
 

 

 

 

  

DISSERTATION 

 

By: 

 

F.C. Aggenbacht 

Completed during March 2017 

For the fulfilment of the requirements for the degree D Tech (Mech. Eng.) 

 

 

 

The development and characterization of a cost-effective, renewable energy 

greenhouse for production of crops in atypical climatic conditions. 

 

 

  

 

 

 

 

Department of Mechanical and Mechatronics Engineering 

Faculty of Engineering and Information Technology 

Central University of Technology, Free State 

Bloemfontein 

  

© Central University of Technology, Free State



1 

 

PREFACE (DECLARATION) 

 

I,  FC AGGENBACHT,  

 

 

hereby declare that all the work included in this Dissertation is my own work; that none of the 

work included in the dissertation is a copy of the work of any other author; and that all sources 

(literature or otherwise) that were eventually consulted and used for completing this dissertation 

have been properly and completely acknowledged according to generally accepted principles of 

referencing. 

 

 

 

 

Signed:  ______________ 

   F.C. Aggenbacht 

 

Date:   ______________ 

   1 Jul 2017 

 

------------------------------------------------------------------------------------------------------ 

 

 

 

 

 

 

 

 

 

 

 

 

© Central University of Technology, Free State



2 

 

ACKNOWLEDGEMENTS 

 

 

First and foremost, I would like to acknowledge the guidance and perseverance I was 

granted by our Heavenly Father. Without this, the whole project would have been 

impossible. This was a totally new venture for us which started at a time when this 

industry was beginning to experience enormous economic challenges, which have 

continued to this day. 

 

I would like to thank my promoter, Dr J Strauss, and co-promoter, Dr H Van Antwerpen, 

for all the time they were willing to spend on this project as well as the study guidance 

they provided. I really appreciate everything you have done. 

 

A special thank you to my wife, Chrisna, and my family who helped me with the 

packaging and distribution of the flowers during the production period. It is highly 

appreciated. 

 

I would also like to give special thanks to Technology Innovation Agency (TIA) and the 

Product Development Technology Station (PDTS), who helped me with the necessary 

funding and the construction. Without you, this whole project would not have been 

possible. 

 

To Central University of Technology, Free State (CUT), I would like to say thank you for 

the opportunity I was granted and the financial aid I received to conduct this project. 

 

 

 

 

 

 

 

 

© Central University of Technology, Free State



3 

 

ABSTRACT 

 

The aim of this investigation is to determine if it would be financially viable to use 

alternative energy technologies in the heating and cooling of greenhouses that are used 

to grow temperature-sensitive crops all year round in the central region of South Africa. 

For the purpose of this study “alternative energy sources/technologies” will refer to 

technologies that can be used to collect energy directly from the primary source (like the 

sun, for example). A greenhouse was constructed and equipped with a natural 

ventilation system as well as a solar heating system that consisted of a flat plate solar 

water heater, a water storage system and a regulated heat exchange system inside the 

greenhouse. Cut-roses were grown in raised beds with a heat exchange system 

installed underneath the enclosed beds. An automatic weather station was used to read 

and log the climatic variables inside as well as outside the greenhouse. Data loggers 

were placed underneath the enclosed raised beds and inside the water storage to log 

the variations in temperatures. Data was collected over two growing seasons with the 

required alterations being made to the system for the second growing season. Extreme 

weather conditions were experienced during the experimental growing seasons and 

were very helpful in determining the applicability of the system. Data obtained from the 

experiment was plotted on Excel sheets, while theoretical steady-state as well as a 

transient temperature model were developed to determine the heating requirements 

during cold winter nights and cooling requirements during hot summer days. From these 

models the required sizes and efficiencies of the heating and cooling systems could be 

determined and were ultimately used to develop a financial model that could be used to 

determine the financial viability of applying these technologies. Results showed that 

naturally ventilated greenhouses could not be cooled below an internal temperature that 

exceeded the external temperature by at least 5 oC. The efficiency of the constructed 

solar water heating system was approximately 40 %, while the required collector area 

was approximately 2.5 to 3 times the area of the greenhouse, making it very difficult to 

ensure the financial viability for the application of the solar water heating system in 

particular. During moderate climatic conditions a naturally ventilated cooling system 

can, however, be used effectively to obtained the required climatic growing 

requirements. 

 

© Central University of Technology, Free State



4 

 

TABLE OF CONTENTS 

Page 

 Title page ......................................................................................................... 1 

 Preface (Declaration) ....................................................................................... 1 

 Acknowledgements…………………………………………………………………..2 

 Abstract………………………………………………………………………………..3 

 Table of contents .............................................................................................. 4 

 List of abbreviations and acronyms .................................................................. 7 

 List of tables…………………………………………………………………………11 

 List of figures……………………………………………………………………......12 

LIST OF ABBREVIATIONS AND ACRONYMS .......................................................... 8 

1. INTRODUCTION ............................................................................................ 16 

1.1 Background ......................................................................................... 16 

1.2 Problem statement .............................................................................. 17 

1.3 Hypothetical resolution ........................................................................ 17 

1.4 Purpose of the study ........................................................................... 17 

1.5 Importance of the study ....................................................................... 18 

1.6 Methodology ........................................................................................ 18 

2. LITERATURE REVIEW .................................................................................. 19 

2.1 Introduction .......................................................................................... 19 

2.2 General climatic requirements for temperature-sensitive crops ........... 19 

2.2.1 Minimum night-time temperature .............................................. 21 

2.2.2 Maximum day-time temperature ............................................... 23 

2.2.3 Light intensity ............................................................................ 25 

2.2.4 Day length ................................................................................ 25 

2.2.5 Vapour pressure deficit ............................................................. 25 

2.2.6 Relative humidity ...................................................................... 26 

2.2.7 Levels of CO2 ............................................................................ 27 

2.3 Current status of greenhouse technology ............................................ 27 

2.4 Current status of greenhouse technologies used. ............................... 28 

2.4.1 Managing minimum temperatures ............................................ 28 

2.4.2 Managing maximum day-time temperatures ............................. 30 

2.4.3 Obtaining the required light intensity ......................................... 31 

© Central University of Technology, Free State



5 

 

2.4.4 Altering the day-length .............................................................. 32 

2.4.5 Controlling the vapour pressure deficit ..................................... 34 

2.4.6 Controlling the RH .................................................................... 35 

2.4.7 CO2 supplementation. ............................................................... 36 

2.4.8 Questions to be addressed in this research .............................. 38 

2.5 Conclusion ........................................................................................... 39 

2.6 Greenhouse Thermal Design .............................................................. 40 

2.7 Introduction .......................................................................................... 40 

2.7.1 Energy balance ......................................................................... 40 

2.7.2 Mechanisms of heat transfer .................................................... 43 

2.7.3 Conduction ............................................................................... 43 

2.7.4 Convection ................................................................................ 46 

2.7.5 Radiation (Thermal) .................................................................. 48 

2.7.6 Heat loss calculations ............................................................... 51 

2.7.7 Heat loss through radiation ....................................................... 53 

2.7.8 Heat loss through convection ................................................... 54 

2.7.9 Heat loss through conduction ................................................... 55 

2.7.10 Total Heat Loss......................................................................... 55 

2.7.11 Developing a steady-state heat-loss calculator ........................ 56 

2.7.12 Developing a numerical transient heat transfer model for 

predicting the required rate of ventilation for the greenhouse 

during the day-time period. ....................................................... 61 

2.7.13 Developing a numerical transient heat transfer model for 

predicting the heating requirements during the night-time period.

 ................................................................................................. 68 

2.8 Conclusion ........................................................................................... 73 

3. RESEARCH METHODOLOGY ...................................................................... 74 

3.1 Introduction .......................................................................................... 74 

3.2 Greenhouse Design – Problem statement........................................... 74 

3.3 Specifications ...................................................................................... 74 

3.4 Concept design phase ......................................................................... 76 

3.4.1 Sub-problem 1 – Greenhouse covering material ...................... 76 

3.4.2 Sub-problem 2 – Greenhouse structure .................................... 79 

© Central University of Technology, Free State



6 

 

3.4.3 Sub-Problem 3 – Orientation of the greenhouse ...................... 82 

3.4.4 Sub-Problem 4 – Ventilation System ........................................ 83 

3.4.5 Sub-Problem 5 – Solar heating system .................................... 85 

3.4.6 Sub-Problem 6 – Heat exchange system ................................. 87 

3.4.7 Sub-Problem 7 – Control system .............................................. 92 

3.5 Detailed design phase ......................................................................... 94 

3.5.1 The greenhouse structure ......................................................... 94 

3.5.2 Roll-up vents ............................................................................. 95 

3.5.3 The solar heating system .......................................................... 98 

3.5.4 Heat exchange system ........................................................... 102 

3.5.5 Control System ....................................................................... 102 

3.6 Conclusion ......................................................................................... 105 

3.7 Commissioning phase ....................................................................... 106 

3.8 Introduction ........................................................................................ 106 

3.8.2 The greenhouse environment control ..................................... 109 

3.8.3 Problems experienced during the commissioning phase ........ 110 

3.9 Conclusion ......................................................................................... 111 

4. PRESENTATION AND DISCUSSION OF RESULTS .................................. 112 

4.1 External environment ........................................................................ 112 

4.2 Solar collector and hot water storage ................................................ 114 

4.3 Greenhouse internal environment ..................................................... 115 

4.4 Under-bed heating system and internal environment ........................ 116 

4.5 Greenhouse external environment (winter) ....................................... 117 

4.6 Greenhouse external environment (summer) .................................... 118 

4.7 Solar collector performance ............................................................... 120 

4.8 Greenhouse internal environment (winter) ........................................ 121 

4.9 Greenhouse internal environment (summer) ..................................... 122 

4.10 Under-bed heating system ................................................................ 123 

4.11 Determining the solar fraction based on steady-state heat transfer .. 124 

4.12 Transient ventilation model ................................................................ 126 

4.13 Transient Heating Model ................................................................... 127 

4.14 Financial viability ............................................................................... 130 

5. CONCLUSIONS AND RECOMMENDATIONS ............................................ 136 

© Central University of Technology, Free State



7 

 

5.1 Natural ventilation system ................................................................. 136 

5.2 Solar water heating system ............................................................... 136 

5.3 Financial viability of a solar water heating system ............................. 137 

5.4 Recommendations for future research. ............................................. 137 

6. LIST OF REFERENCES .............................................................................. 138 

7. ADDENDUM A – GREENHOUSE STRUCTURAL LOADS ......................... 145 

8. ADDENDUM B – NIGHT TIME HEATING MODEL ...................................... 151 

9. ADDENDUM C - DAY-TIME VENTILATION MODEL .................................. 158 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Central University of Technology, Free State



8 

 

LIST OF ABBREVIATIONS AND ACRONYMS 

µm Micrometer 

oC Degrees Celsius 

A Width of pressure coefficient zone 

A Area 

Al Area of the emitting leaves’ surface 

Areq Required area 

As Surface area 

At 
Tributary area for determination of wind loads on components  

and glazing 

b 

CER 

Horizontal dimension of greenhouse normal to wind direction (m) 

Carbon dioxide exchange rate 

BM Bending moment 

C Basic wind speed 

CER Carbon Dioxide Exchange Rate 

cm Centimetre 

CO2 Carbon dioxide 

COP 

Cp 

Coefficient of performance 

External pressure coefficient 

cp Specific heat storage capacity of water  

Cpi Internal pressure coefficient 

D Dead load 

d 
Horizontal dimension of greenhouse parallel to wind direction  

ridge line 

DC/dc Direct current 

dia Diameter 

F Rise to span ratio for an arched roof 

FEA Finite Element Analysis 

G Gust response factor 

h Convection heat transfer coefficient 

HAF 

h1 

Horizontal air flow 

Height 1 

hroof Mean roof height of greenhouse 

 

© Central University of Technology, Free State



9 

 

I Importance coefficient 

IA Second moment of area 

Is 

IDPM 

IPM 

IR 

Solar radiation 

Integrated disease and pest management 

Integrated pest management 

Infra-red 

J Joule 

k Thermal conductivity 

K Degrees kelvin 

kg/m3 Kilogram per cubic metre 

km/h Kilometres per hour 

kWh/day Kilowatt hour per day 

kWh/m2/day Kilowatt hour per square metre per day 

Kz Velocity exposure coefficient at height z 

L Live load 

ℓ Litre 

L/L Lower limit 

LDPE Low density polyethylene film 

m Metre 

M Mass 

m/s Metres per second 

m2 Square metre 

MJ Megajoule 

MJ/day Megajoule per day 

MJ/m2/day Megajoule per square metre per day 

Mph Miles per hour 

N Change in wind velocity exponent 

N/m2 Newton’s per square metre 

ƞcollector Efficiency of solar collector 

NGMA National Greenhouse Manufacturers Association 

Nm Newton metre 

Ø Angle of plane 

P Design pressure 

© Central University of Technology, Free State



10 

 

PC Polycarbonate 

Pcomb  Combined/Actual load 

PE Polyethylene 

Ph Design pressure at height z = h  

PLC Process logic control 

ppm Particles per million 

Pwind Design wind load 

Pz Design pressure at height z  

q Velocity pressure 

Q ̇ Rate of heat transfer 

Q ̇absorbed  Thermal radiation absorbed 

Q ̇cond  Rate of heat transfer through conduction 

Q ̇cond_canopy Rate of heat conducted by canopy 

Q ̇conv Rate of heat transfer through convection 

Q ̇encl  Rate of thermal radiation absorbed by enclosure 

Q ̇floor  Rate of energy lost by the floor through conduction 

Q ̇incident  Rate of incident radiation 

Q ̇infl Rate of heat transfer through infiltration 

Q ̇leaves Rate of thermal radiation emitted by leaves 

Q ̇rad  Rate of thermal radiation 

Q ̇suppl  Rate of energy supplied by the heating system 

Qabsorbed Thermal radiation absorbed 

Qavailable Available heat 

qh Velocity pressure at height z = h 

qz Velocity pressure at height z 

r Rise to span ratio for arched roofs 

R Thermal resistance 

r/min Revolutions per minute 

RH Relative humidity 

S Snow load 

T Temperature 

T∞  The temperature of the fluid/gas sufficiently far from the surface 

Ti Inside temperature 

© Central University of Technology, Free State



11 

 

Tl Absolute temperature of the emitting surface  

To Outside temperature 

Ts Surface temperature 

Tsurr Absolute temperature of the surroundings  

U/L Upper limit 

UV Ultraviolet 

V Volume 

V Volt 

v1 Wind speed at height one 

v2 Wind speed at height two 

vpair Partial pressure of water vapour in air (Pa) 

vpcanopy sat Saturation pressure inside greenhouse canopy (Pa) 

VPD Vapour pressure deficit 

vpsat Saturation pressure (Pa) 

W Watt 

Y Distance to outer surface 

Z Height above ground level (m) 

Α Absorptivity of a surface  

αencl Absorptivity of enclosure 

ΔT Change in temperature 

Δx Wall thickness 

ε Emissivity of a surface 

ρ Reflectivity of a surface 

σ Stefan-Boltzman constant 

𝜏 Transmissivity of a surface 
 

  

  

  

  

  

  

  

  

© Central University of Technology, Free State



12 

 

  

LIST OF TABLES 

Page 

Table 1 - Ideal climatic conditions for various greenhouse crops 21 

Table 2 - Thermal conductivity of some typical cladding materials 45 

Table 3 - Typical values for heat transfer coefficient [39] 47 

Table 4 - The influence of the various mechanisms of heat transfer 56 

Table 5 - Example of greenhouse heat loss calculator 58 

Table 6 - Heat loss calculator combined with thermal storage calculator 60 

Table 7 - Product design specifications for greenhouse 75 

Table 8 - Summary of available greenhouse covering materials 77 

Table 9 - Heat loss and water storage calculator 99 

Table 10 - Available insolation for Bloemfontein [76]. 100 

Table 11- Solar fraction available from solar collector 125 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

© Central University of Technology, Free State



13 

 

 

LIST OF FIGURES 

  Page 

Figure 1 - Effect of growing temperature on fresh and dry bud weight [1]. ................... 24 

Figure 2 – High tunnels at Haygrove [28]...................................................................... 29 

Figure 3 - Annual variation in day-length for Bloemfontein [18]. ................................... 33 

Figure 4 - Average temperatures for Bloemfontein [18]. ............................................... 33 

Figure 5 - Variation in average RH for Bloemfontein [18].............................................. 36 

Figure 6 - Effect of carbon dioxide on plant growth [25]. ............................................... 37 

Figure 7 - Variations in CO2 requirements during the day [25]. ..................................... 38 

Figure 8 - Greenhouse energy balance [35] ................................................................. 40 

Figure 9 - Heat transfer through conduction ................................................................. 44 

Figure 10 - Forced convection with fan and natural convection .................................... 46 

Figure 11 - Radiation heat transfer between the crop and the canopy ......................... 50 

Figure 12 - Typical layout of rose beds. ........................................................................ 52 

Figure 13 - Plant canopy for theoretical calculations. ................................................... 52 

Figure 14 - Assumed rectangular shape for theoretical calculations. ............................ 53 

Figure 15 - Global horizontal irradiance for each month. .............................................. 62 

Figure 16 - Global horizontal radiation for each month - graphically. ............................ 63 

Figure 17 - Transient heat gain model. ......................................................................... 64 

Figure 18 - Summarized climate data. .......................................................................... 65 

Figure 19 - Typical variation in daily temperatures. ...................................................... 65 

Figure 20 – Calculating the heat released from heating system. .................................. 69 

Figure 21 - Development of numerical heat release model. .......................................... 69 

Figure 22 - Transient radiation heat loss model. ........................................................... 70 

Figure 23 - Transient Ventilation Heat Loss Model. ...................................................... 71 

Figure 24 - Heat loss model for conduction. ................................................................. 72 

Figure 25 - Model for determining the heat lost through evaporation. ........................... 73 

Figure 26 - Quonset greenhouse [59]. .......................................................................... 80 

Figure 27 - Gothic-arch greenhouse [60]. ..................................................................... 80 

Figure 28 - Solar greenhouse [61]. ............................................................................... 81 

Figure 29 - Typical sun path for Southern Hemisphere [62]. ......................................... 82 

Figure 30 - Roll-up side vent [63]. ................................................................................. 83 

© Central University of Technology, Free State

file:///D:/My%20Documents/Nav/DTech/Dissertation_FCAggenbacht(22Feb2017).docx%23_Toc476136762
file:///D:/My%20Documents/Nav/DTech/Dissertation_FCAggenbacht(22Feb2017).docx%23_Toc476136763
file:///D:/My%20Documents/Nav/DTech/Dissertation_FCAggenbacht(22Feb2017).docx%23_Toc476136764
file:///D:/My%20Documents/Nav/DTech/Dissertation_FCAggenbacht(22Feb2017).docx%23_Toc476136765


14 

 

Figure 31 - Rack and pinion vents [64]. ........................................................................ 84 

Figure 32 - Solar operated window vent [65]. ............................................................... 85 

Figure 33 - Unit heater [69]. .......................................................................................... 88 

Figure 34 - Pipe/rail heating system [70]....................................................................... 89 

Figure 35 – Under-bench heating system [71]. ............................................................. 89 

Figure 36 - Underfloor heating system [72]. .................................................................. 90 

Figure 37 - Overhead heating tubes inside a greenhouse [73]. .................................... 91 

Figure 38 - Perimeter heating system [74]. ................................................................... 92 

Figure 39 - Motorised roll-up curtain [75]. ..................................................................... 93 

Figure 40 - Greenhouse structure ................................................................................. 95 

Figure 41 - Torque calculation for roll vent. ................................................................... 96 

Figure 42 - Selected geared motor. .............................................................................. 97 

Figure 43 - Geared motor fitted to roll vent tube. .......................................................... 97 

Figure 44 - Schematic representation of Logo Soft program ...................................... 104 

Figure 45 - Solar heating system. ............................................................................... 107 

Figure 46 - Hot water storage. .................................................................................... 107 

Figure 47 - Heat exchange system installed underneath raised beds. ....................... 108 

Figure 48 - Enclosed raised beds ............................................................................... 108 

Figure 49 - Layout of water storage system. ............................................................... 111 

Figure 50 - Fluctuation in external temperatures during a hot summer's day. ............ 112 

Figure 51 - Variation in RH between day and night-time. ........................................... 113 

Figure 52 - Variation in outdoor temperatures during July 2013. ................................ 114 

Figure 53 - Variation in working fluid temperature for during July 2014. ..................... 115 

Figure 54 - Variation in internal temperatures for July 2013. ...................................... 115 

Figure 55 - Variation in internal temperatures for July 2013. ...................................... 116 

Figure 56 - Variation in under-bench water temperature - July 2014. ......................... 116 

Figure 57 - Variation in external temperature - 14 July 2014. ..................................... 117 

Figure 58 - Variation in external RH - 14 July 2014. ................................................... 118 

Figure 59 - Variation in external temperatures - 31 Oct 2014. .................................... 119 

Figure 60 - Variation in external RH - 30 Oct 2014. .................................................... 119 

Figure 61 - Typical variation in working fluid temperature during July 2014. ............... 120 

Figure 62 - Internal and external temperatures – 14 July 2014. .................................. 121 

Figure 63 - Variation in root zone temperature - 14 July 2014. ................................... 122 

© Central University of Technology, Free State



15 

 

Figure 64 - Internal and external temperatures - 30 Sept 2014. ................................. 123 

Figure 65 - Day-time ventilation model- 14 July 2014. ................................................ 127 

Figure 66 - Variation in inner and outer night-time temperature. ................................. 128 

Figure 67 - Actual vs. required heating capacity. ........................................................ 129 

Figure 68 - Numerical model to determine the required characteristics of the solar 

heating system. ........................................................................................................... 130 

Figure 70 - Typical financial model. ............................................................................ 132 

Figure 71 – Initial setup cost distribution. .................................................................... 133 

Figure 72 - Running cost distribution. ......................................................................... 133 

Figure 73 - Scaled financial model. ............................................................................. 134 

Figure 74 - Wind rose for Bloemfontein [18]. .............................................................. 146 

Figure 75 - Wind speed distribution above ground level [80]. ..................................... 147 

Figure 76 - Wind pressure on different walls. .............................................................. 149 

Figure 77 - Wind pressure loads on greenhouse. ....................................................... 149 

Figure 78 - Actual loads on superstructure. ................................................................ 150 

Figure 79 - Raw data from automatic weather station. ............................................... 152 

Figure 80 - Summarized data. .................................................................................... 153 

Figure 81 - Variation in temperatures. ........................................................................ 153 

Figure 82 - Variation in saturation enthalpy of air-vapour mixture. .............................. 154 

Figure 83 - Transient night-time heating model. ......................................................... 155 

Figure 84 - Heating Requirements. ............................................................................. 156 

Figure 85 - Determining the heating requirements. ..................................................... 156 

Figure 86 - Required change in heating water temperature. ....................................... 157 

Figure 87 - Summarized day-time data. ...................................................................... 158 

Figure 88 - Modelling the saturation enthalpy. ............................................................ 159 

Figure 89 - Day-time ventilation model. ...................................................................... 160 

Figure 90 - Actual vs. required rate of ventilation in m3/s. ........................................... 161 

Figure 91 - Actual vs. required rate of ventilation in exchanges/min. .......................... 161 

 

 

 

 

 

© Central University of Technology, Free State



16 

 

1. INTRODUCTION 

 

1.1 Background 

 

The purpose of a greenhouse is to create an area where the environment can be 

controlled for the cultivation of plants that require specific climatic conditions for 

optimum growth and for the production of fruit/flowers. Before a growing system can be 

developed, the climatic requirements of the various temperature-sensitive crops need to 

be investigated so that this can be used for setting the initial climatic requirements as 

set-point for the growing system. With all the relevant information available, a growing 

system can be designed for the specific purpose of this research project. The growing 

system will consist of a super structure that will be cladded with a suitable cladding 

material, a ventilation system that can supply fresh air and cool down the greenhouse 

during hot summer days, a solar water heating system that will be able to collect solar 

energy during daytime, store it and release it to the internal environment of the 

greenhouse during cold winter nights, as well a control system. As the investigation 

progresses and more information become available, additional sub-problems may arise 

and will need to be dealt with. 

Greenhouses can have different types of structural frames and can be used in a single 

or multi-span configuration, depending on the area required for cultivation and the 

climatic requirements of the plants. Each type of structure has its advantages and 

disadvantages and will be investigated. Apart from the type of structure that is used, the 

orientation of the structure also plays a significant role in the functioning of the 

greenhouse and needs to be investigated. 

All greenhouses are actually solar collectors but the term solar greenhouse is used for 

greenhouses that are orientated in such a way that they collect the maximum amount of 

sunlight during winter [3]. Solar greenhouses in the Southern Hemisphere will be 

constructed with a huge northern wall and a flat roof [4]. The northern wall and flat roof 

form a plane at a right angle to the sun’s rays at midday to collect the maximum 

possible amount of heat. These types of greenhouses are often built in countries in the 

Northern Hemisphere that are relatively far from the equator.  

In the following sections, the optimum levels for all the known factors that influence 

plant growth, such as the maximum day-time temperature, the minimum night-time 
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temperature, required day-time light intensity, required day-length, vapour pressure 

deficit (VPD), relative humidity (RH) and required levels of CO2 will be determined 

through the research of existing knowledge to determine their respective influences on 

optimum plant growth [1] [2].  

 

1.2 Problem statement 

 

The application of external sources of energy for heating and cooling purposes has 

become problematic lately due to the sharp increases in the costs thereof. Alternative 

sources for heating and cooling need to be investigated and their applicability in the 

greenhouse industry needs to be determined. 

 

1.3 Hypothetical resolution 

 

Various natural and/or renewable sources/methods for the heating and cooling of 

spaces have been identified/developed which can be used in the greenhouse industry. 

A natural ventilation system may, for example, be a viable alternative to a forced draft 

ventilation system, while a solar water heating system may be used to replace a 

conventional gas, electrical or coal fired heating system. 

 

1.4 Purpose of the study 

 

The purpose of this study is to investigate the possibility of using an energy efficient and 

economical viable growing system to grow temperature-sensitive crops year-round in 

the central region of South Africa. The viability of applying a natural ventilation system 

to regulate the internal temperature of the greenhouse for example as well as a solar 

water heating system to enable the system to collect, store and exchange heat when 

needed may be some of the most important issues that needs to be addressed.  
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1.5 Importance of the study 

 

The cost of food has increased dramatically lately and needs to be addressed urgently. 

More economical and secure food-producing systems need to be developed to enable 

the supply of the required volumes of food for the ever increasing world population. 

 

1.6 Methodology 

 

The following methodology was used: 

a) Gather information regarding the latest developments in alternative greenhouse 

technologies. 

b) Determine the climatic requirements for the relevant temperature-sensitive 

plants. 

c) Perform a literature review on the relevant mechanisms of heat transfer and 

determine how to apply the theory in the determination of the heat losses and 

gains as experienced by a greenhouse. 

d) Perform a theoretical analysis on the available technologies to determine the 

most suitable. 

e) Design a basic setup including all the chosen technologies. 

f) Construct a basic setup and run the production for one to two growing seasons in 

order to capture all relevant data. 

g) Use the captured data to develop a numerical heating and cooling (ventilation) 

model that can be used to evaluate the chosen technologies. 

h) Present a final heating and cooling model that can be used to construct a 

financial model to evaluate the viability of applying the chosen technologies in the 

greenhouse industry. 
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2. LITERATURE REVIEW 

 

2.1 Introduction 

 

The purpose of this chapter is to review existing literature to determine the basic 

requirements of a growing system and what technologies are currently available that 

can assist the grower in obtaining the basic requirements. 

 

 

2.2 General climatic requirements for temperature-sensitive 
crops 
 

The purpose of a greenhouse is to create an area where the environment can be 

controlled for the cultivation of plants that require specific climatic conditions for 

optimum growth and for the production of fruit/flowers. A greenhouse normally consists 

of a lightweight structure, made from steel or wood, that is clad with a transparent 

material such as glass, polyethylene sheeting, polycarbonate sheeting, etc. The 

purpose of the cladding is to allow the rays of the sun to penetrate the structure, to trap 

the heat and to protect the plants inside from the external environment (rain, wind, hail 

etc.). Inside this space, the environmental factors that influence plant growth, such as 

temperature, relative humidity (RH), level of radiation and light intensity can be 

controlled to promote growth and combat insects and fungal diseases [1]. The 

maximum temperature and level of radiation during the mid-summer months inside 

greenhouses, in the central region of South Africa, normally exceeds the levels that the 

plants require for optimum growth and the minimum temperatures inside the 

greenhouses may fall below the allowable minimum temperatures that temperature-

sensitive plants are able to tolerate during night-time in winter.  

A greenhouse must always have some type of ventilation system for the purpose of 

cooling, to supply fresh air to the plants and to lower the RH inside the greenhouse. A 

ventilation system can either be of the forced draft type or a natural ventilation system 

[4] [5]. The required rate of ventilation for a greenhouse, according to the National 

Greenhouse Manufacturers Association of the U.S.A. (NGMA), is based on the floor 

area, because the solar heat in the greenhouse is related to the floor area. The 
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application of fan-and-pad systems has become problematic lately, due to sharp 

increases in the cost of energy. Manufacturers of greenhouses are trying to incorporate 

passive ventilation systems that enhance natural ventilation, as they require almost no 

external energy during operation.  

Natural ventilation systems rely on a draft that may be created by the wind or the 

cooling effect of convection when hot air moves through the roof vent and sucks cooler 

air into the greenhouse through the side vents. The required rate of ventilation needs to 

be determined and modelled so that the applicability of a natural ventilation system can 

be determined for greenhouses in the central region of South Africa [6] [7]. In this study, 

an experimental setup will be used to collect the required environmental data for the 

evaluation of the system. 

In general, temperature-sensitive crops are defined as those types of crops that stop 

producing fruit and flowers as soon as the minimum temperatures, especially in winter, 

drop below a certain point. Below this temperature, fruit development is terminated and 

no new fruit or flowers are formed. The plant will also stop feeding and developing 

existing fruit and flowers [1]. The ideal climate for most plants does, however, depend 

on more than just the minimum temperatures. The ideal in this situation would mean a 

climate that would stimulate optimum production of high-quality fruit and flowers. The 

ideal climate is normally defined as a range within which a specific parameter may vary 

and that will enable the plants to develop fruit and flowers of reasonable quality and a 

reasonable volume [8] [9]. The upper and lower limits of these parameters are normally 

defined while the actual parameter may vary during the course of a normal day to allow 

plants to receive their required periods of exposure to various combinations of 

parameters. Plants need the difference in day/night temperatures to set flowers and 

fruit, while the 24-hour average temperature is necessary to ensure proper fruit 

development. Table 1 below provides a compiled summary of the ideal climatic 

requirements of some temperature-sensitive greenhouse crops [1] [8] [10]. 
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Table 1 - Ideal climatic conditions for various greenhouse crops 

 

Crop Min night-time 

temperature 

(0C) 

Max day-time 

temperature 

(0C) 

Light intensity 

required µmol.m-2s-1 

Day 

length 

(h) 

Ideal relative 

humidity 

% 

VPD 

(g/cm3) 

CO2 

level 

(PPM) 

Cut-roses 15 28 ≥300 12 60 – 70 4 – 5 1000 

Tomatoes 15 35 ≥300 12 60 – 70 3 – 5 1000 

Cucumbers 15 25 ≥300 12 70 – 80 3 – 5 1000 

Green 

Peppers 

 

16 – 17 

 

20 – 21 

 

≥300 

 

12 

 

75 – 80 

 

3 – 5 

 

1000 

 

The ideal conditions to grow cut-roses would be a climate where the night-time 

temperature drops to 15 oC and remains constant at 15 oC, and where the day-time 

temperature rises to 28 oC and remains constant for the duration of the day. The day 

length should be 12 hours, the RH fixed at 60-70 %, with a light intensity of more than 

300 µmol.m-2s-1 [1]. The ambient values for these parameters do however fluctuate 

gradually between the minimum and the maximum values and the function of the 

greenhouse would be to try and create this optimum climate for the plants to grow in. At 

present, growers use these predetermined values as set-point in the greenhouse’s 

climate control system, if any are available. 

Currently, most of the greenhouses in the central region of South Africa are still 

manually operated. Most have roof vents only, which are manually opened and closed 

depending on the internal temperature. In the absence of a proper control system, huge 

fluctuations in the internal temperature due to the greenhouse effect can sometimes 

occur. The existing natural ventilation systems are often unable to obtain a reasonable 

maximum day-time temperature, especially during the hotter summer months. This 

causes greenhouses to overheat which has a detrimental effect on the fruit and flower 

quality. The required quantity of fruit and flowers are often obtained, but at the expense 

of quality.  

 

 

2.2.1 Minimum night-time temperature 

 

The minimum temperature to which the internal greenhouse climate may cool down is 

one of the most critical factors that influences a greenhouse’s ability to provide an ideal 

climate for the production of temperature-sensitive crops. If the plants are exposed to a 
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night-time temperature which is lower than the minimum required, as indicated in 

Table 1, fruit set is terminated and no new fruit or flowers will be formed. On the other 

hand, plants need a lower night-time temperature than the maximum day-time 

temperature, to be able to develop fruit and flowers. Cut-roses, for example, need a 

certain number of maximum day-time temperatures and a certain number of minimum 

night-time temperatures to enable them to form rose buds with a length of at least 5 cm, 

as required for the export market. The required temperature is sometimes called the et-

mol temperature. Apart from the damage that could be done to the crop as a result of 

too low minimum night-time temperatures, the required growing time is also increased, 

as stated in section 2.1 [1] [2] .  

Various heating systems are available for greenhouses, the most common being 

stationary coal-fired air heaters, coal-fired steam kettles with a water circulation system 

that is connected to heat exchanger/s inside the greenhouse and mobile or hanging 

gas-, diesel- and paraffin-fired or even electric heaters [11] [12] [13] [14] .  

Solar heating systems are characterized into three types: The first type consists of solar 

ponds (e.g. phase-change materials and heat pumps); the second type of air-heat 

exchange systems consists of rock bed solar systems and earth-air heat exchange 

systems; and the third type consists of systems such as the passive solar systems and 

water spraying on the greenhouse. Passive water heating systems normally consist of 

different types of water storage containers inside the greenhouse and heated with the 

greenhouse’s captured heat during daytime. The biggest problem with the passive solar 

heating systems is the total lack of control that is associated with these types of 

systems.  

The problem that growers face with the commonly used heating systems is the increase 

in fuel prices, making it financially nonviable to produce temperature-sensitive crops 

year-round, resulting in an inability for growers to obtain fixed contracts [13]. 

In this study, the application of solar heating systems will be investigated to determine 

their applicability in the commercial greenhouse industry. As in the case of the 

evaluation of the natural ventilation system, an experimental solar heating system 

needs to be constructed and the appropriate data collected and analysed to ultimately 

determine the financial viability of using such a system. The solar heating system may 

not be able to supply all the required heat during mid-winter but may be applied 

economically to extend the growing season. The term “solar savings fraction” or “solar 
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fraction” is defined as the amount of energy provided by the solar technology divided by 

the total amount of energy required [15]. This study will also aim to develop a tool that 

can enable a grower to determine what solar fraction can be economically applied. Cut-

roses will be grown as a crop and the capability of the proposed growing system will be 

evaluated against the climatic requirements of the plants [16] [17] . 

 

 

2.2.2 Maximum day-time temperature 

 

The ideal maximum day-time temperature for cut-roses, as indicated in Table 1, is 

28 oC. In general, a greenhouse acts as a solar collector, due to the heat transfer from 

the external to the internal climate through radiation. This effect enables a climate-

controlled greenhouse to easily reach the required maximum day-time temperature 

during periods of lower external temperatures, if ample levels of sunlight are available. It 

may, however, become problematic during periods of elevated external temperatures, 

as the greenhouse will need to find ways to get rid of the excess heat it collects.  

In industry, two ventilation techniques, namely natural ventilation (through ventilation 

openings) and forced draft ventilation (through a fan or a fan-and-pad system) are used 

to remove the excess heat from the greenhouse [4]. Various methods of blocking the 

excess rays from the sun, through a system of fixed or retractable internal or external 

curtains, are also used and are called shading and reflecting techniques depending on 

the physical characteristics of the curtain material [1].  

The recent sharp increases in the cost of energy made the application of the forced 

draft technique financially nonviable and greenhouse manufacturers and researchers 

are more and more looking into the application of natural ventilation through a 

combination of side wall and roof openings, since this technique is very energy efficient.  

As far as this project is concerned, natural ventilation is the preferred choice of 

ventilation technique and it will be obtained through the application of side and roof 

vents. The exact type of vents to be used will be determined in the concept design 

phase. The external temperature, in the central region of South Africa may often rise 

above 36 oC, while the application of natural ventilation is not able to lower the internal 

temperature below 36 oC, which means that additional cooling and shading techniques 

may be needed to obtain the ideal internal maximum day-time temperature of 28 oC 

[18].  
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The required rate of ventilation for greenhouses in summer is in the order of 60 air 

exchanges per hour [4]. This can be obtained with two side vents and a roof vent that 

creates an opening equal to at least 25% of the floor area. This will allow the internal 

temperature to exceed the external temperature by approximately 5 – 6 oC. This will 

also ensure that the levels of CO2 do not drop significantly below the atmospheric 

levels.  

When roses are grown for cut-flowers, the flowers’ size and stem length are two 

important factors that have a huge influence on the flower quality [1] . If the growing 

temperature increases, the number of days from bud break to flowering is reduced, but 

only up to a certain limit. The optimum upper limit of the day-time temperatures, has 

been determined as 28 oC. At lower growing temperatures, the stem length and bud 

size will increase but more development time will be required from bud break to 

flowering. This means that the grower has to create a balance between the required 

stem length plus bud size versus the number of days required for development. There is 

no financial reward for stem lengths and bud sizes in excess of what the market 

requires. During experimental analysis, the size of the buds are normally weighed both 

as fresh and dry flowers. The data obtained can then be plotted against the growing 

temperature and used to determine the optimum as shown in the figure below [1]. If 

greenhouses need to be heated, a grower would like to use the least amount of energy 

required, meaning that the lowest possible set-point at which the required quality at the 

optimum growing time can be obtained. If the growing temperature is reduced 

from 30 oC to 15 oC, for example, the number of days required from bud break to 

flowering, increases from 21.6 to 63 days [1]. 

 

Figure 1 - Effect of growing temperature on fresh and dry bud weight [1]. 
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2.2.3 Light intensity 

 

For the production of high quality cut-roses, a light intensity of at least 300 µmol.m-2s-1 

during daytime is required [1] [9] [19] [20]. The light intensity which the plants receive 

will depend on the percentage of light that the cladding material transmits. Plants need 

light with a wavelength of 400 to 700 µm, known as photo synthetically active radiation 

(PAR). Polyethylene (PE) film will typically transmit 77 to 92 % of the received light, 

depending on the various additives. These additives are used to stabilize the film 

against UV degradation, to diffuse the light inside the greenhouse, to block UV light 

from entering the greenhouse, to block IR light from leaving the greenhouse at night and 

to control condensation inside the greenhouse [21]. 

 

2.2.4 Day length 

 

Greenhouse-grown cut-roses do not need a specific day-length before they begin to 

flower. The initiation of flowers may rather depend on obtaining a certain stage or age of 

development. During the shortest day in winter, 21 June, the Free State still receives 

almost ten-and-a-half hours of sunlight. The effect of the actual length of daylight will 

therefore be ignored in this study. Extending daylight is an energy consuming activity, 

while the focus of this project is on the development of a sustainable greenhouse [1]. 

Daylight extension is not often used for normal plant production. Roses, in general, 

need approximately six hours of direct sunlight per day to function properly. 

 

2.2.5 Vapour pressure deficit 

 

The vapour pressure deficit (VPD) is the difference between the amount of moisture in 

the air and how much moisture the air can hold when it is saturated. The SI units for 

VPD is kPa and the ideal range is between 0.45 and 1.25 kPa, with an optimum at 

0.85 kPa [22]. If the air becomes saturated with water, the water will start to condense 

and form a film of water on the leaves of the plant. This is critical in greenhouses since 

this film of water will make the plants more susceptible to the development of fungi on 

the leaves. The temperature at which condensation occurs at a specific RH is called the 
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dew point. If the VPD becomes too high, plants need to draw more water through their 

roots to prevent dehydration.  

To calculate the actual VPD one must determine the air temperature (internal and 

external) and the relative humidity. The saturation pressure (vpsat) must be determined 

for both the canopy and the external environment from a psychometric chart. The partial 

pressure (vpair) of the water vapour in the air is determined as follows: 

vpair = vpsat * RH/100  (2.1) 

And then the VPD as follows: 

VPD = vpsat – vpair or VPD = vpcanopy sat – vpair (2.2) 

The VPD thus determines the water-holding capacity of the air by taking its temperature 

and RH into account, thereby allowing the grower to identify healthy air moisture 

conditions for crop production. Earlier research determined that a higher VPD, in other 

words dryer air, during the growing period of cut-roses, has a positive effect on the vase 

life on all the tested varieties and creates less favourable conditions for the 

development of fungi on the leaves [23]. 

 

2.2.6 Relative humidity 

 

The relative humidity (RH) is the ratio of the partial pressure (vpair) of water in an air-

water mixture to the saturated vapour pressure (vpsat) of water at a given temperature 

[23] [24]. The relative humidity of air in a closed system is dependent on both the 

temperature (determining vpsat) and the total pressure (influencing changes in vpair ). 

The RH of an air-water mixture is calculated as follows: 

RH=(vpair / vpsat)*100 %  (2.3) 

The relative humidity of the air inside the greenhouse influences the rate of transpiration 

of the plants, which in turn influences the rate of water uptake through the root system. 

The optimum RH inside the greenhouse, for cut-rose production, must be between 60 

and 70 %. A combination of dry and warm days with cool and humid nights will enhance 

the development of fungal diseases such as powdery mildew, while a constantly low RH 

enhances the development of pests like red-spider mites. If the RH rises above 90 % for 

extended periods of time, it negatively influences the shelf life of the product and may 

cause the development of bacterial and fungal diseases such as black spot [4] [22]. 

Because the RH of air is dependent on temperature, the VPD or air is a more accurate 
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way of determining the rate of transpiration from the leaves. At a specific temperature, 

the RH of the air may be 90 % while the VPD is 1.0 kPa. The value of the VPD is 

independent of temperature and a high value of VPD, e.g. 1.0 kPa, means that the air 

can still hold a large amount of water. Therefore, a large gradient exists between the 

plants that are nearly saturated with water and the air. At a VPD of 1.0 kPa, the plants 

can still transpire and dry out although the RH reading may be 90 % at the specific 

temperature. A VPD of zero would mean that the air is completely saturated and it will 

therefore not be possible for the plants to transpire. 

 

2.2.7 Levels of CO2  

 

The ambient level of CO2 is approximately 340 ppm by volume. In an enclosed 

environment, the level of CO2 can drop significantly if not properly ventilated due to the 

process of photosynthesis. Most plants will grow quite well at the ambient levels of CO2 

although an increase to 1000 ppm may increase the rate of photosynthesis by 

approximately 50 % [25]. A proper ventilation system is therefore required to ensure that 

the levels of CO2 do not drop significantly below 340 ppm, and CO2 supplementation is 

sometimes required should it prove to be economically feasible. In this project, a natural 

ventilation system will be incorporated, which should be able to obtain the required 

levels of CO2 in the air without any supplementation. CO2 supplementation can be 

performed chemically if needed, but is normally not necessary if a natural ventilation 

system is used because normally there is a sufficient rate of air exchanges obtained 

with such a system (30 to 60 air exchanges per hour) [4]. 

 

2.3 Current status of greenhouse technology 

 

The previous section focussed on the climatic requirements of the various crops. To 

obtain the required levels for these climatic requirements, various technologies are used 

and will be described in the sections to follow. With the technologies that are currently 

available, it is possible to create the ideal climate but at a cost, especially as far as the 

required temperatures for optimum growth is concerned. Growers have to ensure that 

the growing operation is financially viable otherwise the sustainability of the operation 

will be jeopardised.  
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The cost of electricity and fossil fuels has increased dramatically in recent years and 

alternatives need to be found to ensure sustainability in the sector. A great deal of 

research is done regarding the known climatic requirements of the crops in order to 

determine what influence alternative set-points for the different climatic parameters will 

have on the volume and quality of the produce [1] [26]. On the other hand, much 

research is also undertaken to evaluate the possibility of applying alternative 

technologies to obtain the required climatic requirements [11].   

 

In the sections that follow, the current status regarding the applied technologies in 

South Africa and the rest of the world will be discussed as well as possible alternatives 

that need to be investigated. 

 

2.4 Current status of greenhouse technologies used. 

 

In this section, the different technologies that are currently used in South Africa will be 

discussed and compared with what is being used in the rest of the world. 

 

 

2.4.1 Managing minimum temperatures 

 

To prevent the internal temperatures from dropping below the point where fruit and 

flower formation is terminated, various heating technologies such as gas- or diesel-fired 

burners, electric heater/fan combinations as well as water heat exchange systems, 

where the heat is normally generated with coal-fired boilers, are generally applied [27]. 

The running costs of these conventional technologies are dependent on the costs of 

fossil-fuels and have increased dramatically in recent years. Many growers were forced 

to terminate the year-round production of temperature-sensitive crops and to focus on 

the time of the year where temperatures are more suitable. Greenhouse systems that 

were developed for year-round production are now being used only to extend the 

growing season. The value of temperature-sensitive crops is normally higher during the 

off-season due to the lower volumes that can be supplied to the market.  
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Similar technologies used for the heating of greenhouses in South Africa are used in 

Europe and the U.S., and similar problems regarding the cost of fuels are being 

experienced. Energy conservation strategies and the application of alternative energies 

are being investigated in an effort to reduce the cost of heating greenhouses [13]. An 

energy conservation strategy may include any combination of the following factors: 

 Paying more attention to the insulation of the greenhouse structure; 

 Installing double layers of polyethylene film; 

 The application of thermal blankets; 

 Optimizing the heating systems efficiency (fuels, clean radiation surfaces, etc.); 

 The installation of horizontal air flow fans; and  

 Testing different set-points for environmental control [60]. 

An alternative to traditional greenhouses, that is growing rapidly in the U.S., is the 

application of high tunnels [29]. High tunnels are defined as greenhouses without any 

electrical connections, meaning that no energy can be used for heating or cooling 

purposes. High tunnels can be used in a single-span or multiple span application and 

normally have both ends open. High tunnels are much simpler in construction, if 

compared to conventional greenhouses, and are used to extend the growing season of 

temperature-sensitive crops. An example of a high tunnel is presented in Figure 2. 

 

 

Figure 2 – High tunnels at Haygrove [28] 

 

The application of heat pumps to heat the water in water-circulation greenhouse heating 

systems has increased lately [12] [29]. Heat pumps extract heat from the outside air and 

can be up to 75 % more efficient than a conventional boiler heating system. In 

experiments conducted by the Graduate School of Horticulture in Chiba, Japan, an 

average coefficient of performance (COP) of 4 was obtained when a heat pump was 
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used for the heating of a greenhouse [30]. The value of the COP does however depend 

on the temperature of the source, which can be either air or ground-water, and may 

sometimes drop to 1, which makes heat pumps less efficient than boilers.  

The application of biomass for greenhouse heating has also received attention. 

Biomass can be used in a number of ways with the most favourable being the 

application of biomass as fuel in direct combustion or gasification systems [17]. The 

amount of heat that can be generated by burning a certain mass of biomass is lower 

than that generated by burning the same mass of fossil-fuels, but biomass in the form of 

field crop residues are normally less expensive than fossil-fuels. Another concept that is 

being explored in the U.S. is cogeneration, where the heat that is generated by 

electricity generation equipment, e.g. an internal combustion engine, is used for heating 

purposes. Heating greenhouses with stored solar energy is a concept that is not applied 

in the greenhouse industry and needs to be investigated. 

 

2.4.2 Managing maximum day-time temperatures 

 

The maximum day-time temperatures that can be reached inside a greenhouse are 

normally lowered through the application of a fan-and-pad system for evaporative 

cooling, or the application of a natural ventilation system, sometimes in combination 

with an energy screen, or the application of a misting system in combination with either 

a fan-and-pad system or a natural ventilation system. These technologies are 

commonly used in South Africa as well as in the rest of the world. A fan-and-pad system 

can be much more effective than a natural ventilation system if the RH of the outside air 

is not too high, which reduces that rate of evaporation that can be obtained by the fan-

and-pad system [5] [31]. It also has the added advantage of increasing the internal 

humidity and creating the required air flow across the plants. The typical required rate of 

ventilation for a fan-and-pad system is in the order of one air exchange per minute [4]. 

The biggest disadvantage of the fan-and-pad system is the electricity and water that it 

consumes and for this reason, natural ventilation systems have become the preferred 

choice of most growers. It is, however, important to mention that a natural ventilation 

system is not able to reduce the internal temperature to a level that is below the ambient 

temperature. In fact, at best it is normally able to obtain an internal temperature of 3 to 5 

degrees higher than the ambient, depending on the efficiency of the system. If a natural 
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ventilation system is however used in combination with an energy screen, it can lower 

the levels of solar radiation that the plants receive and thereby enable them to tolerate 

the higher-than-ambient temperatures. The problem here is, however, that the ambient 

temperatures in South Africa may often exceed temperatures that the plants can 

tolerate (as listed in Table 1) during midday and this does pose as a threat to the quality 

of the produce. Misting systems are very effective in reducing the internal temperatures 

and simultaneously increasing the humidity of the air inside the greenhouse, but at the 

expense of the water that is consumed. The latest systems, called “Dry Misting 

Systems”, produce very small droplets (small nozzle orifice with a high fluid pressure) in 

an effort to reduce the water consumption [12]. 

 

2.4.3 Obtaining the required light intensity 

 

Various types of cladding, ranging from glass to PC sheeting to PE film, are used as 

cladding material throughout the world. In Europe, many greenhouses are covered with 

glass but in South Africa, PE film is mostly used due to the high cost of glass. Various 

types of PE film, consisting of up to five layers, each with its specific purpose, is used in 

South Africa and the rest of the world. A specific film, called IR Rose, is normally used 

as greenhouse film for roses in South Africa. This specific film possesses all of the 

abovementioned additives and transmits 77 – 88 % of the light [21] [32] . 

Experiments performed on a cut-rose cultivar named ‘Mercedes’ showed that the rate of 

flowering from the uppermost shoot decreased from 89 to 6% when the light intensity 

decreased from 270 µmol.m-2s-1 to 6 µmol.m-2s-1 during a 12-hour growing period [19].  

One of the most important functions of a greenhouse is to provide enough light for the 

plants and although the plants will be able to function at lower-than-required light 

intensities, the production will be severely influenced by the lower levels of light [1]. 

Most greenhouses in the central region of South Africa are covered with a single layer 

of PE film that does allow adequate levels of light to reach the plants. Shade screens 

are sometimes used to reduce the level of radiation on the plant leaves with the 

disadvantage that it also reduces the light intensity inside the greenhouse. A trade-off 

has to be made between the level of radiation on the plant leaves and the light intensity 

inside the greenhouse. Most shade screens are constructed from different grades of 

shade cloth with strips of Aluminium wound through the cloth [33]. The purpose of the 
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strips is to reflect the radiation from the greenhouse. Shade screens can fulfil a dual 

purpose by also blocking some of the radiation from the plant leaves at night, the 

effectiveness of which is also dependent on the grade of shade cloth that is used. 

 

2.4.4 Altering the day-length 

 

The length of a day, the period during which adequate light is available for 

photosynthesis during a 24-hour period, is called the photoperiod [1] [9]. Plants respond 

to an increase or decrease of the photoperiod. Scientists have realised that the length of 

the uninterrupted dark period (night-length) is a critical factor in plant development. The 

so-called length of the “critical night” must be exceeded to induce a short-day response 

or decreased to induce a long-day response. The interruption of the dark period by brief 

intervals of lighting will trigger a long-day response. The interaction of lower 

temperatures and longer dark periods creates what is called the “autumn effect”. For a 

plant to be able to survive it needs to be in synchrony with the environment within which 

it grows. 

Plant responses to changing photoperiod maintain the plant in synchrony with its 

environment and prolong its survival. For example, moving in latitude away from the 

equator toward one of the poles, the short days of autumn that precede winter's low 

temperatures induce bud dormancy and condition the plant to survive low temperatures. 

In the central region of South Africa, the buds normally start to go dormant by May and 

become active in August. The average day-lengths and temperatures for Bloemfontein 

are presented in Figures 3 and 4 below [18]. From Figure 3 it can be seen that the 

average day-length is approximately 10.5 hours with an average maximum temperature 

of 23 oC and an average minimum temperature of 1 oC. During August, the average 

day-length has increased again to approximately 10.5 hours with practically the same 

average maximum and minimum temperatures as in May. For the period of dormancy, 

the night-time period will decrease from 13.5 hours to a low of approximately 14 hours 

in June/July. 
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Figure 3 - Annual variation in day-length for Bloemfontein [18]. 

Towards June/July, the average maximum day-time temperatures as well as the 

average minimum night-time temperatures drops by approximately 2 oC, although some 

much colder spells can be experienced during this phase, which tend to move rose 

plants into dormancy relatively quickly. Although the day-length follows the graphs as 

presented in Figure 3, it is known that the actual temperatures may fluctuate a lot from 

what is presented in Figure 4. 

 

 

Figure 4 - Average temperatures for Bloemfontein [18]. 
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The night-time period increases by approximately half-an-hour and experience has 

shown that this increase in the night-time period does not have a notable effect on plant 

growth because the plants continue to produce if the temperature does not change 

dramatically during that period. For this reason, the extension of the photoperiod will be 

ignored as far as this study is concerned. The extension of the photoperiod is a concept 

that is not applied in the central region of South Africa. In Europe, where the day-length 

can become relatively short, it becomes a necessity. 

 

2.4.5 Controlling the vapour pressure deficit 

 

The VPD can be used to evaluate the disease threat, determine the possibility for 

condensation and determine the irrigation needs of a greenhouse crop. To prevent 

condensation inside a greenhouse is very important because pathogens require a water 

film on the plant for them to develop and infect [22]. In monitoring the VPD, the grower 

will be able to determine when condensation will occur and take the necessary steps to 

prevent it. In greenhouses, the VPD is lowered by the removal of moisture from the air 

through a process called dehumidification. The dehumidification process can form part 

of the ventilation process, should the ventilation process prove to be sufficient in the 

removal of moisture from the air inside the greenhouse [4] [5]. The efficiency of the 

dehumidification process, through ventilation, will however also depend on the RH of 

the ambient air.  

Studies have shown that fungal pathogens have a better survival rate when the VPD is 

below 0.43 kPa, while disease infection can be most damaging when the VPD is below 

0.02 kPa . The VPD of the greenhouse climate should therefore be kept above 0.02 kPa 

to prevent disease and damage to crops [22]. When biological control agents are 

however used inside the greenhouse, the required VPD should be re-evaluated 

because these organisms require specific VPD conditions for growth and distribution.  

Most growers in South Africa, as well as the rest of the world, follow an Integrated 

Disease and Pest Management (IDPM) strategy, meaning that the control of diseases 

and pests are not done through the application of chemicals only, but by taking all the 

factors (e.g. climate) into account that can create conditions that are suitable for 

pathogens and pests to develop. To control the VPD, the following techniques can be 

applied: 
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 Use a bottom heating or between-row heating system. If the bottom heating 

system is installed below the roots of the plants it is also called a root zone 

heating system. These systems will assist in keeping the plant surface 

temperatures above the dew point through the temperature gradient that will be 

developed inside the greenhouse, which in turn will also stimulate air circulation. 

 Use a thermal screen to keep the plants warm. Thermal screens, used just above 

the crop level, not only reduces the volume of air the needs to be heated inside 

the greenhouse but also reduces the heat loss through radiation and conduction.  

 Improve the air circulation inside the greenhouse by installing horizontal air flow 

(HAF) fans. The circulation of the air will distribute the warmer air and that will 

encourage the evaporation of the condensate into the air. 

These techniques should be kept in mind, especially during the design of the heating 

system [10] [34]. Should condensation still appear, HAF fans can be installed to 

alleviate the problem. 

 

2.4.6 Controlling the RH 

 

To control the humidity inside a greenhouse can be quite challenging, even for 

automated humidity control systems. This is due to the inflow of air, caused by the 

ventilation system, the fluctuating values of the ambient RH, as well as the water that 

the plants continually add to the air through transpiration. The RH inside the 

greenhouse will have a huge influence on the crop quality because non-optimum levels 

of the RH can cause plant stress, lost yields, disease outbreaks as well as the wasting 

of energy through the limitations of equipment and the wrong climate control set-points. 

The main aim in controlling the humidity in high humidity conditions is to avoid humidity 

levels near the dew-point because the condensation of free water onto the plant 

surfaces can promote fungal growth. Under saturated conditions, the plants will also not 

be able to evaporate water from their leaves, which will in turn limit the uptake of 

nutrients which are normally deposited during this evaporation process.  

Not all the surfaces in a greenhouse will necessarily be at the same temperature, which 

would mean that at high levels of humidity, water vapour may start condensing from 

cooler surfaces which causes dripping. Dripping is to be avoided inside a greenhouse 

because it assists in spreading diseases through the greenhouse. The average daily 
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high (indicated in blue) and daily low (indicated in brown) variation for Bloemfontein is 

shown in Figure 5 (inner bands from 25th to 75th percentile, outer bands from 10th to 90th 

percentile). 

 

 

Figure 5 - Variation in average RH for Bloemfontein [18]. 

 

The problem with the RH is that it varies daily between these values and that the 

maximum values are normally obtained during early morning, when the ventilation 

system is not operational because the ambient temperatures have dropped. To alleviate 

this problem, a combination of heating and venting is used to exchange moist air with 

drier outside air and heating to reduce the RH levels [4]. When a control system is 

available, this temperature rise and humidification process at sunrise is incorporated 

into the daily program. 

 

2.4.7 CO2 supplementation. 

 

Carbon dioxide is an important component in photosynthesis, a process where light is 

used to convert CO2 and water into sugars in green plants. The sugars are used for 

plant growth through respiration. If the rate of photosynthesis exceeds the rate of 

respiration, dry-matter is accumulated which is called growth. Growers, therefore try to 

increase the rate of photosynthesis by increasing the levels of CO2, which improves 

plant vigour and growth and ultimately increases yields. For most crops, net 
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photosynthesis increases as the levels of CO2 increases from 340 – 1000 ppm. If the 

levels of CO2 are increased above 1000 ppm, no increase in plant growth is expected, 

as indicated in Figure 6 [25]. 

 

 

Figure 6 - Effect of carbon dioxide on plant growth [25]. 

 

The levels of CO2 can be increased by burning carbon-based fuels such as natural gas, 

propane and kerosene or by chemical injection from CO2 tanks. Burning carbon-based 

fuels has the added advantage that heat is also generated that can supplement the 

heating system. Incomplete combustion or contaminated fuels may however cause 

damage to the plants. The sulphur levels of the fuels should also not exceed 0.02 % by 

weight. The natural gas, propane and liquid fuels are normally burnt through specialized 

CO2 generators that are located throughout the greenhouse. The number of units 

required is determined by their heating capacity and the degree of horizontal airflow that 

they create. A potential disadvantage of these types of systems is that the heat that is 

created may be quite localized whereby it may cause a disease incident. Water vapour 

is also created when natural gas and propane is burnt, which will increase the humidity 

inside the greenhouse. Another method that is being used is to direct a portion of the 

flue from the natural gas burners, which are connected to the heating system, to the 

greenhouse. These types of burners must then be equipped with a flue gas condenser. 

Liquid CO2 has become very popular in recent years because of its purity as it 

eliminates concerns regarding crop damage, no heat or moisture is produced and the 

CO2 levels can be better controlled [25]. Experiments conducted on miniature roses 

showed that the CO2 exchange rate varied during a 24-hour period daily cycle, as 

shown in Figure 7. The Carbon Dioxide Exchange Rate (CER) also showed a significant 
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increase when the available levels of CO2 in the air were increased from 370 µmol mol-1 

CO2 to 800 µmol mol-1 CO2  [25]. 

 

 

Figure 7 - Variations in CO2 requirements during the day [25]. 

 

What is also clear from Figure 7 is that the plants do not require additional CO2 during 

the night-time period, when the ventilation system is not operational, meaning that no 

additional CO2 or ventilation is required during the night-time which may place an 

additional load on the heating system.  

 

2.4.8 Questions to be addressed in this research 

 

As stated earlier, the ideal growing conditions for growing cut-roses, as far as the 

temperature is concerned, would be a climate where the night-time temperature drops 

to 15 oC and remains constant at 15 oC and where the day-time temperature rises to 

28 oC and remains constant for the duration of the day. Controlling the internal 

temperature is currently the single biggest problem that growers are faced with due to 

the recent increases in the cost of energy. Some research still needs to be done 

regarding the application of alternative heating and cooling systems to alleviate the 

burden that the increasing cost of energy is placing on growers. The heating of the 

greenhouse remains the most expensive operational cost and therefore the biggest 
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factor that limits the economical year-round production of temperature-sensitive crops. 

To be able to design a heating system for a greenhouse, it is necessary to fully 

understand the relative importance of each phenomenon involved. A mathematical 

model can provide a good tool to quantify the importance of each phenomenon. To be 

able to design any type of heating system for a greenhouse it will be important to 

develop an accurate model for determining the possible heat losses.  

 

2.5 Conclusion 

The basic climatic requirements for the optimum growing system was determined and 

the technologies that are currently being used was investigated. The cooling and 

heating of a greenhouse is normally the most difficult and costly to control and 

alternative methods of doing this needs to be investigated. 
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2.6 Greenhouse Thermal Design 

 

2.7 Introduction 

 

In this chapter all possible methods for a greenhouse to either gain or lose heat will be 

investigated, expressed numerically, and combined to create a total heat loss/gain 

model for both the steady state as well as transient scenarios. 

 

2.7.1 Energy balance 

 

For a complete energy balance, the following heat losses and gains need to be 

considered: 

 Heat gains and losses through radiation, 

 Heat losses through ventilation and infiltration (convection), 

 Heat losses through conduction, 

 Heat losses through ground interchange (conduction), 

 Heat gains from people and equipment, 

 Plant biological activity interchange (e.g. transpiration), 

 Heat losses through condensation, 

 Heat losses through reflection, and 

 Heat gains from the heating system. 

This energy balance can be schematically presented, as shown in Figure 8. The control 

volume consists of the internal volume of the greenhouse. 

 

Figure 8 - Greenhouse energy balance [35] 
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Some of these heat transfer processes (or paths) will occur independently of one 

another (in parallel) and others will be dependent on the previous process (in series). 

For the typical heat loss scenario during a cooler winter’s night, the following paths of 

heat transfer will be established: 

 Heat will be transferred from the warmer surface of the leaves to the surrounding 

air inside the greenhouse through convection, due to the movement of this air, as 

created by infiltration, 

 Some of this heat will then be transported by the moving air to the cladding and 

structure, 

 From the warmer greenhouse cladding, some heat will be conducted to the 

colder outside air, some reflected back to the surface of the leaves and some 

absorbed by the greenhouse structure and cladding, 

 The greenhouse floor which was heated during the day will convect some of this 

heat to the internal air through the movement of this air, as created by infiltration, 

 The heated greenhouse floor will also radiate some of its collected heat to the 

plants and open sky, if a direct path is available, 

 The surface of the leaves will radiate heat directly to the outside air, 

 The cladding and structure will radiate some of this heat back to the plants, 

 Water vapour that condenses against the inside of the greenhouse cladding 

during the early morning will remove some heat from the internal air, and 

 Heat will be added to the greenhouse’s internal environment by the heating 

system. 

From the above-mentioned it is clear that the heat transfer/transport system can be 

quite complex and that certain assumptions need to be made to make theoretical 

calculations possible. In making the assumptions, a conservative approach needs to be 

followed to ensure that the actual rate of heat transfer is not underestimated. Values 

obtained can also be benchmarked against industry standards [35] [36].  

 

The heat loss situation was presented to a local company, Munters, specializing in 

greenhouse heating and cooling, and based on their experience in this field they 

proposed a 30 kW heating system for this specific greenhouse operating under the 

specified climatic conditions . 
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As far as the heat loss mechanisms are concerned, the following initial assumptions 

were made and can be verified at a later stage: 

 The moving air will transport a portion of the heat that was collected from the 

surface of the leaves to the canopy from where a certain portion will be 

absorbed, some reflected and the rest conducted to the outside air [35]. 

 The greenhouse floor was covered with a single layer of 500 µm thick black PE 

film, which would mean that it would be able to collect a reasonable amount of 

heat during the day directly from the sun through radiation, should it be fully 

exposed. This is however only the case when the plants are young, but for plants 

in full production, the portion of the floor that is still directly exposed normally 

decreases to almost zero. For that reason, we can safely assume that the floor 

will receive little radiation from the sun and because of this covering, the sub-soil 

will not be able to radiate large amounts of heat to the greenhouse. Should this 

however be possible, it can be seen as a net heat gain that can be disregarded 

for the purpose of determining the maximum rate of heat loss [35]. 

 Anti-drip greenhouse films, that eliminate the condensation of water vapour on 

the inside of the cladding during the night because of certain additives, can be 

used, and should this prove to be effective, the loss of heat due to condensation 

can be disregarded. Should the physical experiments however prove that 

condensation still takes place, the effect of it on the total rate of heat loss can be 

included [22]. 

On clear sunny days, a net gain is normally experienced inside greenhouses in the 

central region of South Africa and the ventilation system is used to balance the energy 

gains and losses in order to obtain the optimal internal temperature. The exception here 

is on warm sunny summer days when the heat gain through radiation may exceed the 

capability of the ventilation system to remove enough heat from the greenhouse. The 

biggest problem does however occur during night-time in the colder season when the 

heat losses exceed the gains by far and a heating system is required to supply the 

energy needed to obtain the required internal temperature for optimal plant production. 

An equation for the energy balance during that period can be created as follows: 

Q ṡuppl = Q ṙad + Q ċonv + Q ċond + Q ḟloor, [Watt] (2.4) 

Where: Q ṡuppl = Energy supplied by the heating system 
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 Q ṙad = Energy lost through radiation 

 Q ċonv = Energy lost through convection (air infiltration) 

 Q ċond = Energy lost by the side walls and roof through conduction 

 Q ḟloor = Energy lost by the floor through conduction 

In order to calculate the amount of energy required to heat the greenhouse, the total 

energy loss needs to be determined [37] . 

 

2.7.2 Mechanisms of heat transfer 

 

Heat can be transferred through three basic mechanisms, namely conduction, 

convection and radiation. The maximum rate at which the heat is transferred is a very 

important issue because it provides the designer with a direct indication of what the 

capacity of the heating system needs in order to be able to tolerate the maximum 

possible rate of heat loss. All three mechanisms need to be considered when the rate of 

heat transfer from a greenhouse is determined. The following sections provide an 

overview of the three mechanisms and how the rate of heat loss through each 

mechanism can be determined [38] [39].  

 

2.7.3 Conduction 

 

If the temperature of a substance is raised, the particles it consists of are energised. As 

a result of the interaction between the particles, the more energetic particles will transfer 

some of their energy to the adjacent less energetic particles and this process of heat 

transfer is called conduction. Conduction can take place in solids, liquids and gasses. In 

gasses such as air, heat is conducted through the collisions and diffusion of the 

molecules during their random motion [39].  
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In solids, heat is conducted through the vibrations of the molecules in their lattice 

structure while the energy is transported by free electrons. The rate which the heat is 

conducted through a material will depend on the characteristics of the material, such as 

its composition, thickness and the temperature difference from the one surface to the 

other, as shown in Figure 9. For steady-state heat transfer, the rate of heat transfer is in 

direct relation to the area of the surface (A) and the temperature difference across the 

surface (ΔT = Ti – To) and in indirect relation to the wall thickness (Δx). It can therefore 

be determined as follows: 

Rate of Conduction = (Area)(Temperature difference)/(Thickness) 

or, 

Q ċond = kA(Ti – To)/(Δx) [W] (2.5) 

Where: k = A constant of proportionality in W/mK; 

 A = the surface area in m2; 

 Ti = the temperature of the warmer surface in K, 

 To = the temperature of the cooler surface of the material in K, and  

 Δx = the wall thickness in m. 

The constant of proportionality k is the thermal conductivity of the material and is a 

measure of the ability of the material to conduct heat. When Δx → 0, the differential is 

reduced to:  

Q ċond= kA(dT)/(dx) [W] (2.6) 

which is called Fourier’s law of heat conduction. 

Ti (K) 

To (K) 

Heat transfer (Q ċond) 

Thickness (Δx, in m) 

A (m2) 

((((m2) 

Figure 9 - Heat transfer through conduction 
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Greenhouse film is normally supplied with a consistent thickness, eg. 200 µm, and in 

such cases the thermal conductivity of the material is specified in W/m2K. Therefore, eq. 

2.6 can be written as follows: 

Q ċond = UA(Ti – To) [W] (2.7) 

Where: U = The thermal conductivity in W/m2K. 

In greenhouses, heat is conducted through the cladding at night, from the warmer 

internal surface to the cooler external one. When calculating the heat loss through 

conduction, the inner surface of the cladding is assumed to be at the same temperature 

as the internal environment, and the outer surface at the same temperature as the 

external environment. Heat loss through conduction occurs through the canopy to the 

surroundings as well as through the floor covering to the cooler soil below. Various 

cladding and floor covering materials are available for greenhouses and the selection of 

a specific material will be dealt with in the design phase.  

 

The thermal conductivity of each material is a very important characteristic that needs to 

be considered during the selection process. Unfortunately, the thermal conductivity of 

the available cladding materials decreases with an increase in the cost of these 

materials. It is also common practise to specify the Thermal Resistance of a material; in 

other words, the ability of a material to resists heat flow through conduction. The 

thermal resistance (or insulating value) of a material is the inverse of its thermal 

conductivity and is designated by the symbol R and expressed in m2K/W. The thermal 

conductivity of some typical greenhouse covering materials were summarised and 

presented in Table 2 [32] [40] [41]. 

Table 2 - Thermal conductivity of some typical cladding materials 

 

 
Type of cladding material 

Thermal 
conductivity 

  “k” [W/mK] 

Single polyethylene film 6,0 – 8,0 

Double polyethylene film 4,2 – 6,0 

Single glass 6,0 – 8,8 

Double glass, 9mm air space 4,2 – 5,2 

10mm Twin wall polycarbonate 4,7 – 4,8 

16mm Triple wall polycarbonate 4,2 – 5,0 
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The thermal conductivity of materials varies with temperature and that may cause 

complexity in evaluation. In calculations, the thermal conductivity of the material at 

average temperatures is normally used, and kept constant. The material is also 

assumed to be isotropic, meaning it has uniform properties in all directions, which is 

realistic for the type of materials that are used as greenhouse coverings. 

 

2.7.4 Convection 

 

Heat is transferred through convection by a fluid or a gas when it moves adjacent to a 

surface and is performed through the combined effect of conduction and fluid motion. 

The rate of heat transfer through convection is in direct relation to the fluid- or gas’s 

velocity. If no moving fluid or gas is available, the heat will be transferred from a surface 

to the surroundings through conduction only [39]. In greenhouses, heat is transferred 

from the plants to the surrounding air and as this air is exchanged through leaks and/or 

ventilation systems, it transports the heat out of the greenhouse when the air outside is 

cooler then the air inside the greenhouse. The rate of heat transfer through convection 

can be increased if the rate of air movement through the greenhouse is increased 

through a forced draft or natural ventilation system. The convection can be called forced 

convection if the air is forced to flow through external means such as a fan, or natural 

convection if the air moves due to the buoyancy effect that is created due the different 

densities of the air at different temperatures at different heights. This is called the stack 

effect and the vertical height of the greenhouse will play a significant role in creating the 

stack effect. The two different types of ventilation are shown in Figure 10. 

   

 

 

 

 

 

 

 

 

 

Hot block Hot block 

Forced convection Natural convection 

 

Figure 10 - Forced convection with fan and natural convection 
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 On the surface of the leaves, the heat will be transferred through conduction to the 

layer of air adjacent to the leaves and be moved away through convection to finally 

reach the open sky. The rate of heat transfer through convection can be calculated by 

using Newton’s law of cooling as: 

Q ċonv= hAs(Ts – T∞) [W] (2.8) 

Where: h = Convection heat transfer coefficient of the fluid/gas in W/m2K; 

 As = The surface area through which convection takes place; 

 Ts = The temperature of the surface in K, and 

 T∞ = The temperature of the fluid/gas sufficiently far from the surface. 

It is important to note that the coefficient h is not a property of the fluid or gas here, but 

an experimentally determined parameter which value depends on all the factors that 

influence convection in the specific situation, such as surface geometry, the nature of 

the fluid/gas motion, the properties of the fluid/gas and the bulk fluid/gas velocity.  

Typical values for the coefficient h is presented in Table 3. 

 

Table 3 - Typical values for heat transfer coefficient [39] 

 

 
Type of convection h 

  [W/m2K] 

Free convection of gases 2-2,5 

Free convection of liquids 10-1000 

Forced convection of gases 25-250 

Forced convection of liquids 50-20 000 

Boiling and condensation 2500-100 000 

 

The rate at which heat is lost through convection is directly related to the rate of 

infiltration, because the heat is transported to the outside when warm air moves out and 

cooler air infiltrates the greenhouse. The rate of heat loss due to infiltration can 

therefore be determined by the following equation [39]: 

Q i̇nfl= 0,5VN(Ti – To) [W] (2.9) 

Where: Q i̇nfl = Rate of heat transfer through infiltration, 

V = the internal volume of the greenhouse in m3, 

  N = the number of expected air exchanges per hour, 
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  Ti = the instantaneous air temperature inside the greenhouse in K and 

  To = the instantaneous air temperature outside the greenhouse in K. 

A constant value varying from 0.018 to 0.5 is added to equation 2.9 so that the number 

of expected air exchanges per hour, N, can be specified as a whole number [35]. The 

magnitude of this value will depend upon the ability of the greenhouse to exchange air 

through infiltration and will increase as the condition of the greenhouse covering 

material deteriorates with age. For the purpose of calculations, it was decided to use the 

maximum recommended value of 0.5 in order to determine the maximum possible rate 

of heat loss from the greenhouse. 

If the infiltration of air is limited, the loss of heat through convection will therefore also be 

limited. This would mean that all the doors and vents need to seal properly to limit the 

loss of heat from the greenhouse through convection.  

 

2.7.5 Radiation (Thermal) 

 

Energy is transferred through radiation from a body, in the form of electromagnetic 

waves, that does not require a medium and can be transferred through a vacuum as 

well. The energy transfer through a vacuum is in fact the fastest, occurring at the speed 

of light - a typical example here is the transfer of energy from the sun to the earth. As far 

as heat transfer is concerned, the focus is on thermal radiation, a transfer of heat from 

bodies because of their temperature. All solids, liquids and gases can emit, absorb and 

transmit radiation to various degrees. Radiation is a volumetric phenomenon but is 

usually considered as a surface phenomenon for solids that are opaque to radiation, 

such as metals, wood and rocks, because the radiation emitted by the interior regions of 

such bodies can never reach the surface, while the radiation that such a body receives 

is normally absorbed near the surface. If a body has a temperature above absolute zero 

it will emit thermal radiation. The ideal surface that can emit the maximum amount of 

thermal radiation is called a black body while the radiation emitted by a black body is 

called black body radiation. The maximum rate at which the heat can be emitted from 

the surface of a black body, an absolute temperature, can be determined with the 

Stefan-Boltzman law as follows [39]: 

Q ṙad = σAsT4 [W] (2.10) 

Where: σ = 5.67 * 10-8 W/m2 ∙ K4 – the Stefan-Boltzman constant, 
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 As = The area of the emitting surface, and   

 T = the absolute temperature of the emitting surface in K. 

All other surfaces will be able to emit only a fraction of a black body’s radiation and that 

fraction is characterised as a surface’s emissivity (ε, where 0 ≤ ε ≤ 1). The thermal 

radiation that can be emitted by a surface, other than a black body, can therefore be 

calculated as follows: 

Q ṙad = εσAsT4 [W] (2.11) 

Where: ε = The emissivity of the radiating surface. 

Another important factor to consider is the absorptivity of a surface (α, where 0 ≤ α ≤ 1). 

A black body is also the ideal absorbing surface, meaning it will absorb all the thermal 

radiation incident on it while all other surfaces will absorb only a fraction of the incident 

radiation. Both ε and α depend on the surface’s temperature and the wavelength of 

radiation. According to Kirchoff’s law, the emissivity and the absorptivity of a surface, 

at a given temperature and wavelength, are equal. The rate at which a surface can 

absorb thermal radiation can be determined as follows [39]: 

Q ȧbsorbed = α Q i̇ncident (2.12)  

Where Q i̇ncident is the rate of incident thermal radiation and α the absorptivity of a 

surface.  

If a surface is non-transparent (opaque), the portion of incident radiation that is not 

absorbed by the surface, is reflected back. The net heat transfer of a surface is 

therefore the difference between the radiation emitted and the radiation absorbed. If the 

emissivity of the leaves is approximately that of the covering material and the 

absorptivity of the surface of the leaves is taken as equal to its emissivity, the rate of 

energy transfer due to thermal radiation between the surface of the leaves and the 

enclosure can be determined as follows: 

Q ṙad = εσAs(T1
4 - T2

4) [W] (4.13) 

Where: T1 = The temperature of the leaves’ surface taken as equal to the internal 

temperature and 

T2 = The temperature of the enclosure taken as equal to the external 

temperature. 
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Tsurr 

 

In greenhouses, heat is emitted from the surface of the leaves in all directions, in the 

form of thermal radiation. A very important aspect to consider during thermal radiation is 

the view factor, referring to the orientation of the surfaces relative to each other. The 

view factor determines the fraction of thermal radiation that will leave a surface and hit 

the adjacent surface. Since the plants are completely enclosed by the greenhouse 

canopy and separated only by a gas, the air inside the greenhouse, the view factor in 

this case, can be taken as 1. The greenhouse cover will transmit, absorb and reflect the 

heat radiated from the leaves surface in various proportions according to the properties 

of the covering material, as indicated in Figure 11. 

 

 

 

 

 

 

 

 

. 

 

The following factors also need to be considered in determining the heat loss through 

thermal radiation from the leaves to the enclosure [7] [42]: 

 The surface of the leaves is assumed to be a diffused radiating surface, meaning 

that the radiating properties of the surface of the leaves is independent of 

direction. Heat is assumed to be radiated from the surface of the leaves in all 

directions with equal intensity. 

 In what wavelengths the most heat is to be transmitted from the plants. The 

radiation emitted from bodies at room temperature normally falls into the infrared 

region of the spectrum, with wavelengths from 0.76 to 100 µm. If an infrared film 

is used in the construction of a greenhouse, the heat loss due to re-radiation is 

slowed down due to additives in the plastic film (added to the plastic to diffuse 

incoming light) that absorbs the heat loss. This property of the film creates an 

additional thermal value for heat loss due to re-radiation. For the purpose of 

theoretical calculations, the heat loss due to re-radiation will be calculated across 

Leaves 

(l) 

Air 

ε, Al, 

Tl 

εcover, Tcover, 

Acover 

Figure 11 - Radiation heat transfer between the crop and the canopy 
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all wavelengths and the ability of the greenhouse film to block some of this re-

radiation, will be ignored. 

 

 The characteristics of the glazing material, such as: 

 Its Absorptivity – the fraction of radiant flux that it will absorb 

(designated by α, where 0 ≤ α ≤ 1); 

 Its Reflectivity – the fraction of radiant flux that it will reflect back 

inwards (designated by ρ, where 0 ≤ ρ ≤ 1); and  

 Its Transmissivity – the fraction of radiant flux that will transmit to 

the open sky (designated by 𝜏, where 0 ≤ 𝜏 ≤ 1). 

 

 The emissivity of the surface of the leaves – the ratio of radiation that will be 

emitted by the surface of the leaves, at a given temperature, in relation to the 

radiation that will be emitted by a black body at the same temperature (ε, where 0 

≤ ε ≤ 1). For the purpose of this study, the emissivity of the surface of the leaves 

is assumed to be constant with directional, wavelength and temperature 

variation.  

The amount of heat that the greenhouse will be able to collect during day-time from 

solar radiation can be calculated as follows [36] [43]: 

Q ṙad/sun =Is*As (2.14) 

Where: Is = Solar radiation in W/m2, and 

 As = The surface area with direct sunlight in m2. 

 

2.7.6 Heat loss calculations 

 

For the purpose of this study, a greenhouse of 8 * 30 m was constructed and six raised 

rose beds, each with a width of 400 mm and an in-between row spacing of 1000 mm, 

was placed inside the greenhouse. The relevant dimensions of the raised beds are 

indicated in Figure 12. 
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When the plants were in full production, the spaces between the raised beds were 

almost completely filled with plant material, but the plant canopy is not a solid area, but 

very porous. For the purpose of theoretical calculations, the assumption was made that 

the plant canopy consisted of a single rectangular three-dimensional shape, as shown 

in Figure 13, with an actual radiating surface area of approximately 25 % of the total 

surface area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 - Plant canopy for theoretical calculations. 
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Figure 12 - Typical layout of rose beds. 
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The length of the raised beds is 28 m, which can be taken as the length of the 

rectangular shape, while the width can be taken as 7.5 m, with a height of 1.2 m. This 

will give an estimated total surface area of 295.2 m2, as shown in Figure 14. As stated 

before, the radiating surface is not completely covered with the surfaces of the leaves 

and therefore for the purpose of theoretical calculations, the actual radiating surface of 

the leaves was taken as 50 % of the total external surface of the leaves. The actual 

radiating surface can therefore be determined as follows: 

As  = (50 %)*295.2 

 = 147.6 m2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 - Assumed rectangular shape for theoretical calculations. 

 

2.7.7 Heat loss through radiation 

 

The plant canopy is fully enclosed by the greenhouse structure, as shown in Figure 13, 

and the assumption can be made that all the heat that will be radiated from the plant 

canopy will either be absorbed, reflected or transmitted by the greenhouse structure or 

glazing [36]. The plant canopy will be heated by the sun’s radiation to the required 

daytime temperature and the excess heat needs to be removed by the ventilation 

system.  

 

Total horizontal area = 210 m2  
Side vertical area = 67.2 m2 

Front and back vertical area = 18 m2 
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As night falls, the plant canopy’s temperature will drop due to the loss of heat through 

convection (infiltration), conduction and radiation until the minimum required internal 

temperature is reached. At this point the heating system will need to replace any 

additional energy that is lost to ensure that the leaf temperature does not drop below the 

required minimum. For the purpose of determining the maximum rate of heat loss, the 

internal temperature is not to drop below 15 oC. The surface of the leaves is assumed to 

be at the same temperature as the internal air.  

In an enclosed system, such as a greenhouse, the enclosure will absorb a certain 

percentage of this heat and reflect it back to the plants. For a typical three-layer 

greenhouse film, the average values for α, ρ and 𝜏 across the band of wavelength from 

400 to 1100 nm were determined as 0.06, 0.08 and 0.86 respectively [7] [21] [32]. That 

would mean that the greenhouse film would absorb 6 %, reflect 8 % and transmit 86 % 

of the received heat flux. The total amount of heat that will be lost by thermal radiation 

from the surface of the leaves can be calculated by using equation 2.13 and 

incorporating an emissivity of 0.9 for the surface of the leaves and the PE film: 

Radiation from leaf canopy is: 

Q l̇eave = σAleave ε [(Tleave)4 – (Tcanopy)4] 

 = (5.67 * 10-8)(147.6)(0.9)[(288)4 – (273)4] 

 = 9.980 kW 

It is clear that the PE greenhouse canopy does very little to retain the radiation heat 

inside the greenhouse during night-time. To improve the heat retention capability, tinted 

or coated glass is often used as cladding material, especially in European greenhouses, 

with its disadvantage being its cost. 

 

2.7.8 Heat loss through convection 

 

The heat loss through convection is caused by the movement of air across the 

greenhouse glazing. The number of air exchanges per hour may vary from 0,5 to 1,5 

the total internal volume of the greenhouse and depending on the type and the condition 

of the greenhouse glazing, structure and openings [7] [42] [44]. For an average number 

of air exchanges of one volume per hour, the heat loss through infiltration, for an 

internal volume of 864 m3, can be calculated as follows: 
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Q i̇nfl = 0,5*1*864*(288 – 273) 

 = 6,48 kW 

 

2.7.9 Heat loss through conduction 

 

The heat loss through conduction is facilitated by the greenhouse glazing and floor 

covering material. The total area of the glazing is 472,4 m2 with a heat transfer 

coefficient of 0,83 (if a single layer of 200 µm PE film is used) while the total floor area 

is 240 m2 with a heat transfer coefficient of 0,83 (for the same type of material) as well 

[21]. For an estimated soil temperature of 6 oC, the total heat loss through conduction 

by the glazing and floor can therefore be determined as: 

Q ċond_canopy = 0,83*472,4*(288 – 273) 

  = 5,881 kW 

And the heat loss by conduction through the floor: 

Q ḟloor = 0,83*240*(288 – 279) 

  = 1,793 kW 

 

2.7.10 Total Heat Loss 

 

The total heat loss for the greenhouse can therefore be determined as: 

Q  ̇ = 9.980 + 6,48 + 5,881 + 1,793 

 = 24.134 kW 

The contributing factor for each means of heat loss can be summarized as shown in 

Table 4. 
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Table 4 - The influence of the various mechanisms of heat transfer. 

 

Means of Heat Loss kW Percentage of total 

Radiation 9.980 41.35 % 

Infiltration 6.480 26.85 % 

Conduction – glazing 5.881 24.37 % 

Conduction – floor 1.793 7.43 % 

Total 24.134  

 

 

2.7.11 Developing a steady-state heat-loss calculator 

 

Developing a tool that can be used in determining the heat loss from the greenhouse 

and ultimately the required heating capacity of the solar heating system will be 

necessary especially if different scenarios need to be investigated. Different set-points 

for the minimum temperature inside the greenhouse may, for example, be investigated 

to determine the heating capacity needed for each. The different mechanisms for heat 

loss can be combined and compared with the ability of the solar heating system to 

collect heat. The formulas used in determining the heat loss through each mechanism 

can be summarized as follows: 

 Conduction, from equation 2.1. 

Q ċond = kA(T1 – T2)/(Δx) [W]  

In equation 2.4, the area A designates all the different areas of covering material 

that can lose heat through conduction. The external dimensions of the 

greenhouse are used to calculate these different areas as shown in Table 5 

below. Different materials can be used for different purposes meaning that the 

different k values of the different materials need to be considered in the 

calculation as shown in Table 5. 

 Convection (infiltration), from eq. 2.7. 

Q i̇nfl = 0,5VN(T1 – T2) [W]        

In determining the heat loss through convection, the internal volume of the 

greenhouse needs to be calculated and the number of air exchanges that will 
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occur per hour, be assumed. By using the calculator, the values for the internal 

(T1) and external temperature (T2) can also be altered to determine the heat loss 

for the specific temperature differences. The number of heat exchanges per hour 

(N) can be varied to account for the heat losses of different greenhouse designs, 

especially as far as the doors and ventilation systems are concerned. 

 Radiation, from eq. 2.10. 

Q l̇eaves = εσAl(T4
l – T4

2) [W] 

The temperatures T1 and T2 can be taken as the leaves’ surface temperature and 

the enclosure surface temperature respectively, with the emissivity of the leaves’ 

surface equal to the emissivity of the enclosure material at 0.9. 
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Table 5 - Example of greenhouse heat loss calculator. 

  

 

 

A further expansion of the tool would be to include the heating requirements and 

capacity of the solar water heating system. To determine this, the required time of 

operation of the heating system must first be determined, e.g. from 17:00 in the evening 

till 08:00 the next morning would require a heating time of 15 hours. With the required 

heating capacity and heating time, the amount of heat needed, in Joules, can then be 

determined. When the amount of heat required is known, the required capacity of the 
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solar heating system can be determined by taking the heat storing capacity of the water, 

or any other working fluid, into account. The heat storing capacity of water can be 

determined as follows: 

Q = mcpΔT [J] (2.15) 

Where: m = the mass of the water, 

 cp, = specific heat storage capacity of water (4,183 J/kgK) and  

 ΔT = the change in temperature of the water. 

The tool becomes very handy in determining the characteristics of the solar water 

heating system. Once the efficiency of the solar collector, the water storage and heat 

exchange system is known, the tool can be expanded to size these components as well. 
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Table 6 - Heat loss calculator combined with thermal storage calculator 

 

 

© Central University of Technology, Free State



61 

 

2.7.12 Developing a numerical transient heat transfer model for 

predicting the required rate of ventilation for the greenhouse during 

the day-time period. 

 

The heat transfer tool, as developed in section 2.4.11, was based on steady-state heat 

transfer, meaning that the variations in temperature were taken as independent of time. 

This tool can be useful to determine the maximum heating requirements but sometimes 

a tool is needed to be able to determine entities such as the required rate of ventilation 

needed for a ventilated greenhouse so as to sustain the desirable internal temperatures. 

To be able to develop this model, the total mass of the internal air of the greenhouse is 

considered and its temperature is numerically determined based on the influence the 

various heat transfer mechanisms has on it. The model will be developed by 

incorporating the following general assumptions [7] [31] [42] [45]: 

 No temperature gradient existed in each layer of the internal air and the 

temperature was measured at mid-height. 

 The density of the internal air remained constant in the range of operating 

temperatures of the greenhouse. 

 The heat transfer coefficients of the covering materials remained constant with a 

variation in temperature. 

 The floor was not heated by direct solar radiation during the day because the 

crop completely covered the total floor area. 

 The levels of solar radiation experienced were based on the averages for 

Bloemfontein on a clear day with no solar radiation after sunset. 

 Ventilation openings were opened from sunrise till sunset during summer and 

from 09:00 till 16:00 during winter. 

 

For the day-time model, the following mechanisms of heat transfer were considered: 

 Heat gains through radiation from the sun [43] [46] [47], 

 Heat losses through natural ventilation [7] [48], 

 Heat losses through conduction by the enclosure, and [32] 

 Latent heat losses [23] [49] [50]. 
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The energy balance equation from which the transient heat transfer model for the 

prediction of the required rate of ventilation was determined, could be presented as 

follows [31] [42] [44] [51] : 

Q ṙad = Q v̇ent + Q ċond + Q L̇ (2.16) 

 

Solar radiation 

The heat gain through solar radiation can be determined as follows [7] [8] [21]: 

Qrad = τenclQGR (2.17) 

Where: τencl = the solar radiance transmittance of the glazing material, 

 QGR = the outside horizontal global solar radiation in W/m2. 

To be able to determine the heat generated inside the greenhouse due to solar 

radiation, the global horizontal irradiance, as it varies with time during the day for the 

specific site, had to be calculated. An Excel spreadsheet containing the relevant data 

was compiled from internet-based tools as shown in Figure 15 [16] [43] [46] [47] [52].  

 

 

Figure 15 - Global horizontal irradiance for each month. 
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This data could then be used to plot the curves for the expected global solar irradiance 

as shown in Figure 16. 

 

 

 

 

Figure 16 - Global horizontal radiation for each month - graphically. 

 

 

From this, a transient heat gain model was developed in Excel, as shown in Figure 17, 

by using equation 2.17. 
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Figure 17 - Transient heat gain model. 

 

Natural ventilation 

The energy exchange through natural ventilation can be determined as follows : 

Q vent = QL + qvcpρ(Ti – To) (2.18)        

Where: QL = the latent heat loss due to evaporation, 

 qv = the rate of ventilation in m3/s, 

 cp = the specific heat storage capacity of air, 

 ρ = the density of the air, 

 Ti = the instantaneous air temperature inside the greenhouse in K and 

 To = the instantaneous air temperature outside the greenhouse in K. 

The temperatures inside and outside the greenhouse was measured on a half-an-hour 

basis, with the help of the automatic weather station. Raw data from the weather station 

is exported into Excel and from that the required information is summarized as shown in 

Figure 18. 

© Central University of Technology, Free State



65 

 

 

 

Figure 18 - Summarized climate data. 

 

 

This summarized data is then fed directly into the ventilation model to perform the 

relevant calculations, as shown in Figure 19.  

 

 

Figure 19 - Typical variation in daily temperatures. 
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The latent heat loss due to evaporation is determined as follows [24]: 

QL = ṁair(ω2 – ω1)(hg at t2) (2.19) 

Where:  ṁair = the mass flow rate of the ventilated air in m3/s,  

 ω2 = the moisture content of the internal air in kgmoist/kgdry air, 

 ω2 = the moisture content of the external air in kgmoist/kgdry air, 

 hg at t2 = the evaporation enthalpy of moist air at a specific temperature. 

The automatic weather station that was installed during the experiential phase 

measured the RH inside as well as outside the greenhouse at half-an-hour intervals. 

The RH expresses the ratio between the available water vapour pressure (Pw) and the 

saturation pressure at a specific temperature (Psd) on a percentage basis and is 

calculated as follows [23] : 

RH = Pw/Psd (2.20)           (2.14) 

Where: Pw = the current water vapour pressure in N/m2, and 

Psd = the saturation water vapour pressure at a specific temperature in N/m2. 

The saturation water vapour can be determined as follows: 

Psd = 610,6exp(17,27td/(237,3 + td)) (2.21)      

Where: td = dry bulb temperature in oC. 

With the saturation pressure known, the RH can be used to determine the water vapour 

pressure at the specific temperature and from that the moisture content (specific 

humidity) can be calculated as follows: 

ω = 0,622(Pw/(P – Pw)  (2.22) 

Where: P = The measured air mixture pressure. 

The evaporation enthalpy of moist air at a specific temperature can be determined using 

the following equation: 

hg = ha +ωhw (2.23)          (2.17) 

Where: ha = the specific enthalpy of dry air at a specific temperature in kJ/kg, and 

 hw = the specific enthalpy of water vapour at a specific temperature in kJ/kg. 

The specific enthalpy of dry air can be determined as follows: 

ha = cpt (4.21) 

Where: cp = the specific heat of air at constant pressure in kJ/kgoC, and 

 t = the air temperature in oC. 

For the purpose of these calculations, the value of cp was taken as 1005,7 J/kgoC. The 

temperature t used was taken as td. 
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The specific enthalpy of water vapour can be expressed as: 

hw = cpwt +he  (2.25)          

Where: cpw = the specific heat of water vapour at constant temperature, and 

 he = the evaporation heat of water at 0 oC. 

For the purpose of these calculations the value of cpw was taken as 1840 J/kgoC and he 

as 2501 kJ/kg. If combined, hg can be determined as follows: 

hg = (1,0057kJ/kgoC)t + [(1,84kJ/kgoC)t =(2501 kJ/kg)] 

 

Conduction 

The energy lost through conduction can be expressed as : 

Q cond = kA(Ti – To) (2.26) 

Where: k = the heat transfer coefficient of the glazing in W/m2, and 

 A = the surface area of the glazing in m2. 

 

To determine the ideal growing temperature for cultivating plants, the ideal rate of 

ventilation had to be determined. Not much is known about the ideal temperature except 

the minimum and maximum required temperatures and that plants require periods of 

time at the different temperatures. The actual temperatures follow a typical sinus curve 

which means that the ideal temperatures can be modelled as a sinus curve with the 

maximum not exceeding 28 oC and the minimum not dropping below 12 oC as specified 

in Table 1. An example of the actual and modelled temperatures is presented in the 

figure below. The basic formula for a sinus curve can be expressed as: 

y(t) = A Sin(wt + α) (2.27) 

Where: A = the amplitude, 

 w = 2πƒ and ƒ is the frequency, and 

 α = the phase. 

With the specified minimum and maximum temperatures, the sinus curve can be 

expressed as: 

t(time) = 7,5*Sin(15*time) (2.28) 

Where: t = temperature in oC. 

To be able to calculate the actual and required rates of ventilation, the energy balance 

was rewritten as follows: 

Q ĠR = Q ċond + ṁ(QL + Qv)   [kW] (2.29) 
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Where: Qv = The heat loss due to ventilation (change in air temperature). 

Equation 2.29 could then be used to determine the actual and required mass flow rate 

of ventilation in kg/s. 

 

 

2.7.13 Developing a numerical transient heat transfer model for 

predicting the heating requirements during the night-time period. 

 

The transient heat transfer model, as developed in section 2.4.12 can now also be 

used to determine the heating requirements of the greenhouse during the colder winter 

nights by considering the following mechanisms of heat transfer [7] [42] [50] [53] [54]: 

 Heat gained from the heating system, 

 Heat lost through radiation from the leaves surface, 

 Heat lost due to convection (infiltration), 

 Heat lost through conduction, and 

 Heat lost through evaporation inside the greenhouse. 

 

Through the consideration of all the mechanisms of heat losses, the night-time 

transient heat transfer model can be constructed by considering the following heat 

balance equation . 

Q ṡuppl = Q ṙad + Q ċonv + Q ċond + Q ėvap [Watt] (2.30) 

The heat supplied to the greenhouse from the water storage system was determined 

by using the measured drop in temperature that was read every hour. An Excel 

spreadsheet was compiled to determine the heat released by the heating system as 

shown in Figures 20 and 21. 
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Figure 20 – Calculating the heat released from heating system. 

 

The measured values were then plotted and a numerical model developed from that 

could be used in the transient heating model as shown in Figure 20 below. 

 

Figure 21 - Development of numerical heat release model. 

© Central University of Technology, Free State



70 

 

The heat lost through conduction by the floor is once again considered to be relatively 

small, because the floor was completely covered by the plant canopy, and therefore 

did not receive much heat through radiation during the day. 

 

The various mechanisms through which heat was lost can be expressed 

mathematically as follows: 

Radiation: 

Q ṙad = εσAs(T1
4 - T2

4) [W] (2.13) 

With equation 2.13, a transient heat loss model was then developed in Excel, as 

shown in Figure 22. The temperature of the surface of the leaves, T1, was 

assumed to be similar to the internal temperature of the greenhouse. The 

predicted radiation was based on the ideal temperature - the temperature that 

would be ideal for optimum plant growth. 

 

 

 

Figure 22 - Transient radiation heat loss model. 
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Infiltration/Ventilation: 

 Q ċonv = qvcpρ(Ti – To) (2.15) 

In similar fashion, a heat loss model was developed to determine the heat lost 

through ventilation based on the actual internal temperatures as well as on the 

ideal internal temperatures and is shown in Figure 23. 

  

 

 

Figure 23 - Transient Ventilation Heat Loss Model. 

 

Conduction: 

Q ̇cond = UA(Ti – To) [W] (2.7) 

 

By applying equation 2.4, a model was developed to determine the heat loss 

through conduction as shown in Figure 24 below. 
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Figure 24 - Heat loss model for conduction. 

 

Evaporation: 

Q ėvap = ṁair(ω2 – ω1)(hg at t2) (2.16) 

And similarly for evaporation, as shown in Figure 25. 
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Figure 25 - Model for determining the heat lost through evaporation. 

 

2.8 Conclusion 

 

The numerical heat loss/gain models that was developed in this chapter can now be 

used to evaluate the applicability of applying alternative energy technologies in 

obtaining the ideal climatic requirements. 
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3. RESEARCH METHODOLOGY 

 

3.1 Introduction 

 

This chapter outlines the methodology the will be used for this research problem. 

 

3.2 Greenhouse Design – Problem statement 

 

The title of this dissertation was given as “The development and characterization of a 

cost-effective, renewable energy greenhouse for production of crops in atypical climatic 

conditions.” The following sub-problems were identified and will be dealt with during the 

design phase: 

1. Choosing the correct covering material, 

2. An energy and cost effective structure that will be able to withstand the 

elements of nature, 

3. The orientation of the structure, 

4. Vents to enhance natural ventilation and ensuring effective sealing in order to 

eliminate the filtration of cold air into the greenhouse during periods of low 

external temperatures, 

5. The design of a cost effective solar heating system, 

6. The design of an effective heat exchange system, and 

7. A control system. 

 

3.3 Specifications 

 

A complete set of specifications for the greenhouse is needed to ensure that the 

outcome reflects the initial requirements, although some of the initial set specifications 

may be opportunistic. Table 7, outlines the required specifications as well as possible 

test conditions that can be used to determine if the required specification has been 

obtained or not [55] [56]. 

 

 

© Central University of Technology, Free State



75 

 

 

 

Table 7 - Product design specifications for greenhouse 

 

Aspect Objective Criteria Test condition 

Size Construct a greenhouse with 

similar area to that which is 

used commercially.  

The smallest commercial-size 

greenhouse that is used in 

industry is 8*30m. 

Vertical wall height of 2,4 m. 

Span between braces of 3 m. 

Apex height of 5 m. 

Measure 

Load-bearing capacity Design a structure that can 

handle the set requirements. 

Structure must be able to 

handle a wind speed of 100 

km/h. 

Structure must be able to 

handle a crop load of 30 

kg/m2. 

 

Stress analysis 

 

 

Stress analysis 

Door Create a large enough 

opening for spraying 

equipment, etc. at entrance 

with effective sealing. 

Construct a door system that 

can create an opening of at 

least 4 m wide and 2 m high 

with flange-type seals. 

Measure 

Infiltration Minimize infiltration at night to 

not more than one air 

exchange per hour. 

Create effective seals at all 

possible points of infiltration. 

Test 

Materials Cost effective Construct frame from Grade 

300 Mild Steel. 

 

Material finishing Prevent rust and overheating 

of steel structure that can 

damage PE film on contact. 

Finish frame with one layer 

steel primer and two layers 

white paint. 

 

Cost Limit the total expenditure for 

the project to R 300 000. 

The greenhouse must be 

able to deliver a reasonable 

return on investment during 

its expected lifetime. 

Determine return on 

investment at the end of 

experimental phase. 

Life Maximize Greenhouse film is 

guaranteed for 3 years only 

but the structure must be 

designed for a life of at least 

20 years. 

Test the actual greenhouse 

film life during experimental 

phase. 

Maintenance Easy Provide easy access to most 

components and use as 

many standard components 

as possible. 

Determine the ease of 

maintenance during the 

experimental phase. 

Performance Energy efficient The greenhouse must rely on 

as little as possible external 

energy for cooling, heating 

and ventilation purposes. 

Determine energy efficiency 

during experimental phase. 
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 Provide ideal climatic 

conditions as specified in 

table 1. 

The greenhouse must be 

able to provide an internal 

climate that is as close as 

possible to the climatic 

requirements of the plants. 

Log and compare internal 

climate with ideal during 

experimental phase. 

 Low maintenance costs The maintenance costs of the 

greenhouse during its 

expected lifetime must be as 

low as possible. 

Determine actual 

maintenance during 

experimental phase. 

Manufacture Ease of manufacture Limit the usage of complex 

parts. 

Keep design as simple as 

possible. 

Determine ease of 

manufacturing of final 

product. 

Patents Avoid Do not infringe on existing 

patents. 

Patent search 

 

Safety High Must comply with existing 

legislation. 

Check national and 

international standards and 

relevant legislation. 

 

3.4 Concept design phase 

 

Various possible solutions exist for each of the sub-problems, as listed in section 2.1. 

The following sections will look at the advantages and disadvantages of each possible 

solution and evaluate them against the required specifications, where necessary, to 

determine the best possible solutions for each sub-problem. 

 

3.4.1 Sub-problem 1 – Greenhouse covering material 

 

Various materials are used in industry to cover greenhouse structures in industry, each 

with its own properties, advantages and disadvantages, and will be described in the 

sections below. The different types of covering materials that are available for 

greenhouses are listed in the Table 8 [32] [21] [53] . 
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Table 8 - Summary of available greenhouse covering materials 

 

Type of covering 
material Advantages Disadvantages 

Light 
transmission 

Insulating value 
"R" Est. life 

Est. 
cost 

(R/m2) 
      t 

 
  

 
Single Inexpensive  Short   life 85% 0.83 1 to 4 years R 14.62 

Polyethylene film Easy to install           

              

Double Inexpensive  Short   life 77% 1.43 1 to 4 years R 29.23 

Polyethylene film 
Saves on heating 
costs           

  Easy to install           

              

Corrugated High transmittance  Scratches easily 91% 0.83 15 plus years  
R 

228.27 

Polycarbonate 
High impact 
resistance       

10 year 
warranty   

              

Glass High transmittance  High cost  88% 0.91 25 plus years 
R 

150.00 

Double strength High UV resistance Difficult installation         

  Resists scratching Low impact resistance         

    High maintenance         

              

Glass High transmittance  Very high cost  78% 1.43 25 plus years 
R 

300.00 

Insulated High UV resistance Difficult installation         

  Resists scratching Low impact resistance         

              

8 mm 
High impact 
resistance  

Requires glazing 
system to install  80% 1.64 15 plus years  

R 
219.00 

Twin-wall 
polycarbonate 

Saves on heating 
costs Scratches easily     

10 year 
warranty   

              

10 mm 
High impact 
resistance  

Requires glazing 
system to install  80% 1.79 15 plus years  

R 
295.00 

Twin-wall 
polycarbonate 

Saves on heating 
costs Scratches easily     

10 year 
warranty   

              

16 mm 
High impact 
resistance  

Requires glazing 
system to install  78% 2.38 15 plus years  

R 
472.00 

Triple-wall 
polycarbonate 

Saves on heating 
costs Scratches easily     

10 year 
warranty   

 

3.4.1.1 Option 1 - PE Film  

 

PE film is the most common plastic that is used to cover greenhouses in industry. The 

film is normally guaranteed for 36 months by its manufacturers, while the actual lifetime 
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is in the region of 60 months, depending on the extreme climatic conditions it may 

experience during its life. The average cost of this film is R 14.62/m2 depending on the 

properties of the material. Various additives and layers are added to the plastic film to 

create certain properties, e.g. light diffusion, to prevent dripping from condensation, to 

prevent UV and IR light from penetrating the greenhouse, to make the film sulphur 

resistant, and to prevent the spread of viruses. The normal thickness of the film is 200 

µm and is readily available [32]. 

 

3.4.1.2 Option 2 - Glass 

 

The application of glass as covering material has become limited to very high value 

crops, and where certain light transmission requirements, which can only be achieved 

with glass, are required. The average cost of glass-covered greenhouses is in the order 

of R 1800/m2 of which the glass alone is R 150/m2, while PE-covered greenhouses cost 

approximately R 300/m2. Due to the weight of glass, a much heavier structure needs to 

be designed to support glass as glazing material [21]. 

 

3.4.1.3 Option 3 - Polycarbonate sheets 

 

Polycarbonate (PC) sheeting is certainly one of the best covering materials available on 

the market, but the cost of the material, approximately R 228.27/m2, limits its application 

to mostly hobby-type greenhouses. PC sheets are available in different colours, as 

single layers or double-layered sheets with an air gap in between which can provide 

excellent insulation properties to a greenhouse [21]. 

 

3.4.1.4 Decision – Covering material 

 

Taking the advantages and disadvantages of the three above-mentioned glazing 

materials into account, it becomes clear that PE film is the material best suited for this 

application and therefore supports the reasoning behind its preferred choice of material 

for application in the local greenhouse industry. 
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3.4.2 Sub-problem 2 – Greenhouse structure 

 

The structure that needs to be designed will therefore be covered with one or two layers 

of greenhouse film. It was decided to focus the study on a commercial size single-span 

greenhouse of 8 * 30 m, because the control of the environment inside a hobby-type 

greenhouse is challenging due to the low internal volume of the greenhouse which 

allows for rapid changes in the internal climate. What happens inside hobby-type 

greenhouses can therefore not easily be extrapolated to the expected environmental 

fluctuations inside a commercial size greenhouse. If the envisaged system will be able 

to control the internal climate of this single-span greenhouse, it should be possible to 

apply the same techniques to a multi-span greenhouse. When a structure is designed 

that needs to be covered with greenhouse film, the roof trusses must be designed with 

an outer curved profile to ensure constant contact between the film and the structure. If 

the film is able to separate from the structure, it can be damaged during periods of high 

wind speeds. The following types of structures with curved trusses are used quite 

commonly in the greenhouse industry [57] [58] . 

 

3.4.2.1 Option 1 – Quonset greenhouse 

 

Figure 19 shows the design of a typical Quonset greenhouse with vertical walls. The 

roof is arched and sometimes this arch may stretch to ground level and sometimes side 

walls are included, as in Figure 26. The arch allows the structure to transfer the stresses 

to the ground effectively. 
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Figure 26 - Quonset greenhouse [59]. 

 

A Quonset greenhouse is relatively easy and cost effective to construct but tends to 

overheat especially during midday in summer, when the rays of the sun are almost 

orthogonal to the centre of the roof. 

3.4.2.2 Option 2 – Gothic-arch greenhouse 

 

In gothic-arch greenhouses, the truss consists of two arches, which are joined in the 

middle, to create an elevated centre, as indicated in Figure 27. The main advantage of a 

gothic-arch greenhouse is lower internal temperatures because the sun’s rays cannot 

be orthogonal to the roof for most of the day and especially at midday. A truss can be 

designed for a specific area according to the path the sun will follow on 21 Dec, the 

longest day of the year. 

 

Figure 27 - Gothic-arch greenhouse [60]. 
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Another advantage of a gothic-arch greenhouse is that condensation which forms on 

the inside of the roof during night-time is directed towards the side-walls, due to the 

higher pitch of the roof, which eliminates the spreading of bacteria and viruses. 

 

3.4.2.3 Option 3 – Solar greenhouses 

 

Solar greenhouses are commonly used in the colder areas of the Northern Hemisphere 

and a typical layout of such a greenhouse is shown in Figure 28. Although all 

greenhouses are basically solar collectors, solar greenhouses are constructed in such a 

way that the wall which faces the sun’s path, acts as a solar collector, while the wall/s 

which will receive no or little sunlight, are normally non-translucent and well-insulated 

walls which create a thermal mass to store the solar energy during day-time and 

transmit during night-time.   

 

Figure 28 - Solar greenhouse [61]. 

 

Solar greenhouses are not common to the Southern Hemisphere, because they will 

completely overheat during summer time. 
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3.4.2.4 Decision – Sub-Problem 3 

 

From the paragraphs above it is clear that a gothic-arch type of greenhouse would be 

more advantageous. 

 

3.4.3 Sub-Problem 3 – Orientation of the greenhouse 

 

A typical sun path for the Southern Hemisphere is shown in Figure 29. If a solar 

greenhouse was to be constructed, the greenhouse would have an East-West 

orientation as shown in Figure 29. The southern wall would be isolated and would 

create a thermal mass to enable the greenhouse to store heat for the cooler periods. 

For a normal greenhouse, a North-South orientation is more beneficial, especially for a 

gothic-arch greenhouse. The minimum day-length for Bloemfontein (21 June) is just 

more than 10 hours, as indicated in Figure 3, which is adequate for plant production 

under protection, e.g. a well-designed greenhouse, if the low night-time temperatures 

can be eliminated. During the longer summer days, the greenhouse will be cooler inside 

with a North-South orientation, because the sun’s rays will be orthogonal to the roof for 

shorter periods of the day and not during mid-day. 

 

Figure 29 - Typical sun path for Southern Hemisphere [62]. 
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3.4.4 Sub-Problem 4 – Ventilation System 

 

The ventilation system of a greenhouse is needed to remove excess heat from the 

greenhouse, supply the plants with fresh air and to prevent build-up of high levels of 

humidity inside the greenhouse. The average humidity in the Free State is relative low, 

eliminating the need for the ventilation system to remove humidity from the greenhouse. 

For the purpose of this research project, the ventilation system will be designed to 

remove excess heat and to supply the plants with fresh air. Due to the nature of the 

project, only natural ventilation systems will be investigated. 

 

3.4.4.1 Option 1 – Roll-up curtains 

 

Roll-up curtains, as shown in Figure 30, are used quite commonly in the greenhouse 

industry; in fact, most side vents are normally roll-up curtains. They are easy to 

construct and can create fairly large ventilation openings. A roll-up curtain can be used 

as a side or a roof vent. 

 

Figure 30 - Roll-up side vent [63]. 

 

3.4.4.2 Option 2 – Rack and Pinion Vents 

 

Rack and pinion vents, as shown in Figure 31, are also used quite commonly in the 

greenhouse industry, especially for roof vents, possibly due to the lower gradients that 
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are often available on the roofs of greenhouses for the effective closing of roll-up 

curtains. They can also create fairly large ventilation openings but are much more 

difficult to construct and much more expensive than roll-up curtains. 

 

 

Figure 31 - Rack and pinion vents [64]. 

 

3.4.4.3 Option 3 – Solar operated window vents 

 

Solar operated window vents are fairly common in hobby-style greenhouses, due to the 

fairly small ventilation openings they create, as shown in Figure 32. A gas-filled cylinder 

which operates by the expansion and contraction of the gas inside the cylinder, due to 

variations in ambient temperature, is used to open and close a window. The cylinders 

are however limited in operating force and cannot respond to higher wind speeds. 
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Figure 32 - Solar operated window vent [65]. 

3.4.4.4 Decision – Sub-Problem 4 

 

Roll-up curtains as ventilation system, for the side and roof vents, were chosen for the 

project due to their cost effectiveness, simplicity and because they allow for the possible 

installation of an external roof curtain. 

 

3.4.5 Sub-Problem 5 – Solar heating system 

 

In choosing the correct method of solar heating, the total life cycle of the various 

technologies must be taken into account. For this reason, the application of photovoltaic 

panels were excluded as a possible option. If solar energy is to be used for heating 

purposes at night, some kind of thermal mass is needed to store the heat, as it is 

collected during the day, and make it available to be exchanged into the greenhouse 

internal environment at night [11] [66].  

 

The thermal mass can be stored inside the greenhouse to create a passive heating 

system that will exchange heat through natural convection, conduction and radiation at 

night. The main problem with these kinds of heating systems is the total lack of control 

over the heating system and ultimately over the internal environment of the greenhouse 

[67].  
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Most temperature-sensitive crops need a certain amount of low temperature hours to 

assist in fruit and flower development and with a completely passive heating system, the 

greenhouse can become too warm during warmer nights in winter, therefore eliminating 

the possibility of applying a completely passive system. The answer to this problem 

would be to store the thermal mass outside the greenhouse and to move the thermal 

mass in and out of the greenhouse to enable it to exchange the captured heat into the 

internal environment of the greenhouse when needed, meaning that some kind of direct 

system would be needed [40].  

 

Water was chosen as an applicable thermal mass, because it is readily available, can 

be moved relatively easily and it possesses good thermal properties. Solar water 

heating systems are divided into two main categories, namely direct and indirect 

systems. In direct systems, the heated water acts as the heat transfer fluid as well. The 

water is normally pumped through a collector, where it collects heat through solar 

radiation, and is stored in a tank [47] [66] [68].  

 

Possible problems that may arise through the application of a direct system are the 

possibility of the heat transfer fluid freezing in the collector pipes during cold winter 

nights, and the build-up of scaling on the inside walls of the pipes creating some 

insulation between the water and the pipe walls. In indirect systems, a different fluid or 

gas than the heated water is used to collect the heat in the collector and exchange that 

heat to the water through an exchanger in the hot water tank [68].  

 

In this project, the heated water will not be exchanged, eliminating the possibility of 

scaling because the water can be treated, while the problem of freezing can be 

eliminated through the application of a flexible PE piping system in the collector, or by 

draining the collector at night.  

 

Direct heating systems have some financial advantages over indirect systems, due to 

the simplicity of the system, and are always the preferred solution if applicable to the 

specific problem. It was, therefore, decided to focus on the development of a suitable 

direct system for this application.  
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Solar heat collectors are classified in two main types, namely flat plate collectors and 

concentrating collectors. Flat plate collectors are the preferred choice for low 

temperature applications (typically below 90 oC), whereas concentrating collectors (e.g. 

parabolic troughs, parabolic dish and central receiver collectors) are used for high 

temperature applications [47]. The construction of flat plate collectors is also much 

simpler than that of concentrating collectors, making it the most logical option. The cost 

of the collector is a very important issue, since it will reflect on the return of investment 

of the greenhouse.  

 

The heated water must be stored in tanks to accumulate heat for exchange during night 

time. These tanks must be insulated to limit the heat loss to the surroundings [51] [52].  

 

3.4.6 Sub-Problem 6 – Heat exchange system 

 

Various types of heat exchange systems are used in the greenhouse industry, as 

discussed in the sections that follow. 

 

3.4.6.1 Option 1 – Space heaters  

 

In space heaters, heated water is circulated through a coiled tube while the heat 

transfer and the distribution of the heat inside the greenhouse is assisted with the 

application of a fan. Figure 33 shows the typical application of a unit heater to heat a 

greenhouse. 

© Central University of Technology, Free State



88 

 

 

Figure 33 - Unit heater [69]. 

3.4.6.2 Option 2 – Central heating system 

 

In a central heating system, a water heating system supplies hot water to more than one 

smaller heaters, typically to space heaters which are located throughout the 

greenhouse.  

 

3.4.6.3 Option 3 – Pipe or rail heating systems 

 

In pipe or rail heating systems, hot water is circulated through a network of pipes or 

rails. The length of the exchanger piping system creates enough area to allow for the 

required rate of heat transfer. A typical application of a pipe or rail heating system is 

shown in Figure 34. 
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Figure 34 - Pipe/rail heating system [70]. 

 

 

3.4.6.4 Option 4 – Under-bed heating system. 

 

An under-bed heating system, as shown in Figure 35, is very similar to a pipe heating 

system, except that the heating pipes are installed underneath the benches. This is an 

ideal position for the installation of the heating pipes since they create more heat at the 

root zone but this can only be done if the growing beds allow for the piping system to be 

installed underneath. 

 

Figure 35 – Under-bench heating system [71]. 
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3.4.6.5 Option 5 – Underfloor heating system 

 

In an underfloor heating system, a network of underfloor pipes is installed before the 

floor is laid. Heated water is then circulated through these pipes which heat the floor 

and ultimately the internal environment of the greenhouse. The loss of heat to the soil 

below the floor is an issue of concern and must be limited through the application of a 

suitable insulation material. A typical underfloor heating system for a small greenhouse 

is shown in Figure 36. 

 

 

Figure 36 - Underfloor heating system [72]. 

3.4.6.6 Option 6 – Overhead heating system 

 

Overhead heating systems also consist of a system of finned or bare pipe that is 

installed overhead, as indicated in the Figure 37 below, with the function of providing 

additional heat to the greenhouse in colder winter months. 
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Figure 37 - Overhead heating tubes inside a greenhouse [73]. 

 

3.4.6.7 Option 7 – Perimeter heating system 

 

A perimeter heating system, as shown in Figure 38, is as in the case with an overhead 

heating pipe system, an additional set of heating pipes that are installed on the 

perimeter of the greenhouse, to provide additional heat in situations where the pipe/rail, 

or under-bench or underfloor heating system cannot provide enough heat to heat the 

greenhouse during the colder winter months. 
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Figure 38 - Perimeter heating system [74]. 

 

3.4.6.8 Decision – Sub-Problem 6 

 

From the previous paragraphs it is thus clear that a space heater, or a central heating 

system will require additional energy in terms of the distribution fans which are required, 

and the purpose of this project is to eliminate the application of external energy as far as 

possible. The installation of an underfloor heating system is a relatively expensive 

exercise due to the concrete floor that is needed to house the heating pipes and the 

insulation that is needed below this floor. Roses were chosen as the temperature-

sensitive crop to be grown in the greenhouse and it therefore makes sense to grow the 

roses in raised benches with an under-bench heat exchange system. Should this 

exchange system prove to exchange too little heat during the colder winter nights, 

additional overhead or perimeter heat exchange system can be installed to assist the 

under-bench system. 

 

3.4.7 Sub-Problem 7 – Control system 

 

The specific type of control system that can be used will depend on the type of 

components it needs to control. In this problem, the control system will need to control 
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the roll-up curtains which will be used as vents. The roll-up curtains can be motorized, 

as shown in Figure 39. 

 

Figure 39 - Motorised roll-up curtain [75]. 

 

Motorised roll-up curtains will allow the greenhouse to control the internal temperature 

by opening and closing the vents. In the event of high wind speed, the vents can be 

closed to eliminate damage to the crop and the greenhouse. This will, however, mean 

that the control system will need to close the vents in high wind speeds when the 

internal temperature of the greenhouse may be above the set-point. During these 

periods of elevated internal temperatures, the rate of transpiration of the plants may 

increase to such a level the plants may begin to stress if the irrigation system does not 

allow for additional irrigation, or the greenhouse is cooled internally, or the internal 

humidity of the greenhouse is raised.  

 

Additional irrigation can be allowed for by measuring the levels of moisture in the plants’ 

leaves or the growing medium. Plants are able to tolerate higher temperatures if it is 

combined with a higher RH. The elevated RH will help to keep the rate of transpiration 

under control, but only to a certain point. Increasing the internal RH can be obtained by 

wetting the greenhouse floor or by using mist nozzles. The evaporation of moisture from 

the floor will increase the internal RH and provide some cooling effect as well as will the 

mist nozzles. Whether this would be sufficient remains to be determined through 

practical experiments. Other types of internal cooling may be difficult to achieve during 

periods of high wind speed, due to the additional energy that it may require.  
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Allowing for a limited amount of ventilation by limiting the distance to which the roll-up 

curtains open, or creating limited vent openings in the downwind direction, are some 

practical considerations that can only be determined through practical experimentation. 

To allow for these possible changes to the control system during the experimental 

phase, it was decided to use a programmable logic control (PLC) unit as a control 

system. This PLC can be replaced with a more cost effective micro controller once the 

parameters for a satisfactory control program have been determined.  

 

The control of the solar heating system will be performed with the same PLC, since it 

will also require the internal temperature as input. The control of the irrigation system 

will, however, be separated from the climate controller and will be handled by a 

commercial-type time-clock irrigation controller. If no control system is available, an 

irrigation controller can also be used to operate the heating system because it is 

controlled through the operation of two solenoid valves and a pump only. The one valve 

is used to direct the flow of the working fluid through the solar collector during day-time 

and the other to direct the flow through the heating system during night-time. 

 

3.5 Detailed design phase 

 

3.5.1 The greenhouse structure 

 

The structure of the greenhouse was designed according to the AGMA standards and is 

presented in Addendum A [53]. A general layout of the structure is presented in 

Figure 40. Most of the structural components were based on standard hollow tubular 

steel sections that are commercially available. The structure was also designed to be 

constructed on site with bolted connections between all major components. 
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Figure 40 - Greenhouse structure 

 

3.5.2 Roll-up vents 

 

Roll-up vents were chosen as ventilation system due to their simplicity and the fairly 

large openings they can create to enhance natural ventilation. The greenhouse covering 

material is normally used as the curtain material, which is in this case 200 µm thick PE 

film. The curtains will be opened and closed with a geared electric motor that is 

controlled by a PLC to ensure a stable internal environment. The roll-up vents need to 

be closed when the wind speed exceeds a certain velocity, typically around 40 km/h, to 

protect the greenhouse.  

 

The geared motors that open the vertical side vents, must be able to deliver more 

torque than the motors for the roof vent, and are therefore used as a guideline in the 

determination of the required output. Due to the long distance which the curtain needs 

to cover, it is not possible to roll the curtain down from a top hanging roller. Instead, a 

roller must be used at the bottom of the curtain. The curtain is fixed to the structure at 

© Central University of Technology, Free State



96 

 

the top and to a pipe at the bottom over which the curtain can roll up, as indicated in 

Figure 39. 

A standard 38,2 * 2 mm fence and gate tube, with a mass per metre length of 1,78 kg, 

was selected for this project. The circumference of this pipe is 120 mm and the 

thickness of the film is 200 µm. For each revolution, the vent will thus be opened by 

approximately 120 mm. The opening speed can be very slow to eliminate the possibility 

of large fluctuations on the internal climate of the greenhouse. For control and safety 

reasons, geared DC motors are commonly used to drive the roll vent.  

The PLC can be programmed in such a way that the motor is powered for a specific 

time and then waits for a set period to determine the change in the internal climate. The 

advantage of using a PLC is that these on/off periods can be altered according to the 

graphs as plotted by an automatic weather station which is placed inside the 

greenhouse. The greenhouse film is made from low density polyethylene (LDPE) film 

with a density from 910 to 940 kg/m3. The maximum required opening for the side vents 

can be taken as 1.5 m, which means that the weight of the pipe with film wound around 

it can be taken as 61.86 kg over a length of 30 m. If a service factor of 1.2 is used, the 

required torque can be calculated as: 

 

 

 

 

 

 

 

 

 

 

 

Figure 41 - Torque calculation for roll vent. 

 

T = (74.232)*(9.81)*(0.038/2) = 13.836 Nm, as shown in Figure 41. A Parvalux geared 

12V DC motor with an output of 17 Nm of torque at 6 r/min, as shown in Figure 42, was 

selected. 

Weight = 74.232 kg 

dia = 38 mm 

Plastic film 

dia 38 Tube 
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Figure 42 - Selected geared motor. 

 

The construction of the geared motor makes it possible to mount the output shaft 

directly into a bush that can be fitted to the pipe, as shown in Figure 43. 

 

 

Figure 43 - Geared motor fitted to roll vent tube. 
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3.5.3 The solar heating system 

 

The solar heating system consists of three basic systems, namely the solar 

collector, the heat storage system and the heat exchange system. During the 

concept design phase, if a flat plate solar water heater was chosen to heat the 

water, that will then be stored in tanks and pumped through a network of under-

bench PE pipes, to exchange the heat to the internal environment of the 

greenhouse. The dimensions of the flat plate collector will depend on the amount 

of energy that would be required to keep the greenhouse at the desired 

temperature.  

 

The total heat loss for the greenhouse is calculated as 1.039 MJ, as shown in the 

Table 9 below. From this value, the amount of water needed, and the 

temperature it needs to be heated to can be calculated. At this stage, the 

calculations show that 4498 litres of water need to be heated from 25 to 800C, 

which is considered a large amount of water in this context. Additional losses will 

also occur in the water storage and heat exchange system, meaning that even 

more heat will be needed.  

 

A decision was made to construct a solar water heating system with a capacity of 

3000 litres of water and then determine what percentage of the required heat the 

system will be able to deliver. Once this is known, the heating system can be 

scaled up to determine the actual size needed. Through the construction of the 

system, the actual efficiency of the system as well as actual losses can be 

determined and considered in future designs. 
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Table 9 - Heat loss and water storage calculator. 

 

 

 

 

The design philosophy requires that commonly available agricultural materials and 

components be used in the design of the whole heating system. The water will be 

heated to 80 0C, which is well below the 90 0C that common PE agricultural plastic 

tubing can withstand. The amount of water in the solar heating system will also need to 
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ensure that the heating system does not overheat. In this case, the system has room to 

move from 80 0C to 90 0C, which will require an additional 255.227 MJ, which is 143 % 

additional energy. Flat plate solar collectors are normally installed facing north at an 

angle to the horizontal equal to the latitude at their specific position, which in this case is 

290. This will ensure that the efficiency of the solar collector is decreased in summer, 

when it is not in use, and increased during the winter months with an optimum efficiency 

on 21 June, when the sun’s rays will be normal to the collector surface around midday.  

 

The solar collector may be shifted by as much as 150 from north, with no significant 

influence on the amount of solar heat that is collected, depending on when the 

maximum demand is required. For this specific design, most heat will be needed late in 

the afternoon as it will limit the amount of heat that can be lost from thermal storage, 

due to the limitation that is placed on the time in thermal storage. The solar collector 

was therefore rotated by 150 west of north. The available insolation for Bloemfontein, as 

indicated in Table 10, is 3.32 kWh/m2/day. 

 

Table 10 - Available insolation for Bloemfontein [76]. 

 

Variable I II III IV V VI VII VIII IX X XI XII 

Insolation, 

kWh/m²/day 
7.02 6.19 5.28 4.44 3.74 3.32 3.54 4.36 5.29 5.97 6.71 7.07 

Clearness, 0 - 1 0.59 0.56 0.56 0.58 0.61 0.61 0.62 0.63 0.62 0.58 0.58 0.59 

Temperature, 

°C 
21.91 21.15 19.63 16.48 11.92 7.60 7.61 10.97 15.34 17.98 19.71 20.73 

Wind speed, 

m/s 
4.84 4.49 4.44 4.49 4.58 4.89 5.06 5.54 5.77 5.56 5.20 5.04 

Precipitation, 

mm 
84 97 77 52 18 10 9 14 22 49 64 64 

Wet days, d 10.7 10.8 10.9 8.2 3.8 2.7 2.0 2.5 3.7 7.0 8.4 9.4 

 

The solar collector will be constructed from black PE irrigation pipe that lies on a black- 

coated corrugated plate surface. Polycarbonate plates will be used for the cover, with a 

layer of Durafoil as insulation material below the corrugated plates. Professionally 

constructed solar water heaters can normally transfer 60 – 70 % of the energy that they 

receive from the sun to the working fluid [78]. The expected efficiency of a solar water 
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heater, which is constructed from basic materials, can therefore be assumed to be in 

the region of 30 – 40 %. For an efficiency of 40 %, the required area for the collector to 

collect 233.7 MJ/day would be : 

Efficiency of collector (ƞcollector) = Energy collected/Available energy for area 

For ƞcollector = 40 % 

Energy to be collected = Available energy for area * ƞcollector 

                  = 3.32 kWh/m2/day * 0.4 

                  = 1.328 kWh/m2/day 

                  = 4.781 MJ/m2/day 

For 2,337 MJ 

Area required = 233,7 MJ/day/4,781 MJ/m2/day 

           = 48,88 m2 

This is about 21 % of the floor area of the greenhouse while the efficiency of the thermal 

storage and the heat exchange system is still excluded. At this stage it can be seen that 

for a solar collector to be able to heat the greenhouse to the desired set-points during 

the coldest winter months, the size thereof (and cost) would be immense. A solar 

heating system, of reasonable scale and cost, can therefore only be used to either 

extend the growing season of the plants or to try to prevent frost damage to plants 

during winter months.  

 

The cost of constructing such a solar heater is prohibitive and it was decided to 

construct a smaller solar water heating system and to extrapolate its capacity to that 

required. To ensure applicability to multi-span greenhouses, a solar heating system that 

does not exceed the width of the greenhouse will be designed. The length of the solar 

collector will be designed in such a way that it correlates with standard corrugated plate 

lengths, e.g. a 2.2 m plate. The available heat from this solar collector can be fed back 

into the heat loss and water storage calculations to try and determine what internal 

temperature can be obtained with this heating system.  

 

The area of the solar collector now becomes: 

Area = 8 * 2.2 = 17.6 m2, and 

Available energy  = 17.6 * 3,32 kWh/m2/day * 0.4 

              = 23.373  kWh/day  
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              = 84.143 MJ/day 

This will only be a fraction of the heat that is required but once this fraction is known, the 

actual applicability of this type of solar water heating system for this type of application 

can be determined.  

Having lower than required amounts of energy available, a decision was made to direct 

the available heat to where it is needed most, the root zone [77]. The plants will be 

grown in raised beds with under-bench heating. The side walls of these beds can be 

closed with PE sheets to ensure that the available heat is concentrated at the root zone. 

The width of the beds is 400 mm, their length 28 m, their elevation from ground level is 

400 mm and there are six of them. 

 

3.5.4 Heat exchange system 

 

During the concept design phase, a decision was made to use an under-bed heat 

exchange system. These types of heat exchange systems normally consist of a simple 

closed loop of PE pipes that are installed underneath the raised beds. To increase the 

efficiency of the heat exchange system, PE pipes with an outer diameter of 32 mm will 

be installed. This will create an outer exchange surface of 34 m2 for the 338,4 m length 

of heat exchanger pipe. The side walls of the beds will be closed with a single layer of 

PE film to ensure that the heat is trapped underneath the growing bed.  

 

To ensure that the heat is evenly distributed throughout the greenhouse, strainers with 

an orifice of 8 mm will be installed at the entrance to each closed loop. The diameter of 

this orifice can be altered should the heat not be exchanged evenly throughout the 

greenhouse. In ideal situations, the temperature of the working fluid should have a 

temperature gradient of 10 0C above that of the environment that needs to be heated 

[77]. 

 

3.5.5 Control System 

 

A decision was made to use a PLC to control the internal climate of the greenhouse 

because of the and/if-functions that are needed to control the internal climate of the 

greenhouse. To limit the possibility that the greenhouse climate control may jeopardize 
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the functioning of the heating system when not functioning properly, the control of the 

heating system was separated from that of the greenhouse climate. Control of the 

heating system can be obtained by the application of a simple irrigation controller. Once 

the operational problems have been sorted out, the systems can be integrated into one 

single control system, if needed.  

 

Limit switches will be placed above and below each roll vent and the position of the 

upper limit switch will be made adjustable to control the maximum vent size. The 

following inputs and outputs needs to be considered in compiling a program for the PLC 

[13] [36]. 

 

Inputs (13) 

1. Inside temperature 

2. Outside temperature  

3. Wind speed (0 – 40 km/h) 

4. Outside relative humidity (open/close all vents) 

5. Inside relative humidity (open/close floor wetting sprinklers) 

6. Western side vent upper limit (U/L) 

7. Western side vent lower limit (L/L) 

8. Western roof vent U/L 

9. Western roof vent L/L 

10. Eastern side vent U/L 

11. Eastern side vent L/L 

12. Eastern roof vent U/L 

13. Eastern roof vent L/L 

 

Outputs (4) 

1. Open/Close western side vent (60 Watt 12 V dc motor) – 2 outputs 

2. Open/Close western roof vent (60 Watt 12 V dc motor) – 2 outputs 

3. Open/Close eastern side vent (60 Watt 12 V dc motor) – 2 outputs 

4. Open/Close eastern roof vent (60 Watt 12 V dc motor) – 2 outputs 
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A Siemens PLC, which is programmed in LOGO ! Soft Comfort version 7.0, was 

selected and the program to control the vents is shown schematically in Figure 44. 

 

Figure 44 - Schematic representation of Logo Soft program 

 

The roll vents on the side walls will open first and once they are fully opened, the roof 

vents will start to open. A running time of 5 seconds was allowed during the opening 

and closing phase with a waiting period of 5 minutes in between. This will ensure that 

the internal climate does not fluctuate too rapidly. These initial time settings were 

however made adjustable should they prove to be problematic. Sensors were placed 

inside the greenhouse to measure the internal temperature and humidity, while a wind 

speed sensor was placed on the roof of the greenhouse to measure the wind speed. 

The vents function primarily on internal temperature but can be overridden should the 

wind speed exceed a certain limit or if the humidity reaches the point of maximum 

saturation, hence the need for the and/if functions. In conditions of high wind speed, all 

vents will be closed, to protect the greenhouse structure. The roof vents are closed in 

conditions of high RH humidity to protect the flowers from rain damage and to prevent 

fungal growth, should the leaves of the plants be wetted by rain and remain wet for too 

long. The required internal humidity is 60 to 70 % and this will be obtained by a set of 
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sprinklers that are placed underneath the raised beds to wet the floor during periods of 

low RH, from where this water can be evaporated to create the required internal RH. 

The plants will be irrigated by a set of micro sprayers that are controlled by an irrigation 

controller. This controller will also be separate from the greenhouse climate control and 

the heating system control. 

 

3.6 Conclusion 

 

An outlined research and design methodology enabled the researcher to look at 

appropriate technologies and to determine how these technologies can possible be 

applied to reach the envisaged end goal. 
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3.7 Commissioning phase 

 

3.8 Introduction 

 

In this chapter some insight will be provided on how the experimental setup was 

constructed and operated. 

3.8.1.1 Final experimental setup 

 

The experimental final setup consisted of a single-span, 8 * 30 m greenhouse, with 

vertical side walls of 2.4 m. The greenhouse structure was covered with a single layer of 

200 µm, IR Rose, greenhouse film, while the floor was covered with a single layer of 

250 µm thick PE sheeting. Six raised rose beds of 0.4 * 28 m were used to grow 1500 

rose plants comprising the following varieties from Bartell’s Roses:  

1. 750 plants of Tinto (dark velvet red),  

2. 250 plants of Tara (bright yellow rose), and 

3. 500 plants of Purity (white rose). 

 

The plants were planted in potting soil, that mainly consisted of composted bark, which 

formed a very light and well-aerated medium. In-line micro irrigators were installed on 

the raised beds and fertilizer was injected into the irrigation water on a continual basis 

through the application of an in-line venturi. To simplify the fertigation, water soluble 

chemical fertilizer that contained the macro- as well as all the required micro elements, 

for rose production was used. The irrigation system functioned well and no operational 

problems were experienced during the three growing seasons. The first season was 

used to gain experience in flower production and with the system functioning, the 

remaining two seasons were used to experiment with the natural ventilation and solar 

heating system. The solar collector system, as shown in Figure 45, consisted of a flat 

plate collector of 2.2 * 8 m that was covered by corrugated PC plates.  
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Figure 45 - Solar heating system. 

 

A network of 20 mm black PE pipes was used to heat the water on a black-coated 

corrugated steel plate background. 

The greenhouse was erected in a south to north orientation, with the solar heating 

system on the northern side of the greenhouse. 

The storage facility consisted of three 1000 litre, horizontal insulated plastic tanks, as 

shown in Figure 46. A set of valves was installed to either integrate or isolate each tank 

from the water storage facility so that the maximum storage capacity could be varied 

between 1000, 2000 or 3000 litres.  

 

Figure 46 - Hot water storage. 
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The heat exchange system consisted of a ring system of 40 mm black PE pipe that was 

installed underneath each bed, as shown in Figure 47. 

 

 

Figure 47 - Heat exchange system installed underneath raised beds. 

A single layer of clear 200 µm PE greenhouse film was used to enclose the raised beds 

so that heat could be trapped underneath the root zone to ensure effective root zone 

heating, as shown in Figure 48. 

 

Figure 48 - Enclosed raised beds 
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3.8.2 The greenhouse environment control 

 

The commissioning of the environment control system proved to be very challenging. 

The limit switches on the roll vents created serious problems by not functioning 

properly. The internal- as well as the external environment seemed not to be compatible 

with the type of limit switches that was used, despite having an IP 63 standard for 

isolation.  

 

During periods of high levels of RH, the oxidation on the contact points formed a 

nonconductive layer between the contact points of the limit switches, leading to the 

malfunctioning of the limit switches. This created very serious problems and the roll 

vents were damaged on various occasions. Further research indicated that the control 

systems for greenhouses are problematic and that most growers remove the 

greenhouse control after one or two seasons of growing.  

 

The temperature set-point for the greenhouse was set at 28 0C, which would mean that 

the internal temperature of the greenhouse would have to rise to 28 0C before the vents 

would start opening. This was also problematic due to the high heat load that was 

induced initially on the greenhouse, during periods of elevated external midday 

temperatures, because the naturally ventilated greenhouse would then struggle to 

maintain the internal temperature at an acceptable level. To counter the effect of 

elevated midday temperatures, a single layer of 40 % shade cloth was placed on the 

roof of the greenhouse to help maintain the internal temperature at reasonable levels 

without compromising the levels of light intensity inside the greenhouse. 

 

High wind speeds created serious problems as well. The roll vents were not able to 

handle high wind speeds due to the lack of tensioning in the vent glazing, especially on 

the roof of the greenhouse where the angle of inclination is much lower than that of the 

side walls. High wind speeds tend to lift the roll vent from the lower limit, causing the 

control system to keep driving the vent downwards whereby the tension inside the roll 

vent glazing is reduced even further until the vent provides no barrier for incoming air 

and the glazing is torn from the vent structure. Gusts of up to 62.5 km/h were 

experienced at the site.  
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An automatic weather station was installed inside the greenhouse to monitor the 

following internal and external climatic conditions: 

1. Internal temperature 

2. Internal humidity 

3. External temperature 

4. External humidity 

5. Wind speed 

 

The data received from this weather station could then be used to make possible 

alterations to the climate control system or the greenhouse components, e.g. the size of 

ventilation openings could be limited to a point where a further increase in the size 

would have no influence on the internal temperature as a result of increased rates of 

ventilation.  

 

3.8.3 Problems experienced during the commissioning phase 

 

The control system created many operational problems due to the movement of the roll 

vents during periods of high wind speeds and moisture between the contacts of the limit 

switches. Failures in operation led to continual breakdowns and the roof and side walls 

of the greenhouse were ripped off twice during the commissioning phase. Various sets 

of limit switches were used on the roll vents and limit switches with an IP63 

classification for isolation functioned relatively well with breakdowns occurring less 

frequently.  

 

The fairly large openings created by the roll-vents created opportunities for the wind to 

damage the greenhouse structure, should the operating system not function timeously 

and properly. Another problem created by roll vents was the lack of tension in the 

greenhouse film when the vents were closed, especially on the roof with the lower 

gradient. The relative movement between the film and structure, as created by the wind, 

creates tears in the film, where the film runs adjacent to the greenhouse structure. The 

seal, as created by a closed roll-vent, is also not very effective and a lot of heat may be 

lost due to the ineffective sealing capacity of roll-vents. 
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The solar collector was not able to increase the temperature of the 3000 litres of water 

in the storage tanks significantly and a decision was made to reduce the amount of 

water to 2000 litres. The layout of the water storage was arranged as indicated in 

Figure 49. Three horizontal plastic tanks, with a capacity of 1000 litres each were 

connected in parallel. Manually operated gate valves were installed on both the inlet as 

well as the outlet of each tank to allow tanks to be isolated from the system.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49 - Layout of water storage system. 

 

Water was extracted from the bottom outlet of each tank and once it passed through the 

solar collector it was added through an inlet at the top of each tank. The data logger that 

measured the water temperature was placed at mid-height in tank 3. Two solenoid 

valves that were controlled with an irrigation controller directed the flow through the 

collector during the day and through the heat exchange system at night. 

 

3.9 Conclusion 

 

This chapter highlights how the setup was operated and what shortcomings were 

experienced during the experimental phase.  

 

 

 

P 

Tank 1 Tank 2 Tank 3 

To Collector/ Exchanger 

From Collector/ Exchanger 
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4. PRESENTATION AND DISCUSSION OF 

RESULTS 

 

4.1 External environment 

 

The temperatures and wind speeds measured during the experimental stage were really 

extreme for the location. The hottest and driest November in 120 years was 

experienced during 2013 accompanied by the coldest July in 50 years during 2014. This 

was really good for the experimental phase because the ability of the greenhouse to 

provide a suitable internal environment for optimal plant growth was put to the test. The 

challenge with developing an effective growing environment is to change the internal 

environment into an environment that is more suitable for optimum plant growth. This 

was normally done with heating systems that were driven by electricity or fossil fuels, 

but lately this has become too expensive. During the hot summer months, the external 

temperatures can fluctuate from a minimum of around 5 0C to a maximum of 

approximately 37 0C, as shown in Figure 50. 

 

 

Figure 50 - Fluctuation in external temperatures during a hot summer's day. 
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Apart from the high temperatures that may be experienced during the hot summer 

months, the environmental RH may also vary significantly between day and night-time, 

from a maximum value of 95 % to a minimum value of 10 %, as can be seen from 

Figure 51. 

 

 

 

Figure 51 - Variation in RH between day and night-time. 

 

The coldest winter months are also a difficult period for a grower because a sharp 

decrease in night-time temperatures does not only slow down plant growth but can also 

damage the plants. If the temperature does not drop significantly enough to damage a 

plant, it will still be able to produce should it be exposed to the right temperatures for 

certain required periods of time. Part of this research problem was also to determine 

what the required periods and temperatures should be. Figure 52 shows how the 

external temperatures typically varied from 25 0C to -5 0C, as experienced during the 

colder winter months at the location. 
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Figure 52 - Variation in outdoor temperatures during July 2013. 

 

 

4.2 Solar collector and hot water storage 

 

The lowest external temperatures of the growing season are normally experienced 

during July. Minimums can drop to -4 0C and sometimes even as low as -9 0C. The 

minimum temperature the plants should be exposed to is normally taken as 6 0C, while 

some growers do not go below 12 0C. A considerable amount of heat is then needed to 

keep the internal environment at the required lower set point.  

The purpose of the solar collector would be to collect heat from the sun during day-time 

and to store that heat for exchange to the internal environment during night-time. A 

temperature data logger was placed at mid-height inside one of the three 1000 litre 

tanks to determine the variation in temperature of the working fluid and ultimately the 

amount of heat that is collected during the day, the amount that is lost by the tanks as 

well as the amount that is available for exchange to the internal heating system at night. 

A typical variation in the water temperature is shown in Figure 53. 
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Figure 53 - Variation in working fluid temperature for during July 2014. 

 

4.3 Greenhouse internal environment 

 

Data regarding the internal environment of the greenhouse was retrieved directly from 

the automatic weather station. Figure 54 shows the variation in internal temperature for 

July 2013 while Figure 55 shows the variation in internal temperature for November 

2014.  

 

 

Figure 54 - Variation in internal temperatures for July 2013. 
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Figure 55 - Variation in internal temperatures for July 2013. 

 

4.4 Under-bed heating system and internal environment 

 

A temperature data collector was also placed underneath the enclosed growing beds to 

log the variation in temperature during the winter months when the heating system is in 

operation. The data received from this logger could then be used to determine the 

actual amount of heat the system exchanged to the under-bench region. An example of 

such data is shown in Figure 56. 

 

 

Figure 56 - Variation in under-bench water temperature - July 2014. 
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4.5 Greenhouse external environment (winter) 

 

For the purpose of determining the actual heat required in the greenhouse, the 

temperatures of a typical day, in this case 14 July 2014, was used. During that day the 

external temperatures varied, as shown in Figure 57. 

 

Figure 57 - Variation in external temperature - 14 July 2014. 

 

The maximum temperature reached approximately 18 0C while the minimum plummeted 

to – 4,5 0C. The different periods during which the plants were exposed to the different 

temperatures can also be seen from the plot. The photoperiod will be the period above 

the 15 0C line and the dormant period, the period below. It is clear that the plants were 

exposed to lower than required temperatures for relative long periods and that the 

periods that the plants were exposed to more desirable temperatures (the photoperiod) 

were shorter – not the optimum environment for plant growth. Apart from the lack of 

exposure to the required temperatures, it is also clear that the minimum temperatures 

dropped below freezing point which means that the plant tissue may be damaged by 

freezing, thus no production of any kind would be possible. 

Req lower limit 
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The external humidity remained fairly good for optimum plant production except for a 

few short periods from 03:00 till 06:00 in the early morning. These are, however, not 

critical because the temperatures were fairly low during these periods. The variation in 

external humidity for 14 July 2014 is shown in Figure 58.  

 

 

Figure 58 - Variation in external RH - 14 July 2014. 

 

4.6 Greenhouse external environment (summer) 

 

The variation in the external temperature of a typical hot summer’s day is shown in 

Figure 59 below. The external temperature rose to approximately 32 0C which is about 

7 0C above the optimum of 25 0C. The minimum temperature dropped not lower than 

14 0C which is very good. The main concern during these periods is the maximum 

temperatures and the low levels of humidity that were experienced. If one compares 

Figure 59 with Figure 60, it can be seen that the humidity drops to its lowest level when 

the temperature is at its highest. With the temperature peaking at 33 0C, the humidity 

dropped to approximately 15 % between 12:00 and 15:00 in the afternoon. These 

conditions make optimum plant growth difficult, and with cut-roses, the bud length starts 

to decrease to approximately 3 cm from the expected 5 cm. 

Req. lower limit 
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Figure 59 - Variation in external temperatures - 31 Oct 2014. 

 

Figure 60 - Variation in external RH - 30 Oct 2014. 

 

 

Upper limit 

Lower limit 
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4.7 Solar collector performance 

 

The actual maximum and minimum temperatures of the working fluid (water), measured 

in the storage tanks of the solar heater can be used to determine the actual amount of 

heat that the solar collector can collect and from that the efficiency of the solar collector 

can be calculated. Figure 61 shows how the temperature of the working fluid varied over 

the course of a few days during July 2014.  

 

 

Figure 61 - Typical variation in working fluid temperature during July 2014. 

 

On 14 July 2014, the temperature rose to 23 0C during the day, and dropped to 12 0C 

during the night. The actual amount of heat that the solar collector was able to add to 

the water can now be calculated by using equation 2.15. 

Q = mcpΔT [J]  

   = (2000)*(4183)*(296 – 285) 

   = 92.026 MJ 

The available solar insolation was taken as 3.32 kWh/m2/day in section 2.4.3. This 

would mean that the total amount of solar insolation that is available to the solar 

collector can be taken as : 

Area (solar collector) = 8 * 2.2 = 17.6 m2, and 

Available energy   = 17.6 * 3.32 kWh/m2/day  

Max temperature 

Min temperature 
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               = 58,432 kWh/day  

And that will amount to 210.355 MJ/day 

The efficiency of the solar collector can then be calculated as follows: 

Ƞcollector  = Qabsorbed/Qavailable 

   = (92.026/210.355) * 100 

       = 43.75 % 

It was determined through the application of the heat loss calculation tool, presented in 

Table 9, that the greenhouse would require 1787 MJ of heat for a typical winter’s night. 

This would mean that the current solar heating system would be able to supply 

(92,026MJ/1787MJ) or 5,15 % of the required heat, for the night of 14 July 2014. The 

area needed for the solar collector to supply all of the required heat can now be 

calculated as follows: 

Areq   = Current Area/(5.15%) 

 = 341.75 m2  

The floor area of the greenhouse was 240 m2, which means that the required area for 

the solar collector is (341.75/240)*100 or 143 % of the greenhouse floor area. 

        

4.8 Greenhouse internal environment (winter) 

 

The variation in internal and external temperatures for 14 July 2014 are presented in 

Figure 62. 

 

Figure 62 - Internal and external temperatures – 14 July 2014. 
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It is clear that the heating system did not have much of an influence on the internal 

temperature of the greenhouse because the minimum that was obtained was very close 

to the minimum of the external temperature. This supports the calculation, as performed 

in section 7.4, which determined that the solar heating system was able to supply only 

5,5 % of the required heat. This means that both the efficiency and the collector area 

needed to be increased dramatically to obtain the required amount of heat necessary. 

The heat was supplied to the enclosed root zone. For effective root zone heating, the 

root zone needs to be heated to at least 20 0C, while the canopy needs to be heated to 

at least 12 0C. The idea in root zone heating is that a higher temperature is obtained at 

the root zone which in turn will create a heating effect of the canopy, to a temperature 

that may be a bit lower than what is required when a conventional heating system is 

used. The actual root zone temperatures varied, as shown in Figure 63. On 14 July it 

reached a maximum temperature of 18 0C and dropped to a minimum of 9 0C at night. 

 

 

Figure 63 - Variation in root zone temperature - 14 July 2014. 

 

4.9 Greenhouse internal environment (summer) 

 

The internal temperature of a greenhouse that is ventilated through natural ventilation, 

can never be lower than the external temperature and the differences that were 

experienced in this project, is shown in Figure 64. The maximum day-time internal 

temperatures sometimes exceeded the external temperatures by more than 10 0C. This 
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is very problematic since the maximum day-time temperatures already exceed the 

maximum day-time temperature of 28 0C, as required for optimum plant growth.  

 

 

Figure 64 - Internal and external temperatures - 30 Sept 2014. 

 

The vertical side wall height of the greenhouse and the opening size of the vents have a 

direct influence on the rate of natural ventilation occurring during periods of elevated 

temperatures. With the maximum internal temperatures reached, as shown in Figure 64, 

it becomes clear that the vertical side wall height of the greenhouse was too low and/or 

that the size of the ventilation openings on the greenhouse were too small. This is 

especially true for the lower-than-required single-span greenhouses that are so 

common in the horticultural industry. 

 

4.10 Under-bed heating system 

 

In an effort to increase the efficiency of the under-bed heat exchange system, the side 

walls were enclosed with a single layer of PE film during the second growing season. 

The idea was to concentrate more heat at the root zone and in doing that the 

greenhouse would not lose the added heat through the common mechanisms of heat 

transfer so easily. Earlier experiments have shown that a root zone temperature of 

20 0C combined with an internal temperature of 6 0C can still sustain growth for 
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greenhouse cut-roses [26]. The temperature at the root zone dropped to 10 0C which 

means that the heating system could not supply enough heat to keep the root zone at 

the required 20 0C. 

 

4.11 Determining the solar fraction based on steady-state heat 

transfer 

 

Once the amount of heat required by the greenhouse and the amount of heat that can 

be delivered by the solar heating system is known, the solar fraction can be determined. 

The solar fraction was earlier defined as the amount of energy provided by the solar 

technology divided by the total amount of energy required. The required amount of heat 

will vary from month to month as the minimum temperatures varies, and so will the 

amount of heat that can be collected vary through the year as the levels of solar 

insolation varies, as indicated in Table 10. With this information available, the heat loss 

and water storage calculator can be expanded to determine the solar fraction for the 

various months, as presented in Table 11 below. The solar fraction, as calculated here, 

was based on the steady-state heat calculations and is presented as an initial result 

only. 
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Table 11- Solar fraction available from solar collector 

 

 

 

 

It is clear from Table 11 that the solar heating system, of the size as constructed for this 

experiment, will not be able to deliver all the heat that is required for the year-round 

production of temperature-sensitive crops as initially planned. A solar heating system, 

depending on its capacity, can however assist in extending the growing season, 

enabling growers to start production earlier in spring and continuing later into autumn. 

The solar heating system can also assist growers in handling cold spells that may occur 

during the growing season, if the working fluid is kept at the maximum operating 

temperature during spring and autumn. The solar heating system should be assisted by 

a conventional heating system during periods when the demand exceeds the capacity 

of the solar heating system. The price of fresh produce is normally better when there is 

a scarcity, e.g. during the off-season, and the cost of constructing a solar water heating 

system should be evaluated against the possible increase in the annual revenue from 

the growing system. Fruit and flower development will only start once the growing 
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environmental conditions are suitable and with the amount of heat that a grower will 

have available from the solar water heating system, the grower should be able to predict 

the expected start and end date of the growing season. 

 

4.12 Transient ventilation model 
 

A transient day-time ventilation model was developed to determine the actual required 

day-time rates of ventilation that will ensure that the maximum growing temperature is 

not exceeded. A transient model is very helpful in the sense that it allows the designer 

to determine the required rate of ventilation during certain times of the day. Figure 65 

below shows the actual versus the required rate of ventilation for 14 July 2014. It tends 

to over-ventilate in the morning when the vents open and cold air streams into the 

greenhouse from outside. Conversely, it tends to under-ventilate as the day progresses 

and the external temperature increases. This is quite common for naturally ventilated 

greenhouses and highlights the shortcomings of a natural ventilation system. At best, a 

naturally ventilated greenhouse will be able to reach a maximum internal day-time 

temperature that is approximately 5 0C above the external temperature [53]. An 

additional cooling system is required for regions like the Free State, where the 

maximum ambient temperature often exceeds the maximum temperature required for 

optimum plant growth. The experiment showed that summer production became very 

difficult as the maximum ambient temperatures rose in excess of 25 0C.  
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Figure 65 - Day-time ventilation model- 14 July 2014. 

 

4.13 Transient Heating Model 

 

A transient heating model was also developed to determine the heating requirements at 

specified time-steps during winter nights as shown in Figure 66. With the initial solar 

water heating system being used for the experiments, the dimensions and capacity of 

the required solar water heating system could be determined through this heating 

model. 
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Figure 66 - Variation in inner and outer night-time temperature. 

 

The inner temperature follows the outer temperature relatively closely as the night 

progresses and heat is lost through the various mechanisms, as indicated in figure 66, 

above. Greenhouses have fairly large outer surfaces that are exposed to the elements 

and heat losses through infiltration tend to increase as the greenhouse film ages with 

time. With an optimum internal temperature specified, the heating requirements at the 

various time-steps could then be determined with the heating model and were 

calculated as shown in Figure 67. 
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Figure 67 - Actual vs. required heating capacity. 

 

The heating model showed that the required heating capacity was much higher than the 

actual. Once the required heating capacity was determined, a numerical equation could 

be written for it, which could be used to determine the required characteristics of the 

solar water heating system, such as collector area, storage capacity, required efficiency 

and required rise in temperature of the working fluid during the heating cycle. In Figure 

67, the heating requirements of the greenhouse, was plotted in time-steps of 30 minutes 

that started at 19:00. Figure 68 also shows a typical calculation used to determine the 

heating system characteristics and the required change in temperature for such a 

system. From figure 68 it can be seen that 40 000 litres of stored water needs to be 

heated by a flat plate collector of similar design, with an area of 613 m2 from a 

temperature of 26 0C to a temperature of approximately 70 0C. The required size of the 

solar collector would then be 2.554 times the area of the greenhouse. Should this not be 

possible, the solar water heating system can be scaled down to extend the growing 

season to where it may still be economically viable. In the last section of this chapter 

that deals with the financial model, this possibility will be investigated further. 
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Figure 68 - Numerical model to determine the required characteristics of the solar 

heating system. 

 

In the heating requirement calculator, as shown in Figure 68, the final temperature of 

the water can be altered to such a value that creates a useful temperature gradient to 

allow heat to be transferred from the heating system to its surrounding environment. 

The efficiency of the solar heating system can also be altered to reflect the 

characteristics of the specific heating system, should another system be used.  

 

4.14 Financial viability 

 

As stated above, the solar water heating system could possibly be used to extend the 

growing season. Cut-roses is a typical summer crop and higher than average prices can 

normally be obtained during the off-season. A financial model was developed that can 

assist in determining the financial viability of a typical solar water heating system. For 

the rose plants which were used, the average annual production volume (in stems per 
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plant) was indicated by the breeder as approximately 22 for a normal growing season 

over a production period of 42 months.  

 

With all the costs known, at this stage a financial model was developed where the 

required capital investment was discounted over the life expectancy of each item and 

added to the expected annual running cost. This was then subtracted from the expected 

annual income to determine the rate of return of the project. An example of such a 

return on investment calculator is shown in Figure 69, with the distribution of costs for 

the initial investment presented in Figure 70 and that of the annual costs presented in 

Figure 71. This financial model can now be used to scale the size of the solar water 

heating and with an expected escalation in the annual number of stems to be harvested 

per plant, the expected rate of return can be calculated. This model can be altered to 

incorporate the costs of alternative solar heating systems as well. With the initial model, 

as presented in Figure 69, it becomes obvious that it would be very difficult to obtain an 

acceptable rate of return with the solar water heating system, at least as far as the 

current design is concerned [78] [79]. 
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Figure 69 - Typical financial model. 
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Figure 70 – Initial setup cost distribution. 

 

 

 

 

Figure 71 - Running cost distribution. 
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With the size of the solar collector increased to the required capacity, and the estimation 

of annual production increased from the specified 22 by 50 %, the scaled financial 

model is presented in Figure 72 below. 

. 

 

Figure 72 - Scaled financial model. 

 

The ROI increased slightly from –51.04% to -42.66% but the project will still not be 

financially profitable. Scaling the operation may sometimes have an influence on the 
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running costs, and in this case the labour cost may be reduced as it will be possible for 

one labourer to handle more than one greenhouse. More efficient and cost effective 

solar heaters may also have an influence on the setup cost and ultimately on the 

profitability of the project. If an operation is scaled, a flower producer may also opt to go 

for the export market that might enable him/her to obtain better prices for the produce 

and thereby increasing the profitability.  

 

The experience of the grower will also play a big role - relatively little initial experience 

was available for this project and this certainly had a huge impact on the ultimate 

success. The expected crop size, as used in the financial model, was however based 

on data received from the plant propagator.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

In conclusion, the following summarized comments can be made regarding the main 

objectives that were dealt with in this study. 

 

5.1 Natural ventilation system 

 

A natural ventilation system can be a good alternative to a forced-draft ventilation 

system as long as the external temperatures do not exceed the required maximum 

growing temperature by more than 5 0C. A natural ventilation system cannot create an 

internal temperature that is lower than the external temperature and this is of specific 

concern in the central region of South Africa where the maximum midsummer 

temperatures may reach 40 0C, which is in itself already 12 0C above the maximum 

required growing temperature of most greenhouse crops. At these temperatures, an 

additional cooling system will be required to lower the internal temperature of the 

greenhouse to a more desirable level. For at least four months of the year this may be 

the scenario that a grower will have to deal with. Although the prior experience of the 

grower may have a considerable influence on the quantity and quality of the produce, 

the plants will still need an optimum environment for optimum production.  

 

5.2 Solar water heating system 

 

The steady-state heating model, the transient heating model and the experimental 

validation showed that the greenhouse needed much more energy that what this basic 

solar heating system was able to supply. Even if the efficiency of the solar heating 

system was increased dramatically from the current 40 %, a much larger system would 

be needed. With the current efficiency, the solar water heating system would need to be 

in the order of 2.5 to 3 times the growing area of the greenhouse, which may be 

technically possible but not financially viable. The possible application of more efficient 

water heating systems may be evaluated in future by applying the heating models that 

were developed during the course of this research project.  
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5.3 Financial viability of a solar water heating system  

 

Ultimately, the application of a new technology in any industry must be financially 

sound. The financial viability model provided the final conclusion for this research 

project. Perhaps a solar water heating system can be used to extend the growing 

season to a point where it is still financially viable, which may open up an opportunity for 

further research. For the central region of South Africa, with the type of cladding that 

was chosen, this does not seem possible. Better cladding materials, such as the 

double-walled PC panels may provide a much more stable internal environment which 

does not require so much energy to adjust, but the current cost of this product puts it out 

of reach of most growers if the current market value of their crops are considered. New, 

more energy efficient and cost effective covering materials need to be considered in 

future developments.  

 

5.4 Recommendations for future research. 

 

A natural ventilation system will not be able to decrease the internal environment of the 

greenhouse to the levels that is required for optimum production. Another possibility to 

investigate could be the application of photovoltaic cells to power a traditional fad-and-

pad cooling system for a greenhouse, without the application of a bank of batteries. The 

application of a high pressure mist cooling can also be very efficient method of cooling if 

the required source of good quality water is available for the system. The financial 

viability of using such a system needs to be determined as well.  

The possible application of heat pumps in collaboration with a solar water heating 

system to warm the water can also be investigated.  
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7. ADDENDUM A – GREENHOUSE STRUCTURAL 

LOADS 

 

As stated previously, a gothic-arch type of greenhouse structure with vertical side walls 

needs to be designed. The National Greenhouse Manufacturers Association (NGMA) of 

the USA laid down a standard for the structural design of a greenhouse and because no 

design standards are available in South Africa, the design standard of the NGMA was 

used as a guideline in the design of the greenhouse structure. The following types of 

loads are specified in the design manual: 

 Dead load (D) – the load that the structure exerts on itself due to the weight 

of the structural components and service equipment. 

 Live loads (L) – temporary exterior loads as a result of workmen and 

equipment and temporary interior loads as a result of hanging objects, e.g. heaters, 

distribution fans, etc. A live load is considered as permanent if it imposed on the 

structure for a period of 30 days or longer. 

 Wind load (W) – the load imposed on the structure by the wind. 

 Snow Load (S) – will be excluded from this project. 

For this project, the actual load P = D + L + W, while a stress combination factor of 1.33 

will be used to increase the actual stresses when compared with the yield stress of the 

material. 

Specific hollow sections will be chosen for the structural design and the wall thickness 

of these sections will then be adjusted, if necessary, based on the actual expected 

stresses as indicated by a Finite Element Analysis (FEA). The reasoning behind this 

iterative process is that the weight of the structure (D) forms part of the total load on the 

structure and needs to be included in the calculations. 

The NGMA specifies a minimum live load, for arched roofs, that is determined as 

follows: 

L = 20R1R2 ≥ 574,56 N/m2 but limited to 718,2 N/m2 (A-1) 

Where R1 = 1,2 for At = 21,818 m2 (actual area supported by truss in this greenhouse)

  

R2 = 1,2 – 0,05F (A-2) 
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   = 1,2 – 0,05(12,8) 

   = 0,56 

Where F is the rise to span ratio for an arched roof multiplied by 32. 

From eq. 2.1 

L = 20(1,2)(0,56) 

 = 13,44 N/m2 actual. 

Therefore, take L as 574,56 N/m2, the minimum specified value. 

All roof purlins must be able to withstand a concentrated load of 22,481 N at its mid-

span. For this greenhouse, 38 * 1.6 mm pipe was used for the purlins. For these purlins 

to act simply as a supported beam with a central load of 22,481 N, the maximum stress 

can be calculated as follows: 

σ = BM*y/IA (A-3) 

 = (22,481)(1,5)(0,019)/2(3,142/64*0,0384) 

 = 3,129 MPa – well below the allowable 300 MPa for grade 300 Steel. 

 

Figure 69 shows a wind rose for Bloemfontein for the period 1 Jan to 31 December 

2012. The greenhouse will be orientated in a North-South direction, as discussed 

earlier. From Figure 73 it is clear that the maximum expected wind speed is 

approximately 10 – 12 m/s (70 mph). 

 

Figure 73 - Wind rose for Bloemfontein [18]. 
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The normal variation in wind speed above ground level is indicated in Figure 74. The 

standard height for measuring the wind speed is at 10 m. The wind speed at other 

heights above ground level can be determined as follows: 

C2 = C1(h2/h1)*n (A-4) 

Where n is an adjustment factor that depends on ground cover and topography. For flat 

grasslands n is taken as 0,15.  

 

 

 

Figure 74 - Wind speed distribution above ground level [80]. 

 

The design wind load is determined through the following procedure: 

1. For the main wind-force resisting system (superstructure) 

Pwind = qzGCp – qh(GCpi) for windward wall (A-5) 

where 

qz = 0,00256Kz(IC)2 - the velocity pressure at wall height (A-6) 

the velocity at wall height C2 = C1(h2/h1)n  
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                      = 70(2,4/10)0.15 

                      = 56,511 mph 

Therefore 

qz = 0,00256*0,8(0,95*56,511)2 (A-7) 

  = 5,902 psf 

and 

qh = 0,00256Kz(IV)2 - the velocity pressure at height h (A-8) 

the velocity at height h = C2 = C1(h2/h1)n  

                      = 70(3,2/10)0.15 

                      = 59,003 mph 

Therefore from eq. 2.8 

qh = 0,00256*0,8(0,95*59,003)2 

  = 6,435 psf 

From eq 2.5 

Pz = qzGCp – qh(GCpi)  

  = 5,902(1,32*0,8) – 6,435(0,25) 

  = 4,624 psf or 221,397 Pa for the windward direction. 

For the leeward side: 

Ph = qhGCp – qh(GCpi)  

  = 6,435(1,32*0,8) – 6,435(0,25) 

  = 5,187 psf or 248,354 Pa for the leeward direction. 

2. For the components and glazing 

P = qhGCp – qh(GCpi) (A-9) 

  = 6,435(1,32*0.8) – 6,435(0.25) 

  = 5,187 psf or 248,354 Pa for any direction. 

The various wind pressures, as they act on the different walls of the greenhouse is 

schematically illustrated in Figures 75 and 76. These pressures can now be used to 

perform a FEA on the preliminary structure design in order to determine the optimum 

wall thicknesses for the different sections used. 
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Figure 75 - Wind pressure on different walls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 76 - Wind pressure loads on greenhouse. 
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The distance between the roof trusses is 3 m and the assumption was made that every 

3 m section will carry an equal amount of the total wind load. The wind pressure is then 

multiplied by the respective area to give the distributed load on a single truss with two 

legs, as indicated in Figure 77.  

 

 

 

 

 

 

 

 

 

 

  

 

Figure 77 - Actual loads on superstructure. 

 

For the design, standard tubular sections were chosen for the different components of 

which the wall thicknesses can be adjusted to account for the different stresses that 

may be expected, as determined by the FEA analysis. 
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8. ADDENDUM B – NIGHT TIME HEATING MODEL 

 

An example of the heating model is presented here. Raw data from the automatic 

weather station was captured, as shown in Figure 78 on the following page. From this 

data a shorter summarized spreadsheet containing only the relevant data for the 

specific model was compiled, as shown in Figure 79. Figure 80 shows a typical 

graphical representation of the variation in internal and external temperatures as 

measured. The graphical representations can be used to determine the validity of 

measured data and alterations can be made to somehow “smooth” the data if 

necessary.  
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Figure 78 - Raw data from automatic weather station. 
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Figure 79 - Summarized data. 

 

 

 

Figure 80 - Variation in temperatures. 
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To be able to determine the saturation enthalpy of the air-vapour mixture at the various 

temperatures in such a way that it can be used in a temperature model, the values of 

the enthalpy were plotted against the relevant temperatures and a mathematical model, 

based on the trend line, was created. An example of this is shown in Figure 81 below. 

 

 

 

Figure 81 - Variation in saturation enthalpy of air-vapour mixture. 

 

With all this data available, a transient night-time heating model, as shown in Figure 82 

below, could then be created and used to determine the actual amount of heat that the 

greenhouse would need at the various time-steps. The required actual amount of heat 

as compared to the amount of heat that was available from the heating system is 

represented graphically in Figure 83 below. From the graph, as presented in Figure 83, 

the heating requirements of the greenhouse at the various stages, could be modelled 

numerically as presented by the dotted line. 
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Figure 82 - Transient night-time heating model. 
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Figure 83 - Heating Requirements. 

 

With the heat requirements known, the size and exchange rate of the source could then 

be modelled, as shown in Figures 84 and 85. 

 

 

 

Figure 84 - Determining the heating requirements. 
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Figure 85 - Required change in heating water temperature. 
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9.  ADDENDUM C - DAY-TIME VENTILATION 

MODEL 

 

A day-time ventilation model was also created to determine the required rate of 

ventilation needed by the greenhouse. Raw data was collected from the weather station 

and summarized, as shown in Figure 86. 

 

 

 

Figure 86 - Summarized day-time data. 

 

In similar fashion, a simple numerical model was created for the saturation enthalpy, as 

shown in Figure 87. With all the relevant data available and considering all the 

mechanisms of heat gains and losses, a transient ventilation model could then be 

developed, as shown in Figure 88. With the transient heating model in place the actual 
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versus required rate of ventilation for the greenhouse could then be determined, as 

shown in Figures 89 and 90. 

 

 

 

Figure 87 - Modelling the saturation enthalpy. 

 

 

© Central University of Technology, Free State



160 

 

 

Figure 88 - Day-time ventilation model. 
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Figure 89 - Actual vs. required rate of ventilation in m3/s. 

  

 

  

Figure 90 - Actual vs. required rate of ventilation in exchanges/min. 
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