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IMPORTANT DEFINITIONS 
 

 

 

Cardio 

pulmonary 

bypass 

A technique that temporarily supports the function of the heart and 

lungs during surgery, maintaining the circulation of blood and the 

oxygen content of the body (Gravlee et al., 2008). 

Computational 

Fluid Dynamics 

(CFD) 

A branch of fluid mechanics that uses numerical procedures and 

algorithms to solve and analyse partial differential equations that 

involve fluid flows.  Computers are used to perform the calculations 

required to simulate the interaction of liquids and gases with surfaces 

defined by boundary conditions (Yogonathan et al., 2005). 

Doppler velocity 

index (DVI) 

Is a dimensionless ratio of the proximal velocity in the Left Ventricular 

Outflow tract (LVOT) to that of flow velocity through the prosthesis 

(PV): DVI=VLVOT/VPV. This parameter is used to evaluate valve 

obstruction, particularly when the cross-sectional area of the LVOT 

cannot be obtained (Pibarot et al., 2009). 

Effective orifice 

area 

The effective orifice area (EOA) is the minimal cross-sectional area of 

the flow jet downstream of a native or prosthetic heart valve.  The EOA 

is the standard parameter used for the clinical assessment of valvular 

stenosis severity.  It is determined either from Doppler 

echocardiography by using the continuity equation or from 

catheterization by applying the Gorlin formula (Hakki et al., 1981). 

Finite element 

method (FEM) 

The finite element method (FEM) is a numerical method for solving 

partial differential equations.  It can be used for predicting how a 

structure reacts or deforms because of real-world forces, vibration, 

heat energy transfer, fluid flow, and other physical effects.  Finite 

element analysis shows whether a product will break, wear out, or work 

the way it was designed (Babuška et al., 2004). 

Glycar valve 

The modified UCT valve in this dissertation will be referred to as the 

Glycar valve.  This term replaces the terms: modified UCT valve, Frater 

valve; Goosen/UCT valve, Poppet valve. 

Non-Newtonian 

fluid 

In a Newtonian fluid, the relation between the shear stress and the 

shear rate is linear, passing through the origin, the constant of 

proportionality being the coefficient of viscosity.  In a non-Newtonian 

fluid, the relation between the shear stress and the shear rate is 

nonlinear and can even be time-dependent (time dependent viscosity).  

Therefore, a constant coefficient of viscosity cannot be defined (Tropea 

et al., 2007). 

IMPORTANT DEFINITIONS 
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Pressure drop 

In this dissertation, pressure drop will refer to the averaged pressure 

difference across a heart valve during the forward flow phase from an 

engineering perspective.  The term will be used during CFD and pulse 

duplication 

analysis(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839173/). 

Pressure 

gradient 

In this dissertation, pressure gradient will refer to the pressure 

difference generated across a heart valve during the forward flow 

phase from a clinical perspective.  The term will be used in the in vivo 

and clinical situation.  In this study pressure difference has the same 

meaning and the terms may be used 

interchangeably(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839173)

. 

Pulse duplication 

The pulse duplicator system assesses the performance of 

cardiovascular devices and prosthetic heart valves under simulated 

cardiac conditions.  It simulates physiological or other complex flow 

variations while allowing the user to vary the peripheral resistance and 

compliance of the system (Kuettinga et al., 2014). 

Reynolds 

number 

In fluid mechanics, the Reynolds number (Re) is a dimensionless 

quantity that is used to predict flow patterns in different fluid flow 

situations.  Laminar flow occurs at low Reynolds numbers, where 

viscous forces are dominant, and is characterized by smooth, constant 

fluid motion; turbulent flow occurs at high Reynolds numbers (greater 

than 1000) and is dominated by inertial forces, which tend to produce 

chaotic eddies, vortices and other flow instabilities (Chandran, 2010). 

Vena contracta 

Vena contracta is the point in a fluid stream where the diameter of the 

stream is the least, and fluid velocity is at its maximum, such as in the 

case of a stream emerging from a nozzle or orifice (Falkovich, 2011). 
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SUMMARY 
 

 

INTRODUCTION 

Heart valve surgery and valvular heart disease still pose a significant threat to patients 

worldwide.  The aortic valve doesn't remain healthy and has largely been the focus of 

innovation and the development of replacement heart valves.  Improving the ability of blood 

to flow througha prosthetic valve while minimizing the load on the heart is regarded as one 

of the performance objectives of prosthetic heart valves.  In order to meet valvular 

performance objectives and to assess whether potential prosthetic heart valves meets 

hydrodynamic performance, testing simulated under in vivo flow conditions is necessary. 

 

Pulse duplication is widely accepted as a valid method to determine the performance of heart 

valves during their development.  Few specialised centres exist to perform pulse duplication 

tests accurately and in accordance to the required ISO and FDA standards for cardiovascular 

implants.  Real-time patient data of prosthetic heart valves is however not obtained with 

pulse duplication but with echocardiography.  Modern day pulse duplicators come equipped 

with viewing chambers that can allow for echocardiographic measurements. 

 

Therefore, the aim of this study was to perform pulse duplication and echocardiography 

simultaneously on five different prosthetic heart valves using a commercial ViVitro pulse 

duplicator system. 

 

METHODS 

A hydrodynamic evaluation was performed on five prosthetic heart valves (i) Medtronic-Hall 

mechanical valve (tilting disc), (ii) Carbomedics mechanical valve (bileaflet), (iii) Glycar 

mechanical valve (Glycar), (iv) Edwards Perimount (tissue valve), (v) ViVitro reference 

(ViVitro) using pulse duplication and echocardiography.  All the valves were inserted in the 

aortic position of the pulse duplicator and echocardiographic measurements was performed 

simultaneously. Each of the valves were tested at 5 different testing conditions by varying the 
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stroke volume and beats per minute.  The study concludes with a comparison between the 

pulse duplicator data and the echocardiography data acquired. 

 

RESULTS 

Pulse duplication: -The Glycar valve had the largest pressure drop across the valve at the 

lowest CO (3.6 L/min) of 17.15 mmHg, although it increased steadily at a slower rate than the 

other four valves. The Glycar and tissue valve had the highest EOA of 1.885 cm2 and 1.884 

cm2 respectively at a peak CO of 9.6 L/min. The bi-leaflet valve had the highest EOA of 2.002 

cm2 (CO 3.6 L/min), however the EOA deteriorated as the CO increased resulting in an EOA of 

1.572 cm2 at a CO of 9.6L/min.  The tissue valve had the largest RF for all testing conditions, 

ranging from 16.3% (CO 8.0 L/min) to 25.6% (4.9 L/min) where the bi-leaflet valve had the 

lowest (0.72% - 3.42%). 

Echocardiography: -The Glycar valve had the lowest overall pressure drop for all CO. The pulse 

duplicator pressure drop results were more consistent than three echocardiography results 

measured on the pulse duplicator. The bileaflet and Glycar valves EOA showed better 

consistency across the CO range than the ViVitro, tissue and tilting disk valves. The data 

showed that no definite correlation between all the valves exists between echocardiography 

and pulse duplication for EOA.  However, a correlation for pressure drop between the pulse 

duplicator and echocardiographic data was demonstrated for both the tissue and bi-leaflet 

valve. 

 

CONCLUSION 

The pulse duplication results show that all five valves meet the ISO standard for the minimum 

EOA value of 0.85 cm2for 21mm prosthetic aortic valves.  The EOA relates the ability of fluid 

to flow through the valve by relating the volumetric flow rate to the pressure drop. The 

echocardiography pressure drop results were comparable with the pulse duplication data for 

the bi-leaflet and tissue valve only.  The results differed between 11.4% and 42.26%, which is 

in line with published literature where the reported difference is no more than 50%. 

 

To conclude, no absolute comparison could be drawn between pulse duplication and 

echocardiographic measurements performed simultaneously on the ViVitro pulse duplication 

system.   
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CHAPTER 1 INTRODUCTION 
 

 

 

1.1 BACKGROUND 

Heart valve surgery and valvular heart disease pose unique clinical challenges compared to 

that of other cardiovascular diseases. The prevalence of valvular heart disease is less and its 

clinical end points is more indolent because the outcomes associated with prosthetic heart 

valves are of interest only decades later rather than acutely after intervention (Bach, 2003). 

According to the American Heart Association, up to 1.5 million people in the United States 

suffer from aortic stenosis (AS).  Severe AS develops in 300,000 people worldwide, which has 

a one-year survival rate of approximately 50 percent, if left untreated (Spinner, 2015).  

Therefore, the onset of heart valve disease opened a new commercial market in the field of 

cardiovascular medicine. 

 

The first prosthetic heart valve was developed in 1952 (Wieting, 1989) and since then several 

prosthetic heart valves (e.g. Ball valves, mechanical valves, non-tilting disc valves, tilting disc 

valves, bi-leaflet valves and tissue valves) were introduced and existing valves were modified, 

all of them aiming to produce the perfect prosthetic heart valve.  The perfect prosthetic heart 

valve is defined in literature as a valve with a pressure gradient as low as possible, excellent 

hemodynamic behaviour, long term durability, low thromboembolic incidence, 

biocompatibility, ease of implantation, whilst stagnation, recirculation zones and shear 

stresses in the clearance region should be minimized in order to prevent the initiation of 

coagulation (Dumont et al., 2005; Verdonck et al., 1997). 

 

Decades ago, when heart valves were first implanted, valvular regulatory requirements were 

minimal or non-existing.  Today extensive in vitro hydrodynamic testing followed by an in vivo 

evaluation of valvular performance in animal models are compulsory to ensure short- and 

long-term success prior to human implantation. In vitro hydrodynamic testing is an evaluation 

of valvular performance conducted under dynamic conditions in a controlled environment 

(Wheatley et al., 2000, Fisher et al., 1986).  The ISO 5840:2015 guidelines states that the in 

CHAPTER 1  
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vitro evaluation of an aortic valve only requires simulation of the systemic circulation, 

including the left atrium (LA), left ventricle (LV) and large arteries.  A system capable of 

meeting these requirements and reproducing physiological flow characteristics, is the pulse 

duplication system (Fischer et al., 1986). 

 

However, pulse duplication testing is not for the faint hearted.  Besides the fact that it is very 

expensive and that only a few testing centres exists worldwide the technical difficulty in 

performing these tests are extremely challenging.  For this reason, more and more emphasis 

is placed on exploring alternative methods to replace pulse duplication without compromising 

the results required for valvular approval (ISO 5840:2015).  One such an alternative method 

that can be explored is echocardiography. 

 

An echocardiogram is an ultrasonic graphic outline of the heart’s movement.  The test 

provides images of the heart valves and chambers using high frequency sound waves.  

Echocardiography is used to evaluate the pumping action of the heart and is often combined 

with Doppler ultrasound and colour Doppler to evaluate blood flow across the heart valves 

(Saunders, 2009).  The analysis of valve geometry is based on mathematical models 

constructed on the human aortic valve.  Furthermore, echocardiographic machines are not as 

expensive as pulse duplication systems, are readily available and can measure similar valve 

geometry as the pulse duplicator system. 

 

As with many engineering creations, the valvular design process is never complete. When 

prosthetic devices are implanted in humans, improvements are constantly made. Research 

and development efforts seek to recreate and simulate the human environment on the bench 

and in animals, but there are always lessons to be learned and improvements to be made 

(Spinner, 2015). Therefore, the aim of this study was to compare the valvular flow dynamics 

obtained via pulse duplication with the valvular flow dynamics simultaneously obtained using 

echocardiography of five (5) aortic prosthetic heart valves in a pulse duplication system. 
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1.2 AIM  

The aim of this study was: 

• To assess and compare the in vitro hydrodynamic flow characteristics of five (5) 

prosthetic aortic heart valves evaluated in a pulse duplication system using pulse 

duplication and echocardiography. 

1.3 OBJECTIVES 

The objectives of this study were: 

• To evaluate and compare the valvular flow dynamics [mean flow rate (ml/min), mean 

pressure difference (mmHg), pump rate (ml/min), cardiac output (ml/min), stroke 

volume (ml/min), forward flow duration and effective orifice area (EOA), RMS] of five 

(5) aortic prosthetic heart valves using pulse duplication. 

• To evaluate and compare the valvular flow dynamics [mean flow rate (ml/min), mean 

pressure difference (mmHg), pump rate (ml/min), cardiac output (ml/min), stroke 

volume (ml/min), forward flow duration and effective orifice area (EOA), RMS] of five 

(5) aortic prosthetic heart valves using echocardiography while performing pulse 

duplication. 

• A comparison between pulse duplication and echocardiographic valvular flow 

dynamic measurements of five (5) aortic prosthetic heart valves assessed during pulse 

duplication. 
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CHAPTER 2 LITERATURE REVIEW 
 

 

 

2.1 INTRODUCTION 

The heart functions as the central pumping unit of the circulatory system relying on arteries 

and veins to supply blood to the body.  The heart pumps approximately 5 litres of blood per 

minute and the cardiac valves open and close around 40 million times in a year (Bazan and 

Ortiz, 2011). 

 

Inadequate operation of heart valves can lead to the development of some circulatory system 

diseases by seriously interfering with the blood pumping capacity.  Valvular heart disease is a 

global health problem and results in approximately 275, 000 valve replacement procedures 

performed annually worldwide (Sierad et al., 2010).  As the world's population is aging, the 

incidence of prosthetic heart valve implantation and the need for prosthetic heart valves 

continue to increase.  Since the first successful implantation of a prosthetic heart valve (1952), 

more than fifty different mechanical and biological valve models were designed.  In the past, 

mostly mechanical heart valves (MHVs) was implanted due to their reliable long-term 

durability but currently bio-prosthetic tissue heart valves (THVs) are implanted just as 

frequently as mechanical heart valves due to their fluid dynamic behaviour and freedom from 

anticoagulant therapy (Kuan et al., 2011).  Yet, none of the MHVs nor the THVs is free from 

complications and neither the MHVs nor the THVs meet the demands of an ideal heart valve 

prosthesis as outlined by Harkin and Curtis (1967). 

 

In order to manufacture the perfect valve, these valves need to be assessed for valvular flow 

behaviour and hydrodynamic characteristics (Dasi et al., 2009; Yoganathan et al., 2004; Fung 

et al., 1997).  In order to make an accurate appraisal of how effective prosthetic valves will be 

in corrective surgery, the motion of the prosthetic valves must be tested under circumstances 

comparable to those observed in the living heart.  Testing under real-life conditions allows for 

the identification of shortcomings in the prosthetic valves and promotes intelligently directed 

corrective steps (Davila et al., 1955).  However, the assessment of the function of heart valve 
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prosthesis remains challenging, as prosthesis malfunction is unpredictable but not 

uncommon (Blauwet and Fletcher, 2014). 

 

2.2 PROSTHETIC HEART VALVES 

Heart valve disease is often the result of degenerative valve calcification, endocarditis, 

rheumatic fever or congenital birth defects (Rajamannan et al., 2011; Marijon et al., 2012; 

Karaci et al., 2012; Knirsch and Nadal, 2011).  If valve damage occurs resulting in valvular 

stenosis and/or regurgitation valve prolapse and surgical repair is not an option, the native 

valve is usually replaced with a suitable prosthetic valve. 

 

However, prosthetic heart valves are not without complications and these complications can 

be divided into six main categories (Grunkemeier and Anderson, 1998): 

 

• Structural valvular deterioration 

• Non-structural dysfunction 

• Valve thrombosis 

• Embolism 

• Bleeding 

• Endocarditis 

 

To date the ideal heart valve substitute does not exist and each of the available prosthetic 

valves has inherent limitations.  To qualify as a successful heart valve substitute, the valve 

must have the following performance characteristics (ANSI/AAMI/ISO:2005): 

 

• Allows forward flow with acceptable small mean pressure drop 

• Prevents retrograde flow with acceptably small regurgitation 

• Resists embolization 

• Resist haemolysis 

• Resist thrombus formation 

• Is biocompatible 

• Is compatible with in vivo diagnostic technique 
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• Is deliverable and implantable in the target population 

• Remains fixed once placed 

• Has an acceptable noise level 

• Has reproducible function 

• Maintains its functionality for a reasonable lifetime, consistent with its generic class 

• Maintains its functionality and sterility for a reasonable shelf life prior to implantation 

 

Therefore, to summarize the ideal prosthetic heart valve should be a valve that mimics the 

haemodynamic properties and performance of a natural heart valve, its durability should 

exceed the life expectancy of the patient, and there should be no need for anticoagulation or 

antiplatelet therapy. 

 

Currently there are many prosthetic heart valves available which include mechanical valves 

(cage-ball valves, monoleaflet and bi-leaflet tilting disk valves), homografts, bio-prosthetic 

valves (porcine and bovine stented and stentless pericardial valves, and percutaneous 

bioprosthesis) (Dasi et al., 2009; Pirabot and Dumesnil, 2009) and even polymeric heart valves 

(De Gaetano et al., 2015) (Figure 2.1).  Tissue-engineered valves are also being investigated 

as an emerging technology (Mol et al., 2009; Ramaswamy et al., 2010). 

 

Based on their durability, mechanical valves are more often recommended for younger 

patients, although the patient will remain on anticoagulant therapy to prevent thrombotic 

complications (Korossis et al., 2000).  Anticoagulant therapy can be avoided by selecting 

homograft and biological prosthetic valves, however, these valves are at risk for fibrosis, 

calcification, degeneration and immunogenic complications contributing to valve failure 

(Ghanbari et al., 2009). 
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Figure 2.1: Different types of prosthetic heart valves 
A. Bi-leaflet mechanical valve (St Jude); B. monoleaflet mechanical valve (Medtronic Hall); C. caged 
ball valve (Starr-Edwards); D. stented porcine bioprosthesis (Medtronic Mosaic); E. stented 
pericardial bioprosthesis (Carpentier-Edwards Magna); F. stentless porcine bioprosthesis 
(Medtronic Freestyle); G. percutaneous bioprosthesis expanded over a balloon (Edwards Sapien); 
H. self-expandable percutaneous bioprosthesis (CoreValve) (adapted from Pibarot et al., 2009). 

 

2.2.1 History of prosthetic heart valve development 

 

The timeline of significant milestones in the history of prosthetic heart valve development is 

summarized inFigure 2.2. 
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Figure 2.2: Timeline towards the ideal prosthetic heart valve (adapted from Dasi et al., 2009) 

 

Since 2002 some of the major contributions in the field of heart valve development was the 

trans-catheter aortic valve implantation (TAVI).  According to Dr J Beckerman, TAVI will be 

indeed a game-changer.  It is maybe not (the cardiology equivalent to) landing a man on the 

moon—for, that will be the day we figure out how to prevent aortic stenosis, but for the time 

being, TAVI will help more patients with critical aortic stenosis to live longer and fuller lives 

(Buntz, 2012). 

 

The first-in-man TAVI implantation was performed in 2002, and took flight in 2004 in the 

hands of Edwards Lifesciences, with major improvements in devices and approaches (Cribier, 

2012).  This percutaneous trans-femoral aortic valve implantation is currently available too 

much broader patient population and more patients especially the elderly is eligible to receive 

this procedure (Buntz, 2012; Lichtenstein, 2006). 
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At the same time, the self-expanding CoreValve was launched.  TAVI has an important role in 

non-operable and high-surgical-risk patients.  More than 50,000 patients have benefited from 

TAVI procedures worldwide and the numbers is still increasing (Cribier, 2012). 

 

For the purpose of this study the hydrodynamic performance of five prosthetic heart valves 

(Medtronic-Hall tilting disc valve, Carbomedics bi-leaflet valve, Glycar valve, Perimount tissue 

valve and the ViVitro reference valve) were assessed and compared using pulse duplication 

and echocardiography. 

 

2.2.2 Medtronic-Hall tilting disc valve (mechanical valve) 

 

The Hall-Kaster valve was first implanted in 1977 and was developed by Dr Karl Victor Hall in 

collaboration with Robert Kaster (Gott et al., 2003).  The valve was widely used worldwide 

and in 1987, after minimal engineering modifications, the manufacturing and distribution of 

the valve was taken over by Medtronic, hence the name change to Medtronic-Hall tilting disk 

valve (Butchart et al., 2001).  This valve is the second most frequently implanted mechanical 

valve only being beaten by the St Jude bi-leaflet valve (Antunes et al., 1988). 

 

This valve has a unique tilting pyrolytic disc with a small central perforation accommodating 

a thin metal strut that guides the disc during opening and closing (Gott et al., 2003).  Unique 

design features were incorporated to limit the valve’s susceptibility to thrombosis.  When 

compared to previous tilting disc designs, the relative size of the minor orifice was increased 

and the disc was made to lift out of the housing and rotate on opening, all features designed 

to improve washing of vulnerable points and to eliminate areas of low velocity flow (Butchart 

et al., 2001) (Figure 2.3). 
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Figure 2.3: The Medtronic Hall tilting disc heart valve (adapted from 
http://www.cthsurgery.com/uploads/2/6/5/4/26542699/4782632_orig.png) 

 

2.2.2.1 Haemodynamic flow characteristics of the tilting disk valve 

The Medtronic-Hall valve disk has a maximum opening angle of 75 degrees for the aortic valve 

and 70 degrees for the mitral valve (Antunes, 2015).  Resistance to flow is generated by 

forward flow if the disk does open to 90 degrees, causing small eddies of stagnant flow 

proximal and around the valve disk leading to thrombus development (Lillehei et al., 1989).  

The small hole in the occluder can result in a characteristic central regurgitant jet. 

 

Blood flow through the valve will be established when the valve is open and the pyrolytic disk 

tilts to form a major and minor orifice (Figure 2.4).  From the major orifice, a large flow jet 

emanates whereas a smaller jet of lesser velocity and magnitude emanates from the minor 

orifices.  Recirculation in the wake of the disk is the result of the two jets presenting with 

different velocity magnitudes and a recirculation flow pattern can be seen in the sinus region.  

According to Chandran et al. (2007; 1983) high turbulent shear stresses are confined to 

narrow regions at the edges of the major orifice jet.  At peak systole, the maximum turbulent 
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shear stresses measured are in the order of 1500 dyne/cm2.  The major orifice region has less 

turbulent shear stresses and are less dispersed than in the minor orifice region. 

 

 

 

Figure 2.4: Flow fields downstream of the tilting disc valve during forward flow phase (left) and the 
leakage flow phase (right)(adapted from Dasi et al., 2009) 

 

When the valve closes, the tilting disc moves back and seats on the valve housing occluding 

the valve orifice which can create a small gap at the periphery of the disc creating a small 

amount of flow regurgitation.  The Medtronic-Hall tilting disk valve design includes a retaining 

mechanism for the disc.  This mechanism is created by the presence of a hole in the centre of 

the tilting disk, allowing for blood flow through the hole during the closed phase.  The leakage 

through the hole may cause levels of shear stress, potentially increasing platelet activation 

(Zoghbi et al., 2009). 

 

2.2.3 Carbomedics bi-leaflet valve (mechanical valve) 

 

The United States Food and Drug administration (FDA) approved the Carbomedics bi-leaflet 

valve (Sorin group, Austin, Texas, United States of America) in 1993 (Figure 2.5).  The valve is 

a bi-leaflet pyrolytic carbon heart valve and differs from the St. Jude Medical prosthesis in 

having an inner ring composed of pyrolytic carbon rather than pyrolite-covered graphite 

(Chandran, 2010).  This allows for a more sophisticated geometry for the pivotal recesses 

(Bernal et al., 1998; Chambers et al., 1993).  The closure to the leaflets is controlled by the 

recesses and allow for regurgitant “washing jets” that reduces the risk of thromboembolism. 
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Furthermore, the leaflets are flat with relatively limited excursion, opening at 12° vertically 

and closing at 25° horizontally.  The valve was designed to reduce regurgitation around the 

occlude and to aid closure when implanted at an angle.  Leaflet escape is prevented by a 

titanium stiffening ring and helps to control pivot geometry.  Leaflet orientation can be 

optimized by rotating the inner ring within the sewing ring at the time of implantation 

(Chambers et al., 1993). 

 

 

Figure 2.5: The Carbomedics bi-leaflet valve (adapted from http://www.livanova.sorin.com/file/view-
1370.action) 

 

Mechanical valves will always be obstructive in nature, due to the dynamic fluid interaction 

with the valve mechanisms.  Although the design moralities may be the same, small 

modifications in the basic design of bi-leaflets may have a large impact on overall function. 

 

2.2.3.1 Haemodynamic flow characteristics of the bi-leaflet mechanical valve 

The leaflets are open at an angle of 75° to 90° relative to the annulus plane and divides the 

area available for flow into three regions; a small slit-like central orifice between the 2 open 

leaflets and 2 larger semi-circular orifices laterally (Pibarot et al., 2009). 
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Figure 2.6: Open bi-leaflet dividing into two lateral and one central orifice region (adapted from Yun et 

al., 2014) 

 

Chandran et al. (2007) reported that measurements along the centre plane of the of the valve 

8 mm distal to the valve annulus provides an indication that the velocity in the lateral orifices 

(2.2 m/s) is higher than in the central orifice (2 m/s).  Furthermore, two recirculation regions 

are seen in the sinus region of the aortic root during both systole and diastole (Barannyk et 

al., 2013).  Flow disturbances is more evident downstream of the valve and alternating 

rotating vortices form in the wake of the leaflets at peak forward flow.  However, these 

vortices disappear during the deceleration phase and is replaced by a highly chaotic flow field 

(Dasi et al., 2007). 

 

 

Figure 2.7: Flow fields downstream of the bi-leaflet valve during forward flow phase (left) and the 
leakage flow phase (right) (adapted from Dasi et al., 2009) 
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At peak systole, the peak turbulent shear stresses measured along the centreline plane is 

about 1500 dyn/cm2 downstream of the valve (Rao et al., 2016). 

 

The leaflets rotate and close the valve orifice during the leakage flow phase.  The design of 

the bi-leaflet mechanical valve includes a degree of leakage flow through the b-datum gap 

(the line where the two leaflets meet one another) and the periphery gaps, but mainly 

appears in the gap present at the hinge region (Dasi et al., 2009).  Once the valve is in the 

closed position, the high-pressure difference across the valve causes high velocity jets 

emerging from the hinge.  These narrow jets were originally designed to ‘wash’ the hinges of 

the valve, preventing areas of flow stasis and inhibiting micro-thrombus formation.  However, 

the magnitude of this retrograde flow has been shown to be detrimental to blood cells and 

the shear stress generated in the three areas of leakage flow can cause the development of 

thrombosis (Leo et al., 2006; Zilla et al., 2008). 

 

2.2.4 Carpentier-Edwards bioprosthesis (tissue valve) 

 

The Carpentier-Edwards (Perimount) pericardial valve (Edwards Lifesciences LLC, Irvine, CA, 

USA) was introduced to clinical use in 1981 and was approved for commercial use in the 

United States in 1991.  The valve is characterized by superior hemodynamic performance with 

improved durability compared to previous pericardial valves (Gao et al., 2004). 

 

Figure 2.8: Carpentier-Edwards tissue valve (adapted from 
http://edwardsprod.blob.core.windows.net/media/Default/_Profiles/8ae8ae66/dd56a63e/ease
ofimplant-3.png?v=636268439490000000) 
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The valve is constructed from glutaraldehyde-tanned bovine pericardium and XenoLogiX 

(treatment)is used to reduce the phospholipid content and prevent calcification in these 

valves (Picket al., 1997).  The valve is equipped with unique design features conceived to 

minimize cusp stress and to reduce abrasion wear.  The stented orifice ring is composed of 

Elgiloy and embrace the commissural pericardial cusps and provides flexibility and elasticity 

(memory) to the valve.  The valvular leaflets are constructed out of bovine pericardium and 

mounted on the inside of the orifice ring.  The sewing ring is a molded silicone rubber that is 

covered with a polytetrafluoroethylene (PTFE) cloth (Butany et al., 2003).  This design 

configuration offers superior performance when compared to bioprosthesis with adjacent 

pericardial cusps encircling a ventral strut.  The valve also demonstrates superior distortion 

tolerance and is less prone to incompetence (Frater et al., 1992).  When performing stress 

analysis on these valves it showed that the maximal tension is diverted from the line of the 

cups apposition to the free edge approximating the post apices (Pick et al., 1997). 

 

2.2.4.1 Haemodynamic flow characteristics of the pericardial tissue valve 

The first bio-engineered pericardial tissue valve (Edwards valve) designed to withstand high 

pressures in the mitral position has a collagen structure of pericardial tissue making the valve 

more resilient than porcine tissue valves.  Their geometric similarity to natural valves offers a 

large orifice in the ejection phase and facilitates a less disturbed aortic blood flow pattern (Yin 

et al., 2006).  The design of tissue valves results in transvalvular flow turbulence and improper 

stress distribution on the valvular leaflets.  These two factors influence the long-term 

limitation as well as the durability of the tissue valve. 

 

Consistent pericardial tissue thickness is crucial for co-aptation and leaflet thickness is 

measured and matched within 0.0254 mm to avoid leaflet stress and issues with long-term 

performance (Cox et al., 2005). 

 

2.2.5 The University of Cape Town (UCT) valve 

 

The Starr-Edwards Model 6000 mitral valve was introduced in 1960 and was the first artificial 

valve prosthesis that enjoyed widespread clinical use (Figure 2.9).  The valve design included 
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four Stellite struts joined at the apex, the outflow and inflow faces were metallic, has a 

radiolucent poppet and the sewing ring were covered by cloth (Macmanus et al., 1977; 

Matthews, 1998).  The major disadvantage of this mechanical heart valve was thrombo-

embolic complications (Cleland and Molly, 1973). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Starr-Edwards Model 6000 mitral prosthesis (adapted from: 
http://americanhistory.si.edu/collections/search/object/nmah_1726277) 

 

In 1963, Mr Carl Goosen, (Chief Cardiopulmonary Bypass Technician) and Prof Christiaan 

Barnard (Cardiothoracic Surgeon) at the University of Cape Town designed a mechanical heart 

valve based on the first-generation Starr-Edwards prosthetic valve (Model 6100) but made 

several modifications.  They modified the valve design to reduce shear stress across the valve 

to improve the flow characteristics and created the UCT valve.  This resulted in less contact 

activation of the coagulation system and platelet activation adherence to the valve (Dangas 

et al., 2016). 

 

The valve consists of two components; the one part is secured in the aortic root and the other 

is freely mobile.  The fixed portion is manufactured from a single piece of stainless steel.  The 

ring forms the seat for the mobile unit to which a rim of plastic material is attached to allow 

the valve to be sutured in the sub coronary position.  The steel ring has two polished stainless-
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steel arms, one above projecting into the aorta and one below in the left ventricular outflow 

area.  At the end of both arms is a small ring which limit and guide the movement of the 

mobile portion of the valve.  The mobile portion of the valve is hemispherical on the 

ventricular aspect and on the aortic aspect it is cone-shaped.  In the Type I valve the seat was 

covered with closely-woven Teflon cloth (Figure 2.10a) and in the Type 2 valve the mobile 

portion of the valve closed on a bare stainless-steel seat (Figure 2.10b).  In the Type 3 valve 

the stainless-steel seat was covered with Dacron-velour cloth (Figure 2.10c) (Schrire et al., 

1970; Frater, 1969; Barnard et al., 1963). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: The University of Cape Town Valve.  (a) Type 1 valve showing the Teflon-covered ring (b) Type 2 
with bare steel ring (c) Type 3 with Dacron-velour cloth-covered seat (adapted from Schrire et al., 
1970) 

 

Prof RWM Frater, (Einstein institute, New York, USA) implanted forty-five aortic UCT valves 

into patients and followed them for eighty-two patient years.  None of the patients received 

any anti-coagulation therapy, and his rationale being that the flow across the valve would not 

activate coagulation (Pratt, 1952).  One early death was reported due to coronary thrombosis; 

the thrombus was thought to have originated from the suture ring of the valve.  One late 

death was reported at 4 years post-operatively due to re-operation complications to repair 

a b 

c 
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valvular dehiscence.  The valve salvage from this patient showed no signs of pitting, wear or 

fat infiltration into the poppet.  The valve showed no signs of thrombosis and the cloth 

covering was adequately covered with Neointima.  Although the valve showed yellow 

discoloration, no wear was found on the occlude and the thin metal struts were thrombus 

free (Frater, 1969). 

 

With the introduction of the second-generation tilting disk valves with their superior flow and 

fluid dynamics the production and commercialization of the UCT valve was halted.  However, 

in 2007 a case study was published by Pipilis et al. (2007) of an explanted aortic UCT valve 

from a patient in Athens, Greece.  The patient (sixty years) received a UCT valve thirty-seven 

years ago, in Cape Town.  She was admitted due to a high gradient across the UCT valve and 

presented with concomitant mitral valve stenosis.  A valve replacement was performed and 

again the valve was reported to be in excellent condition with no signs of any thrombosis.  

The high gradient was attributed to patient prosthesis mismatch. 

 

This sparked renewed interest in the UCT valve. Design alterations were performed 

incorporating modern day CFD, valve design and manufacturing technology, resulting in the 

development of the Glycar valve. 

 

The following design modifications were incorporated in the new Glycar prosthetic heart 

valve: 

i. The leading and trailing edges are rounded incorporating aerofoil concepts. 

ii. The distal conal tapering of the Glycar valve is improved for better laminar flow. 

iii. The sharp edges at the border of the Glycar valve are removed and is rounded to 

decrease flow acceleration across the edges, less shear stress (shear stress must be 

less than 10 pascals to avoid platelet activation). 

iv. The guiding struts/arms are tapered into a teardrop shape refining fluid dynamic 

interaction. 

v. The housing is rounded on the inner surface and extended to simulate aerofoil 

principals. 

vi. The housing is machined from a solid stainless-steel block, eliminating welding of the 

struts to the housing, eliminating metal fatigue. 
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vii. In the closed position, the Glycar valve-seats flush to the housing.  Retrograde blood-

flow, follows a laminar flow pattern across the conical shape into the sinuses. 

 

Figure 2.11: Schematic presentation of the re-engineered UCT valve as used in the CFD evaluation 

 

2.2.5.1 Haemodynamic flow characteristics of the Glycar valve 

The haemodynamic flow characteristics of the Glycar valve have not been published before, 

but some aspects have been studied in a recent PhD completed at the UFS (Jordaan JC, 2017). 

 

2.3 HYDRODYNAMIC TESTING OF HEART VALVES 

 

The control of blood flow through a prosthetic valve while minimizing the load on the heart 

is regarded as one of the performance objectives of these valves.  To meet this objective and 

to assess the potential of a prosthetic heart valve prior to clinical studies, the hydrodynamic 

performance of these valves is simulated under in vivo flow conditions (Baldwin et al., 1997). 
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Hydrodynamic tests provide information on the real-time performance of prosthetic heart 

valves (i.e., mechanical, biological, and synthetic heart valves) under steady and pulsatile flow 

conditions in a controlled environment (Bazan et al., 2016; Wheatley et al., 2000; Fisher et 

al., 1986).The valve measurements are done under standard conditions, which do not 

accurately reflect the in vivo hemodynamic performance of the valves but do provide a 

relatively good reflection of the in vivo environment (Johnston et al., 1992). 

 

Clinical results of flow measurements and valve reaction under pulsatile flow conditions are 

difficult to compare with one another due to inherent differences, like the use of 

anticoagulant therapy and indications for valve implantation (Haaf et al., 2009).  For this 

reason, highly reproducible experiments under in vitro conditions are pertinent to the 

scrutinization of established valves and the development of new prosthetic heart valves. 

 

The ISO 5840:2015 guidelines clearly states that the in vitro evaluation of a prosthetic heart 

valve should include flow characteristics (pulse duplication) and durability testing (fatigue 

testing).  Valvular flow characteristics are assessed using a pulse duplicator system with 

pulsatile flow to produce pressure and flow waveforms that approximate physiological 

conditions over the required physiological range.  Durability testing aim to evaluate valvular 

performance over the valve’s anticipated lifetime using a fatigue tester.  The mechanical 

valves should be exposed to 600 million cycles (equivalent to 15 years in vivo) and the bio-

prosthetic heart valves to at least 200 million cycles (equivalent to 5 years) (ISO 5840:2015; 

Lu et al., 2003). 

 

2.4 PULSE DUPLICATION 

2.4.1 The history of pulse duplication 

 

This section will only highlight some of the pioneering work and major contributions made 

towards the development of pulse duplication systems.  Although the earliest method for the 

in vitro testing of heart valves was described in 1513 by Leonard da Vinci, the first pioneering 
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designs of pulse duplication systems were reported by Davilla in 1956 and Kolff and colleques 

in 1959 (Wieting, 1989). 

 

In the 1960’s in vitro testing became much more quantitative than that of the previous 

decade.  Quantitative pulse duplication studies were first used with the development of the 

Smeloff-Cutter valve in 1965 (Zilla et al., 2008).  In 1966 Wieting introduced his pulse 

duplication system followed by revisions in 1969 which included the use of anatomically 

designed testing chambers and the incorporation of a pneumatic power unit (Vitamek) and a 

mock-circulating system designed by O’Bannon.  The Wieting system was used to test various 

heart valves by making normal and high-speed flow pattern movies and to measure velocity 

profiles from flow pattern photographs, shear stress, pressure drop, and backflow for the 

various heart valves (Wieting, 1989).  In 1969 a substantial contribution was made by 

Bellhouse with the description of the fluid mechanics of the natural aortic and mitral valves.  

This was studied in an aortic chamber with sinuses, and a left ventricular-shaped testing 

chamber with an expanding “rubber bag” (Bellhouse, 1972). 

 

Various pulse duplications systems were described by Wright in 1970, analysing the flow 

characteristics of heart valves in a piston-driven ventricular shaped chamber and aortic arch 

model.  In 1971 Orin presented the concept of energy loss across prosthetic heart valves.  

Hwang and Reul’s developed a pulse duplicator in the late 1970s that incorporates a flexible 

left ventricle bag compressed by a computer-controlled servo-hydraulic system (Wieting, 

1989).  Yoganathan, Harrison and Corcoran collaborative efforts made a major contribution 

towards in-vitro testing in 1979 (Yoganathan et al., 1979; Cape et al., 1996).  Yoganathan 

continued actively studying heart valves using the latest technology provided by laser-

doppler, echo-doppler and colour-doppler echocardiography to analyse the in vitro 

hemodynamic data. 

 

The original hydro-mechanical pulse duplicator evolved in the 1980s to the “Superpump” 

which is manageable and programmable through a computerized system to provide a very 

sophisticated heart valve analysis system.  In the 1980s the team of Martin, Tindale and Black 

began reporting on investigations of heart valves (Tindale et al., 1982).  Chandran contribute 

to the investigation by reporting on the effect of valve orientation, effect of blood analogue 
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fluids on tissue valves and the effect of wedging of aortic valves (Chandran et al., 1989; 

Chandran et al., 1986). 

 

Since then every aspect/component used in modern day pulse duplication systems became 

more sophisticated.  Today, pulse duplicators are equipped with thin acrylic windows 

permitting echocardiographic imaging, doppler flow measurements, and particle imaging 

velocity (PIV) for interrogation of flow field regions that allows for more advanced 

hydrodynamic testing (Bazan et al., 2011).  Although most pulse duplicators in the past were 

“self-build” systems, today pulse duplicator systems are commercially available of which the 

systems offered by ViVitro Labs Inc. (ViVitro Superpump M series) and BDC Labs Inc. (HDT-

500 pulse duplicator) is probably the most popular. 

 

In conclusion, in vitro testing must continue to apply all the latest technological advances to 

expand our understanding of the functioning of prosthetic heart valves before implantation 

in humans commence, to aid us on our quest to find the “ideal prosthetic heart valve” 

(Wieting, 1989). 

 

2.4.2 The purpose and function of the pulse duplicator system 

 

The main purpose of pulse duplication is to realistically assess the performance of a heart 

valve prosthesis under simulated cardiac conditions in a controlled environment. 

 

The pulse duplicator system functions as a hydraulic model resembling the left heart of a 

human, connected to a windkessel model of the human systemic circulation (Verdonck, 1992; 

Fisher et al., 1986; Westerhof et al., 1971).  In general, most of the pulse duplicator systems 

work on the principle that the fluid enters the model from a controllable preload reservoir 

that represent the lungs via two rigid pulmonary veins.  The fluid runs through the mitral valve 

and reaches the left ventricle.  The left ventricle ejects through the aortic valve into the 

afterload system consisting of an air chamber or windkessel and a hydraulic resistor. The 

hydraulic function of the arterioles and capillaries are mimicked by the resistor.  A constant 

venous pressure of 5 mmHg is maintained by a venous reservoir.  Both the preload lung and 
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the venous reservoir is equipped with an overflow system, ending in a central buffer reservoir 

out of which the test fluid is continuously pumped into the lung reservoir. 

 

The left ventricle is mounted in a Perspex housing and is represented as an anatomically 

shaped silicon sac.  The silicon sac is surrounded by water and connected to an external 

circuit, consisting of Perspex cylindrical reservoirs.  The contraction and relaxation of the 

cardiac chamber is controlled by pressurized air that is delivered to the external circuit. 

 

As the pulse duplicator system is computer controlled, a targeted left ventricular pressure 

curve is sent to the computer system and a feedback system controls the amount of 

pressurized air delivered to the system such that the target curve is followed as closely as 

possible (Verdonck et al., 1997; Verdonck, 1992).  The system allows the variation of 

physiological parameters such as heart rate, stroke volume and pressure levels. 

 

The test fluid used in the system is also adapted so that it simulates the viscosity of blood.  As 

a test fluid, a mixture of 40% glycerine – 60% water is commonly used to simulate the dynamic 

viscosity of 3.0 mPa.s of blood (Bazan and Ortiz, 2016). 

 

Through the years, the complex function of the left heart and arterial system have been 

simulated by adapting pulse duplicator systems in several ways thus producing varying 

valvular test conditions.  Some of the benchtop pulse duplicator systems include the 

“Yoganathan-FDA system”, “Aachen pulse duplicator”, “Sheffield pulse duplicator” and the 

“ViVitro pulse duplicator”. Flow, pressure and even Doppler measurements made with these 

systems make it possible to estimate the hydrodynamic performance of artificial heart valves 

in a controllable in vitro environment (Dasi et al., 2007; De Paulis et al., 2005; Grigioni et al., 

2004; Milo et al., 2003). 
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2.4.3 The mechanical components of the pulse duplicator system 

 

The methods used to evaluate the function of prosthetic heart valves under pulsatile flow 

conditions have become increasingly sophisticated since the work described by Wieting 

(1989) and Write and Temple (1971). 

 

The pulse duplicator system simulates the systemic circulation, including the left atrium, left 

ventricle and the large arteries.   The ISO 5840:2015 guidelines states that the in vitro 

evaluation of prosthetic heart valves is essentially limited to the aortic position (ISO 

5840:2015; Verdonck et al., 1997).  The ISO standard also states that a pulse duplicator should 

come equipped with a valve chamber with relevant dimensions to replicate the 

haemodynamic characteristics across the valve.  The systemic circulation is represented by a 

reservoir (left atrium), a pump (left ventricle), compliance elements (aorta) and a resistance 

element (peripheral resistance) (Fisher et al., 1986).  The system must be capable of 

producing pressure and flow waveforms that simulate a range of physiological parameters, 

from a resting state to exercise. 

 

The majority of test rigs can be divided into four sections (Rajeev et al., 2012): 

i) The pump used to generate pulsatile flows to simulate the function of the heart. 

ii) Two unidirectional valves along with its mounting fixtures (usually one of them is the 

test valve). 

iii) A set of hydraulic components representing the circulatory system, referred to as the 

afterload. 

iv) An instrumentation system for data acquisition and analysis. 

 

Emphasis will be placed on the ViVitro pulse duplication system because it was the system 

used to assess the hydrodynamic performance of prosthetic valves in this study.  The ViVitro 

pulse duplicator system is used by the US Food and Drug Administration and is recognised by 

regulatory bodies worldwide including Technical Inspection Association (TÜV), British standard 

Institution (BSI) and the Chinese State Food and Drug Administration (SFDA)(adapted from 

http://vivitrolabs.com/product/pulse-duplicator/). 
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2.4.3.1 ViVitro pulse duplicator system 

The ViVitro left heart model emulates the pressures and flows of the left heart.  The pulse 

duplicator system simulates physiological or other complex flow variations while allowing the 

user to vary the peripheral resistance and the compliance of the system.  Pressure 

measurements can be collected from the aortic, ventricle and atrial sites via pressure ports 

and the volumetric flow rate is measured before the aortic valve.  Transparent viewpoints 

allow for multiple viewing angles of the valve including inflow and outflow, perpendicular and 

parallel to the flow direction(http://vivitrolabs.com/product/pulse-duplicator/) 

(Figure 2.12). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: The ViVitro system with a schematic representation of the heart (adapted from ViVitrolabs.com) 

 

2.4.3.2 The ViVitro Labs AR series SuperPump 

The AR series Superpump consists of a digital amplifier with stroke volume display and 

preprogramed waveforms driving a piston-in cylinder pump (Baldwin et al., 1997) 

(Figure 2.13). 
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Figure 2.13: The ViVitro Labs AR series SuperPump (adapted from ViVitro.com) 

 

The pump piston is located in a ball screw/servo motor/encoder unit driven by a motor 

controller which functions by comparing the actual position against the desired position 

defined by the input waveform.  Accurate positioning of the piston resulting in the desired 

pulsatile flow is achieved by the precision of the ball screw.  The encoder ViVigen software is 

included with the SuperPump series and allows for the generation of custom waveforms 

which can be uploaded to the controller via the built-in USB port.  Furthermore, the 

SuperPump series include analogue outputs for position, dL/Dt (flow) and the sync pulse 

which makes the SuperPump adaptable to any custom-made pulse duplication system 

(adapted from http://vivitrolabs.com/product/pulse-duplicator/). 

 

The ViVitro Labs AR series SuperPump include the following features: 

i. Digital precision control of a pump-in-cylinder designed linear actuator used to generate 

physiological flows. 

ii. Stand-alone capability with five pre-programmed cardiac waveforms created by the 

user. 

iii. Range of capable rates are 4 to 200 beats per minute. 

iv. Range of stroke volume 0 to 150 ml. 

v. Digital controlled and created waveforms by ViVigen or ViViTest software. 

vi. Control, create, input or store cardiac waveforms at various physiological states and 

frequencies and other standard waveform generating equipment. 
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The ViVitro Labs AR SuperPump series was manufactured by an ISO 13485 accredited facility 

designed to meet both regulatory requirements (ISO 5840 and FDA) or research needs. 

 

2.4.3.3 The valvular chambers of the ViVitro pulse duplicator 

The ViVitro pulse duplicator has three valvular chambers; (1) ventricle chamber, (2) atrium 

chamber and (3) the aortic chamber (Figure 2.3).  To perform a hydrodynamic assessment on 

a prosthetic valve, the valve is mounted in the appropriate aortic or mitral position of the 

model left ventricle and a companion valve is placed in the remaining position (Baldwin et al., 

1997). 

 

The sewing ring around the valve is inserted into a silicon rubber fitting which follows the 

form of the test chamber.  The silicon rubber ensures a completely sealed fitting to reduce 

leakage between the ventricle and aortic chambers.  The chamber of the apparatus is a critical 

part of the testing rig, as the geometry of the pulse duplicator chambers affect the 

performance of the valve being studied.  This determines the dynamic pressure or flow 

waveforms produced in the test rig.  Cylindrical rigid test conditions have been widely used 

and only the geometry, close to the valve, has been modelled on physiological data (Leondes, 

2001; Fisher et al., 1986). 

 
 
Figure 2.14: Presentation of the chambers insertion in the pulse duplicator.  (A) Prosthetic heart valve (B) 

Second plastic ring to secure valve (C) plastic slot in rig in which prosthetic valve is fixed (adapted 
from http://vivitrolabs.com/product/pulse-duplicator/) 

 

© Central University of Technology, Free State



 28 
 

2.4.3.4 Afterload and peripheral resistance 

The pressure waveforms can be controlled by adjusting the air pressure in the compliance 

chambers.  The viscoelastic impedance adapter (VIA), situated between the linear actuator 

and the ventricle, can reduce the initial pressure spike due to the rigid system, and can delay 

peak flow to replicate physiological flow conditions (Jennings et al., 2001).  The peripheral 

resistance is adjusted to control the aortic pressure and mimic the systemic resistance of the 

body. 

 

2.4.3.5 ViVitest Data Acquisition System (DAS) 

ViVitest is part of the ViVitro Data Acquisition System (DAS) software family (Figure 2.4).  In 

combination with the pulse duplicator system it collects hydrodynamic testing data to meet 

ISO 5840 requirements.  The Superpump is controlled by the ViVitest software while 

simultaneously measuring pressure and flow data.  It monitors, processes, and reports data 

such as regurgitant fraction, effective orifice area (EOA), and other valve performance 

indicators.  Output files are available in .CSV format for easy analysis in Excel and MatLab 

(adapted from http://vivitrolabs.com/product/pulse-duplicator/). 

 

Figure 2.15: ViVitest Data Acquisition system (DAS) (adapted from http://vivitrolabs.com/wp- 
content/uploads/2016/02/Pulse-Duplicator-Brochure-2016-VIVI-MKT-046.pdf) 
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2.4.4 Performing pulse duplication analysis 

 

Before testing of a prosthetic heart valve can commence on a pulse duplicator it is important 

to take the following factors into account (Wright, 1979): 

 

i. The testing liquid should be appropriate for the prosthesis and the temperature of the 

liquid should be the same as normal body temperature. 

ii. The flow characteristics of the pulse duplicator should be known, reproducible and 

almost the same as physiological flow. 

iii. The geometry of flow passages through the pulse duplicator should be relevant to the 

vessels and chambers of a normal heart. 

iv. The test rig must be capable of testing both the smallest and largest mitral and aortic 

valve prostheses in clinical use. 

v. The test rig should be orientated to exert gravitational forces similar to those found in 

a patient.   

vi. Suitable pressure taping points should be selected. 

 

The parameters defined to assess valve performance during pulsatile flow are many and 

varied.  Reul et al.  (1993) states that measurements should cover the following aspects: (a) 

pressure difference and leakage in non-pulsatile flow as first indication of acceptability, (b) 

pressure difference in pulsatile flow under various conditions as a reference for clinical 

conditions, (c) closure and leakage volumes as a measure for hemodynamic competence, (d) 

energy losses as a measure of the additional work load for the heart and potential blood 

damage, (e) detailed evaluation of the downstream velocity field for the assessment of stasis 

and recirculation areas in the context of potential thrombus depositions, and (6) laminar and 

turbulent shear stresses as parameters for potential blood damage and platelet activation.  

Pressure and flow measurements are the primary determinants (Black et al., 1983) of valve 

performance and is evaluated with respect to the following parameters: 

 

• Stroke volume: the volume of fluid flowing through a valve in the forward direction 

during a cardiac cycle. 
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• Regurgitation: the volume of fluid that flows through a valve in the reverse direction 

during one cycle.  It is the sum of the closure volume and the leakage volume and is 

expressed as a percentage of the stroke volume. 

• Cardiac output: the mean flow through a valve per minute and 

• mean systolic pressure difference: the average value of the pressure difference across 

the valve during the systolic or forward flow phase (ventricle pressure – aortic 

pressure). 

 

The pulse duplication environment simulates pulsatile cardiac flow under various clinical 

conditions by manipulating heart rate, cardiac output, stroke volume and afterload.  In 

accordance with the ISO 5480:2015 guidelines for the hydrodynamic assessment of heart 

valves the following hydrodynamic parameters should be calculated for any condition (ISO 

5480:2015; Kuettinga et al., 2014; Strope, 2010): 

 

• Effective orifice area (EOA) 

• Qrms (during forward flow) 

• Trans-valvular pressure gradient 

• Regurgitant volumes 

• Trans-valvular energy losses 

 

Table 2.1 represents the minimum performance requirements which the in vitro test results 

must meet or exceed given as a function of valve size, valve annulus diameter, and valve 

position (ISO 5840:2015).  The minimum performance requirements correspond to the 

following pulsatile-flow conditions: bpm of 70 cycles/min, a simulated CO of 5.0 L/min, a 

mean aortic pressure of 80 mmHg and a systolic duration of 35%. 
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Table 2.1:  The minimal ISO 5840:2015 performance requirements for pulse duplication evaluation 

[EOA =Effective orifice area in square centimetres; TAD = test valve annulus diameter; mm = millimetre] 

 

2.4.4.1 Calculating pulse duplication hydrodynamic metrics 

i) Transvalvular pressure readings (TVP) 

The instantaneous pressure gradients can be calculated by taking the difference between the 

ventricle and aortic chamber, trans-valvular pressure reading (TVP), over several cycles (Haaf 

et al., 2009).  Maximum TVP is calculated as the maximum pressure gradient recorded across 

the valve from the aortic and ventricular pressure readings (Ramaswamy et al., 2013). 

 

ii) Mean systolic pressure difference 

The mean systolic pressure difference is determined by taking the average of the ventricular 

pressure (Pv) minus aortic pressure (PAo) determined as 

 ∆𝑃𝑠𝑦𝑠 =
1

𝑁
∑ 𝑃𝑣 − 𝑃𝐴𝑜

𝑁

1

 (ISO 5840:2005) 

 

The interval over which the average is calculated and can be split into three different 

categories.   

• P   = interval where the TVP is positive 

• F   = interval where the flow rate is positive 

• H = interval starting with 0 TVP and ending with 0 flow 

The mean systolic pressure difference is calculated using the P interval as stipulated in ISO 

5840:2005. 

 

 

 

Position Aorta valve Mitral valve 

Valve size 
(TAD, mm) 

19 21 23 25 27 29 31 25 27 29 31 

EOA (cm2) >0.70 >0.85 >1.00 >1.20 >1.40 >1.60 >1.80 >1.20 >1.40 >1.60 >1.80 

Regurgitant 
fraction (%) 

<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 
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iii) Closing and leakage volume 

The closing volume (VCL)and leakage volume (VL) equations represent the time integrals of 

aortic flow during closing and leakage periods, respectively.  The closing volume is defined as 

the regurgitant volume that flows back through the valve during the time interval of valve 

closure(TCL).  The leakage volume is defined as part of regurgitant volume that passes during 

the rest of the cycle (TL) and the closed state of the valve through the gap between the occlude 

and the valve ring (de Paulis et al., 2005).  The closing and leakage volumes are calculated 

based on the following time intervals: 

• Closing: from the time, the flow rate becomes negative till the instance of valve 

closure (t2). 

• Leakage: from t2 till the end of the cardiac cycle (t3). 

Total regurgitant volume is simply calculated by the sum of the closing and leakage volumes 

(Ramaswamy et al., 2013). 

 

iv) Effective orifice area (EOA) 

EOA is defined as the part of the primary “theoretically possible” orifice area (POA)being used 

during systole.  The performance index (PI) of a heart valve is defined as the relation of EOA 

to POA (Haaf et al., 2009). 

 

The aortic root mean square (RMS) forward flow rate (Qrms) provides a useful metric for 

quantifying the magnitude of forward flow rate as follows (Ramaswamy et al., 2013): 

 𝑄𝑟𝑚𝑠 =  √
∫ 𝑞𝑣(𝑡)2𝑑𝑡

𝑡2

𝑡1

𝑡2 − 𝑡1
 (ISO 5840:2005) 

 

The EOA (based on blood properties) can be computed for 3 intervals, P, F, and H from the 

TVP during each of these periods (Chandran et al., 2007).  In this study, the EOA was based 

using the P interval in line with ISO 5840:2005: 

 
𝐸𝑂𝐴 =  

𝑄𝑟𝑚𝑠

51.6√
∆𝑃

𝜌

 
(ISO 5840:2005) 

 

 

© Central University of Technology, Free State



 33 
 

2.4.5 Pros and cons associated with pulse duplication 

 

The use of pulse duplicator systems to assess valve functionality during pulsatile flow, or to 

investigate valvular mechanics, is relatively well established however both the system and the 

operation is not without pitfalls (Temple et al., 1964; Fisher et al., 1986). 

 

Even though pulse duplicators, if used correctly per the ISO 5840:2015 guidelines, can 

produce reproducible data, measure instantaneous flow through the valve and provide good 

visibility of the valve being tested, they also have disadvantages. 

 

Many sophisticated laboratories have undertaken studies to provide comparative evaluations 

of valve substitutes but did not provide any insight into the valves’ in vivo performance.  The 

interpretation of such in vitro results must be approached with caution by recognizing their 

limitations when extrapolated to the in vivo situation (Tindale et al., 1982; Black et al., 1983). 

 

The main disadvantages are that the flow patterns in the left ventricle are not modelled and 

the inertia of the fluid in the rigid tubes can distort pressure waveforms (Fisher et al., 1986).  

It is known that the rigid tubes do not mimic the tissue compliance, however the ViVitro pulse 

duplicator includes an aortic and aortic root compliance chamber to simulate the tissue 

compliance as much as possible.  The fluid flow patterns cannot be visually assessed to 

determine regions of recirculation or high shear stresses. 

 

2.5 ECHOCARDIOGRAPHY 

Echocardiography has been widely accepted as a non-invasive technique for in vivo 

visualization, but can also be used for the in vitro assessment of prosthetic heart valves 

(Pibarot et al., 2012; Leefe et al., 1995).  Modern day pulse duplicators like the ViVitro pulse 

duplication system is equipped with thin acrylic windows that permit echocardiography 

imaging and Doppler flow measurements.  These windows are situated on the side or on top 

of the valve.  The top viewing chamber allows taking echocardiographic images directly above 

the valve (Figure 2.16). 
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Figure 2.16: Echocardiographic viewing chambers in a ViVitro pulse duplication system 

 

2.5.1 The history of echocardiography 

 

By using an industrial ultrasonic flaw detector, Inge Edler (Director of the Cardiovascular 

Laboratory, Lund University) and Carl Hellmuth Hertz (physicist) obtained time-varying 

echoes transcutaneous from within the heart that marked the beginning of a new diagnostic 

non-invasive technique (Singh and Goyal, 2007; Edler and Lindström, 2004).  The first echoes 

were recorded via M-mode and were from the posterior wall of the left ventricle and from 

another structure thought to be the anterior wall of the left atrium.  The first clinical 

application of M-mode echocardiography assessed the mitral valve from the shapes of the 

corresponding waveforms. 

 

The technique was further validated in the late 1960s with the discovery of contrast 

echocardiography, extending its range of applications.  Although two-dimensional 

echocardiography was first demonstrated in the late 1950s, transesophageal 

echocardiography only followed in the late 1960s.  However, the demonstration of real-time 
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two-dimensional echocardiography using a linear transducer array by Bom in Rotterdam 

revolutionized and popularized the use of echocardiography.  This was followed by the 

development of the pulsed Doppler method also in the late 1960s which led to new 

opportunities for clinical innovation (Mohamed et al., 2010).  Technology evolved over many 

years, and over the last few years a quantum leap was seen in the use of 3D and 4D 

echocardiographic application. 

 

2.5.2 The purpose and function of echocardiography 

 

Echocardiography has become the primary assessment tool for patients that have prosthetic 

heart valves.  Comprehensive guidelines exists for the evaluation of prosthetic heart valves 

and has been published by the American Society of Echocardiography (ASE) and the European 

Association of Echocardiography (EAE)(Zoghbi et al., 2009).  Echocardiographic interogation 

of prosthetic heart valves must be done from multiple windows and proper alignment of the 

Doppler beam with flow direction is important (Blauwet et al., 2014). 

 

An echocardiogram is an ultrasonic graphic outline of the hearts physiological movement.  

The test is non-invasive and provides images of heart valves and chambers using high 

frequency sound waves.  Echocardiography is used to evaluate the pumping action of the 

heart and is often combined with Doppler ultrasound and colour Doppler to evaluate blood 

flow across heart valves (Otto, 2004). 

 

Echocardiography involves two-dimensional (2D) ultrasound interrogation of the heart 

utilizing the brightness mode to image cardiac structures based on their density and location 

relative to the chest wall (Levine, 2009) by utilizing transthoracic and transoesophageal 

probes.  The computer in the ultrasound machine uses algorithms to reconstruct images of 

the heart.  The depth of the structures is determined by the time it takes the ultrasound to 

return to the probe.  The intensity of the returning signal determines the density and size of 

the structures with which the ultrasound comes in contact.  The probe performs Doppler as 

well, which measures the frequency shift of the returning ultrasound that determine the 

speed and direction of moving blood through the heart structures (Dokainish, 2006). 
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During Doppler ultrasound, the flow velocity in a target control volume of fluid is assessed by 

the detection of the Doppler shift in ultrasound waves reflected from micro-particles in the 

fluid, such as blood cells or small seedling particles (Levine, 2009).  When directing, the 

ultrasound beams towards a moving target, the transducer determines the frequency shift 

(∆𝑓) which is the difference between the transmitted frequency of the transducer (ft) and the 

received frequency (fr).  The frequency shift is related to the velocity of the moving target (v), 

transmitted frequency (ft), and the angle between the direction of the ultrasound beam and 

the direction of the moving target (Anavekar and Oh, 2009) (Figure 2.17). 

 

Figure 2.17: The Doppler effect (adapted from Anavekar and Oh, 2009) 

 

Doppler has three modes (Anavekar and Oh, 2009; Levine, 2009): 

• Colour Doppler, utilizes different colours (blue and red) to identify forward and back 

flow from the transducer respectively, to identify flow acceleration qualitatively by 

showing a mix of colour to represent high velocity of aliased flow. 

• Pulsed-wave(PW) Doppler, can localize the site of flow acceleration but is prone to 

aliasing (Figure 2.18). 

• Continuous-wave (CW) Doppler, cannot localize the level of flow acceleration but can 

identify very high velocities without aliasing (Figure 2.18).  For the purposes of this study 

only continuous wave Doppler was used to assess flow characteristics of the aortic 

prosthetic heart valves. 
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Continuous wave Doppler ultrasound measures the shifts in reflected ultrasound frequency 

proportional to all the velocities detected by the beam.  The maximal signal is a measurement 

of the maximum velocity present.  In a prosthetic heart valve, this maximal velocity is the high 

velocity jet that is flowing through the valve orifice (Stewart et al., 1991).  CW Doppler is 

optimal when performed with a non-imaging transducer with two crystals which have a high 

signal to noise ratio.  CW facilitates high velocities but does not localize the depth of origin of 

the signal and is used in high velocities on valve stenosis and regurgitation (Otto, 2004). 

 

 

Figure 2.18: Doppler pulsed wave and continuous wave Doppler echocardiography from the apical view 
(adapted from Anavekar and Oh, 2009) [Ao, aorta; LA, left atrium; LV, left ventricle; RA, right 
atrium; RV, right ventricle] 

 

A complete echocardiography includes two-dimensional (2D) imaging of the prosthetic valve, 

evaluation of the leaflet/occlude morphology and mobility, measurement of transprosthetic 

gradients and effective orifice area (EOA), estimation of the degree of regurgitation, 

evaluation of the left ventricle (LV) size and systolic function, and calculation of systolic 

arterial pressure (Pirabot et al., 2009).  The quantitative parameters that is included in the 

assessment of prosthetic heart valves are (Sordelli et al., 2014): 

 

• Trans-prosthetic velocity and pressure gradient 
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• Trans-prosthetic jet contour and acceleration time 

• Doppler velocity index (DVI) 

• EOA 

 

As ultrasound is relatively inexpensive and non-invasive in comparison to computed 

tomography (CT) and magnetic resonance (MR), more and more specialists use ultrasound to 

assess valvular geometry. 

 

2.5.3 Prosthetic valvular geometry determined by echocardiography 

 

The velocity measurements estimate the transvalvular pressure gradient (TPG) using the 

Bernoulli equation and calculate the effective orifice area (EOA) of valves using the continuity 

equation (Durand et al., 1999).  This is a relatively accurate approach for the assessment of 

native and bio-prosthetic heart valves but shows significant variability when used for 

mechanical valves, due to the complex flow velocity distributions and valve designs (Sordelli 

et al., 2014). 

 

2.5.3.1 Flow velocity 

A flow velocity profile is the spatial uproar of velocities in a cross section at a specific intra-

cardiac location.  A flat flow velocity profile occurs when all the flow lines are parallel in a 

laminar flow pattern with the same velocity.  When the velocity is higher in the middle and 

lower at the walls of the vessel then the profile is curved.  Peripheral vessels have curved 

flow-velocities and intra-cardiac flows have flat flow velocity profiles.  Flow velocity is 

equalized by factors such as tampering with the flow stream, acceleration of flow and inlet 

type geometry (Otto, 2004).  Peak velocity should be averaged over 3-5 consecutive beats if 

the patient is in sinus rhythm or over 5-10 beats if in atrial fibrillation.  It should be measured 

at the top of the dense part of the waveforms only with a well-defined peak. 

 

Flat flow profiles occur in the proximal aorta, pulmonary artery, mitral and tricuspid annuli.  

In the ascending aorta, the velocity flow along the inside curve of the aortic arch is higher and 

it is lower along the outer curve, causing the flow profile to become skewed (Otto, 2004). 
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Flow velocity increases in relation to the degree of narrowing, whether due to a stenotic valve, 

ventricular septal defect or regurgitant orifice.  The velocity through a narrow jet is related 

quantitatively to the pressure gradient across the narrowing.  This is expressed using the 

Bernoulli equation ΔP = 4ѵ2, where ΔP is the instantaneous pressure gradient (mmHg) and ѵ 

the instantaneous velocity (m/s) (Otto,2004). 

 

The high frequency shifts (velocities) of the Doppler are accurate since the sampling is 

continuous.  Velocity underestimation can occur with either pulsed or CW Doppler techniques 

and is important when measuring high-velocity jets due to stenosis, regurgitation or 

intracardiac abnormalities (Otto, 2004). 

 

A) Velocity ratio (VR) 

The ratio of peak sub-aortic to peak transaortic velocity gives an approximate guide to valvular 

orifice behaviour.  It is equivalent to a performance index (the ratio of effective orifice area 

to total valve area).  It is useful for serial measurements in the same individual where the 

diameter of the left ventricular outflow tract is assumed to be constant (Chambers et al., 

1994). 

 

B) Velocity time integral (VTI) 

The velocity time integral (VTI) or time velocity integral (TVI) is the area measured under the 

Doppler velocity curve for each heartbeat.  The pulse wave is at the level of the valve annulus 

and parallel to blood flow direction.  The TVI is used to calculate the cardiac output (CO) and 

cardiac index (CI) (Kerut et al., 2007). 

 

The TVI of the LVOT is measured at the same level in the LVOT where the diameter was 

measured.  The VTI at the AV level is determined by CW Doppler in the same view (Apical 5C) 

through the aortic valve.  TVI measurements and SV calculations allow for valvular regurgitant 

fraction and shunt calculations (Kerut et al., 2007). 
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2.5.3.2 Valvular gradients 

For each prosthetic heart valve, it is important to determine both the mean and peak 

gradients. 

 

A) Mean gradient 

Pressure gradient is calculated from the velocity by using the Bernoulli equation.  The gradient 

is average from the velocity curve and the unit is comparable to the invasive measurements.  

The accurate pressure gradients are dependent on the precise velocity data that is flow 

dependent (Baumgartner, 2009).  The velocity jet is related to the pressure gradient across 

the valve according to an unsteady ½ Bernoulli equation:  

 

 
∆𝑃 =  

1

2
𝜌(𝑣2

2 − 𝑣1
2) +  𝜌 (

𝑑𝑣

𝑑𝑡
) 𝑑𝑥 + 𝑅(𝑣) (Otto, 2004) 

 

ΔP is pressure gradient across the stenosis, ρ the mass density of blood (1.06 x 103 kg/m3), 

ѵ2the velocity in the jet, ѵ1 the velocity proximal to the stenosis, (ɗѵ/ɗt) the time-varying 

velocity at each distance along the flow stream and R a constant describing the viscous losses 

for that fluid and orifice (Otto, 2004). 

 

B) Peak gradient 

In contrast to mean gradient, peak gradient (peak-to-peak or peak instantaneous) is a less 

reliable measurement of valve hemodynamics.  This can be attributed to the substantial 

influence of LV contractility in addition to the influence of trans-valvular flow.  The peak 

pressure gradient is an especially unreliable indicator of hemodynamics in the setting of a 

prosthetic AV, where high velocities are commonly observed immediately after valve opening 

(Bach, 2010). 

 

2.5.3.3 Effective orifice area (EOA) 

EOA is the minimal cross-sectional area of the flow jet, the cross-sectional area of the vena 

contracta, downstream of a native or bio-prosthetic aortic heart valve.  The EOA is the 

standard parameter used for clinical assessment of aortic valve stenosis severity.  It can be 

determined either with the Doppler echocardiography by using the continuity equation or 
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from catheterization by applying the Gorlin formula.  EOA determined by Doppler or by 

catheter may vary with increasing flow rate (Garcia et al., 2004). 

 

The continuity equation should be used if the left ventricle is significantly impaired or if the 

peak trans-aortic velocity is high (> 3m/s) and it is not certain whether it is because of relative 

obstruction or high flow. 

 𝐸𝑂𝐴 = 𝐶𝑆𝐴 ∗
𝑉𝑇𝐼1

𝑉𝑇𝐼2
 (Chambers et al., 1994) 

 

The use of the product of CSA and VTI1 has been validated for artificial heart valves.  The 

continuity equation can be simplified by assuming similar waveform shape above and below 

the valve: 

 𝐸𝑂𝐴 = 𝐶𝑆𝐴 ∗
𝑣1

𝑣2
 (Chambers et al., 1994) 

 

where v1 is the sub-aortic peak velocity and v2 is the aortic velocity.  This form of the equation 

is simpler to apply and is in general use but tends to underestimate at orifice areas above 

1cm2.  CSA is calculated from the left ventricular outflow tract diameter (d) assuming a circular 

cross-section: 

 
𝐶𝑆𝐴 =  

𝜋𝑑2

4
 (Chambers et al., 1994) 

   

The diameter of the left ventricular outflow tract should be averaged from three parasternal 

long axis frames frozen in early systole (transthoracic echocardiography).  Care must be taken 

to open out this region until the dimension looks maximal.  The measurement should be made 

from the leading edge of the septum to the leading edge of the anterior mitral leaflet 

echocardiograph.  The measurement should be made if there is severe left ventricular 

hypertrophy or bowing of the anterior mitral leaflet.  It should be performed with a coexistent 

mitral prosthesis only if the blooming from the sewing ring of the mitral valve is trivial 

(Chambers et al., 1994). 

 

The continuity equation is limited by its wide confidence intervals (Ci).  For normal functioning 

bi-leaflet valves the difference between measured and calculated orifice area has a 95% Ci of 
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around -0.5 to + 0.5 cm2, with errors arising mainly in the measurement of sub-aortic diameter 

and sub-aortic velocity.  In practice, the effective orifice area should be regarded as a semi-

quantitative guide rather than a precise measurement of function (Chambers et al., 1994). 

 

2.5.4 Echocardiography and pulse duplication 

 

Because valve opening behaviour and patterns of regurgitation and closure vary widely 

among valves of different designs, echocardiographic experience gained with one type of 

valve cannot readily be extrapolated to another. 

 

Therefore, the focus of this dissertation is to compare the pulse duplication findings between 

the tested valves to the echocardiography derived findings when performing pulse 

duplication. 
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CHAPTER 3  METHODOLOGY 
 

 

 

The objectives for this research study were two-fold.  The first objective was to perform a 

comparison of the results of prosthetic heart valve testing using pulse duplication and 

echocardiography together on a pulse duplicator.  Secondly, to determine the overall 

performance of various prosthetic heart valves using pulse duplication. 

 

3.1 STUDY LOCATION AND MATERIAL 

Comprehensive pulse duplication and echocardiographic analysis were performed on three 

(3) commercial valves, the Glycar valve and the ViVitro reference valve using the ViVitro pulse 

duplicator (ViVitro Laboratories Incorporated, British Columbia, Canada) within the 

department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State 

(UFS), Bloemfontein, South Africa.  Data acquisition and interpretation was done with the 

help of a mechanical engineer. 

 

The echocardiography analysis was done with the help of an anaesthesiologist, cardiology 

technologist and a paediatric cardiologist, all from the Faculty of Health Sciences, UFS, 

Bloemfontein, South Africa. 

 

Pulse duplication analysis and echocardiography was performed and compared on the 

following prosthetic heart valves: 

i) Commercial available valves: 

o 21 mm Carbomedics bi-leaflet (Sorin Medical) 

o 21 mm Medtronic-Hall tilting disk valve (Medtronic Medical) 

o 19 mm Perimount tissue valve (Edwards-Life Sciences Corporation) 

 

ii) Other 

o 21 mm Glycar valve 

o 21 mm ViVitro non-tilting disc valve (ViVitro Labs Inc.) (reference valve) 

CHAPTER 3 
METHODOLOGY 
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The 19 mm Perimount tissue valve was used because the valve was donated, thus limiting 

project costs. 

 

3.2 STUDY DESIGN AND LAYOUT 

The study design was a prospective analytical study.  The study layout is summarized in Figure 

3.1.  A hydrodynamic evaluation was performed on each of the five (5) prosthetic heart valves 

using pulse duplication and echocardiography.  All the valves were inserted in the aortic 

position in the pulse duplicator and echocardiographic measurements was performed 

through the viewing chambers of the pulse duplicator.  The study concludes with a 

comparison between the acquired pulse duplication and echocardiographic data. 
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Figure 3.1: The in vitro evaluation of the flow dynamics of five prosthetic heart valves using pulse duplication and echocardiography. 
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3.3 HYDRODYNAMIC EVALUATION OF PROSTHETIC HEART VALVES 

3.3.1 Pulse duplication 

 

The pulse duplicator used for hydrodynamic testing simulates cardiac conditions to provide 

detailed information on flow characteristics and cardiac performance.  The test chambers 

simulate the geometry of the left ventricle and the aorta to simulate realistic physiological 

flows.  Each valve was tested under five different physiological test conditions. 

 

3.3.1.1 Pulse duplicator apparatus and testing method 

 

The ViVitro pulse duplicator system (ViVitro Labs Inc., British Columbia, Canada) in 

combination with the ViVitest data acquisition system (ViVitro labs Inc.) were used to assess 

the hydrodynamic performance and flow characteristics of the valves (Figure 3.2).  This 

system is used for the evaluation of cardiovascular implants and is validated according to the 

ISO 5840:2005 guidelines and requirements. 

 

 

Figure 3.2: ViVitro pulse duplicator and ViVitest data acquisition system.  (A) ViVitro pulse duplicator 
system (B) ViVitest data acquisition system (C) ViVitro Superpump(adapted from: 
http://vivitrolabs.com/product/pulse-duplicator/) 

 

A B 

C 
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The system mimics a pneumatically actuated, left heart model that includes; a mitral valve, 

aortic valve, left atrium, left ventricle, aorta with systemic resistance, aortic compliance and 

aortic root compliance chambers.  Ventricular pressure is generated via the ViVitro 

SuperPump. 

 

Figure 3.3: The ViVitro Pulse duplication system mimicking the human heart (adapted from 

http://vivitrolabs.com/wp-content/uploads/2016/02/Pulse-Duplicator-Brochure-2016-VIVI-

MKT-046.pdf) 

 

Summarized pulse duplication testing procedure 

The test method was performed according to the standard operating procedure published in 

the ViVitro operating manual (ViVitro.com).  The five (5) prosthetic heart valves were all 

evaluated in the aortic position.  To eliminate regurgitation and possible para-valvular leaks 

the valves were secured in the aortic position using a compression container and sealing ring. 

 

The pulse duplicator was calibrated by a ViVitro technician prior to use, which included the 

SuperPump, electromagnetic flow meter and pressure transducers.  The electromagnetic flow 

meter was calibrated by an oscillating column of fluid in the aortic chamber by means of the 

pump, according to the ViVitro user manual.  The recording instrumentation was switched on 

at least 30 minutes prior to testing to allow the flow meter and pressure transducers to 

stabilise.  The zero position was set immediately prior to testing of the flow and pressure 

signals to minimise drift. 
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Pressure transducers are situated at the outflow tract distal to the aortic valve and in the 

ventricle chamber to measure the mean pressure gradients.  The volumetric flow rate was 

recorded by an ultrasonic flow meter situated between the ventricle and the prosthetic valve.  

A blood analogue (ISO 5840:2015) of 45% by weight aqueous glycerine solution was added to 

the saline solution to create a viscosity of 3.5 centipoise (cps).  The mean arterial pressure 

(MAP) was maintained at 80 mmHg and the stroke volume, pump beats (beats per minute) 

and cardiac output were varied according to Table 3.1. 

 

According to Table 3.1, the stroke volume and beats per minute (BPM) was set using the 

programmable waveform generator and the mean arterial pressure was kept at 80mmHg by 

adjusting the afterload.  The capturing of 10 cycles was performed when the flow conditions 

reached a stable point at the desired testing flow condition.  During the 10 cycles, the pulse 

duplicator takes 256 measurements per cycle that was referred to as a sample.  The start of 

a measurement was at the beginning of systole (beginning of the forward flow pump phase).  

The flow/pressure/volume graphs as illustrated in Figure 3.10 were then generated. 

 

Table 3.1:  Physiological testing conditions used during pulse duplication 

Test Condition 
Mean Aortic 

Pressure 
(mmHg) 

Beats per 
minute 

Stroke volume 
(ml) 

Cardiac output 
(L/min) 

1.   Resting state 80 60 60 3.6 

2.   Low cardiac output 80 70 70 4.9 

3.   High cardiac output 80 80 80 6.4 

4.   Exercise 80 100 80 8.0 

5.   Maximum effort 80 120 80 9.6 

(mmHg = millimetre mercury; ml = millilitre; L/min = litre per minute) 

 

As outlined by ISO 5840:2015 arterial pressure, ventricular pressure and aortic pressure were 

measured at specific points throughout the cycle.  The following flow and pressure data were 

recorded and calculated by the ViVitest data acquisition system: 

• Pressure drop (∆p) (mmHg) 

• Effective Orifice Area (EOA) (cm2) 

• Regurgitant Fraction (RF) (%) 
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• Volumetric flow rate (ml/s) 

• Closing volume (ml) 

• Leakage volume (ml/s) 

 

3.3.1.2 Calculation of pulse duplication parameters 

i) Pressure drop (∆P) 

In order to calculate the average pressure drop, the positive pressure interval, where the 

ventricle pressure is higher than the aortic pressure, is determined.  The average pressure 

was then calculated over the positive pressure interval.  To determine the pressure drop 

across the valve the following were employed (Figure 3.5 to Figure 3.7). 

 

The cardiac cycle is represented by the pressure generated in the ventricle (Figure 3.54) and 

the aorta (Figure 3.5) and the difference between the two pressure graphs (ventricle – aortic 

pressure) was generated to produce Figure 3.6 from the 256 sample values obtained per 

cycle.  Using the graph in Figure 3.6, the point at which the trans-aortic pressure became 

positive was used as the starting point (point 1 in the graph) and ended as soon as the 

pressure dropped below zero (point 2).  This was employed in all the 25 tests (5 valves at 5 

test conditions) in this study. 

 

 

Figure 3.4: The ventricle pressure measured for the bi-leaflet valve over time during a cardiac cycle under 
the five test conditions[S:60 R:60 = CO of 3.6 L/min; S70: R70 = CO of 4.9 L/min; S80: R80 = CO of 
6.4 L/min; S80:R100 = CO of 8.0 L/min; S:80: R120 = CO 9.6 L/min] 
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Figure 3.5: The aortic pressure measured for the bi-leaflet valve over time during a cardiac cycle under the 
five test conditions[S:60 R:60 = CO of 3.6 L/min; S70: R70 = CO of 4.9 L/min; S80: R80 = CO of 6.4 
L/min; S80:R100 = CO of 8.0 L/min; S:80: R120 = CO 9.6 L/min] 

 

 

 

Figure 3.6: The pressure difference between the pressure generated across the valve (Figure 3.5) and the 
pressure generated in the aorta.  The pressure gradient or drop is determined between points 1 
and 2. [S:60 R:60 = CO of 3.6 L/min; S70: R70 = CO of 4.9 L/min; S80: R80 = CO of 6.4 L/min; 
S80:R100 = CO of 8.0 L/min; S:80: R120 = CO 9.6 L/min] 

 

ii) Effective Orifice Area (EOA) 

The effective orifice area (EOA) was calculated in accordance with ISO 5840 guidelines (ISO 

5840:2015).  The EOA is a measure of how easily fluid can flow through the valve based on 

the flow rate and pressure drop across the valve.  The Qrms and average pressure drop are 

used to determine the EOA. 
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𝐸𝑂𝐴(𝑐𝑚2) =
𝑄𝑟𝑚𝑠

51.6√
∆𝑝

𝜌

 

Where: 

Qrms (ml/s) The root mean square of the volumetric flow rate during the positive 

transvalvular pressure period. 

Δp [mmHg] The mean systolic pressure difference during the positive transvalvular 

pressure drop period. 

ρ [g/cm³] The fluid density. 

 

The Qrms was determined according to the ISO 5840 guidelines (ISO 5840:2015).  The Qrms and 

pressure gradientwas measured during the interval shown in Figure 3.7.  The time interval 

starts as soon as the pressure gradient becomes positive during the upstroke and ends when 

the pressure gradient becomes negative at the down stroke.  This period is shown when line 

2 is above line 1 in Figure 3.7. 

 

 

Figure 3.7: Schematic representation of the positive pressure period of an aortic forward flow interval.  X-
axis represents time in seconds, Y-axis the pressure difference in mmHg and flow in L/min.  Line 
1 represents the aortic pressure, and Line 2 represents the pressure generated in the left 
ventricle and Line 3 the Aortic flow rate (adapted from ISO 5840:2015 Part 1) 
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The Qrms is calculated according the equationbelow and is defined as(ISO 5840:2005): 

 

𝑄𝑟𝑚𝑠 =  √
∫ 𝑞𝑣(𝑡)2𝑑𝑡

𝑡2

𝑡1

𝑡2 − 𝑡1
  

 

Where: 

Qrms(ml/s) The root mean square forward flow during the positive differential pressure 

period in ml/s. 

qv(t) The instantaneous volumetric flow at time t. 

t1 The time at the start of the positive differential pressure period. 

t2 The time at the end of the positive differential pressure period. 

 

iii) Regurgitant fraction (RF) 

The regurgitant fraction was determined according to the ISO 5840:2015 guidelines, which 

details the differentiation between closure and leakage volume.  The sum of regurgitation 

was analysed in total volume and in percent of the total stroke volume (percentage 

regurgitation).  An example of the volumetric flow rate vs time across the valve over the 

cardiac cycle is shown in Figure 3.8, where arrow 1 indicates the closing volume and arrow 2 

indicates the leakage volume. 

 

In order to calculate the closing volume, the total volume of fluid during is calculated by 

calculating the area under the graph in region 1 and 2 in Figure 3.8.  The volume is determined 

by  

 

𝑉𝑜𝑙𝑢𝑚𝑒 =  ∫ 𝑄𝑑𝑡
𝑡2

𝑡1

 

 

where Q is the volumetric flow rate and t1 and t2 are the intervals for either volume 1 or 

volume 2 (Figure 3.8).  The point of differentiation between the closing and leakage volume 

is when the volumetric flow rate gradient transitions from a positive gradient to a negative 

gradient after a negative flow rate has occurred.  Closing volume is the total volume from the 

zero flow to the transition point, and the leakage volume is the total volume from the 

transition point to the end of the cycle. 
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Figure 3.8: The flow wave form and regurgitant volumes for one cycle, with the volumetric change rate (Y-
axis) in relation to time (X-axis).  Using this graph, the regurgitant fraction is calculated.  The 
closing volume (1) and the leakage volume (2) is determined once the volumetric rate drops below 
the zero-reference point (Adapted from Kuettinga et al., 2014, ISO 5840:2015 Part 1) 

 

3.3.2 Echocardiography 

 

With the use of high pitched sound waves the echocardiogram creates images providing 

diagnostic information about the heart’s chambers, valves, walls and blood vessels (flow) 

attached to the heart. 

 

The ViVitro pulse duplication system is equipped with thin acrylic windows that permit 

echocardiography imaging and Doppler flow measurements during pulse duplication.  Each 

valve was tested under five different physiological conditions (Table 3.1) and simultaneously 

the valvular characteristics of each valve was captured using echocardiography. 

 

3.3.2.1 Echocardiography apparatus and testing method 

Echocardiography was performed by a cardiac technologist in consultation with a paediatric 

cardiologist and cardiothoracic surgeon (Figure 3.9).  The ViVid Q (General Electric, GE) 

echocardiographic system was used and all images were digitally captured and processed 

using the EchoPAC software package.  An S10 transducer was used and conductivity was 

ensured by the use of ultrasound-gel (Kendon Medical Supplies Pty. Ltd., Johannesburg, South 

Africa). 
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Figure 3.9: Echocardiography performed during pulse duplication 

 

Summarized testing procedure 

The flow characteristics of the five (5) prosthetic heart valves were performed consecutively 

while performing the pulse duplication analysis.  All valves were secured in the aortic position. 

 

The echocardiographic viewing chamber is situated perpendicular to the valve.  The S10 

transducer was fixed at 11cm between the valve and the tip of the transducer at an angle of 

90 degrees to the valve.  The imaging depth of the GE ViVid Q echocardiography machine was 

set at 15-16 cm.  The blood analogue used contained glycerol that improved image quality. 
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Two-dimensional echocardiography was applied to position the m-line correctly for doppler 

tracings for the determination of left ventricular dimensions and volumes.  Conventional 

Doppler (continuous wave) and colour Doppler techniques were used for the assessment of 

the prosthetic valves. 

 

Doppler values were recorded and an average for 5 sequential beats was calculated.  All 

doppler and 2D measurements were repeated 5 times during the same echocardiographic 

examination and the results averaged. 

 

The following flow and hemodynamic parameters were recorded for each prosthetic valve 

tested: 

• Maximum velocity (Vmax) (m/s) 

• Mean velocity (Vmean) (m/s) 

• Maximum pressure (Pmax) (mmHg) 

• Mean pressure (Pmean (mmHg) 

• Envelope time (Env.  Ti) (ms) 

• Velocity time integral (VTI) (cm) 

• Effective Orifice Area (EOA) (cm2) 

 

3.3.2.2 Calculation of Doppler echocardiography parameters 

 

i. Peak and mean pressure gradient 

The simplified Bernoulli equation (ΔP = 4v2) was used to calculate the transaortic peak and 

mean gradients from transaortic velocities.  This equation accepts that the velocity proximal 

to the valve is lower than 1 m/s and can be ignored, while transvalvular flow is at least 4 times 

the proximal flow.  The peak gradient was calculated from peak velocity (ΔP max = 4v2 max*).  

The mean gradient was calculated by integrating the gradient over the entire systole (ΔP 

mean = Σ 4v2 / N).  When the proximal velocity is >1.5 m/s, or the aortic velocity is <3 m/s, the 

proximal velocity should be included in the Bernoulli equation (ΔP max = 4 (v2max - 

v2 proximal)).  All commercially available ultrasound machines provide the peak and mean 

gradients after manual tracing of transaortic CW Doppler spectrum.  Transaortic jet velocities 
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as well as pressure gradient are flow-dependent measures of aortic stenosis severity.  During 

low cardiac output states (e.g. severe left ventricular systolic dysfunction), transaortic 

velocities and gradients may be relatively low despite the presence of severe aortic stenosis 

(Baumgartner, 2009). 

 

ii. The continuity equation 

The continuity equation states that the flow in the first area must equal the flow in a second 

area if there are no shunts in-between the two areas.  In other words, the flow through the 

left ventricular outflow tract (LVOT) equals the flow through the (stenotic) aortic valve.  The 

aortic valve area was calculated using the continuity equation after other three variables 

(cross-sectional area of LVOT and velocity time integrals (VTI) in LVOT and across the aortic 

valve) are obtained by Doppler echocardiography (Baumgartner, 2009). 

 

The flow through the LVOT (i.e. stroke volume at the level of LVOT), was calculated by 

multiplying cross-sectional area by the VTI of the LVOT.  Cross-sectional area of LVOT was 

calculated as follow: CSA (LVOT) = π (LVOT diameter/2)2. 

 

In doing so, it was easy to calculate the aortic valve area (AVA) by dividing the LV stroke 

volume by the AV VTI: 

 

AVA [cm2] = (LVOT CSA x LVOT VTI) / AV VTI 

(Baumgartner, 2009). 
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CHAPTER 4 RESULTS 
 

 

4.1 INTRODUCTION 

 

In this chapter the hydrodynamic results of five (5) prosthetic heart valves, measured by pulse 

duplication and echocardiography will be presented, followed by a comparison between the 

prosthetic valve pulse duplication results and the echocardiography results.   

 

The heart valves that displayed comparative parameters between echocardiography and 

pulse duplication were analysed further and the data presented. 

 

4.2 PULSE DUPLICATION RESULTS OF THE FIVE (5) PROSTHETIC HEART VALVES 

 

The pulse duplication hydrodynamic test results for all five (5) prosthetic heart valves at each 

test condition is given in Table 4.1. 
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Table 4.1:  Hydrodynamic pulse duplicator and echocardiographic results for the prosthetic heart valves per test condition 

 
BPM = beats per minute, SV = stoke volume, Bi-leaflet = mechanical Bi-leaflet valve, tilting = Medtronic-Hall tilting disk valve, EOA = effective orifice area, Echo = Echocardiography, Vmax = maximum velocity, Vmean = 

mean velocity, Pmax = Maximum pressure drop, Pmean = mean pressure drop, ENV TI =valve envelope time corresponding to the ejection time, VTI = velocity time integral 
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The following graphs represent the data reflected in Table 4.1 for each of the valves 

corresponding to each of the investigated parameters. 

 

4.2.1 Pressure drop 

 

The pressure drop for each valve at each test condition is shown in Figure 4.1.  The Glycar 

valve had the largest pressure drop across the valve at the lowest CO (3.6 L/min) of  

17.15 mmHg vs. ViVitro (11.0 mmHg), bi-leaflet (6.65 mmHg), tilting disk (4.69 mmHg) and 

tissue valve (8.24 mmHg).  However, the pressure drop increased steadily and at a slower rate 

than the other four valves, resulting in a superior performance of the Glycar valve.  The 

maximum pressure drop for the Glycar valve was lower at a CO of 9.6 L/min (45.61 mmHg) 

compared to the ViVitro (82.65 mmHg), bi-leaflet (48.18 mmHg) and tilting disk (53.11 mmHg) 

valves.  The ViVitro valve had the greatest pressure drop across the valve except at a low CO 

of 3.6 L/min where the Glycar valve had a slightly larger pressure drop.  The tissue valve 

performance was the best overall for all the CO’s. 

 

Figure 4.1: Pressure drop for each prosthetic valve per test condition[60 BPM 60ml SV = CO of 3.6 L/min; 70 
BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml SV = CO of 6.4 L/min; 100 BPM 80 ml SV = CO of 8.0 
L/min; 120 BPM 80 ml SV = CO of 9.6 L/min] (mmHg = millimetre mercury, BPM = beats per minute, 
SV = stroke volume) 
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4.2.2 Effective orifice area (EOA) 

 

The EOA was calculated for each of the five valves and plotted against the different test 

conditions (Figure 4.2).  The tissue valve was a 19 mm valve because the valve was sponsored. 

 

The EOA of the ViVitro valve was lower than that of the other valves at 0.99 cm2.  The Glycar 

and tissue valve had the highest EOA of 1.885 cm2 and 1.884 cm2 respectively at a peak CO of 

9.6 L/min, followed by the tilting disk and bi-leaflet valves at 1.77 and 1.57 cm2 respectively. 

 

The bi-leaflet valve had the highest EOA at 2.002 cm2 (CO 3.6 L/min), however the EOA 

deteriorated as the CO increased to a low of 1.572 cm2 at a CO of 9.6L/min.   

 

All the valves performed well above the EOA requirement (0.85 for a 21mm valve) as stated 

in the ISO 5840:2015 standard. 

 

Figure 4.2: Pulse duplication: EOA and BPM:SV comparison between prosthetic heart valves per test 
condition [60 BPM 60ml SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml 
SV = CO of 6.4 L/min; 100 BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 L/min](cm2 
= square centimetre, BPM = beats per minute, SV = stroke volume) 
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4.2.3 Regurgitation fraction (RF) 

 

The regurgitation fraction (RF), shown in Figure 4.3 is the combination of the closing and 

leakage volume as a percentage of the SV.  The tissue valve had the largest RF for all test 

conditions, ranging from 16.3% (CO 8.0 L/min) to 25.6% (4.9 L/min).  The bi-leaflet valve had 

the lowest RF (0.72% - 3.42%) followed by the ViVitro valve (1.04% - 7.07%), the tilting disk 

valve (5.41% -13.06%) and the Glycar valve (9.84% - 12.72%). 

 

The RF is a combination of the closing volume and the leakage volume during the closed phase 

of a valve.  As the closing mechanism of each of the valves may influence the RF, the individual 

volumes of the closing and leakage volumes were analysed independently (Figure 4.4-4.5). 

 

Figure 4.3: Pulse duplication percentage regurgitation comparison between prosthetic valves per test 
condition[60 BPM 60ml SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml 
SV = CO of 6.4 L/min; 100 BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 
L/min](BPM = beats per minute, ml = millilitre, SV = stroke volume) 
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4.2.4 Closing volume 

 

The closing volumes for each valve during each test condition is shown in Figure 4.4.  The 

closing mechanics of the Glycar valve differs from the other valves, resulting in a significantly 

higher closing volume ranging from a minimum of 3.69 mL at a CO of 3.6 L/min, to a maximum 

of 6.89 mL at a CO of 8 L/min.  The tissue valve had acceptable closing volumes during all 

testing conditions of 0.56 – 0.85 ml, however a sharp increase in the closing volume was 

measured as the CO was increased from 8 L/min (0.85 ml) to 9.6 L/min (5.84 ml). 

 

The bi-leaflet valve closing volume ranged from 0.42 – 0.89 ml, the tilting disk valve 0.61 – 

2.59 ml and the ViVitro valve 0.39 – 2.99 ml. 

 

Figure 4.4: Pulse duplication closing volume comparison between prosthetic valves per test condition [60 
BPM 60ml SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml SV = CO of 6.4 
L/min; 100 BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 L/min](ml = millilitre, 
BPM = beats per minute, ml = millilitre, SV = stroke volume) 
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4.2.5 Leakage volume 

 

The leakage volume per beat for each valve at each test condition is shown in Figure 4.5.  The 

leakage volume of the tissue valve was responsible for the excessive RF measured during each 

of the test conditions ranging from 9.6 ml (CO 9.6 L/min) to 17 ml (CO 4.9 L/min).  The Glycar 

valve had a lower leakage volume (2-4 ml) than its closing volume (3.6-5.5 ml), as well as 

having a lower leakage volume than the tissue and tilting disk valves (2.7-7.3 ml).  The ViVitro 

and bi-leaflet valves had minor amounts of leakage at 0.15–3.08 ml and 0.015 to 1.99 ml 

respectively, which increased slightly at larger CO, however the leakage volume remained 

minimal. 

 

Figure 4.5: Pulse duplication leakage volume comparison between prosthetic valves per test condition [60 
BPM 60ml SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml SV = CO of 6.4 
L/min; 100 BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 L/min](ml/s = millilitre 
per second, BPM = beats per minute, ml =millilitre, SV = stroke volume) 
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4.3 ECHOCARDIOGRAPHIC RESULTS OF THE FIVE (5) PROSTHETIC HEART VALVES 

 

The testing conditions for the echocardiography tests were performed at the same test 

conditions as the pulse duplication and the results recorded simultaneously on the pulse 

duplicator.  The EOA and mean pressure difference provide the performance of the valve with 

echocardiography. 

 

4.3.1 Pressure drop 

 

The pressure drop determined from echocardiography is shown in Figure 4.6.  All valves apart 

from the ViVitro valve show a consistent increase in the pressure drop for a corresponding 

increase in CO.  The pressure drop decreased at a CO of 8 L/min for the ViVitro valve with 

recovery at 9.6 L/min.  The Glycar valve had the lowest overall pressure drop for a CO from 

4.9 L/min (4.46 mmHg) to 9.6 L/min (32 mmHg).   

 

Figure 4.6: Echocardiography measured pressure drop comparison between prosthetic valves per test 
condition [60 BPM 60ml SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml 
SV = CO of 6.4 L/min; 100 BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 
L/min](mmHg = millimetre mercury, BPM = beats per minute, SV = stroke volume) 
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4.3.2 Percentage difference: pressure drop 

 

The percentage difference between the pulse duplication and echocardiography pressure 

drop is shown in Figure 4.7.  A positive value in Figure 4.7 indicates that the pulse duplication 

value is greater than the echocardiography value.  The tissue and bi-leaflet valves’ pressure 

drop measured echocardiographically differs from the pulse duplicator between 11.4% and 

42.26% throughout the testing conditions and showed the highest consistency.  The tilting 

disk, bi-leaflet and Glycar valves exhibit large fluctuations when comparing the pulse 

duplication and echocardiography pressure drop, resulting in minimal correlation between 

the two measurements. 

 

Figure 4.7: Echocardiography percentage pressure drop comparison between prosthetic valves per test 
condition[60 BPM 60ml SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml 
SV = CO of 6.4 L/min; 100 BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 
L/min](BPM = beats per minute, SV = stroke volume, ml = millilitre) 
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The pressure drop for the bi-leaflet and tissue valve for both pulse duplication and 

echocardiography is shown in Figure 4.8.  There is a correlation between the pulse duplicator 

and echocardiography results, however the values do not match exactly.  The largest error 

recorded for both valves is 42.26%, with the echo over-estimating the pulse duplicator 

pressure drop.  Therefore, the pulse duplicator pressure performance of the valve was better 

than that measured echocardiographically on the pulse duplicator. 

 

Figure 4.8: Echocardiography vs.  pulse duplication pressure drop for bi-leaflet and tissue valve per test 
condition [60 BPM 60ml SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml 
SV = CO of 6.4 L/min; 100 BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 L/min] 
(mmHg = millimetre mercury, BPM = beats per minute, ml = millilitre, SV = stroke volume) 
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4.3.3 Effective orifice area (EOA) 

 

The EOA measured echocardiographically for each of the five valves is shown in Figure 4.9.  

The bi-leaflet and Glycar valves EOA showed better consistency across the CO range than the 

ViVitro, tissue and tilting disk valves.  The ViVitro valve EOA dropped drastically at a CO of 8 

L/min, similar to the sudden pressure drop of the ViVitro valve. 

 

 

Figure 4.9: Echocardiography EOA comparison between prosthetic valves per test condition [60 BPM 60ml 
SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml SV = CO of 6.4 L/min; 100 
BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 L/min](cm2millimetre square 
centimetre, BPM = beats per minute, SV = stroke volume) 
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4.3.4 Percentage difference of EOA 

 

The percentage difference of the EOA between the pulse duplicator and echocardiography is 

given in Figure 4.10.  All valves exhibit minimal correlation between the pulse duplication and 

echocardiography, with the difference ranging from 8.75% to 247.1% for all valves over all 

five CO conditions.  The EOA percentage difference of the tissue valve ranges from 73.1% to 

116.9%, whilst the bi-leaflet ranges from 84.0% to 142.9%.  The EOA error is much larger than 

the pressure drop error for the tissue and bi-leaflet valves. 

 

According to the data no definite correlation occurs between the echocardiography and the 

pulse duplicator data for the EOA.  There is a correlation of the pressure drop between the 

pulse duplicator and echocardiography for the tissue and bi-leaflet valve. 

 

 

Figure 4.10: Echocardiography percentage difference in EOA comparison between prosthetic valves per test 
condition [60 BPM 60ml SV = CO of 3.6 L/min; 70 BPM 70 ml SV = CO of 4.9 L/min; 80 BPM 80ml 
SV = CO of 6.4 L/min; 100 BPM 80 ml SV = CO of 8.0 L/min; 120 BPM 80 ml SV = CO of 9.6 
L/min](BPM = beats per minute, SV = stroke volume) 
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4.4 DISCUSSION 

4.4.1 Introduction 

 

In this study, the pulse duplication data of five (5) valves were compared during five (5) test 

conditions.  Pulse duplication data is rarely available in the literature and direct comparisons 

are therefore limited.  In order to establish a pulse duplication program at our institution, the 

ViVitro valve supplied with the pulse duplicator as a reference valve was compared to three 

commercial valves, namely a bileaflet mechanical valve (Carbomedics bi-leaflet, Sorin 

medical), a tilting disc mechanical valve (Medtronic-Hall, Medtronic medical), and a tissue 

valve (Perimount, Edwards medical).  Additionally, pulse duplication data of a re-engineered 

poppet valve (Glycar) was obtained.  The data was analysed to obtain comparative data 

between the commercial valves.  All of the data was analysed according to FDA and ISO 

standards. 

 

This study looked at comparative data between echocardiography and pulse duplication data 

in the bench testing setting in order to evaluate the possible application in in vivo studies.  

This may have an application in valve evaluation and design situations where comparative 

data is available to extrapolate the performance of the valve in vitro to the performance of 

the valve in vivo.  We therefore attempted to find a relationship between pulse duplication 

generated data and the findings of the echocardiography data. 

 

4.4.2 Pulse duplication 

 

4.4.2.1 Pressure Drop 

The ViVitro valve exhibited the highest pressure drop across the valve.  However, the ViVitro 

valve is not designed for implantation in humans but rather to test the pulse duplicator setup 

and is therefore used as a reference valve.  The valve has a flat, un-aerodynamic disc occluder 

that result in higher energy loss across the valve, and therefore a higher pressure drop. 

 

The mechanical bi-leaflet had a very high pressure drop at a CO of 3.6 L/min of 6.65 mmHg 

with a high of 48.18 mmHg and could be due to the geometric orifice size of the valve.  The 
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21mm bi-leaflet valve has a cross-section diameter of 16.7mm across the widest diameter 

and 14.66mm in length from hinge to hinge (Figure 4.11). 

 

Results found by Haaf et al. (2009) on a 20mm St. Jude Medical bi-leaflet valve had a pressure 

drop of 16.7 mmHg at 60 BPM and 73 ml SV.  This is larger than the bi-leaflet valve used in 

this study with a pressure drop of 6.65mmHg and 14.16mmHg at 60 BPM 60 ml SV and 70 

BPM 70 ml SV respectively.  The difference could be due to a completely rigid setup used by 

Haaf et al. (2009) whereas the ViVitro pulse duplicator has compliance chambers to better 

mimic physiological conditions.  Haaf et al. (2009) also showed a pressure drop of 17.9mmHg 

for a 20mm Hall-Kaster Tilting Disk Medtronic-Hall, compared to 4.69mmHg and 18.63mmHg 

at 60 BPM 60 ml SV and 70 BPM 70 ml SV respectively in this study. 

 

Reul et al. (1993) performed pulse duplication on four different bi-leaflet valves with an 

annulus diameter of 27mm.  All four valves had a pressure drop of less than 2mmHg at the 

lowest cardiac outputs, which may be attributed to the significantly larger valve. 

 

The tissue valve outperformed all the other valves when referring to the pressure drop.  As 

the CO increased the subsequent increase in the pressure drop was the lowest of all the valves 

and at a maximum CO of 9.6 L/min the pressure drop was only 32 mmHg (well below the 

other valves). 

 

 

Figure 4.11: Bi-leaflet valve internal diameter measurement 
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The pressure drop across the Glycar valve was the largest at a CO of 3.6 L/min, however as 

the CO increased the increase of the pressure drop was lower compared to the bi-leaflet and 

tilting disk valves but greater than the tissue valve. 

 

4.4.2.2 Effective orifice area (EOA) 

The EOA provides an indication of the ease of a valve to allow fluid to flow through a valve by 

relating the root mean square of the flow rate with the pressure drop.  Therefore, a larger 

EOA represents a better functioning valve and therefore a better valve design. 

 

The EOA for the tissue, Glycar and tilting disk valves all increased with an increase in CO, 

showing much different behaviour to the performance of the bi-leaflet and ViVitro valves 

where the EOA decreased.  The EOA tends to stabilise between a CO of 8L/min to 9.6L/min 

for all valves apart from the tissue valve where the valve has an increase in EOA. 

 

It is interesting to note that even with an increase in pressure drop, the EOA still increased for 

the Glycar, tissue and tilting disk valves.  By looking at the formula for the EOA, the EOA is 

influenced by the flow through the valve and the pressure drop.  As the EOA increased for the 

Glycar, tissue and tilting disk valves, the ability of the fluid to flow through the valve was 

superior to the increase in the pressure drop.  This is opposite what occurs in the bi-leaflet 

and ViVitro valves, where the much smaller diameter of the bi-leaflet valve, and the flat plate 

shape of the ViVitro valve, influence the fluid flow ability and pressure drop. 

𝐸𝑂𝐴 =  
𝑄𝑟𝑚𝑠

51.6√
∆𝑃

𝜌

s   (ISO 5840:2005) 

However, even the ViVitro valve that have, in comparison to the other valves, a very poor 

performance, all of the tested valves performed well above the ISO 5840:2015 cut-off of  

0.85 cm2 for a 21-mm mechanical prosthetic heart valve as required for FDA and CE 

registration. 

 

Haaf et al. (2009) reported on the EOA of prosthetic valves, however the values were obtained 

observationally by determining the orifice area of the valve at peak systole visually and not 

according to the current ISO and FDA requirements.  The EOA was not reported by Reul et al. 

(1993). 
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4.4.2.3 Regurgitation fraction (RF) 

The Glycar valve had a high RF and this can be ascribed to the poppet design of the valve.  The 

closing volume of the valve (ranging from 3.7 mL to 6.9 mL) was the highest of all the valves 

but the leakage volume was very low, therefore resulting in a relatively high RF.  There was 

also no direct relationship between the closing volume and the CO.  The Glycar valve functions 

as a type of poppet, where the fluid that does not fully flow around the poppet during systole 

sits beneath the poppet as the flow rate becomes zero, and eventually flows back down at 

the start of diastole with the poppet.  This behaviour was noted and confirmed through 

particle imaging velocimetry tests (Davis et al., 2016 unpublished data), where the poppet 

moved with the same velocity as the fluid around it during closing.  Once the poppet is seated 

on the housing the valve has minimal leakage. 

 

The tissue valve on the other hand had a high RF due to a high leakage volume.  As the CO 

increased the closing volume also increased contributing to the high RF at a high CO.  As part 

of the tissue valve design a regurgitation of up to 10% is allowed.  The large value of the tissue 

valve leakage volume was due to a paravalvular leak.  Attempts were made to limit the 

expected leakage volume by creating a specific fitting to house the tissue valve, however the 

leakage volume still remained much larger than the closing volume due to excessive 

movement of the tissue valve inside the fitting, creating gaps for paravalvular leaks. 

 

The RF of the bi-leaflet and ViVitro valve was extremely small due to the efficient sealing of 

the leaflets with the valve housing, resulting in extremely low leakage volumes.  The thin 

leaflets of the bi-leaflet valve form a firm seal between the leaflets and the housing, where 

the spring-loaded plate of the ViVitro valve forms a quick and efficient seal, vastly improving 

on the leakage volume.  The valve closing action is rapid and early during the first phase of 

valve closure resulting in very low closing volumes. 

 

Haaf et al. (2009) reported the highest volume regurgitation on the Hall-Kaster Tilting Disk 

valve at 10.2ml and 8.5ml for the St. Jude bi-leaflet valve.  The bi-leaflet valve had a total 

regurgitation volume of 0.4 and 0.69ml at 60 BPM 60 SV and 70 BPM 70 SV respectively, 

where the tilting disk valve had a total regurgitation volume of 3.2ml and 9.1ml at 60 BPM 60 

SV and 70 BPM 70 SV, respectively. 
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Reul et al. (1993) showed that the RF varied greatly from a low CO to a high CO, ranging from 

24% to 7.5% for CO from 3L/min to 8L/min.  This observation is counter to that found in this 

study, where the RF increased for the bi-leaflet and ViVitro valves, and showed an increasing 

tendency for the Glycar and tilting disk valves, except for the RF at 70 BPM 70 SV. 

 

4.4.3 Echocardiography 

 

4.4.3.1 Pressure Drop 

The echocardiographic results for the pressure drop showed a consistent rise for a 

corresponding increase in the CO, similar to that of the pulse duplicator, apart from the 

ViVitro valve at 8 L/min.  However, by examining the percentage difference between the pulse 

duplicator and echocardiographic pressure drop (Figure 4.7) the Glycar, tilting disk and ViVitro 

valve showed no comparison.  The difference in pressure drop between the pulse duplication 

and echocardiography varied by a minimum of 11.4% and a maximum of 42.26% in line with 

literature (Arabia et al., 1989; Stewart et al., 1991). 

 

A further examination of the difference between the pulse duplicator and echocardiography 

was performed between the tissue and the bi-leaflet valves, with the results shown in Figure 

4.8.  There is an almost linear increase in the pressure difference between the 

echocardiography and pulse duplication results for the pressure drop.  The correlation 

between pulse duplication and echocardiography is promising for the comparison of only 

specific valve data measured in vivo. 

 

An evaluation of echocardiography and pulse duplication results of heart valves were 

performed by Johnston et al. (1992).  However, the echocardiography was not performed on 

the pulse duplicator, but instead on resting patients.  Johnston et al. (1992) reported a good 

correlation between the results obtained using pulse duplication and those obtained using 

echocardiography on patients. 
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4.4.3.2 Effective orifice area (EOA) 

The results for the EOA measurements using echocardiography revealed relatively flat EOA 

values apart for the ViVitro valve, as also seen in the pulse duplication results.  However, the 

magnitude of the EOA values are not equivalent.  This is verified by examining the percentage 

difference of the pulse duplication and echocardiography for the EOA.  The average difference 

between the pulse duplication and echocardiography EOA value for the tissue valve is 

approximately around 100% and showed the most consistency for all of the valves. 

 

A potential reason for the inaccuracy of the echocardiography results in a pulse duplicator 

could be due to the setup with the continuous wave setting.  The continuous wave projects 

the ultrasound in a line down the centre of the tube, through the centre of the valve as shown 

in Figure 4.12.  For the tissue valve and bi-leaflet valve, it is possible for the continuous wave 

to go right through the centre of the valve, but without going through the valve itself.  This is 

not possible for the ViVitro, tilting disk and Glycar valve.   

 

 

Figure 4.12 Echocardiographic continuous wave propagation through the five valves 

  

Tissue Bi-leaflet ViVitro Tilting Disk Glycar 
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CHAPTER 5 CONCLUSION 
 

 

 
Heart valve surgery and valvular heart disease still pose a significant threat to patients 

worldwide.  Pulse duplication is widely accepted as a valid method to determine the 

performance of heart valves during their development.  Few specialised centres exist to 

perform pulse duplication tests accurately in accordance to the required ISO and FDA 

standards for cardiovascular implants.  Real-time patient data of prosthetic heart valves is 

however not obtained with pulse duplication but with echocardiography.  Modern day pulse 

duplicators come equipped with viewing chambers that can allow for echocardiographic 

measurements.  The purpose of this study was to perform pulse duplication and 

echocardiography simultaneously on five (5) different prosthetic heart valves using a 

commercial ViVitro pulse duplicator. 

 

The pulse duplication results show that all five (5) valves meet the ISO standard for the 

minimum EOA value of 0.85 for 21mm prosthetic aortic valves.  The EOA relates the ability of 

fluid to flow through the valve by relating the volumetric flow rate to the pressure drop.  The 

pressure drop is not an ISO requirement individually, as the pressure drop is included in the 

EOA calculation.  The bi-leaflet, tilting disk and ViVitro valve all met the RF requirement of 

10% for 21mm aortic valves, apart from the tilting disk at a CO of 4.9L/min.  The RF of the 

Glycar valve was slightly larger (9.84% to 12.72%) than the minimum required 10% apart from 

at the lowest CO where the RF was 9.84%.  The leakage volume for the Glycar valve was 

minimal, and the closing volume largely contributed to the RF.  A possible reason for the 

higher closing volume was due to the function of the Glycar valve, which acts like a type of 

plunger, where the fluid beneath the poppet flows back into the ventricle at the start of 

diastole. 

 

The tissue valve had significantly higher RF (16.38% to 25.44%) attributed to the leakage 

volume.  The leakage volume was due to expected para-valvular leaks, to which new fittings 

CHAPTER 5  
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to house the tissue valve were made to address the leakage.  The echocardiography pressure 

drop results were comparable with the pulse duplication data for the bi-leaflet and tissue 

valve only.  The results differed between 11.4% and 42.26%, which is in line with published 

literature where the reported difference is no more than 50%.  The EOA results from the 

echocardiography were not comparable to the pulse duplication data for any valve.  We 

speculate that the shape of the valve influences the echocardiographic results, as the tilting 

disk, Glycar and ViVitro valves all have an obstruction in the continuous wave line when 

performing echocardiographic measurements.   

 

To conclude, there is no absolute comparison between pulse duplication and 

echocardiographic measurements performed simultaneously on the same pulse duplicator.  

A comparison could only be made for the pressure drop of the bi-leaflet and tissue valve.   

 

5.1 Limitations 

 

Current limitations of the study are para-valvular leaks and operator dependant 

echocardiographic results. The leakage volume of the tissue valve was much higher than the 

other four valves. As the pulse duplicator has a silicon rubber clamped between the housing 

of the pulse duplicator, a fitting was manufactured to allow the tissue valve to fit into the 

silicon rubber. However, the leakage volume was still significant and a new design must be 

considered to reduce the para-valvular leak. The echocardiographic results were also highly 

user dependant, based on the angle of the transducer and distance from the valve. The test 

was setup to minimise the user dependant errors. 

 

5.2 Recommendations 

 

Further studies would be to redesign the echocardiographic viewing chambers to allow for 

measurements to be extracted perpendicular to the flow using pulse and continuous wave 

echocardiography. This could allow for measurements to be performed without any 

obstructions from the valve, however errors may be introduced with selecting measurement 

points for the pulse wave echocardiography and would require further investigation. 
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