 
receptor-ligand complex’s site view was rendered in MOE.

Results and Discussion
CYP5619 family is only present in oomycetes.  Data mining and annotation of CYP5619 homologs 
across biological kingdoms revealed the presence of CYP5619 family members only in oomycetes (as of 21st 
November, 2017) (Fig. 1 and Table 1). The analysis revealed the presence of 17 CYP5619 P450s in five oomycetes, 
excluding the six CYP5619 family members from S. diclina as previously reported12 (Table 1). Among oomycetes, 
the highest number of CYP5619 members was found in Achlya hypogyna (8 P450s) followed by S. diclina (6 
P450s), S. parasitica (5 P450s) and Thraustotheca clavata (2 P450s). Aphanomyces invadans and Aphanomyces 
astaci both have a single CYP5619 member in their genome (Table 1). The CYP5619 family members annotated in 
this study are listed in Table S2. Our analysis revealed the presence of six CYP5619 family homologs in Oomycota 
and Prymnesiophyceae (Fig. 1 and Table 1). Because of a low sequence identity to the CYP5619 family, these 
homolog P450 fused proteins were assigned to new P450 families, namely CYP5851-CYP5853. The CYP5851 
and CYP5852 families were present in oomycetes and the CYP5853 family was found in a phytoplankton. Among 
oomycetes, A. hypogyna and S. parasitica have one CYP5619 homolog P450 each, namely CYP5852A1 and 
CYP5852B1 respectively, and T. clavata has two homologs annotated as CYP5851A1 and CYP5851A2. Emiliania 
huxleyi CCMP1516, a phytoplankton, has two CYP5619 homologs, namely CYP5853A1v1 and CYP5853A1v2 
(Table 1 and Table S2). Alignment of P450 fused proteins with their counterparts in the phylogenetic tree 
(Fig. 1) indicates that our annotation of P450 fused proteins is correct. All these homologous P450s belonging to 
CYP5851-CYP5853 families have the same structural P450 motif and dioxygenase/peroxidase as CYP5619 family 
members, i.e N-terminal P450 motif and C-terminal dioxygenase/peroxidase.

CYP5619 subfamily distribution in Oomycetes.  P450s subfamily-level comparison revealed the pres-
ence of six CYP5619 subfamilies, namely A–D, F and G, in oomycetes (Table 1). Among the CYP5619 subfamilies, 
subfamilies B and D had the highest number of members (six), followed by subfamilies A and C, which had the 
same number of members (four), and subfamilies F and G, which had only one member (Fig. 1 and Table 1). 
The CYP5619 subfamily distribution revealed that A. hypogyna, S. parasitica and S. diclina had four subfamilies, 
namely A–D, in their genomes and that T. clavata had only one CYP5619 belonging to subfamily A. Subfamily 
F was present only in A. invadans and A. astaci (Table 1). Subfamily G was only present in A. invadans. Future 
functional analysis may reveal the significance of CYP5619 subfamily distribution patterns, if any, in oomycete 
physiology.

CYP5619 family ranked sixth among P450 families.  In a recent study, Parvez and coworkers26 ana-
lyzed P450 families from different biological kingdoms and identified the highly conserved P450 families based 
on a number of conserved residues in a P450 family. The analysis revealed that the top 10 conserved P450 fami-
lies belonged to the kingdom Bacteria26. As the CYP5619 family is newly discovered and more family members 
have been identified in different oomycetes, in this study, we also assessed the CYP5619 family placement in 
terms of amino acid conservation. In order to identify the conservation rank, CYP5619 family members were 
subjected to PROMALS3D analysis (Fig. S1). PROMALS3D analysis revealed the presence of 200 amino acids 
invariantly conserved in CYP5619 family members (Table 2). Comparative analysis with other P450 families from 
different biological kingdoms showed that the CYP5619 family occupies the sixth rank in terms of amino acid 
conservation among P450 families. This is quite a high number of conserved amino acids for a eukaryotic P450 
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family and CYP5619 is the first eukaryotic P450 family that forms part of the top 10 conserved families (Table 2). 
Furthermore, the CYP5619 family also shows the highest number of amino acids at position 7 compared to the 
top 10 ranked P450 families (Table 2). This suggests that CYP5619 family members have been subjected to fewer 
mutations during evolution, thus possibly indicating these family members’ key role in oomycetes’ physiology. 
One interesting observation is that most of the conserved amino acids are present in the C-terminal part, i.e. 
dioxygenase/peroxidase motif. The analysis of conserved amino acids in different motifs revealed the presence 
of 44 conserved amino acids in the P450 motif and 155 conserved amino acids in the dioxygenase/peroxidase 
motif, indicating that the P450 motif is highly prone to amino acid substitutions resulting in the generation 
of new CYP5619 subfamilies, thus contributing to the lowest P450 family diversity in oomycetes, as described 
previously12.

CYP5619 family has a highly degenerated heme-binding motif.  Comprehensive comparative study 
on P450 motifs EXXR and CXG revealed that each P450 family has a characteristic signature of amino acid 
patterns at these motifs12,29. The use of EXXR and CXG amino acid patterns for further verification of P450 

Figure 1.  Evolutionary analysis of CYP5619 family members and their homolog P450s. Thirty P450s were 
used in the analysis. The P450 motif sequences used for phylogenetic analysis are presented in Table S3. The S. 
cerevisiae CYP51 P450 sequence was used as an out-group.

Species name Taxonomic group No. of CYP5619 P450s

CYP5619 subfamilies

Homolog P450 familiesA B C D F G

Achlya hypogyna Oomycota 8 1 2 2 3 CYP5852A1

Thraustotheca clavata Oomycota 1 1 CYP5851A1 and 
CYP5851A2

Aphanomyces invadans Oomycota 2 1 1

Aphanomyces astaci Oomycota 1 1

Saprolegnia parasitica CBS223.65 Oomycota 5 1 2 1 1 CYP5852B1

Saprolegnia diclina VS20 Oomycota 6 1 2 1 2

Emiliania huxleyi CCMP1516 Prymnesiophyceae 0 CYP5853A1v1 and 
CYP5853A1v2

Table 1.  Comparative analysis of CYP5619 family members and their homolog P450s.
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family assignment is gaining momentum37–42. The fact that the CYP5619 family was recently discovered and that 
more members have been identified (in this study) gives us an opportunity to assess CYP5619 family EXXR and 
CXG motifs-amino acid patterns. The analysis of these two P450 signature motifs revealed the presence of an 
E-V-K/Q-R amino acid pattern at the EXXR motif in the CYP5619 family (Fig. 2). The comparison with other 
P450 families revealed that the EXXR motif amino acid patterns of CYP5619 family is to some extent matched 
with the CYP2 P450 family where the CYP2 family has an E-V/I-Q-R combination as described elsewhere29. In 
contrast to amino acid patterns at the EXXR motif, the CYP5619 family has a highly degenerated amino acid pat-
tern at the CXG motif (Fig. 2). It is well established that most P450s have a canonical sequence of FXXGXRXCXG 
at the heme-binding motif43,44, with some exceptions29,45,46. As shown in Fig. 2 and Table S4, all CYP5619 family 
members have a degenerate amino acid pattern at this motif. Among the CYP5619 family members, six members 
(CYP5619D1 from S. parasitica and S. diclina; CYP5619D2 from S. diclina; CYP5619D3-D5 from A. hypogyna) 
even lack the conserved cysteine in the CXG motif (Fig. 2 and Table S4). The presence of the degenerated amino 
acid pattern at the CXG motif is not a new phenomenon and P450 families, including the CYP6000 series, have 
been reported to have degenerated heme-binding motifs29,45,46. Considering the structural similarity between 
CYP5619 and CYP6000-series P450 families based on the presence of the same motifs, it can be assumed that 
some CYP5619 family members may have the same degenerated amino acid patterns at the CXG motif the as 
observed in the CYP6000-series P450s47. P450s with a degenerated heme-binding motif are possibly involved 
in performing non-traditional P450 reactions. As CYP2 and CYP5619 families have similar amino acid patterns 
at the EXXR motif, it would be interesting to see their phylogenetic relation and also assess their phylogenetic 
grouping with the 113 P450 families from different biological kingdoms that have been subjected to clade analy-
sis, as described elsewhere26.

P450 family

Number of 
member 
P450s Kingdom

PROMALS3D 
conservation index Rank (highest to lowest conservation)

5 6 7 8 9

CYP141 29 Bacteria 0 0 0 0 389 1

CYP51 50 Bacteria 11 102 0 0 264 2

CYP137 38 Bacteria 145 0 0 0 251 3

CYP121 34 Bacteria 0 0 0 0 233 4

CYP132 39 Bacteria 175 0 0 0 217 5

CYP5619 23 Stramenopila (oomycetes) 118 38 170 0 199 6

CYP124 71 Bacteria 52 35 59 0 170 7 (formerly 6)

CYP188 67 Bacteria 62 0 100 0 141 8 (formerly 7)

CYP123 74 Bacteria 62 0 82 0 137 9 (formerly 8)

CYP108 67 Bacteria 52 12 92 0 134 10 (formerly 9)

CYP126 78 Bacteria 65 16 98 0 132 11 (formerly 
10)

Table 2.  Comparative amino acid conservation analysis of CYP5619 family with top 10 ranked P450 families12. 
The conservation index score is obtained as described in the section on methods, following the procedure 
documented in the literature28. The conservation score (5–9) obtained via PROMALS3D is shown in the table 
where the number “9” indicates conserved amino acids in P450 members. P450 families were arranged in order 
of the highest to the lowest number of amino acids conserved.

Figure 2.  Analysis of amino acid patterns at EXXR and CXG motif in CYP5619 P450 family. Twenty-three 
CYP5619 P450 sequences were used to generate WebLogos. The EXXR and CXG sequences used to generate 
WebLogos are presented in Table S4.
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CYP5619A1 contains characteristic P450 structural elements.  Considering the interesting aspects 
of the CYP5619 family as described above, it seemed interesting to look at CYP5619 members’ structure and 
function. For this reason CYP5619A1 from fish pathogen oomycete S. diclina was selected for further study.

CYP5619A1 P450’s 3D model was built using the template CYP120A1 from Synechocystis sp. PCC 680348. 
CYP120A1 was the first cyanobacterial P450 to be crystallized and the structures were solved as substrate free 
and all-trans-retinoic acid-bound forms, at 2.4 and 2.1 Å resolutions, respectively48. CYP120A1 was the best hit; 
it has 28% sequence identity to CYP5619A1. The low sequence identity is due to the fact that CYP5619A1 belongs 
to a novel P450 family and P450s belonging to this family or P450s with the same structural motifs do not have 
available solved crystal structures. Sequence alignment between CYP5619A1 and CYP120A1 showed the pres-
ence of characteristic P450 motifs including the highly conserved motifs EXXR and CXG in CYP5619A1 (Fig. 3). 
Based on the CYP120A1 template, a 3D model of CYP5619A1 was constructed along with its heme cofactor 
(Fig. 4A). The 3D model of CYP5619A1 is a monomer, folded into α/β domains characteristic of a P450 (Figs. 3 
and 4). The β-sheets tend to form the hydrophobic substrate channel. The residues Glu287-Arg290 appeared to 
form the EXXR motif. This motif is involved in stabilizing the core structure of the protein and is on the proximal 
side of the heme as described elsewhere49. Furthermore, the heme (displayed in sticks in Fig. 4A) is bound to the 
absolutely conserved cysteine at position 371, which is the fifth ligand of the heme iron and responsible for the 
typical 450 nm Soret absorbance found in CO-bound P450s50–52. Structural comparison showed that CYP5619A1 
and CYP120A1 have the same structural organization, except minor differences that were found in the loop and 
N-terminal regions (Fig. 4B). It is a well-known fact that all P450s differ at N-terminal regions and thus it is not 
a new phenomenon44.

Figure 3.  Sequence alignment of CYP5619A1 with template CYP120A1 (PDB ID: 2VE3). Helices are 
represented by coils and β-sheets are shown as arrows. The P450 consensus motifs EXXR and CXG are 
highlighted in yellow. Columns with residues that are more than 70% similar according to physico-chemical 
properties (threshold set to 0.7) are framed in red. The figure was rendered by ESPript 3.057.
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Homology modeling usually results in the production of protein models with quite unfavorable bond lengths, 
bond angles, torsion angles and contacts. In that case, it is essential to minimize the energy in order to regular-
ize local bond and angle geometry, and to relax close contacts in the geometric chain. Thus, in this study, the 
3D model of CYP5619A1 was subjected to optimization and validation as described in the methodology. The 
CYP5619A1 3D model was optimized using the tleap and sander programs of the AMBER suite. Energy compu-
tations and minimization were carried out using the Amber14 force field. The optimized 3D model was subjected 
to different validation programs.

The optimized 3D model of CYP5619A1 from S. diclina has a z-score of −7.61, indicating good overall model 
quality (Fig. S2). ERRAT has been termed an “overall quality factor” for non-bonded atomic interactions, with 
higher scores indicating higher quality. The generally accepted range is >95 for a high-quality model. For the 
optimized 3D model of CYP5619A1, the overall quality factor predicted by the ERRAT server was 96.226 (Fig. 
S3). The Verify 3D server predicted that 86.36% of the residues in the CYP5619A1 model would have an average 
3D-1D score >0.2 (Fig. S4), thereby confirming the good quality of the model, since the minimum percentage 
for good quality is 80.

For more assurance on the quality of the model, the CYP5619A1 3D model and CYP120A1 structure were 
superimposed and compared based on the distance between their Cα backbones (Fig. S5). The superimposition 
showed a high match between CYP5619A1 and CYP120A1, with some minor mismatches around loops and 
also in the N- and C-terminal regions (Fig. S5). It is a well-known fact that P450s differ in the N- and C-terminal 
regions and also in the loop regions, as these regions are highly variable in the primary sequence44. The overall 
RMSD value between the CYP5619A1 model and its template CYP120A1 was calculated to be 0.951 Å, which is 
a highly acceptable range and thus indicates the good quality of the generated model.

CYP5619 active site is highly hydrophobic.  After constructing the high quality CYP5619A1 3D model, 
different potential binding sites of CYP5619A1 were searched using MOE to find the active site. When the search 
was complete, the largest site was automatically displayed on the structure, as shown in Fig. 5A. Furthermore, the 

Figure 4.  In silico structural analysis of CYP5619A1. (A) 3D model of CYP5619A1 with heme cofactor. 
Secondary structures are displayed in red (helices), yellow (sheets) and blue (coils and turns). (B) Comparative 
structural analysis of CYP5619A1 model with CYP120A1. Superimposed image of CYP5619A1 model (blue) 
with CYP102A1 crystal structure (orange) is shown in the Figure. The CYP5619A1 structure is shown in blue 
and the template CYP120A1 structure is shown in orange.

Figure 5.  Active site analysis of CYP5619A1. (A) Active site cavity of CYP5619A1. The active site cavity is 
shown with the substrate access channel in grey (hydrophobic site) and red (hydrophilic site) surface. (B & C) 
Active site view of the binding pocket of CYP5619A1. (B) The pocket is displayed with MOE ActiveLP color 
coding (Blue: Mild polar; Green: Hydrophobic; Pink: H-Bonding) and shows a pattern of high hydrophobicity. 
(C) Residues forming the pocket are labelled. The amino acids lining the active site cavity are shown in Table S5. 
Secondary structures are displayed in red (helices), yellow (sheets) and blue (coils and turns). The heme 
prosthetic group appearing at the center of the active site is shown along with iron atom in a ball shape.
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binding pocket was viewed and displayed (Fig. 5B,C). As shown in Fig. 5, the heme is in the core of the pocket, 
which appears to be highly hydrophobic, suggesting a very high affinity with the docked fatty acids, as shown 
in the docking results in the following section. The amino acids that are part of the CYP5619A1 active site are 
listed in Table S5. Analysis of active site cavity amino acids revealed that the CYP5619 active site contains 40% of 
hydrophobic amino acids, 34% neutral, 10% basic and 10% acidic. This clearly suggests that the CYP5619 active 
site is indeed hydrophobic in nature.

CYP5619A1 showed highest binding affinity to medium chain length fatty acids.  As the CYP5619 
family was recently discovered in oomycetes12 and no functional data is available, in this study, in silico functional 
analysis was carried out using different fatty acids and malachite green as possible substrates. The rationale for 

Figure 6.  Analysis of fatty acids (A–K) and malachite green (L) binding with CYP5619A1 from S. diclina. 
Fatty acids used in this study are (A) myristic acid, (B) palmitic acid, (C) stearic acid, (D) icosanoic acid, (E) 
myristoleic acid, (F) palmitoleic acid (G) oleic acid, (H) linoleic acid (I) alpha-linolenic acid, (J) arachidonic 
acid and (K) eicosapentaenoic acid. The heme prosthetic group is displayed in red at the center of the active site. 
The ligands are displayed in blue sticks. Secondary structures surrounding the active site are shown in white and 
the receptor’s surface is displayed as a white mesh.

Figure 7.  Graphic representation of the free binding energies of the docked possible substrates and malachite 
green. Abbreviations: MYR: myristic acid; PLM: palmitic acid; STE: stearic acid; DCR: icosanoic acid; MYZ: 
myristoleic acid; PAM: palmitoleic acid; OLA: oleic acid; EIC: linoleic acid; LNL: alpha-linolenic acid; ACD: 
arachidonic acid; EPA: eicosapentaenoic acid; MGR: malachite green.
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using fatty acids as possible substrates is that the CYP5619A1 motifs (P450 and dioxygenase/peroxidase) match 
CYP6001A1 P45018, except for a difference in the motifs’ arrangement12. CYP6001A1 from A. nidulans was shown to 
be a fatty acid hydroxylase18. Furthermore, S. diclina is a well-known fish killer and possibly uses the host’s fatty acids, 
as fish contain abundant fatty acids in their bodies53. In addition to this, based on the template CYP120A1 substrate, 
i.e. retinoic acid, fatty acids were selected for binding analysis. Malachite green has been widely used to treat oomy-
cete infections54 and studies have shown that P450 enzymes perform reduction and demethylation of this dye55,56. It 
would be interesting to assess malachite green binding affinity to CYP5619A1, as quite a number of CYP5619 family 
members are present in this fish killer12.

The possible fatty acid substrates, myristic acid, palmitic acid, stearic acid, icosanoic acid, myristoleic acid, 
palmitoleic acid, oleic acid, linoleic acid, alpha-linolenic acid, arachidonic acid and eicosapentaenoic acid, were 
selected for in silico structure-based interaction analysis with CYP5619A1 (Figs 6 and 7). The molecular dock-
ing studies showed that linoleic acid is more tightly bound, compared to all other fatty acids (Fig. 7). The order 
of binding is as follows: linoleic acid >arachidonic acid >icosanoic acid >oleic acid >eicosapentaenoic acid 
>alpha-linolenic acid >myristoleic acid >palmitoleic acid >stearic acid >myristic acid >palmitic acid (Fig. 7). 
The binding pattern revealed that CYP5619A1 prefers medium chain fatty acids compared to short chain and 
bulky chain fatty acids. Furthermore, CYP5619A1 showed a higher affinity to short chain unsaturated fatty acids 
compared to their saturated counterparts.

An interesting result was that malachite green showed the highest binding affinity, together with linoleic acid 
(Fig. 7). In order to understand the binding affinity preference of CYP5619A1 with malachite green and linoleic 
acid better, the binding energies of 10 conformations for both ligands were analyzed (Fig. S6). As shown in Fig. 
S6, the remaining conformation of malachite green bound to the protein with a lower free binding energy com-
pared to that of linoleic acid. However, the free binding energies of the best conformation for both ligands were 
the same (Fig. 7). This suggests that either malachite green can be a substrate for CYP5619A1 or it can be a good 
inhibitor. Experimental analysis with pure CYP5619A1 is needed to confirm the nature of binding of malachite 
green and other fatty acids to this P450.

Arg14 and Arg162 forming hydrogen bonds with fatty acids.  After successful completion of ligand 
binding affinity analysis, further work was carried out to assess the amino acids binding to these ligands (Fig. 6 
and Table 3). Comprehensive comparative analysis of amino acids binding to different ligands was carried out 
(Fig. 6 and Table 3). Among the amino acids, Arg162 was found to form hydrogen bonds with 10 fatty acids and 
Arg14 was found to form a hydrogen bond with the remaining fatty acid: arachidonic acid (Table 3). Interestingly, 
none of the interacting amino acids formed a hydrogen bond with malachite green, suggesting that the compound 
may inhibit CYP5619A1 (Table 3). The analysis of conservation among the interacting amino acids revealed that 
a total of 21 amino acids were found to interact with 12 ligands (11 fatty acids and malachite green) (Table S6). 
Of the amino acids, Met229 and Pro297 were both interacting with all 12 ligands, followed by Arg162, Gly232 
and Gly233, which showed interaction with 10 of the ligands (Table S6). A detailed analysis of each of the amino 
acids interacting with different ligands is presented in Table S6. Furthermore, all 21 amino acids interacting with 
the ligands were found to be part of the active site cavity identified above (Table 3 and S5). The high conservation 
of amino acids interacting with ligands and the presence of these amino acids in the active site cavity suggest that 
our binding analysis is correct and all ligands were properly docked in the active site cavity.

Abbreviations: MYR: myristic acid; PLM: palmitic acid; STE: stearic acid; DCR: icosanoic acid; MYZ: myrist-
oleic acid; PAM: palmitoleic acid; OLE: oleic acid; EIC: linoleic acid; LNL: alpha-linolenic acid; ACD: arachidonic 
acid; EPA: eicosapentaenoic acid; MGR: malachite green; 1HB, 1-hydrogen bond; 2HB, 2-hydrogen bonds. The 
number of hydrogen bonds an amino acid forms with a particular ligand is shown in parenthesis.

To our knowledge this study is the first report on in silico structural and phylogenetic analysis of the CYP5619 
family. This study shed light on the novel CYP5619 P450 family distribution and its conservation in terms of 
primary structure. In silico structural and binding studies showed that CYP5619A1 binds tightly to medium 
chain fatty acids. However, unravelling the nature of malachite green, the controlling agent of S. diclina, binding 
to CYP5619A1 will be very interesting, considering that no active site amino acid formed hydrogen bonds with 
malachite green, suggesting that it is an inhibitor or substrate for CYP5619A1.

Ligand code Interacting residues

MYR Arg162 (2HB), Cys228, Met229, Gly232, Pro297, His299, Met300, HEM413

PLM Leu61, Leu65, Met158, Arg162 (2HB), Cys228, His225, Met229, Pro297, His299, Tyr301, HEM413

STE Leu61, Leu65, Arg162 (2HB), Cys228, Met229, Gly232, Gly233,Trp237, Pro297, Tyr301, HEM413

DCR Leu61, Arg162 (1HB), Met229, Gly232, Gly233, Trp237, Pro297, His299, Thr407, HEM413

MYZ Pro74, Arg162 (2HB), His225, Cys228, Met229, Gly232, Gly233, Pro297, HEM413

PAM Leu69, Pro74, Arg162 (2HB), His225, Cys228, Met229, Gly232, Gly233, Pro297, HEM413

OLA Leu61, Leu65, Arg162 (2HB), His225, Cys228, Met229, Gly232, Gly233, Pro297, His299, Met300, Tyr301, HEM413

EIC Leu69, Leu161, Arg162 (2HB), His225, Cys228, Met229, Gly232, Gly233, Trp237, Pro297, Leu408, HEM413

LNL Leu61, Arg162 (2HB), Cys228, Met229, Gly232, Gly233, Trp237, Pro297, His299, Met300, Tyr301, HEM413

ACD Tyr9, Arg14 (1HB), Leu61, Met229, Gly233, Trp237, Pro297, His299, HEM413

EPA Leu61, Leu65, Pro74, Arg162 (1HB), His225, Cys228, Met229, Gly232, Gly233, Pro297, Thr407, HEM413

MGR Leu61, Leu65, Pro74, Met229, Gly232, Gly233, Trp237, Pro297, His299, Tyr301, HEM413

Table 3.  Amino acid residues interacting with the different ligands.



www.nature.com/scientificreports/

1 0SCienTifiC RePorTS |  (2018) 8:6597  | DOI:10.1038/s41598-018-25044-0

References
	 1.	 Yamazaki, H. ed Fifty years of cytochrome P450 research. 293–306. (Springer International Publishing, 2014).
	 2.	 Kelly, S. L. & Kelly, D. E. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, 

what do they do and what can they do for us? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368(1612), 20120476 (2013).
	 3.	 Jawallapersand, P. et al. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis 

and its role as a common alternative anti-fungal drug target. PLoS ONE 9(9), e107209 (2014).
	 4.	 Nelson, D. R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta. 1866(1), 141–154 (2017).
	 5.	 Lamb, D. C. et al. The first virally encoded cytochrome P450. J. Virol. 83(16), 8266–8269 (2009).
	 6.	 Sono, M., Roach, M. P., Coulter, E. D. & Dawson, J. H. Heme-containing oxygenases. Chemical Rev. 96(7), 2841–2888 (1996).
	 7.	 Bernhardt, R. Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124(1), 128–145 (2006).
	 8.	 Denisov, I. G. & Sligar, S. G. Activation of molecular oxygen in cytochromes P450 In Cytochrome P450: Structure, mechanism, and 

biochemistry 4rd edn. (ed Ortiz de Montellano, P. R.) Ch. 3, 69–109. (Springer International Publishing, 2015).
	 9.	 Hannemann, F., Bichet, A., Ewen, K. M. & Bernhardt, R. Cytochrome P450 systems — biological variations of electron transport 

chains. Biochim. Biophys. Acta. 1770(3), 330–344 (2007).
	10.	 Guengerich, F. P. & Munro, A. W. Unusual cytochrome P450 enzymes and reactions. J. Biol. Chem. 288(24), 17065–17073 (2013).
	11.	 Lamb, D. C. & Waterman, M. R. Unusual properties of the cytochrome P450 superfamily. Phil. Trans. R. Soc. B. 368(1612), 20120434 

(2013).
	12.	 Sello, M. M. et al. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes. Scientific reports 5, 11572 (2015).
	13.	 Ruettinger, R. T., Wen, L. P. & Fulco, A. J. Coding nucleotide, 5′ regulatory, and deduced amino acid sequences of P-450BM-3, a single 

peptide cytochrome P-450: NADPH-P-450 reductase from Bacillus megaterium. J. Biol. Chem. 264(19), 10987–95 (1989).
	14.	 Munro, A. W. et al. P450 BM3: the very model of a modern flavocytochrome. Trends Biochem. Sci. 27(5), 250–257 (2002).
	15.	 Warman, A. J. et al. Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. 

Biochem. Soc. Trans. 33(4), 747–53 (2005).
	16.	 Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22(6), 809–817 (2011).
	17.	 Whitehouse, C. J., Bell, S. G. & Wong, L. L. P450 BM3 (CYP102A1): connecting the dots. Chem. Soc. Rev. 41(3), 1218–1260 (2012).
	18.	 Brodhun, F., Göbel, C., Hornung, E. & Feussner, I. Identification of PpoA from Aspergillus nidulans as a fusion protein of a fatty acid 

heme dioxygenase/peroxidase and a cytochrome P450. J. Biol. Chem. 284(18), 11792–11805 (2009).
	19.	 Marchler-Bauer, A. et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 

45(D1), 200–203 (2016).
	20.	 Syed, K. et al. Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 

monooxygenases from the thermophilic biomass-degrading fungi Thielavia terrestris and Myceliophthora thermophila. Genes & 
Genomics 36(3), 321–333 (2014).

	21.	 Kgosiemang, I. K. R., Mashele, S. S. & Syed, K. Comparative genomics and evolutionary analysis of cytochrome P450 
monooxygenases in fungal subphylum Saccharomycotina. J. Pure Appl. Microbiol. 8, 291–302 (2014).

	22.	 Nelson, D. R. Cytochrome P450 Nomenclature, 2004. Methods Mol. Biol. 320, 1–10 (2006).
	23.	 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1979 

(2004).
	24.	 Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood 

analysis. Nucleic Acids Res. 44(W1), W232–w235 (2016).
	25.	 Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 

33(7), 1870–1874 (2016).
	26.	 Parvez, M. et al. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: special focus on 

mycobacterial P450s. Scientific reports 6, 33099 (2016).
	27.	 Pei, J., Kim, B. H. & Grishin, N. V. PROMALS3D: a tool for multiple sequence and structure alignment. Nucleic Acids Res. 36(7), 

2295–300 (2008).
	28.	 Pei, J. & Grishin, N. V. AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 17(8), 

700–712 (2001).
	29.	 Syed, K. & Mashele, S. S. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: 

identification of evolutionarily conserved amino acid patterns characteristic of P450 family. PLoS ONE 9(4), e95616 (2014).
	30.	 Case, D. A. et al. AMBER 2017, University of California, San Francisco (2017).
	31.	 Sippl, M. J. Recognition of errors in three‐dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics 17(4), 

355–362 (1993).
	32.	 Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of 

proteins. Nucleic Acids Res. 35(2), 407–410 (2007).
	33.	 Colovos, C. & Yeates, T. O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2(9), 

1511–1519 (1993).
	34.	 Bowie, J. U., Luthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. 

Science 253(5016), 164–170 (1991).
	35.	 Lüthy, R., Bowie, J. U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356(6364), 83 (1992).
	36.	 Goodsell, D. S. & Olson, A. J. Automated docking of substrates to proteins by simulated annealing. Proteins: Structure, Function, and 

Bioinformatics 8(3), 195–202 (1990).
	37.	 Hoffmann, I., Jernerén, F. & Oliw, E. H. Epoxy alcohol synthase of the rice blast fungus represents a novel subfamily of dioxygenase-

cytochrome P450 fusion enzymes. J. Lipid Res. 55(10), 2113–2123 (2014).
	38.	 Yu, D., Xu, F., Shao, L. & Zhan, J. A specific cytochrome P450 hydroxylase in herboxidiene biosynthesis. Bioorg. Med. Chem. Lett. 

24(18), 4511–4514 (2014).
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