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Abstract 

Automatic Guided Vehicles (AGVs) are being used more frequently in a manufacturing 

environment. These AGVs are navigated in many different ways, utilising multiple types 

of sensors for detecting the environment like distance, obstacles, and a set route. Different 

algorithms or methods are then used to utilise this environmental information for 

navigation purposes applied onto the AGV for control purposes. Developing a platform 

that could be easily reconfigured in alternative route applications utilising vision was one 

of the aims of the research. 

In this research such sensors detecting the environment was replaced and/or minimised by 

the use of a single, omnidirectional Webcam picture stream utilising an own developed 

mirror and Perspex tube setup. The area of interest in each frame was extracted saving on 

computational recourses and time. By utilising image processing, the vehicle was 

navigated on a predetermined route.   

Different edge detection methods and segmentation methods were investigated on this 

vision signal for route and sign navigation. Prewitt edge detection was eventually 

implemented, Hough transfers used for border detection and Kalman filtering for 

minimising border detected noise for staying on the navigated route.  

Reconfigurability was added to the route layout by coloured signs incorporated in the 

navigation process. The result was the manipulation of a number of AGV’s, each on its 

own designated coloured signed route. This route could be reconfigured by the operator 

with no programming alteration or intervention. The YCbCr colour space signal was 

implemented in detecting specific control signs for alternative colour route navigation. 

The result was used generating commands to control the AGV through serial commands 

sent on a laptop’s Universal Serial Bus (USB) port with a PIC microcontroller interface 

board controlling the motors by means of pulse width modulation (PWM). 

A total MATLAB
®
 software development platform was utilised by implementing written 

M-files, Simulink
®
 models, masked function blocks and .mat files for sourcing the 

workspace variables and generating executable files. This continuous development 
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system lends itself to speedy evaluation and implementation of image processing options 

on the AGV. 

All the work done in the thesis was validated by simulations using actual data and by 

physical experimentation. 
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Abstrak  

Geoutomatiseerde Geleide Voertuie (GGVs) word al hoe meer dikwels gebruik in ’n 

produksie-omgewing. Hierdie GGV’s navigeer op baie verskillende maniere, met behulp 

van verskeie vorme van sensors vir die identifisering van hul omgewing soos afstand, 

hindernisse en ’n vasgestelde roete. Verskillende algoritmes of metodes word dan gebruik 

om hierdie omgewingsinligting vir navigasie toe te pas op die GGV en vir beheer 

doeleindes aan te wend. Ontwikkeling van ’n platform wat maklik aangepas kan word vir 

die gebruik op alternatiewe roete toepassings deur gebruik te maak van visie was een van 

die doelwitte van die navorsing. 

In hierdie navorsing is hierdie omgewingsidentifiseringsensors vervang en/of verminder 

deur gebruik te maak van ’n enkele, omnidireksionele kameraprentjie stroom met ’n eie 

ontwikkelde spieël en perspexbuis opstelling. Die area van belang in elke prentjie raam is 

benut vir ’n besparing op rekenaarhulpbronne en prosesseringstyd. Deur gebruik te maak 

van beeldverwerking is die voertuig genavigeer op ’n voorafbepaalde roete. 

Verskillende rand-opsporingmetodes en segmenteringsmetodes is ondersoek op hierdie 

visie sein vir roete- en tekennavigasie. Prewitt randopsporing is uiteindelik 

geïmplementeer, Hough oordragfunksies is gebruik vir die grens-opsporing en Kalman 

filtrering vir die vermindering van die grens opgespoor geraas om op die roete te bly 

navigeer. 

Herprogrammeerbaarheid is bygevoeg in die roete-uitleg deur van gekleurde tekens in die 

navigasie-proses gebruik te maak. Die resultaat was die manipulasie van ’n aantal GGV's, 

elk op sy eie aangewese gekleurde-teken roete. Hierdie roete kan aangepas word deur die 

operateur met geen programmeringsverandering of -ingryping nie. Die YCbCr 

kleurkaartsein is geïmplementeer in die opsporing van spesifieke beheer kleur tekens vir 

’n alternatiewe roete navigasie. 

Die navigasie uitkoms is gebruik om die bevele te genereer vir die beheer van die GGV 

deur seriaal die beheer opdragte vanaf ’n skootrekenaar te stuur op die Universele Seriële 

Bus (USB) poort met ’n PIC mikrobeheerderkoppelvlakbord vir die beheer van die 

motors deur middel van pulswydte modulasie (PWM). 
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In totaliteit is ’n MATLAB
®
 sagteware-ontwikkelingsplatform gebruik deur die 

implementering van geskrewe M-lêers, Simulink
®
 -modelle, gemaskerde funksieblokke 

en .matlêers vir die voorsiening van die werkplekveranderlikes en generering van 

uitvoerbare lêers. Hierdie voortdurende ontwikkelingstelsel leen hom tot vinnige 

evaluering en implementering van die beeldverwerking opsies deur die GGV. 

Al die werk wat gedoen is in die proefskrif is bevestig deur simulasies met behulp van 

werklike data en deur fisiese eksperimentering. 
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 Chapter 1  

Introduction 

 

This chapter gives an overview of the research problem, aim, methodology, 

and hypothesis with the chapter layout necessary to develop and report on a 

reconfigurable Automatic Guided Vehicle (AGV), capable of sensing the 

environment and to navigate in a small pseudo-manufacturing setup. 

 

1.1 Preface 

The operation of Automatic Guided Vehicles (AGVs) involves several aspects, including 

its power source, environmental detection and its drive system to name a few. One of 

these is object observation and/or recognition. Infrared sensing, ultrasonic and whisker 

sensors are but a few sensing techniques used for detecting objects in the path of an AGV 

as well as the distance to the object [1, p. 2]. 2-D and 3-D images are also used to obtain 

the distance to and information about an object in the way of a functioning AGV [2, pp. 

157-160]. Cameras, with associated image processing techniques, can improve the quality 

of information provided to the AGV due to the unique versatility of vision. However, it 

presents particular challenges, as it requires acquisitioning techniques dependent on a 

changing environment and a tremendous amount of image processing. Depending on the 

application, thermal images and the like – which will not form part of this research 

project – can also be utilised in meeting specialised sensing requirements [3]. 
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1.2 Motivation and objective of thesis 

Infrared sensing, ultrasonic and whisker sensors, to name a few, are becoming 

increasingly inadequate in sensing the environment for navigation. Using vision, more 

information is available for controlling the AGV. The first objective of the research 

project was to investigate the possible use of a single digital camera to secure 

omnidirectional (360°) vision for an AGV. In this manner, images of the environment 

around the vehicle would be acquired dynamically to facilitate automated guidance of the 

AGV in a predominantly set environment.  

A reconfigurable solution for manufacturers could be the reprogramming of such a 

vehicle for utilising alternative routes and keeping the operators programming input to a 

minimum, rather that implementing altering conveyor systems to transport the goods. 

 

1.3 Hypothesis 

Omnidirectional machine vision and image processing can be utilised to optimise the 

environmental sensing capability of an AGV in order to facilitate effective control of the 

vehicle. Such a vision or similar vision system should also facilitate the successful 

incorporation of programmed and unprogrammed reconfigurable movement by the AGV. 

 

1.4 Methodology of research 

In obtaining such a reconfigurable AGV system; vision, an AGV platform and a 

reconfigurable control system were identified as essential elements. 

Vision 

With digital image acquisitioning and processing, the resolution of pictures is very 

important. Hence, careful consideration will be given to the determination of the optimum 

resolution required for the system as proposed, taking into account the minimum required 

quality of vision required by an AGV. The associated image processing requirements, as 

well as commercially available industrial and non-professional cameras will also be 

investigated. Due consideration of these characteristics should enable determining a 
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suitable machine vision configuration. The maximum speed of the AGV will be a 

function of the processing speed of the vision system and, thus, a function of the 

computer hardware and software utilised.  

A horizontally positioned, suitable shaped reflector, reflecting an omnidirectional image 

of the AGV’s immediate environment onto the camera’s sensor, is contemplated. The 

reflector size, shape and placement – relative to the position of the camera and its lens – 

will play an important role in the quality and nature of images acquired. These 

characteristics will have to be optimised mathematically and the satisfactory functioning 

of the comprehensive optical system verified experimentally [2, pp. 157-160][4, p. 53]. 

Visual identification of any physical object entails the identification of a substantial 

correlation between a perceived entity and its physical equivalent. Hence, the first 

objective of the optical configuration would be to process the acquired image such as to 

obtain an accurate image of the camera’s immediate surroundings – enabling the 

substantive identification of known physical phenomena. This would necessitate image 

correction by means of significant signal processing algorithms. An example of this in 

ordinary photography is with the use of fish-eye lenses where the distorted image is 

mentally transformed by the human viewer into its real format. This technique will be 

modelled in the project using MATLAB
®
 before being implemented on a practical model. 

Finally, having obtained a suitable image, possible ways to minimise the amount of 

processing required, enabling real-time vision by the AGV, will be studied. This will 

include ascertaining whether it is viable to teach such a system to recognise the size, 

distance from and patterns of particular, predefined objects by using intelligent algorithms 

like Neural Networks, Genetic Algorithms or other optimisation techniques that might 

prove to be suitable for this application [5]. 

AGV platform and control 

A suitable platform/s need to be used and selected. The AGVs have to be controlled in a 

reconfigurable way with no need for the operator to change the program or with minimal 

programming changes. 

 

 



 1.5  Outline of thesis 4 

 

 

 

Reconfigurable System 

A reconfigurable system as referred to in the study refers to an AGV moving from one 

point to another on a set route, which could be changed to another origin/destination in 

another sequential run with minimal or even no software changes or alterations.  

 

1.5 Outline of thesis 

The flowchart in Figure 1.1 shows the basic outline of the Thesis. Theory utilised in the 

research covering vision, AGVs, and control is discussed. The methodology of the 

research is addressed. The aim of the research was not only to develop an omnisensor, but 

to look at using vision in a reconfigurable control manner. 

The results are noted, evaluated and discussed with a conclusion on the study and 

results obtained. 

 

Introduction to the thesis covering the topics: 

motivation and objective of the research, 

hypothetical solution, methodology of the research 

and outline of the research. 

(Chapter 1) 

 

Identifying the vision, AGV, control 

research areas with possible 

solutions and covering the theory as 

background to the research. 

(Chapter 2) 

 

Development and research of the omnisensor, 

navigation of the AGV with re-configurability. 

(Chapter 3 and 4) 

 

Results obtained and the 

evaluation thereof. 

(Chapter 5) 

 

Conclusion of the research and findings 

with prospects for further research. 

(Chapter 6) 
 

Figure 1.1: Outline of thesis including research phases 
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 Chapter 2  

Omnidirectional vision, AGV navigation 

and control 

 

This chapter gives an overview of the proposed systems necessary to sense the 

environment of an Automatic Guided Vehicle (AGV), navigation thereof and 

the control of a specific platform in performing its predefined duties. Only the 

theories relevant and seemingly important for this study are discussed.  

 

2.1 Introduction 

In this chapter the topics for vision, AGV navigation and control are addressed as 

background for the research.  

Figure 2.1 gives an outline of the whole process. 

Vision input 

  

Image correction 

  

Technologies for object recognition and navigation 

  

AGV platform and control 

 

Figure 2.1: Flowchart of research outline as seen for the research process 
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Figure 2.2 is depicting the concepts as a visualisation of the possible solutions and 

directions used and investigated for the research to obtain the goal depicted by the 

project’s goal and hypothesis. The topics covered were selected as seemingly the most 

suitable for the planned research converting an image into identifiable objects or routes 

and tracking their movement relative to the AGV for navigation and control purposes. 

 Vision sensing   Section 

2.2 

 

 

 

2.3 

2.3.1 

2.3.2 

 

 

 

 

 

2.4 

 

2.4.1 

2.4.2 

2.4.3 

2.4.4 

2.4.5 

2.4.6 

2.4.7 

2.4.8 

 

2.5 

2.5.1 

 

2.5.2 

2.5.3 

2.5.4 

2.5.5 

 

2.5.6 

 

2.5.7 

 

 

2.5.8 

2.5.9 

 

2.6 

   

Image correction 

Choice of camera system 

 

 

Omnidirectional system   

Conversion of image  Single and/or multiple facing cameras 

Calibration of image 

   

Technologies for object recognition and navigation 

 

Object or surrounding recognition  Route identification 

Detecting objects and their boundaries  Detecting the route or for 

localisation used in navigation.  boundaries for navigation. 

Edge detection for object and route recognition 

Identifying objects and routes by investigating different operators. 

 Roberts    

 Laplace   

 Prewitt   

 Sobel   

 Robinson   

 Kirsch    

 Canny edge    

 Dilation and erosion 

 

Detecting images or positioning of objects in a frame for navigation 

 Using colour in detecting signs and /or objects – Chroma base detection, by utilising 

colour space conversion (CSC) 

 Segmentation for localising the object. 

 Correlation for identifying the object. 

 Bounding boxes for tracking the object. 

 Optical flow of objects in a frame – detecting which is the object to use as this is a 

moving environment. 

 Hough transform for circles and/or lines for determining objects or the route from 

using the edges determined. 

 Kalman filtering for selecting the correct line or objects detected. 

 

Train system to identify the objects or signs utilising two options: 

 Neural Networks. 

 Genetic Algorithms. 

 

   

 AGV control 

Utilising the information of the surroundings 

to generate code to control the platform. 

  

Figure 2.2: Flowchart of research concepts and routes taken for reaching the 

research goal placing the work discussed in  Chapter 2 in context 
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Work done in AGV navigation and control by the Research Group in Evolvable 

Manufacturing Systems (RGEMS) at the CUT, Free State is discussed. Possible 

alternatives to be investigated in obtaining reconfigurable navigation are also looked at. 

 

2.2 Vision concept 

Machine vision (MV) is used on the AGV, replacing the more traditional distance and 

environmental scanning devices mentioned by Fend et al. [1, p. 2]. The vision system 

implemented must then give a more detailed picture of the environment for navigation 

and control of the AGV. 

A problem in discarding scanning devices and distance sensing is the loss of depth 

perception in using a 2D picture as can be seen in Figure 2.3. The object may no longer 

appear to be its real size. 

 

 
Figure 2.3: The loss of size and depth perception on a 2D image 

 

Figure 2.4 gives a more detailed background of the aim to be achieved by vision sensing. 

The environment of the AGV captured in the first scene is converted into a digital image 

where processing needs to take place, extracting the features and/or objects necessary for 

navigation and control [6, p. 6]. 
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Objects

or a scene

2D image

Digital

Image

Scale

Images with

features

Objects

Edges
Interest

points
Regions Texture

Understanding objects

From features to objects

From images to features

Image digitization

From objects to images

 

Figure 2.4: Levels of image processing used in the identification of objects for 

processing 

 

2.3 Omnidirectional sensing 

In omnidirectional sensing the capture of the environment, and the conversion and 

implementation of the image form the crucial parts of the study background. The 

omnidirectional background is based on a hyperbolic mirror setup. A similar 

configuration was also implemented in previous research done in the RGEMS group. 

The hyperbolic mirror setup can clearly be seen in Figure 2.5 [7, p. 58]. 
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Figure 2.5: AGV with hyperbolic mirror setup 

 

The Taylor model, discussed by Scaramuzza [4, p. 23], was originally evaluated to be 

used for the omnidirectional conversion in the research. There are, however, a variety of 

models to choose from for developing omnidirectional vision, including the linear model 

[4, p. 20] and an derivative of such a linear model by Swanepoel [7, pp. 65-66]. Figure 

2.6 depicts a 2D model representation of such a setup.  

 
Figure 2.6: Example of a vision system satisfying the single viewpoint property of 

an omnidirectional camera with a hyperbolic mirror [4, p. 11] 
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2.3.1 The Taylor model 

A little bit of background to the Taylor model is given in this section as this was the 

original model the omnidirectional conversion was based on. The Taylor model is a 

unified model for dioptric and catadioptric central omnidirectional cameras derived by 

Scaramuzza et al. which is suitable to different kinds of vision sensors [8][9]. 

Equation (2.1) shows the transfer function for the Taylor model based on the variables 

depicted in Figure 2.7 [4, p. 24]: 

        
  

       
      (2.1) 

where p” is the projected image point, u” is the mapped point, g represents the function of 

the lens, P is the projection matrix and X represent a scene point passing through an 

optical centre of a camera, utilising a scaling parameter     [10, p. 229]. 

 

 
 (a) (b) 

Figure 2.7: (a) Coordinate system in catadioptric case; (b) Sensor plane and 

conversion 

 

In [8] the proposed polynomial for   is given as: 

                                       (2.2) 

 

where the coefficients            and the polynomial degree n are calibration 

parameters. Calibration was investigated, because calibration seemed necessary in the 

conversion process of omnidirectional pictures. 
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2.3.2 Calibration of omnidirectional pictures 

Calibration problems occur in different camera setups as Aliaga [11, pp. 127-134] 

explains in his catadioptric system with a parabolic mirror and an orthographic lens to 

produce an omnidirectional image with a single centre-of-projection. This setup can be 

seen in Figure 2.8. 

 

 
Figure 2.8: Camera setup of Aliaga with parabolic mirror and acrylic half sphere 

on a video camera [11] 

 

The model is based on the following equation with respect to Figure 2.9 indicating the 

variable parameters. Calibration is needed because of possible reflective errors where the 

focal centre point overshoots at c: 

 

   
      

  
 

  

    
    (2.3) 

 

where d is the actual distance, pz is the given points height, mr is the radius vector of point 

m, mz is the height at this point and α the angle. 
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Figure 2.9: Aliaga’s model, which allows accurate computation between the focal- 

and 3D point 

 

This is, however, only one adaptation and there are many other calibration techniques to 

choose from or to modify depending on the application, as Scaramuzza proved with his 

checker board correction [4, p. 35]. 

 

2.4 Edge detection for object and route recognition 

Figure 2.4 indicates that edge detection can be an interim stage between the digital image 

detection and identification of an image with features to be used in image processing. 

Edge detection is thus an integral step in identifying the edges of a possible route to be 

followed by the AGV. Edge detection is done on a binary or greyscale image represented 

by pixel information. 

Images contain a lot of features that could be detected or changed to a perceived edge as 

Figure 2.10 indicates [6, p. 133]. There are many different apparent edges but the user 

must decide which to use and/or if it is a proper edge. 
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surface discontinuity 

 

highlights 

 

surface colour and texture 

 

shadow and illumination 

 

 (a) (b) 

Figure 2.10: (a) Original image with edges due to different phenomena; (b) 

Detected edges by means of the Sobel operator 

 

Sonka et al. discussed the gradient operator of edge detectors as belonging to one of three 

categories [6, p. 135]: 

1. Image functions using differences in the approximation of derivatives obtained 

from masks (simple patterns). 

2. Operators on the zero-crossing of a function derivative of an image. 

3. Operators attempting to match a function to a parametric model of edges. 

The following paragraphs give a short overview of the different operators used and 

evaluated for edge detection. These operators were investigated in the research project 

identifying its differences, mainly indicated by their convolution masks. The Prewitt 

operator was used extensively because of its direction gradient property. 

 

2.4.1 Roberts operator 

The Roberts operator is one of the oldest and first to be developed. It is based on a 2 x 2 

neighbourhood of pixels format system [12]. The operator is to approximate the gradient 

of an image as could be seen in the diagonally adjacent pixels of its convolution masks 

hx: 

     
  
   

      
  

   
  (2.4) 
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and the magnitude of the edge is computed as, 

                                         (2.5) 

where g depict the specified pixel at location i and j. 

The Roberts operator do not perform well with a noisy picture because of the low number 

of pixels used in the operator, but due to use of this small amount of pixels it’s also one of 

the faster operators. 

 

2.4.2 Laplace operator 

The Laplace operator is an approximation of the second derivative giving the gradients 

magnitude. A 3 x 3 convolution mask is often used for 4-neighborhood pixels and 8-

neighborhoods pixels and defined as: 

     
   
    
   

     
   
    
   

   (2.6) 

The disadvantage of the Laplace operator is the doubt of a real edge in some instances [6, 

p. 136]. It also is a much larger matrix consuming more processing time. 

 

2.4.3 Prewitt operator 

The Prewitt operator detects edges using the approximation of the first derivative 

returning those points where the gradient value is a maximum. The gradient estimation 

for a 3 x 3 mask is done in eight possible directions. The convolution result of the greatest 

magnitude indicates the direction gradient. Equation (2.7), representing the operators 

convolution mask, illustrates this scenario described above by looking at the location of –

1, 0 and 1 in the mask [6, p. 136]. 

      
   
   

      
       

   
    
     

         
   
    
     

  (2.7) 
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The Sobel-, Robinson- and Kirsch operators are similar to the Prewitt operator, although 

the Prewitt operator were extensively used as it proved, by means of experimentation, to 

be the better operator for the research. 

 

2.4.4 Sobel operator 

As an example, the Sobel operator can be used in detection of horizontal and vertical 

edges, depicted by 0, utilizing only the convolution mask h1 and h3 from the available 

three directions: 

      
   
   

      
       

   
    
     

       
    
    
    

  (2.8) 

This means that if    is represented by x and    by y, the edge strength/magnitude is 

derived by [6, p. 137]: 

        (2.9) 

which is also the case in many of the other operators as it is achieved by computing the 

sum of the squares of the differences between adjacent pixels. 

 

2.4.5 Robinson operator 

As with most of the operators, this operator is also direction specific as can be seen from 

the convolution masks, viewing the position of -1 and 1 with respect to -2: 

      
   
    

      
       

   
     
     

       
    
     
    

     (2.10) 

 

2.4.6 Kirsch operator 

The Kirsch operator is direction specific but emphasis is placed on the gradient [6, p. 

138]. This is similar to the Prewitt operator but different to the magnitude of the mask and 

distinct difference of the values of 3 and –5 with respect to 0. 
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  (2.11) 

 

2.4.7 Canny edge detection 

Canny proposed an approach based on detection, localisation and one-response-criterion 

meaning that multiple detections could be taken as a single edge [13][14][15]. 

The Canny edge detector algorithm is based on seven steps [6, pp. 144-146]: 

1. Convolve an image with a Gaussian scale. 

2. Estimate local edge directions using an equation for each pixel in the image. 

3. Find the location of the edges. 

4. Compute the edge strength based upon the approximate absolute gradient 

magnitude at the location. 

5. Threshold edges in the image with hysteresis to eliminate spurious responses. 

6. Repeat steps 1 to 5 for ascending values of the standard deviation. 

7. Aggregate the final information for the edges on a greater scale using the “feature 

synthesis” approach. 

The differences were marginal but could be illustrated using Figure 2.10, with the base of 

the bottle as area of interest. Figure 2.11 illustrates the major difference in using the 

Roberts operator with a small pixel footprint, resulting in non-continuous lines, against 

the Prewitt with more substantial edges (mainly utilised and evaluated in the research) 

versus the Canny edge where multiple detections could be taken as a single edge, 

resulting in more unwanted edges in this scenario. 

 

   
(a) (b) (c) 

Figure 2.11: Results obtained by utilising different operators viewing only a section 

of the image used in Figure 2.10(a) – (a) Roberts operator result; (b) 

Prewitt operator result; (c) Canny edge result 
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2.4.8 Dilation and erosion 

Assume that a binary picture is used, where the black pixels constitute the image and the 

white pixels are the background. Dilation could be described by an increase of black 

pixels, and erosion as a decrease of black pixels, best illustrated by Figure 2.12. Edge 

detection could also be accomplished by subtracting the eroded image from the original as 

can be seen in Figure 2.12 (d).  

 

    
(a) (b) (c) (d) 

Figure 2.12: (a) Original binary image; (b) Image with 3-pixel dilation; (c) Image 

with 3-pixel erosion; (d) Edge detection by subtracting the eroded 

image from the original 

   

Both dilation and erosion are morphological operations as being described using 

Minkowski’s formalism by Haralick and Shapiro [16]. Although dilation and erosion 

seemed a possible option in edge detection it was not used in the final setup of 

experimentation. 

 

2.5 Techniques used for tracking and detecting objects utilising vision 

The following topics covered are a background to the possible techniques used and 

investigated in obtaining the vision goals for navigation and control of an AGV. 
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2.5.1 Colour space conversion 

A lot could be derived from a binary or greyscale image, but adding colour adds another 

dimension. This concept was adopted in the re-configurability of the route tracks of the 

AGV to be followed. The representative colour values could be seen in the International 

Commission on Illumination (CIE) chromaticity diagram, shown in Figure 2.13. Each 

colour has a frequency value along the λ axis. The primary colours red, green and blue 

(RGB), or any other colour, could be identified by an x and y position/value on the 

diagram.  

 

 
Figure 2.13: CIE chromaticity diagram 1931 [17] 

 

The RGB colour space with primary colours and secondary colours yellow, cyan and 

magenta with its possible conversion to a colour value or grey scale option is best 

illustrated by Figure 2.14 [6, p. 37]. This is an RGB model, which was introduced and 

evaluated but did not produce the desired results. 

λ 
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Figure 2.14: RGB colour space with primary and secondary colours indicating grey 

scale 

 

Colours are also represented by hue, saturation and value (HSV) as can be seen as a 

cylindrical model in Figure 2.15. The hue represents a colour value, saturation the chroma 

or depth of the colour and value the shade of the colour. 

 
Figure 2.15: HSV colour model illustrated as a cylinder [18] 

 

There is also the YCbCr family of colour space used in video and digital photography 

systems. Y represents the luminance component, Cb the blue- and Cr the red-difference 

chrominance components. Each of these values is being calculated with the following 

equations [19]: 

                   (2.12) 

                     (2.13) 

                     (2.14) 

where k represents the colour constant of the ratio of the individual R, G and B 

components resulting in the desired chrominance. 
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2.5.2 Segmentation 

Segmentation is a vast topic but is one of the most important steps in analysing an image 

[6, pp. 175-327]. In this research edge- and region-based segmentation is taking priority. 

Thresholding plays a big role in segmentation determining borders, edges and lines. Gray-

level thresholding is one of the simplest segmentation processes. The disadvantage is that 

the threshold must be set to a predetermined level and lighting plays a big role in altering 

this threshold value. Optimal- and multi-spectral thresholding are only but a few of the 

methods used in the segmentation process. Border tracing and region operations of an 

object also form part of segmentation thus leading to blob analysis, a binary 

representation of the object. Lu et al. proved in their research on detecting human heads 

and hands analysing movement gestures that, using colour in addition to thresholding for 

blob analysis was a successful approach [20, pp. 20c-30c]. Thus using colour in blob 

analysis could also be applied to other object detection applications. The main goal of 

segmentation would be to analyse an image by dividing the image into sections that have 

a strong correlation with objects depicted by these sections of the image. 

The segmentation concept is best illustrated by Figure 2.16, which represents shape 

segmentation done by Chan and Vese [21]. Segmentation is applied to three different 

shapes, each representing an object. A certain segmentation model is applied to the four 

figures (1-4) in Figure 2.16 and outlined by a white border which represents the 

segmentation result. Thus four different shapes obtained by these different segmentation 

models representing the objects (parts), with the fourth model/step the obvious choice as 

the three shapes are recognisable. 
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Figure 2.16: Different shaped parts detection from a noisy image, with different 

segmentation models 

 

2.5.3 Correlation 

Correlation could also be described as image matching and is used to locate objects in an 

image. An example is depicted in Figure 2.17 where a desired pattern is located in the 

image. 

 
Figure 2.17: Segmentation by correlation; matched pattern with location of best 

match 

 

The algorithm for correlation is based on the following criteria [6, p. 238]: 

 Evaluate a match for each location and rotation of the pattern in the image, 

 Locate a maximum value exceeding the preset threshold represented by the pattern 

location in the image. 

 

matched pattern 

1 3 

2 4 
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A typical equation for correlation between a pattern and the search image data is shown in 

equation (2.15).  

         
 

  
   

                          
 (2.15) 

 

where f is the image processed, h is the search pattern, V the set of image pixels 

represented by it’s location (i, j) and C1 the correlation result with (u, v) representing the 

location of the matched position. 

There is, however, a variety of matching criteria models to choose from and this one was 

only used in evaluating the concept for possible utilisation in the research. 

 

2.5.4 Bounding boxes 

When an object is identified in a picture or field of view, the smallest rectangle that 

encloses the figure is called a bounding box [22, p. 119]. The co-ordinates of a bounding 

box are usually in pixels and this is used in different applications like measurements and 

localisation. 

 

2.5.5 Optical flow 

As part of this research navigation, object recognition and movement seems to be 

important as investigated in previous research, where movement and movement detection 

were investigated and implemented [7, pp. 69-70][23]. This was the reason for furthering 

the investigation on optical flow as the AGV will detect the surroundings to be moving 

relative to itself [24, pp. 460-463]. 

The optical flow concept is best explained by Figure 2.18. The ball is moving towards the 

viewer. There is a large movement towards the bottom of the picture. This is relevant to 

the speed at which it’s moving. The smaller movement arrows to all directions indicates 

the ball is becoming a larger object, with the conclusion that the ball is moving in the 

direction of the viewer as a larger object is perceived to be closer to a viewer. Optical 

flow is based on two assumptions [6, p. 758]: 
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 The brightness of the image stays constant over time; and 

 Nearby points in the image move in a similar manner (velocity smoothness 

constraint). 

 
(a) (b) (c) 

Figure 2.18: Optical flow of a moving tennis ball, (a) time t1; (b) time t2; (c) optical 

flow vectors 

 

The aim in such an example would be to calculate the velocity (c) as indicated in 

equation (2.16). 

     
  

  
 
  

  
  (2.16) 

where x and y is the position of the corresponding pixel coordinates. 

 

2.5.6 Hough transform 

The Hough transforms for circle and line detection also forms part of segmentation. 

Detecting a circle using the Hough transform as an example could be seen in Figure 2.19 

[22, p. 227]. The importance of the Hough transform is its ability to generate the gradient 

vector for the edges detected. The Hough accumulator array is obtained by using the edge 

points and edge orientation. The circle is then detected by using thresholding applied to 

the accumulator and finding the local maxima of the edges detected in the accumulator 

array [25, p. 304]. 
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Figure 2.19: (a) PCB with capacitor; (b) edges detected; (c) Hough accumulator 

array using edge points and orientation; (d) circle detected by 

thresholding and local maxima 

 

The Hough transfer is also used for line detection. A line is described by equation, 

 

        (2.17) 

 

and can be plotted by a pair of image points (x, y). The Hough transform do not take the 

image points (x1, y1), (x2, y2) into account, but rather use the slope parameter m and y 

crossing value c. There is a problem when facing a vertical line where m and c becomes 

unbounded values. It is therefore better to use the parameters denoted r and Ө (theta) as 

can be seen in Figure 2.20. 

 



  2.5  Techniques used for tracking and detecting objects utilising vision 25 

 

 

 

 
Figure 2.20: Hough parameters for a straight line 

 

The parameter r represents the distance between the line and origin, while Ө is the angle 

of the vector from the origin to the closest point on the line. Thus the new equation 

representing the line could be written as: 

      
    

    
    

 

    
  (2.18) 

Each line in an image is represented by a unique pair (r, Ө). Again thresholding takes 

place, determining a real line by placing the values in an array and finding the local 

maxima [25, p. 304]. 

These data points in the array do not always represent a particular line as the lengths are 

unknown. As an example, (r, Ө) values for these data points could be sampled and plotted 

as can be seen in Figure 2.21. Thus the use of a Hough space graph seen in Figure 2.22, 

obtained from data points in the array, to determine which points belong to which line 

[26, pp. 6, 7]. 
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Figure 2.21: Points in a Hough array plotted with different (r, Ө) values 

 

 

 
Figure 2.22: Hough space graph plotted from several (r, Ө) points 

 

The point where the lines intersect on the Hough space graph gives a distance (r) and 

angle (Ө) of the points being tested of a definite line. 

 

2.5.7 Kalman filter 

The Kalman filter can be used for many applications. It is mainly used to predict or 

estimate system states of a dynamic system from a series of incomplete and/or noisy 

measurements [27]. In the research it could be used for filtering the amount of lines 

and/or bounding boxes to minimise the amount of data to be analysed. 
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Equation (2.19) and (2.20) represent such systems where    is the linear system and    

the measured system: 

               (2.19) 

          (2.20) 

A, represents the state transition matrix and H the measured matrix. 

     and v represent noise and errors in the system respectively. 

The result could be best explained by Figure 2.23 where a system had to predict the result 

using the Kalman filter with a set amount of iterations with a true value constant               

x = -0.37727V [28]. 

 
Figure 2.23: Results of a system utilising the Kalman filter – solid line the predicted 

result, + indicates noise [28] 

 

The result indicates that the prediction is eventually almost the same as the expected 

result in the presence of noise after 50 iterations. 

 

2.5.8 Neural networks 

Object recognition plays a big role in image processing. Neural networks (NN) proved in 

the past to be a solution for problems such as pattern recognition [29]. NN is trained 

rather than designed. It was found that bridged multilayer perceptron (BMLP) is a much 

better architecture than popular multi layer perceptron (MLP) architecture. It is faster to 

train and more complex problems can be solved with fewer neurons [30, pp. 15-22]. 
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Most neural approaches are based on combinations of elementary processors (neurons), 

each of which take a number of inputs and generate a single output. Each input caries a 

weight and the output is a weighted sum of inputs as can be seen in Figure 2.24 [31]. 

 

 
Figure 2.24: A simple (McCulloch-Pitts) neuron 

 

The total input to the neuron is calculated as: 

 

        
 
    (2.21) 

 

where v1, v2, … is seen as the inputs and w1, w2, … the weights of the individual inputs. 

Also associated with a neuron is the transfer function f(x) which determines the output as 

the following example indicates: 

 

       
        
         

  (2.22) 

 

The general idea is to connect such neurons in a network mimicking the human brain. The 

way this is done specifies the network. Such a neural net structure example can be seen in 

Figure 2.25.  
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Figure 2.25: A three-layered neural net structure example with four inputs and 

three outputs [6, p. 406]  

 

Structures such as these also exist with hidden layers [32, pp. 48-50]. NN could also be 

applied to other fields such as control and navigation. 

 

2.5.9 Genetic algorithms 

Genetic algorithms (GA) use a process similar to natural evolution to search for an 

optimum solution and are used in recognition and machine learning [6, pp. 425-427]. 

GAs distinguish themselves from other techniques by the following characteristics [33, 

pp. 20-21]: 

 The manipulation of variables takes place in string format instead of the variable 

itself; 

 The use of multiple points form a population, rather than a single point to prevent 

false peaks for the solution of the problem; 

 GA entails a blind problem solving technique of which only the result is of 

importance; and 

 GAs use a stogastic model rather than a deterministic one. 

GAs are based on reproduction of populations, utilising crossover and mutation to 

render changes towards an optimum solution using a fitness function. 
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Figure 2.26 shows a combined flowchart of Sonka, Hlavac, Boyle [6, p. 427] and Kotze 

[33, pp. 21-22] representing the algorithm steps. 

 

Create an initial population consisting of 

chromosomes including genes representing the 

objective functions 

 

 

Reproduce high fitness chromosomes and 

remove poor performers – reproduction 

 

 

Construct new chromosomes utilising 

crossover 
 

 

Apply mutation from time to time on the new 

population 

 

 

 

Evaluate the populations 

      toward the fitness  Not satisfied 

 with the result 

 

Satisfied with result  

 

Make sure that a local maximum is not 

achieved – use the results in the application 

 

Figure 2.26: Combined flowchart representing the genetic algorithm steps 

 

GAs lend itself to evolve to a relative optimal result but not always the global optimum. 

 

2.6 AGV platform, navigation and control 

An AGV platform is user and application specific. Navigation relies on the environment 

and the application, and this is facilitated by the control thereof. 
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Location determination plays a big role and this is where Global Positioning Systems 

(GPS) are used in open space environments [34, p. 1180]. Inside a building or factory 

other alternatives need to be investigated. 

  

2.6.1 Dead reckoning 

Dead reckoning as used by Swanepoel [7, p. 20] proved to be workable, but does not 

incorporate wheel slip as can be seen from equations (2.23), (2.24) and (2.25) depicting 

the coordinates (x and y) as well as the heading (θ), resulting in a gradual decrease in 

positional accuracy. 

 

      
  

 

     

  
 (2.23) 

                   
 

  
 (2.24) 

                   
 

  
 (2.25) 

where T1 is the encoder pulses received by the left wheel, T2 the encoder pulses from the 

right wheel, Rw represents the radius of the wheels, D is the distance between the wheels 

(taken from the centre of the wheel track to the other wheel’s centre of the track) and Tr 

the total number of pulses recorded in a travelled distance. This is applied in a wheel 

placement as seen in Figure 2.27. 

 

 
Figure 2.27: Notation of variables in a dead reckoning setup on an AGV 

Distance between wheels 
Radius of wheels 
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2.6.2 Ultrasonic triangulation 

Boje used an ultrasonic triangulation system to keep track of movement and position in an 

enclosed environment [35, pp. 70-88]. Three transmitters were mounted at known 

positions on the ceiling of the test environment and the AGV detected these signals, 

relayed to it by means of wireless communications to a base station calculating the AGV 

position in the unknown space – overcoming the primary limitation of dead reckoning 

referred to in paragraph 2.6.1. 

 

2.6.3 Control and avoidance 

Control of the AGV to navigate and to avoid obstacles implies the use of different 

techniques. This is AGV specific and Swanepoel used serial commands from the 

controller to the motor drive, utilising ultrasonic object detection in a telemetric manner 

using a microcontroller interface [7, pp. 27-48]. Applying avoidance techniques is just as 

vast a field of study and Lubbe used GAs for making decisions on object avoidance, 

utilising Single-Chromosome-Evolution-Algorithms in the decision making process [36, 

pp. 48-56].   

The possibility exists that more than one AGV will be used in a reconfigurable 

environment, thus the reason for looking at communication between the vehicles seen in 

the work of Nguyen et al. [37, pp. 35-40]. The results obtained by Lee, address the issue 

of collision avoidance for mobile robots [38, pp. 136-141]. This is also significant for the 

current research. 

 

2.6.4 Path navigation 

In a factory or manufacturing environment the walkways have lines – an example of 

which can be seen in Figure 2.28 - or a chroma variation. 
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Figure 2.28: Example of a factory floor with lines and chroma changes [39] 

 

Having to change as little as possible in a factory, this idea was taken as a possible 

solution in navigation as can be seen by the work done by Sotelo et al. [40] with its 

application on a road seen in Figure 2.29. The Figure 2.29  shows some extractions of 

their work indicating the border identification of such a scenario to be used for navigation 

by staying on a pathway. 

 

 

 

 

 

Figure 2.29: Extractions of Sotelo et al.’s [40] work in using border and 

chrominance in navigation 
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Figure 2.29 indicates an area viewed as area of interest. Skeleton lines are created as a 

route to follow derived from the polynomials created from the validated edges of the 

route travelled on. 

 

2.6.5 Sign navigation 

During the course of the research other researchers were also found, opting for the 

implementation of signs in the navigation process. 

The research of Goedemé et al. implemented an omnidirectional camera as sensor. A 

topologically organised environmental map was created, using a fast feature matching 

algorithm between a pair of images taken from different viewpoints, focussing on man-

made objects or patterns [41]. 

Park et al. introduced arrow signs for robot navigation utilising a wireless camera and 

implementing image processing algorithms [42, pp. 382-386]. Their process was based on 

the following steps: 

 Convert the picture to a binary image, 

 Remove small objects and noise from the image, 

 Do region segmentation, 

 Label the segmented image, 

 Give a different colour  to each segment and number them,  

 Identify the arrow sign from the different segmented regions and separate it, and 

 Find out whether the arrow is a left- or a right direction arrow. 

This process is illustrated by Figure 2.30 (a) to (d). 
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(a) (b) 

  
(c) (d) 

Figure 2.30: Park et al’s. (a) image acquisition; (b) segmentation; (c) labelling and 

(d) arrow extraction 

 

The researches of Zakir et al. have presented an approach towards road sign detection and 

recognition. Their system utilizes a method of colour segmentation by employing the 

HSV colour space and using empirically determined threshold values suitable for various 

illumination conditions. A shape classification methodology was proposed in which road 

sign shapes are classified by introducing the use of Contourlet Transform with a support 

vector machine (SVM) classifier. The recognition stage introduces the SVM classifier 

with the local energy based shape histogram (LESH) features. They are currently working 

on real time application of the algorithm within an in-car navigation system [43]. 
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2.7 Summary 

This chapter covers the vision input and possible manipulation of a picture for navigation 

and control purposes. No mention was made of the cameras, lighting, hardware (AGV) 

and the software platform for the support of these systems as most of these components 

were already available and specified for use in the research project.  

Some location and navigation aspects are addressed with mention made of 

communication between AGVs and collision avoidance. The possible use of road and 

sign navigation is also mentioned as a solution to navigate an AGV.           
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 Chapter 3  

Development of an omnivision system for 

navigational purposes for an AGV 

 

This chapter covers the development process of the omnivision system, the 

choice of camera and the software development platform decided on. The 

objective was to be able to use these separate systems as an integrated vision 

unit in the final product, generating usable vision outputs to be used for the 

control and navigation process. 

 

3.1 Introduction 

The intelligent navigation and control of AGVs involve environmental detection. Such 

capability can be mounted onboard or remotely. Sensors and cameras used for detecting 

objects in the path of an AGV, as well as the distance to the object as mentioned in 

section 1.1, were to be replaced by a single omnivision sensor for navigation and control 

purposes. This concept of utilising vision rather than ultrasonics is best illustrated by 

Figure 3.1 where the ultrasonic sensor only returns a distance to an obstruction for 

manipulating purposes and the picture from the camera could be utilised for analysing the 

environment for a more informed decision making process. 
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(a) (b) 

Figure 3.1: (a) Ultrasonic sensors used to sense a distance to an obstruction; (b) 

Camera used in sensing distance and image of obstacles 

 

In the project the objective then was the development of an omnivision, navigation and 

control unit on a suitable software platform producing the necessary AGV control 

outputs. This concept was tested and evaluated with a program producing panoramic 

pictures from the omnidirectional camera setup. 

       

3.2 Mirror and camera development for omnidirectional sensing 

An omnidirectional sensor was first developed, consisting of a half sphere mirror and 

camera connected to a Central Processing Unit (CPU) via Universal Serial Bus (USB) and 

fire wire (IEEE 1394) depending on the different cameras used. The setup in Figure 3.2 

was mounted on top of an AGV as the omnidirectional sensor [44]. 

Ultrasonic sensors 

                 Camera 
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Figure 3.2: Original omnidirectional sensor setup to be placed on AGV 

 

The resultant pictures taken, or video streamed, are in a circular shape as shown in Figure 

3.3.  

 
Figure 3.3: Half sphere mirror picture before conversion using the Basler 

This signal was then converted by means of a polar transform to a panoramic picture as 

shown in Figure 3.4.  

 
Figure 3.4: Converted panoramic picture 
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Figure 3.5: Graphical representation of a polar transform 

 

The polar transform from Figure 3.3 to Figure 3.4 is executed using equation (3.1) shown 

below:   
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 (3.1) 

 

where Maximum radius represents the height of the frame to be converted and   the 

resolution width of the panoramic view as can be seen in Figure 3.5. 

The polar transfer function was developed in MATLAB
®
 and then re-written in the 

Microsoft
®
 Visual Studio

®
 2008 C# compiler. Reasons for this were to minimise transfer 

or calculation errors which could be overlooked or might be difficult to test for, if the 

code was written directly in C#. It is also recognised as good practice by academia to test 

the accuracy and functionality of mathematical functions on a mathematical platform.  

A test pattern generated for testing the accuracy of these transfers can be seen in Figure 

3.6. This test pattern and similar ones were used scientifically in determining the accuracy 

of measurements with the transfer of pictures from the round shape to a panoramic view. 
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0° 

360° 

90° 

180° 

 

 
 

Figure 3.6: Test pattern generated for polar transform tests 

 

The result obtained by the MATLAB
® 

and C# functions of the polar transfer function with 

the test pattern as input can be seen in Figure 3.7 [45, pp. 1835-1839]. 

 

 0° 90° 180° 270° 360° 

 
Figure 3.7: Results generated by polar transfer – conversion starting at 0° 

resulting in a mirror image of the photo 

 

Figure 3.7 indicates a slight sinusoidal distortion of the transferred image. This is due to 

choosing the incorrect centre point on the mirror and camera setup or selecting the wrong 

image centre point when running the software. This distortion, if any, is not visible or is 
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negligible in normal environmental images - as can be seen in the image, Figure 3.9, 

which is a transferred image of Figure 3.8. 

 

 
 

Figure 3.8: Environmental picture in circular form (680 x 670 pixels), mirror 

image using a Webcam 

 

 
Figure 3.9: Transferred image of Figure 3.8, –90° corrected and mirror image 

effect corrected   

 

Figure 3.9 was generated with the MATLAB
® 

function with a radial step resolution of 1° 

[46] [47]. This function does the transform on pixel level and is very time consuming. It 

took almost 1 second for the image of 2.25 MB to be transformed with this function, on 

an Intel
®
 Pentium

®
 3.4GHz CPU with 3.25 GB of RAM. 

Figure 3.10 shows an extract of the MATLAB
®
 M-file for creating the result shown in 

Figure 3.7 using the test pattern in Figure 3.6 at a resolution of 0.8°. 

 

0° 

–90° 
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% select picture for processing  

A = imread('C:\Testpatern.JPG');  % Figure 3.6 

% select area of interest 

A = A(40:726,24:702,:); 

figure, imshow(A) 

 

% centre and the radius 

xc = 340; 

yc = 342; 

radius = 333; 

% display centre and radius 

hold on; 

plot(round(xc),round(yc),'yx','LineWidth',2);    % yellow centre 

plot(round(xc+radius),round(yc),'r+','LineWidth',2);  % red + at end 

 

startradius = round(radius); 

stopradius = 0; 

degrees = 0.8;  % resolution or width 

stopang = round(360/degrees); 

 

for thetac = 0:1:stopang       

    rst = 0; 

    for rsteps = startradius:-1:stopradius   

       Ypix = 

       round((rsteps*sin(thetac*degrees/180*pi))+(yc)); 

       Xpix = 

       round((rsteps*cos(thetac*degrees/180*pi))+(xc)); 

       rst = rst + 1; 

       tranf(rst,(stopang-thetac)+1,:)=A(Ypix,Xpix,:);  

    end     

end   

 

figure 

imshow(tranf) 
 

Figure 3.10: MATLAB
®
 program extract – polar to cartesian 

 

3.2.1 Improvement on previous omnidirectional design 

With previous transforms a mirror image and the direction (front of AGV to be in the 

centre of the conversion) of the AGV were not correctly transformed as can be seen in the 

transforms of Figure 3.3 to Figure 3.4 and depicted in Figure 3.11. The mirror image 

effect was already corrected but the forward direction of the AGV was not yet centred in 

the transformation. 
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Figure 3.11: Transform with image facing the front not centred, but mirror image 

effect corrected already 

 

Figure 3.12 shows a transform where the forward direction is depicted in the middle of 

the transform. 

 

 Front  Front 

 Left Right 

 

 

 

 

 Back  Back 

 Back   

Figure 3.12: Correct transform with front of picture in the middle 

 

The improved transform was accomplished by having the start angle at 270° and 

incrementing the angle for conversion in an anti-clockwise direction. The transform was 

generated by a MATLAB
®
 M-file written as a function and compiled to an exe-file by the 

mcc command [discussed with a reference to the readme file from MATLAB
®
, Appendix 

B.1]. The exe-file was then used in a Graphical user interface (GUI) written in C# for 

more graphical flexibility in auto fitting the picture for import, counting of pixel positions 

for input of conversion and getting the user settings [48]. Figure 3.13 is a representation 

of the form of the transformation GUI written in C#. 
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Figure 3.13 C# developed GUI utilising a transformation exe-file compiled from a 

MATLAB
®
 M-file 

 

In the image to be converted, depicted in Figure 3.13, it is evident that there is some 

image deformation. A circumference half the diameter of the mirror corresponds to 

around 30° in a mirror angle. The image deviation is more than double that at an angle of 

60°. This is more evident in Figure 3.14 showing the relative image sizes of two identical 

letter A’s at different angles from the centre of the mirror. 
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 0°    30° 

 

 

 

 

 

 

Figure 3.14 Image deformation using a half sphere mirror 

 

A hyperbolic mirror, with a diameter of 25 mm, was then implemented instead of the two 

half sphere shaped mirrors, diameters of 150 mm and 100 mm respectively. The original 

sizes of 150 mm and 100 mm were changed because of the focal length and physical size 

of the setup. The results of Scaramuzza’s research proved that a polar transfer function is 

not enough for creating a good panoramic image [4]. The implementation of a hyperbolic 

mirror, mounted in a round Perspex tube located on a Webcam (shown in Figure 3.15), 

does improve the quality of transformation. The deformation of images (letter As) at 

different angles reflected is compensated for by the shape of the mirror rather than 

software compensation utilising valuable conversion time. 

 

 25 mm 

 

 Hyperbolic mirror 

 

 

 

  

 

 

 

 

 Webcam 

 

Figure 3.15 Hyperbolic mirror setup on a Webcam 
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The use of the hyperbolic mirror proved to be a great improvement, but insignificant 

deformation still exists. Calibration and interpolation may rectify these imperfections. 

The level of illumination is dependent on the diameter of the reflective mirror, as shown 

in equation (3.2). 

 

                         (3.2) 

 

where P represents the power reflected from the object, I the light intensity, and r the 

radius of the area of a sphere reflected on. If the light intensity stays constant, a change in 

the radius of the reflective surface would result in a drop in the power reflected, causing a 

lower intensity picture [49]. 

Although the final omnidirectional transform used in the research was not calibrated and a 

low level of illumination/light intensity achieved, the transform generated could be used 

successfully for image processing.  

 

3.3 Development of omnidirectional sensing software 

Throughout the research process appropriate mathematical models were developed and 

tested in MATLAB
®
. The functions were then transferred to a C# compiler environment to 

create an .exe file for implementation on the hardware. The reasoning was to have an 

industry ready code available when finished with the research.  

This process of changing MATLAB
®
 code in an m-file format to C code was not without 

conversion problems. For example, converting a variable from the unit double to integer 

in MATLAB
®
 meant that the value was rounded off to the closest integer value. In cases 

where the value overflows on its maximum bit count a value of zero was expected, but 

MATLAB
®

 codes it to a possible maximum value – unexpected but mathematically correct, 

called “saturate on integer overflow” [50]. With C code the value after the decimal point 

is simply omitted. Table 3.1 gives a more detailed description of these conversions. The 

explicit System.Convert class of C# compensates for this possible error. 
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Table 3.1: Conversion differences of MATLAB
®
 and C code from double to integer 

Original value MATLAB
®
 code MATLAB

®
 result C code C code result 

x = 23.5000 y = int16(x) y = 24 double x = 23.5; 

int y; 

y = x; 

y = 23 

X = 23.4000 Y = int16(X) Y = 23 double X = 23.4; 

int Y; 

Y = X; 

Y = 23 

 

The initial vision and control system utilised a controller driven by C code on the AGV 

for vision and control purposes and to act as communication hub for implementation of 

these algorithms. 

MATLAB
®
 proved to be capable of enabling this whole process on the same software 

development platform without converting it to C# [50]. Consequently the system was 

adapted, utilising a laptop personal computer as a vision and control system running on 

MATLAB
®
 code. 

This initial development was done on single pictures taken in the omnidirectional setup 

that needed to be changed to a video streamed system. Simulink
®
 was incorporated for 

this purpose. Figure 3.16 shows the initial conversion model development in accessing 

the camera by utilising the From Video Device data block. The Embedded MATLAB 

Function was written (depicted in Figure 3.17), incorporating the conversion model seen 

in Figure 3.10. The X Centre, Y Centre and Insert Text blocks were used for setting up the 

camera for the omnidirectional hardware and small calibration changes for image 

centring purposes.  
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Figure 3.16: Simulink
®
 model for converting omni picture to panoramic picture 

stream 

 

function Ipol2car = imconv(I, x, y) 
%Function to unwrap poly to cartesian 

%tic 
xc = x; 
yc = y; 
startradius  = 200; 
stopradius = 0; 
degrees = 1; 
stopang = round(360/degrees + 90);  %450 start 90% offset 
res = 360; 
Ini = I; 
Ino = zeros(startradius+1,res,3); 
for thetac = 90:1:stopang      % 90deg - 450deg 
    rst = 1; 
    for rsteps = startradius:-1:stopradius   

Ypix = 

round((rsteps*sin(thetac*degrees/180*pi))+(yc)); 
Xpix = 

round((rsteps*cos(thetac*degrees/180*pi))+(xc)); 
        if((rst ~= 0)&&((stopang-thetac)~=0)) 

            Ino(rst,(stopang-thetac),:)=Ini(Ypix,Xpix,:); 

%upright mirror 
        end 
        rst = rst + 1; 
    end     
end   
Ipol2car = Ino; 

%toc 

Figure 3.17: Embedded MATLAB
®
 function block called Imconv in Figure 3.16 

 

The embedded MATLAB
®
 function block depicted in Figure 3.17 was evaluated to 

determine the expected frame rate for the polar to cartesian conversion in conjunction 

with the video acquisition and display thereof. The tic and toc m-functions where used to 

start and stop the timer in determining the elapsed conversion time (see Figure 3.17, 

function extract).  
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A selected area of interest from the initial frame of the Webcam was selected, having the 

input frame size of 492 X 738 pixels (Figure 3.18). Various output frame sizes were 

selected to correlate with the necessary area of interest converted and eventually the 

frame size of an .mp4 recorder (96 X 128) was used for generating video clips in testing 

the developed software in MATLAB
®
. This is best illustrated by Figure 3.18. The obtained 

results are shown in Table 3.2. 

 

 1280 

 

 

 

  96 

  

 

 492 

 960 

 

 

 

  

 738 

 

Figure 3.18: Illustration of capturing a frame, selecting an area of interest for 

conversion and final resolution for conversion utilizing a Webcam 

 

Table 3.2: Calculated frame rate of embedded MATLAB
®
 function block 

conversion 

Input Frame size Output frame size Time elapsed Calculated frame rate 

492 X 738 201 X 360 0.249487 seconds 4 frames per second 

492 X 738 96 X 180 0.059298 seconds ≈17 frames per second 

492 X 738 96 X 128 0.043832 seconds ≈23 frames per second 

 

With these results it is evident that the frame size is very important and a compromise had 

to be reached between frame size and sufficient information in the picture frame, in 

reaching the goal of having a vision instrument for mobile omnidirectional sensing 

and control. 
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3.4 Area of interest and utilising a low resolution webcam 

With the results obtained in Table 3.2, it seemed imperative to reduce the time of 

computation for acquisition, conversion and display. The time required by MATLAB
®
 for 

acquisition and display was optimised within the limitation of the software. More viable 

options were utilising a lower resolution camera, selecting a limited area of interest and 

changing the omnidirectional transform program thus reducing the processing time. A 

Webcam was implemented, replacing the BASLER A600f camera, resulting in a lower 

resolution. 

The reasoning behind the concept of a limited area of interest was that the AGV would 

need only the information of a limited area in the direction of movement. This concept is 

illustrated by Figure 3.19. 

 

 

Figure 3.19: Frame from omni video stream indicating the direction of movement, 

area of interest and converted section of image 

 

The evaluation of the conversion time saved was initiated by obtaining the maximum 

frame rate the Webcam can produce by displaying the obtained video stream directly, 

without conversion. Evaluating the acquisition and display time only, the acquired frame 

size was altered, as could be seen in Table 3.3. The Webcam settings were set to obtain a 

frame rate of thirty frames per second (30 frames/second). 

Direction of AGV 

movement 
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Table 3.3: Webcam set to 30 frames/second with relevant frame size and frame 

rate obtained 

Acquisition Frame size Displayed frame size Frame rate obtained 

320 X 240 320 X 240 15 frames per second 

640 X 480 640 X 480 15 frames per second 

 

 

Thus the frame size made no real difference to the frame rate in comparison to the 

acquisition and display of the video stream, which produced a loss of 15 frames per 

second. The From Video Device and Video Viewer incorporated the equivalent processing 

time of 15 frames per second. This was further tested by removing the double Video 

Viewer configuration from the setup shown in Figure 3.16 to the diagram shown in Figure 

3.20, thus losing the preview of the image setup. 

 

 
Figure 3.20: Simulink

®
 model for converting omnipicture to panoramic – 

panoramic displayed only 

 

Table 3.4 gives a more detailed layout of the results obtained by having a dual Video 

Viewer for the video stream received by the camera and converted panoramic view 

compared to a single Video Viewer (only the converted image) and incorporating a 

smaller area of interest. 
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Table 3.4: Double and single view frame rates incorporating different area of 

interest sizes converted from a 360° picture video stream 

      Acquisition Frame 

size 

Output frame size 

as Figure 3.19 indicate 

Frame rate obtained 

Double view 640 X 480 720 X 186 3.5 frames per second 

Single view 640 X 480 720 X 186 4.5 frames per second 

Single view 640 X 480 360 X 186 7.5 frames per second 

Single view 640 X 480 180 X 96  14 frames per second 

 

Opting for the single view only improved the frame rate by one frame per second (28.6% 

improvement). The largest change was by using a smaller frame size to convert. This 

prompted the design of having an input to select the viewing direction as shown in Figure 

3.21. 

 

 

Figure 3.21: Simulink
®
 model for converting omnipicture to area of interest 

including direction of movement 

 

This feature resulted in an initial option of only having four possible viewing directions, 

to be controlled by the AGV movement control software, determining in which direction 

to look, as can be seen in Figure 3.22. 
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Figure 3.22: Omnipicture indicating the four directions of area of interest selected 

as video input 

 

The option substantially increased the number of frames per second available for image 

processing as the area of interest is in the direction of possible future movement, hence 

smaller in frame size. However this concept was never implemented. 

 

3.5 Transferring the omnisoftware from computer to laptop platform 

All of the development work was done on a Microsoft Windows XP Professional Version 

2002 with Service Pack 3 and an Intel
®
 Core™ Duo CPU E8400 @ 3.00GHz with 

2.98 GHz, 1.99 GB of RAM personal computer (PC). 

MATLAB
®
 has a feature, called bench, to evaluate the processing strength of the machine 

in different calculating areas. The result for the specific computer is shown in Figure 3.23 

and Figure 3.24. 

This machine compared well to the other computer platforms compared to in the group, in 

terms of computation performance. 

 

1 

2 

3 

4 
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Figure 3.23: MATLAB

®
 bench feature being displayed as a graphical result of the 

PC 

 

 

 
Figure 3.24: MATLAB

® 
bench feature being displayed as a result of the PC, for the 

process speed in seconds  
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Figure 3.23 and Figure 3.24 clearly indicates that the particular PC used outperformed the 

other computer platforms to which it was compared. The comparison data for other 

computer platforms is stored in a text file, “bench.dat”. Updated versions of this file are 

available from MATLAB
®
 Central [51]. 

The MATLAB
®
 code was transferred to a laptop to be used on the AGV with Microsoft 

Windows XP Professional Version 2002 with Service Pack 3 and an Intel
®
 Core™ Duo 

CPU T7500 @ 2.20GHz with 789 MHz, 1.99 GB of RAM. The MATLAB
®
 version used 

on the PC and laptop was MATLAB
®
 7.12 (R2011a). 

The bench feature was used again on the laptop and the results are shown in Figure 3.25 

and Figure 3.26. This laptop did not fare as well as expected compared to the others in the 

group in terms of computational performance. 

 

 

 
Figure 3.25: MATLAB

®
 bench feature being displayed as a graphical result of the 

laptop 
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Figure 3.26: MATLAB

® 
bench feature being displayed as a result of the laptop, for 

the process speed in seconds 

 

Keeping these results in mind, the work done in obtaining the results in Table 3.4 was 

repeated on the laptop, providing the results shown in Table 3.5. 

 

Table 3.5: Double and single view frame rates incorporating different area of 

interest sizes compared to the results obtained on a laptop 

      Input frame  

size 

Output frame  

size 

Frame rate obtained 

PC 

Frame rate obtained 

laptop 

Double view 640 X 480 720 X 186 3.5 frames per second 0.5 frames per second 

Single view 640 X 480 720 X 186 4.5 frames per second 0.7 frames per second 

Single view 640 X 480 360 X 186 7.5 frames per second 1.3 frames per second 

Single view 640 X 480 180 X 96 14 frames per second 2.4 frames per second 

 

This made it evident that the frames available per second for the control and interpreting 

of the environment with the laptop, is very low and possibly insufficient for navigation 

and control purposes. 
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3.6 Conclusion 

The research covered in this chapter proved the viability of the development of a usable 

omnidirectional conversion algorithm written in MATLAB
®

 tested as executable in a user 

friendly C# GUI. 

The alteration from the original half sphere mirror to a hyperbolic mirror shape saved 

omnicalibration- and interpolation time.  

Selecting a Webcam and making use of an area of interest, enabled the saving of valuable 

computational time in converting an image. The vision sensor development provided a 

cost effective alternative to a range of sensors traditionally used in detecting the 

environment of an AGV, for navigation and control purposes.  

MATLAB
®
 was chosen as the complete software platform, generating results, evaluating 

the camera setup and mirror configuration on a PC and finally a laptop platform without 

converting the code to C# and compiling it to an executable application.  

The results obtained proved that the laptop processing time was too slow for omnivision 

purposes for the mobile system. Implementing the concept of an area of interest in the 

direction of movement, provided a possible solution in using a single camera facing in the 

direction of movement saving computational time in developing the navigation and 

control software. 
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 Chapter 4  

Navigation development for the AGV 

 

This chapter covers the navigation goals, development of a navigational system 

and the implementation and control of the AGV platform. This development 

was a move away from dead reckoning used as navigation technique on 

previous locally-developed AGVs, towards a vision-based navigation system. 

 

4.1 Identifying the navigational goals 

In a reconfigurable environment it should preferably be possible to alter the route that the 

AGV needs to travel, depending upon ordering information (origin or pickup point) and 

delivery of parts (destination). It is also possible that some manufactured components 

need to be returned for rework or final rejection. This creates a scenario where there 

should be flexibility in the order and route of parts to be conveyed, as can be seen in 

Figure 4.1 generated by DELMIA V5 Release 21. This figure indicates a few roaming 

AGVs each of which needs to follow a predetermined route in fetching and delivering 

parts or components. The use of AGVs allows flexible routes, to be changed by the 

operator rather than using a fixed route like a conveyor system [52]. 
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This concept was taken as a starting point for the navigation and control of an AGV in 

this project. The assumption that the AGV is going to travel on a factory floor with lines 

and chroma changes as depicted by Figure 2.28, an example of a factory floor, is also 

evident in this figure. 

The omnivision system was to be used for navigation and assessing the AGV’s 

environment. 

 

 
Figure 4.1: Animated layout of a simulated factory floor developed in DELMIA 

 

4.2 Detection of movement whilst navigating utilising dead reckoning 

The original platform used in the research utilised ultrasonic sensors to provide a 

proximity picture of the environment around the AGV [7, p. 18]. An omnidirectional 

video stream was implemented in detecting movement as well as to assist the operator in 

accessing a 360° view of the AGV surroundings.  

A system of dead reckoning was utilised in determining the AGV’s position in the 

environment and to assist in navigating the planned route.  
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The driven wheels were controlled through a PIC microcontroller circuit board receiving 

and sending commands in series to and from a Human Machine Interface (HMI) [53]. 

Only three such AGVs were built that were based on an electrical wheelchair platform 

utilising its motors and motor drive. 

The serial data was transmitted and received telemetrically through a WLAN connection. 

The WLAN was used for its radio frequency (RF) bandwidth and range [54].  

The HMI is depicted in Figure 4.2 where the distances received from the ultrasonic 

sensors detecting obstacles in the vicinity of the AGV were being displayed. The 

orientation of the AGV is reflected in the HMI by a straight line obtained by wheel 

distance travelled. The controller commands could be selected and the video feed could 

be monitored on the same HMI. 

 

 

 Controller commands Ultrasonic sensor values 

 

 

 

 

 AGV orientation 

 Video feed 

 

 

 

 

 

 

 

 

Figure 4.2: HMI screen capture [7, p. 67] 
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4.3 Development of a new AGV platform 

The platform discussed in section 4.2 was replaced by the National Instruments™ (NI) 

single-board sbRIO-9632 robot platform, seen in Figure 4.3.  

 

  

Figure 4.3: National Instruments™ single-board sbRIO-9632 robot platforms [55] 

 

A laptop operating on MATLAB
®
 code was utilised as processor, directly communicating 

through the Universal Serial Bus (USB) port to a PIC microcontroller board, developed in 

the RGEMS group. This board was utilised to generate the two-channel pulse width 

modulation (PWM) for the radio control (R/C) motor speed controller. 

 

 
Figure 4.4: PIC microcontroller board utilised to generate the pulse width 

modulation 
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The Sabertooth R/C motor speed controller (Figure 4.5) of the NI robot platform is used 

for controlling two TETRIX
®
 geared motors [56]. 

 

 
Figure 4.5: Sabertooth R/C motor speed controller used on the NI robot platforms 

 

The final setup of the platform is shown in Figure 4.6. 

 
Figure 4.6: AGV platform utilising a laptop, NI robot platform and omnivision 

system 
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This setup, with the option for selecting between a single or omnivision camera, was used 

for developing the navigation and control capabilities of the AGV [57]. 

 

4.4 Overview of the vision guided navigation system 

The vision guided navigation system consists in essence of the vision capturing section 

split into a parallel system, using these images for route navigation and detection of 

colour signs for controlled navigation. Each of these two systems creates outputs which 

are used jointly to control the AGV platform. The complete developed system is 

summarised by the flow diagram in Figure 4.7 with each section referring to the work 

described in this chapter. 

 Vision Input 

 Chapter 3 

 

      

  

Image Corrections 
 

 

      

      

Edge and Chroma based route 

navigation 

 Route detection utilising edge 

detection and chroma 

segmentation  

 Route identification by applying 

edge and chroma border 

detection 

 Filtering the borders as there 

seem to be multiple borders as 

each frame change because of 

AGV movement, placing only 

the most obvious onto the frame 

 Displaying movement controls 

and producing corresponding 

movement commands  

 Section 

4.5 
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  Sign and colour instruction 

detection 

 Detecting a blob of colour and 

tracking it in the frame 

 Recognising the visual 

command Left, Right and 

STOP 

 Detecting the correct control 

comparing it to a template 

 Keep track of all the signs 

detected 

 Displaying the corresponding 

command on the display for 

evaluation 

 Implementing different 

colours for alterative routes 

 Section 

4.7 

 

 

4.7.1 

 

 

4.7.2 

 

4.7.3 

 

4.7.4 

 

 

4.7.5 

      

      

 Interface utilising the  Section 

   direction controls 

         to control    4.7.6 

  the AGV platform  4.6 

 

 

Figure 4.7: Overview flow diagram of the vision based navigation system 

depicting the route and sign control navigation techniques used  
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4.5 Route navigation concept 

The use of lines on the side of a route, walkway or a chroma route is similar to a normal 

road surface. This is the primary reason for the evaluation of Sotelo et al.’s work, 

referenced in  Chapter 2 [40]. MATLAB
®

’s “Chroma-based Road Tracking” demo was a 

starting point for the route navigation of the AGV in this research. 

 

4.5.1 Short description of the MATLAB
®

’s Chroma-based Road Tracking demo 

which was the starting point for road navigation in this research      

Figure 4.8 illustrates the Simulink
®
 model of the demo [58]. When running the demo a 

pre-recorded video stream is used as source to be processed for evaluating the road 

tracking concepts used. The model then uses the chroma information of the frames to 

detect and track the road edges. The “Chroma-based Road Tracking” demo model 

illustrates the use of the Colour Space Conversion block, the application of Hough 

Transform block, and the advantage of the Kalman Filter block to detect and track 

information utilising hue and saturation values of the frames from the video. 

 

 

Figure 4.8: MATLAB
®
 “Chroma-based Road Tracking” demo 

 

The demo model performs a search operation to define the left and right edges of a road 

by analysing video frames for a change in colour behaviour. The model then selects a line 

either because of an edge detected, or a line created by a change of chroma pixels, 
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whichever have the greater precedence. The search is initiated from the bottom-centre of 

each frame and moves to both the upper-left and upper-right corners of each frame. 

When both road sides are visible, the demo shows an arrow in the centre of the road in the 

direction calculated by averaging the directions of the left and right sides as could be seen 

in Figure 4.9. 

 

 
Figure 4.9: Tracking results of the “Chroma-based Road Tracking” demo [58] 

 

4.5.2 Edge detection and chroma segmentation used for AGV route tracking  

The route used for simulation in the research project was either a route defined by blocks 

of carpets or a corridor with almost the same colour and shaded carpets. A single camera 

with low resolution (160 X 120) was initially used to detect the borders of the carpet 

route, utilising edge detection (as shown in Figure 4.10). The area of interest was then 

sized to (128 X 96) by the Pad function of MATLAB
®
. This frame size was selected to be 

able to correlate the results to those in Table 3.4 and Table 3.5 where the area of interest 

was selected from the omnivision system. The use of a single camera rather than the 

omnivision conversion in the simulation was because of the slow frame rate after 

conversion. 
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(a) (b) 

Figure 4.10: (a) Frame captured from a colour camera; (b) Prewitt edge detection 

applied on a frame 

 

Prewitt edge detection gave a promising result as can be seen in Figure 4.10 (b). This was 

to be expected from the background theory on edge detection covered in section 2.4. In 

Figure 4.10 (b) it is also evident that the furthest point of the track could result in a false 

edge, as the lighting from a cross corridor was perceived as if the route is a dead end, 

which is not the case. Chroma segmentation was implemented with a threshold as the 

carpet beyond the apparent dead end was assumed to be of the same colour. This was 

achieved by utilising the Colour space Conversion and selecting the saturation value of 

the signal to be used in the thresholding process. Figure 4.11, the output of the edge and 

chroma detection section, indicates the generated result with the prospect of obtaining a 

more realistic result for the combined scene as a possible route and not a dead end. 

 

  
(a) (b) 

Figure 4.11: (a) Edge detection – result with Prewitt detection, indicating a 

probable dead end; and (b) Chroma result – indicating an open end 

Possible dead end No dead end 

noise 
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Figure 4.12 indicates the developed Simulink
®
 model for generating the result shown in 

Figure 4.11 (a) and (b). The threshold value plays a big role in the number of pixels 

available after colour space conversion for the segmentation process comparing the so-

called noise in the frame passed to those necessary for determining an edge. 

 

 
Figure 4.12: Simulink

®
 model used for edge detection and chroma segmentation, 

source to Figure 4.14  

 

The result gave a positive result, showing that utilising both Prewitt and chroma based 

detection combined gave better results than either technique individually. 

 

4.5.3 Border detection for route identification on edge and chroma signal 

As explained in section 2.5.6 the Hough transform was a good choice for detecting the 

route’s border from the edge and chroma edge signal. As shown in Figure 2.20 a search 

had to be conducted through the frame detecting possible lines, utilising the Rho and 

Theta of those lines. This line search is process intensive and the strategy used in the 

MATLAB
®
 demo model was adopted in splitting the frames vertically in two, utilising only 

half of this split frame at a time for the search process [58].  

Threshold 

value 
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  (a) 

        
(b) 

        
 (c) 

        
(d) 

  
(e) 

Figure 4.13: (a) Single frame of edge and chroma detection; (b) Frames split 

vertically in the middle; (c) Right half flipped horizontally and top 

right part of frame omitted; (d) Hough transform applied, detecting a 

border; (e) Right half flipped back and Rho Theta values available for 

merging the lines onto the frame for evaluation 
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Splitting the frame as in Figure 4.13(b), already localise the search to a much smaller 

area. Flipping the right part of the frame has the advantage of the Theta staying in the 

same quadrant. Omitting the top part of the same search area which does not contribute to 

any real influence on the result minimises the search area even further (see Figure 

4.13(c)). This application is possible, as a route usually diminishes towards the farthest 

end of the frame, as is evident in Figure 4.13 (c and d). 

The results obtained in Figure 4.13 were accomplished by the Simulink
®
 model, as 

developed by the researcher and illustrated in Figure 4.14. 

 

 
Figure 4.14: Simulink

®
 model for obtaining the border lines by scanning only half of 

the frames 

 

The Detection block in the Simulink
®
 model contains the Hough transform and the 

algorithms for finding the most apparent line in the frame. The threshold selections of the 

chroma pixel number (specifying the chroma level per pixel) as well as the edge pixel 

number (number of pixels in close proximity to form a possible line) are also available as 

options as displayed in Figure 4.15. 

 

Figure 4.15 
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Figure 4.15: Line detection Simulink

® 
model including the Hough transform 

incorporated in Figure 4.14 

 

With this Simulink
® 

model multiple lines are detected from a single border, because of 

the movement of the AGV. These needs to be filtered out and the best applicable line 

must be merged with the final display indicating the border of the route. This is best 

illustrated by Figure 4.16. 

 Illustrated lines      

  
(a) (b) 

Figure 4.16: Illustrating the need for filtering on the number of lines detected, 

because of AGV movement, (a) multiple lines detected, and (b) actual 

filtered lines merged on frame 

 

In Figure 4.16(a) it is clear that several lines for a route border seem to be detected. By 

utilising filtering a single route is identified. This route needs to be tracked and the result 

displayed (merged on the frame) for evaluation. This gives rise to the development of 
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Route Tracking and Route Merging doing just this, the result of which can be seen in 

Figure 4.16(b). 

 

4.5.4 Route Tracking and Route Merging 

This is largely achieved by the Route Tracking (Lane Tracking) and Route Merging (Lane 

Merging) blocks adopted and altered for AGV navigation, from the Simulink
®
 demo 

model, seen in Figure 4.8. The Route Tracking block utilised is displayed in Figure 4.17. 

 

 

 
Figure 4.17: Route Tracking block for left and right border, input from Detection 

section Figure 4.14 sourcing Route merging to be viewed in Figure 

4.20 

 

The Route Tracking consists of two similar masked subsystem blocks for certain 

parameter settings to be changed for optimal performance. These parameters are evident 

and can be viewed in Figure 4.18. 

 

Masked system block expanded in Figure 4.19  
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Figure 4.18: Function block parameters for the left and right lane subsystem of the 

Route Tracking model 

 

The two blocks itself (Left and Right lane in Figure 4.17), however, consist of a Matching 

section, the Kalman Filter and an Update section, seen in Figure 4.19. 

 

 

Figure 4.19: Left and Right lane masked system block consisting of the 

Kalman Filter 
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The Matching section calculates the distance between the lines found in the frame 

(illustrated in Figure 4.16(a)) to those in the repository. The calculation is done by 

equation (4.1). 

 

                                                      (4.1) 

 

where Rho and Theta represent the separate lines and m the weight of the angular 

difference for calculating the distance between the lines. 

The Matching section then finds the best matches between the newly detected lines and 

those in the repository (the multiple lines detected because of AGV movement). Selecting 

the most appropriate line between all these lines detected the Kalman Filter is 

implemented based upon the history of a line position and predicting the line most 

suitable. Simultaneously the Matching section updates the list through the Update block 

which the Kalman Filter has passed to be most suitable after being “trained enough” 

(enough suitable lines passed through the filter).   

The Route Merging subsystem seen in Figure 4.20 consist of a masked block Finding 

lanes which is used to set the minimum number of frames in which a line must be 

detected consecutively to become a valid line. It then uses this information generating the 

results for the line attributes such as if the line exists, if the frame have one or two lines or 

if the line where merged onto a frame. This is then forwarded by the Merge lanes block as 

a line position on a frame and at which angle of rotation the line is to be displayed 

(illustrated in Figure 4.16(b)). 
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Figure 4.20: Route Merging subsystem masked block 

 

4.5.5 Display of detected line, edge, chroma and tracking information for 

evaluation purposes 

Although the route navigation’s main aim is to generate information to control the AGV, 

the researcher needed some feedback on the performance of the developed systems and 

algorithms. This is the reason for displaying the detection of border lines (lanes), the edge 

and chroma signal, as well as the resultant route tracking frame with the possible 

command displayed as a merged signal on it. A recording feature was implemented to 

evaluate the results obtained by viewing the video recorded. The edge and chroma is 

displayed by the Simulink
®
 model depicted in Figure 4.12. Figure 4.21 includes the 

model for displaying the border detection and route tracking results. 
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Figure 4.21: Simulink

®
 model used for displaying the line detection and line 

tracking results 

 

The information from the Show Valid Lanes and direction of movement block, in Figure 

4.21, is producing the frame to evaluate with the applicable direction control, its direction 

and if there is a no-Route-to-follow signal. This Show Valid Lanes and direction of 

movement block is expanded in Figure 4.23. The Theta and Rho line information is used 

by the Hough lines block (Figure 4.23) to display the merged lines on top of the video 

frame, as shown in Figure 4.22(a). The Binary mask, displays the control commands as a 

merged signal on the Route tracking display (Figure 4.22(d)).  
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 Merged line 

  
(a) (b) 

  

(c) (d) 

Figure 4.22: (a) Border detection with line merged on the display; (b) Edge display 

(c) Chroma display; (d) Route tracking display with command prompt 

merged on the display 

 

A “no Route to follow signal” (STOP) was generated in the test run depicted by Figure 

4.22, because Figure 4.22(b) indicates a possible dead end and Figure 4.22(c) have an 

indication of high noise on a possible route. Thus, the STOP was generated as combined 

result.  

The Show Valid Lanes and direction of movement block in Figure 4.21 consist of three 

main sections:  

 the Hough lines block responsible for the correct position for the lines on a frame to be 

merged on the video frame for evaluation (visually viewed if it corresponds to the edge 

detected, Figure 4.22(a)); 

 the arrow picture to be merged onto the video frame indicating the direction of 

movement for the AGV; and  
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 the Direction Options function block generating the values for the direction controller 

(see Figure 4.23).  

 

 
Figure 4.23: Show valid lanes and direction of movement Simulink

®
 model 

 

The direction the AGV must be steered in, determined from the route information 

detected, is represented by the Angle_rot signal generated in radians, signal 4 in Figure 

4.23. Thus any direction (360°) of movement for the AGV was divided into eight initial 

directions consisting of a range of radian values. The reasoning behind the eight 

directions was to minimise the control commands, limiting it to forward, reverse, left, 

right and the directions in-between, as could be seen in Figure 4.24(b). The Direction 

Options function block detects in which of the eight directions of possible movement the 

Angle_rot falls, indicated by Figure 4.24(a). Angle_rot is also displayed in degrees in 
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Figure 4.23 to assist in the evaluation. Coded in the Direction Options function block 

STOP has precedence, but reverse was also coded for possible inclusion in a maize 

application with a dead-end possibility. 

 

  
(a) (b) 

Figure 4.24: Sub division of AGV directions (a) directions indicated in radians with 

8 ranges, (b) resultant direction code generated and Stop if no route is 

identified 

 

4.6 PC to motor speed control interface 

There was a need to communicate the associated direction commands from the images of 

the camera system to the AGV platform. As a possible solution, it was initially planned to 

use a National Instruments USB-6009 multifunction I/O, already a manufacturing 

standard, seen in Figure 4.25 [59]. It consists of analogue to digital converter input ports, 

with fourteen bit resolution. Digital to analogue converter output ports and twelve digital 

input/output ports with a 32-bit event counter, to name the most prominent specifications.  
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Figure 4.25: NI USB-6009 inside and outside its enclosure 

 

The device was initialised in MATLAB
®
 as Dev1. Port 0 and 1 was used as digital outputs 

and inputs respectively. Figure 4.26 shows some of the code extracted from MATLAB
®
 to 

initialise and access the ports for evaluation purposes. 

 

% initialize port0 as output and port1 as input 

dio = digitalio('nidaq', 'Dev1'); 

addline(dio, 0:3, 0, 'Out');  

addline(dio,0,1,'In'); 

%write logic ones to the port0 output 

putvalue(dio.Line([1 2 3 4]),[1 1 1 1]); 

%read the logic level on port1 

value =getvalue(dio.Line(5)) 

Figure 4.26: MATLAB
®
 program extract – initialisation and access of ports 

 

This proved that MATLAB
®
 could be used to write out commands via the NI USB-6009 to 

the Sabertooth motor speed controller. The speed control, however, is PWM controlled 

with the specifications seen in Figure 4.27. 
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Figure 4.27: Timing diagram of R/C motor speed control utilising PWM [60, p. 3] 

 

The fastest on/off switching to simulate the PWM, in succession, achieved by the NI 

USB-6009 was two milliseconds (2 ms) as could be seen in Figure 4.28. This made it 

impossible to use the NI USB-6009 in such an application, opting for the development of 

the PIC microcontroller board shown in Figure 4.4. 

 

 
Figure 4.28: Output achieved by switching the NI USB-6009 port on and off in 

sequence without time delay 

 

MATLAB
®

 proved capable of communicating to NI equipment if the need do arise in such 

an application. 

 

4.6.1 AGV controls generated from the visual route navigation system 

The PIC microcontroller board and software was developed in such a way that the 

direction control signal of the AGV was sent serially via the USB port of the PC to the 

PIC board. Because the AGV has two drive motors, the speed and direction of the 

respective motors determines the AGV’s speed and direction. The control command 

consists of two single hexadecimal values (one for each motor). These hexadecimal 

Motor at 100% forward 

Motor at 100% reverse 

 

Motor at stand still 
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values were combined as a byte value and had to be declared as double to be sent from the 

PC to the PIC board serially. The two command values have a hexadecimal range 

between 0x0 and 0xF. The range makes it possible to have a resolution of sixteen steps 

for the speed of the motors, from full reverse (0xF) to full forward (0x0) of each 

individual motor. The stop position of the motors need to be in the middle between the 

values 0x0 to 0xF and was selected to be 0x7.  

From Figure 4.29 it is evident that, because of the construction of the AGV, the 

movement of the motor drives is in opposing directions.  

For example; forward is the byte value 0xF0. The left motor, least significant 

hexadecimal, value is 0x0 (full forward). The right motor has the hexadecimal value of 

0xF (full reverse) (see Figure 4.29).  

 

 

 Full forward command for the AGV 

 0xF0 

 
 

 0x0 command for full forward  

 0xF command for full reverse 

 

 Left motor Right motor 

 Left wheel clockwise rotation Right wheel anti-clockwise rotation 

Figure 4.29: Motor direction and control setup for AGV movement 

 

 

Table 4.1 reflects only the four most important directional control words of the AGV and 

STOP control for the motors as examples of the code to be sent to the PIC board. These 

control words represent the full speed equivalents in the different directions. 
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Table 4.1: Direction control commands of the AGV and its values sent serially on 

USB to the PIC board for maximum speed movement 

Direction Hexadecimal control value Decimal control value 

Forward 0xF0  240 

Reverse 0x0F  15 

Left 0xFF  255 

Right 0x00  0 

Stop 0x77  119 

 

 

The Display Simulink
®
 model was developed to generate the Direction- and Stop-Control 

to correlate with the arrow and STOP sign displayed on the Route Tracking display 

(Figure 4.9 and Figure 4.22(d)). This direction-control signal was then altered to the 

correct control byte by the DirectionCntrl function block to be sent by the USB port to 

the PIC motor speed controller. This Simulink
®
 model is displayed in Figure 4.30.   

 

 
Figure 4.30: Function block receiving the direction information to be altered and 

sent via USB 
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The USB serial communications is controlled by an Enabled Subsystem block depicted in 

Figure 4.31.  

 
Figure 4.31: Enabled subsystem block for USB serial port communications from 

laptop to AGV for control commands 

 

4.6.2 Obtained speeds for the AGVs used 

By generating a full forward or reverse command the maximum speed which the 3- and 4-

wheel AGV platforms can reach is calculated from the data sheet and actual specifications 

shown in equation (4.2). Both these platforms depicted in Figure 4.3 were used in the 

research and evaluation. 

 

 Speed of AGV = motor speed (rpm) x gear ratio x wheel circumference (4.2) 

 

Substituting the following parameters of the four- (4) wheels NI AGV platform: 

motor speed (rpm) no load = 154 revolutions per minute (rpm) [61], 

motor speed (rpm) actual = 140 revolutions per minute (rpm), 

gear ratio 2:1 and 

wheel circumference = 314.16 mm. 

gives a maximum speed of the four- (4) wheeled NI AGV = 21.9 m/min which relates to 

1.3 km/h. 
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Substituting the same parameters of the three- (3) wheeled NI AGV platform: 

motor speed (rpm) no load = 154 revolutions per minute (rpm) [61], 

motor speed (rpm) actual = 144 revolutions per minute (rpm), 

no gear ratio and 

wheel circumference = 314.16 mm. 

gives a maximum speed of the three- (3) wheeled NI AGV = 45.24 m/min which relates 

to 2.7 km/h. This is double the speed of the 4-wheeled NI AGV platform because there is 

no gear ratio to the wheels. 

Testing the route navigation at 1.3 km/h which is maximum speed for the 4-wheel AGV 

platform resulted in the vehicle tilting forward and backward. The tilting effect was 

because of the maximum forward and backward control thrust from the navigation 

system, the short wheelbase between front and rear wheels of only 127 mm and the high 

centre of gravity. A speed of 1.3 km/h was still very slow for the AGV and rather than 

implementing gradual acceleration a ski was implemented as seen in Figure 4.32. 

 

 
Figure 4.32: 4-wheel NI AGV platform with ski implemented for correcting the tilt 

effect of the AGV 
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The 3-wheel NI platform was faster and did not need such alterations, because of a lower 

centre of gravity and a distance of 192 mm between the front and rear wheels. Still, a 

gradual acceleration and deceleration would be better for reliability on the gear system. 

This then concluded the complete system for route navigation from detecting a path and 

navigating the AGV from one point to another, utilising vision by selecting an area of 

interest. The research thus far did not include reconfigurability other than placing the 

AGV on different routes and the system could not determine which route to take when 

encountering a split route, like a T-junction. The selection of route direction would 

be random. 

This resulted in the development of a system that could indicate a direction to take and a 

STOP command at the destination, keeping reconfigurability in mind.    

 

4.7 Sign recognition 

The concept of sign detection in conjunction with route tracking is to provide the AGV 

controller with an indication to which route is to be taken when encountering more than 

one option. This is accomplished by incorporating left and right turn signs with a stop 

sign at its destination. This gives the AGV a reconfigurable route, determined by the 

operator, without programming intervention or changes, by placing the signs along a 

changeable route. This is best illustrated by Figure 4.33. 

 
Figure 4.33: Incorporating signs for defining a reconfigurable route 
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The AGV starts at the starting point, encountering a T-junction where after it turns right 

because of the sign. It then follows the route irrespective of the turns and at the second 

junction needs to turn left, because of the sign command, before reaching its destination 

where it is stopped. 

The “Traffic Warning Sign Recognition” MATLAB
®
 demo served as starting point of this 

development, depicted in Figure 4.34 [62]. This model was altered to suit the 

research objective. 

 

 

Figure 4.34: Traffic Warning Sign Recognition MATLAB
®
 demo Simulink

®
 model 

block 

 

4.7.1 Sign recognition templates 

As discussed in section 2.5.3 an option for correlation is to use a template. Two sets of 

templates were generated, one for detection and the other for recognition of the signs. The 

detection templates were generated in a low resolution (12 x 12 per sign) with the 

advantage of saving on computational resources (see Figure 4.35). Only one template was 

generated per sign to be utilised in the detection process. As a STOP sign is mostly red 

this red colour pixel was mainly used in the detection process. 
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Figure 4.35: Three signs template, generated for the detection process, STOP, left 

and right turn 

 

The recognition process required a higher resolution (18 x 18 per sign) for the signs, with 

the implementation of alternative orientations for each. Orientations of the signs of plus 

and minus 7.5 degrees were selected for this purpose originally. The sign information, 

like the STOP, left and right arrow was generated as white pixels for the recognition 

process, seen in Figure 4.36. 

 

 
Figure 4.36: Three signs templates – STOP, left and right; with three orientations 

each, 0° + 7.5° and –7.5°; generated for recognition process 

 

These templates were generated by the altered “vipwarningsigns_templates.m” file to 

read the sign input pictures in Portable Network Graphics (.png) format [63]. The 

resultant templates from the function were stored in the “vipwarningsigns_templates.mat” 

file. This .mat file in turn was loaded, as Workspace variables for the simulation, by the 

Simulink
®
 model block by defining the file in the Model initialisation function under the 

Model Properties below the Model callbacks heading. 

Using one size of templates in such a setup makes the recognition result distance 

depended between the AGV and sign. This is discussed in more detail in section 4.7.6 and 

the results section 5.4. 
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4.7.2 Detection of signs 

The Detection block previously indicated in Figure 4.34 as part the whole system analysis 

each video frame in the YCbCr colour space, as can be seen in seen in Figure 4.37 where 

the red signal (Cr) was isolated and used.  

 

 
Figure 4.37: Detection block of the sign recognition demo used in evaluating 

command sign detection in the Cr colour space 

 

Thresholding the Cr-channel (input1, named Cr) and performing morphological 

operations on the same signal, imply that the model concentrates on the predominantly 

red pixels of a picture (the sign colour). The morphological operation Closing performs a 

dilation operation followed by an erosion operation using a predefined neighbourhood of 

pixels. Utilising the Blob Analysis block, the model finds the red pixels and bounding box 

for each blob, as this block returns the centroid of a large section in a binary image with a 

count of these red pixel blob occurrences. The model then compares the blob with each 

sign detection template. If a blob is similar to any of the sign detection templates, it is a 

potential command sign. 
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4.7.3 Tracking and recognising the signs 

The model compares the bounding boxes around the red blobs of the potential command 

signs detected in the current video frame with those in the previous frame. The model 

compares this blob with the sign recognition templates only if a potential sign is detected 

in a set number (default is 4) of consecutive video frames. If the potential command sign 

is similar enough to a command recognition template in a set number of consecutive 

frames (default is 3), the model considers the potential command sign to be an 

authentic sign. 

After successful sign recognition the models continue to track the sign in the frame 

without returning to the recognition sequence to save on computation resources. 

 

4.7.4 Displaying the recognition results 

After a potential sign has been detected in four (a set value) or more consecutive video 

frames, the model draw a yellow rectangle around the particular sign, utilising the Draw 

Shape block. On recognising a sign, the Insert Text block is used to write the name of the 

sign on the video frame for evaluation purposes. The term Tag is used to indicate the 

order in which the signs are detected with a maximum set at nine before restarting 

the count. 

 

   

Figure 4.38: Displayed recognised left, right and stop signs 

 

At this stage the AGV could detect these three signs along the set route for the specific 

command execution. A reconfigurable route could be set out by the operator without 
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programming changes to the AGV. This did not solve the possibility of more AGVs using 

the same route with different destinations each. 

 

4.7.5 Investigating different coloured routes 

Altering the colour which the AGV respond to, gave rise to alternative routes for different 

AGVs to follow as Figure 4.39 depicts. 

 
Figure 4.39: Implementing different routes for multiple AGVs by utilising different 

colours 

 

Detecting a blob of red pixels (using the Cr signal) or blue pixels (using the Cb signal) did 

not pose a problem as it is available in the YCbCr signal. A green signal, or any other 

colour, had to be sourced and selected differently. For this reason, different methods were 

investigated. 

Method 1: The RGB video signal was used in selecting the specific colour depicting a 

certain AGV’s route. Choosing the separate R, G and B values and implementing a 

tolerance for each colour signal representing this selected route colour. 
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Using a colour tablet shown in Figure 4.40, a specific green colour was selected for a 

specific route as indicated on the chart. The RGB values obtained are; Red (79), Green 

(183) and Blue (53). These specific RGB values were then used for the Simulink
®
 

MATLAB Function block developed, of which part of the code is shown in Figure 4.41. 

The resultant outcome for the selected colour and generating a Boolean picture is shown 

in Figure 4.42. 

 

 
Figure 4.40: Windows Paint edit colours tablet for HSV and RGB pixel colour 

signal [64] 

 

function Io = fcn(Ii) 
%RGB selection 
%Get size of video frame 
y = single(size(Ii, 1)); 
x = single(size(Ii, 2)); 

  
%Create output frame 
Io = Ii(1:y,1:x,1); 

  
for col = 1:1:y  %height of frame 
    for row = 1:1:x %width of frame 
        if (Ii(col,row,1) >= 70/255) && (Ii(col,row,1) <= 85/255)&&...  
           (Ii(col,row,2) >= 175/255) && (Ii(col,row,2) <= 190/255)&&... 
           (Ii(col,row,3) >= 50/255) && (Ii(col,row,3) <= 60/255) 
            %values of RGB is fraction ex 0.45 
            Io(col,row,1) = 1; %binary value 
        else 
            Io(col,row,1) = 0; 
        end 
    end 
end     

   

Figure 4.41: MATLAB
®
 function block extract for selecting a certain green colour 

selected for route identification 

Values used 

for Method 1 

Values used 

for Method 2 
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(a) (b) 

Figure 4.42: (a) Recognised result of a green STOP sign; (b) Boolean picture 

generated as a result of the Simulink
®
 MATLAB function block 

 

Method 2: Method 1 was evaluated utilising the HSV (72, 131 and 111) signal rather 

than the RGB signal. This gave similar results to that of Method 1 and was still time 

consuming. 

Method 3: This method was implemented for trying to save time on computing using 

only the single hue (H) value representing a certain colour range (72) excluding the 

saturation and intensity signal.  

 

All three methods used did function, but not satisfactorily. Lighting played a big role as 

the luminance changed significantly in the colour selected. The luminance value altered 

the shade of the colour to a very large extent, representing at maximum the colour white 

and minimum the colour black. 

The unsatisfactory results obtained for selecting a specific colour from the RGB and HSV 

signal, resulted in a re-evaluation of the YCbCr signal as this produced better results on 

using colour signals red (Cr) and blue (Cb). Utilising equations (2.12), (2.13) and (2.14) 

and substituting typical constants for the Y signal, equation (4.3) was derived. This 

equation was implemented with the Simulink
®

 model shown in Figure 4.43. 
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                       (4.3) 

 

 
Figure 4.43: MATLAB

®
 implementation of the Simulink

®
 model evaluated for a set 

green signal 

 

This method proved experimentally the most successful as the colour selected made the 

output signal less sensitive to variations in lighting levels. In a similar way any other 

colour could be specified as a weighted RGB signal rather than the red, green and blue 

value at that specific colour selection. 

 

4.7.6 Implementing sign detection command control 

Detecting the command signs successfully posed a problem with respect to the reaction 

time to execute the relevant command. This made a difference in the distance from the 

sign to the specific position of the AGV. For example; when the AGV detects a STOP 

sign, how long does it take till the STOP command is applied? 

The size of all the signs were standardised to be approximately 18 cm by 18 cm. Knowing 

the sign size the distance from the AGV to the sign could be calculated utilising the 

number of pixels representing the image size recognised [65, pp. 324-329].  

Table 4.2 gives a summary of the distance relevant to pixel count, obtained 

experimentally utilising the webcam to be used.     
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Table 4.2: Summary of distance from AGV to signs with respect to image pixel 

count 

Distance to a sign Approximate pixel count 

40 cm 174 X 174 

50 cm 144 X 144 

60 cm 120 X 120 

70 cm 106 X 106 

80 cm 96 X 96 

90 cm 84 X 84 

100 cm 76 X 76 

110 cm 66 X 66 

 

 

A safe distance from the AGV to a sign or obstruction was selected to be between 70 cm 

and 90 cm. The reason was that this represented the width of most of the routes used in 

the simulation and evaluation process, making it possible for the AGV to turn within this 

distance. This resulted in the choice of image size, representing the stochastic distance to 

a sign selected and evaluated of approximately 84 x 84 pixels (total of 7 056 pixels), 

viewed from any direction. The distance selection to the sign was developed to be a 

variable input in the Simulink
®
 model. 

Determining this distance to the sign was achieved by utilising the area of the bounding 

box placed around the sign detected and then comparing this pixel count with the required 

size (total pixel count). When true, the relevant sign command detected was executed. 

Provision was made for a multiple count of signs detected in a single frame during 

consecutive frames. This value for the number of signs detected was set to a single digit 

count of nine during evaluation but could be altered by the variable “maxNumSigns” as 

part of the Blob Analysis function. It was accomplished by placing the particular code in a 

MATLAB Function block within the Recognition block, located in the complete system 

block diagram previously featured in Figure 4.34. 

The route tracking controller (Direction Cntrl) has two inputs controlling the motor speed 

interface, i.e. STOP control and direction control (speed in a certain direction), already 

shown in Figure 4.30. These two signals are also generated as outputs by the developed 

sign controller function block. They are switched into operation by a switch control acting 
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as multiplexer with a binary input selector on a valid sign input at the correct chosen 

distance. Figure 4.44 shows the implemented Simulink
®
 model block where the area of 

the detected sign (Prod) and the variable distance (Dist) are needed as input with the 

STOP, direction and switch control generated as output. This Simulink
®

 model block also 

makes provision for the STOP and direction control signals as input coming from the 

Display block as well as the outputs going to the direction control block in Figure 4.30. 

In this example, depicted by Figure 4.44, the STOP sign was placed the closest and then 

the left turn followed by the right turn. The correct signs were detected and only the 

STOP command was executed as could be seen in the figure. The order of detection could 

be judged by the tag numbers with the STOP sign first, then the left, followed by the 

right turn. 

 

 
Figure 4.44: Simulink

®
 model implementing AGV motor control at a set distance 

depending on the area of pixels 
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Figure 4.45 indicates an abbreviated version of the MATLAB
®
 function block code 

generating the control and switching signals. Only the forward, left, right and STOP 

signals are shown for illustration purposes. 

 

 

function [STOPc, DIRc, Bsw] = fcn(Prod, STOPi, Dist) 
%STOPc - STOP(1) no lane control output 
%DIRc - Forward, Left and Right Direction Control 
%Bsw - Boolean switch 
%Prod - Area of specific BBox, to be compared to distance value 
%STOPi - STOP(1), Left(2) and Right(3) Direction control input 
%Dist - distance setting 
STOPc = single(0);          %set movement control to default 
DIRc = single(240);         %default forward 
Bsw = single(0); 
Tag = single(length(Prod)); % = amount of tags; 
if (Tag > 0)                % depending on variable maxNumSigns 
    for ind = 1 : Tag 
        if (Prod(ind)>Dist) 
             if (STOPi(ind) == 1)       %STOP 
                STOPc = single(1);      %STOP control  
                DIRc = single(119);     %no direction - STOP 
                Bsw = single(1);        %switch to control output                 
            end 
            if (STOPi(ind) == 2)        %Left 
                STOPc = single(0);      %STOP control - moving 
                DIRc = single(255);     %direction control LEFT 
                Bsw = single(1);        %switch to control output                 
            end  
            if (STOPi(ind) == 3)        %Right 
                STOPc = single(0);      %STOP control - moving 
                DIRc = single(0);       %direction control RIGHT 
                Bsw = single(1);        %switch to control output                 
            end  
        end 
    end 
end 

Figure 4.45: Abbreviated MATLAB
®
 code for the distance function block 

generating STOP, direction and switch control  
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4.8 Conclusion 

The navigational goals, utilising vision, as described in this chapter were successfully met 

by the developed AGV platform and the route navigation with the sign recognition and 

control implemented. 

A reconfigurable layout could be achieved with relative success utilising an AGV 

recognising only a set colour for its specific route. 

This method of navigation and control improved the flexibility over dead reckoning 

navigation with an added saving in programming alteration time and complexity.  

Results stated in this chapter only point out the alterations and direction took in the 

research. Detailed results are discussed in the next chapter. 
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 Chapter 5  

Results 

 

In this chapter the results of the study for the omnivision system, AGV 

platform, navigation- and control system and the reconfigurability of the AGV 

is described. 

 

5.1 Omnivision system results 

In this section, the performance of the omnivision system is evaluated through several 

experimental results on different processor platforms and cameras using both a three- and 

four wheels NI AGV platform. 

The platforms being used are shown in Table 5.1: the PC for the original MATLAB
® 

development and the Laptop for deployment on the NI platforms. 

 

Table 5.1: Processor platforms specifications used in evaluations 

Personal computer (PC) Laptop 

Microsoft Windows XP  

Professional Version 2002 with Service Pack 3  

Intel
®
 Core™ Duo CPU E8400 @ 3.00GHz  

2.98 GHz, 1.99 GB of RAM  

Microsoft Windows XP  

Professional Version 2002 with Service Pack 3 

Intel
®
 Core™ Duo CPU T7500 @ 2.20GHz  

789 MHz, 1.99 GB of RAM 
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Looking at the specifications of the PC and laptop used; the speed of the processor and 

that of the RAM were the major factors that caused the difference in processing power. 

The architecture of the two machines also had an influence on the final results, as could 

be seen in the previous mentioned benchmark test for the PC Figure 3.24 and that of the 

laptop Figure 3.26.  

The cameras used are shown in Table 5.2: the Basler was later omitted because of its 

physical size and the optical focal length. Hence the Webcams were used on the 3- and 4-

wheeled NI platforms. 

 

Table 5.2: Cameras used in research with applicable software specifications 

 BASLER A600f Logitech
®
 QuickCam

®  

Pro 4000 

Connix Webcam 

6009CIF 

    

Software BCAM Viewer 

BCAM Version 1.9.0020 

©Basler AG 

Logitech
® 

QuickCam
® 

Software 

Version 10.5.1.2029 

©1996-2007 

PRO-Q 

PC-Camera 

Sensor type Micron MT9V403 - 1/2 inch, 

CMOS, Global Shutter 

CCD CMOS 

Number of pixels 656(H) x 490(V) 640(H) x 480(V) 640(H) x 480(V) 

I/O interface IEEE 1394 USB USB 

 

 

The research already showed that the processing speed on a PC is more acceptable than 

on a laptop (section 3.5), thus the reason for incorporating processing time saving 

measures. One of them was the use of a self designed and manufactured mirror rather than 

the round shaped mirror used in Swanepoel’s research [7, pp. 57-58]. This caused a 

saving on necessary image corrections as stated in section 3.2.1. The conversion function 

(seen in Figure 3.10 – the actual function, not only an extract) could be shortened leaving 

out the section of the code addressing the deformation, saving on executing program 

line code. 
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The focus distance of the BASLER with lens setup was much longer than the webcams in 

a similar setup to that shown in Figure 3.2 and the BASLER setup also used larger 

diameter mirrors. The use of the BASLER camera was, however, discontinued as the 

move to a webcam with lower resolution and the implementation of the area of interest 

made it redundant and too large a setup to be used on the AGV platform. Another reason 

not opting for the BASLER setup was the high centre of gravity with respect to the 

smaller AGV. 

Figure 5.1 shows the mirror and the Perspex® tubing used for the different webcams as 

the cameras’ focal distances differed. It was constructed and connected on top of the 

camera as displayed in Figure 3.15 and on the AGV in Figure 5.2. 

 

 

 

 

Used on the  Used on the  

Logitech
®
 QuickCam

®
  Connix Webcam 

Pro 4000  6009CIF   

  
 

 

 

Figure 5.1: Mirror and different Perspex® tubing lengths for webcam setup 

 

 

Figure 5.2 shows the omnidirectional webcam setup used in obtaining the deformation 

results of 10 cm x 10 cm squares reflected in Figure 5.3. 
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Squares depicting 

objects further 

from the AGV at 

the top 

 

 

Squares depicting 

objects close 

to the AGV at 

bottom 

 

 

 

 

Figure 5.2: Test pattern used with the measurement setup for obtaining the results 

in Figure 5.3 

 

Figure 5.3 and Table 5.3 shows the deformation results obtained (discussed in section 

3.2.1, shown by Figure 3.14 and Figure 3.15 – difference in deformation for different 

shaped mirrors) as an indication of the difference between the round shaped mirror 

(Figure 5.3(a)) and the mirror used in the research (Figure 5.3(b)). The pictures were 

taken by the same camera and resolution with similar lighting conditions. 

 

Table 5.3: Vertical sizes (heights) of the four different squares shown in Figure 

5.2, depicted in pixels by the results obtained from semi-spherical and 

hyperbolic shaped mirrors respectively 

 Spherical mirror Hyperbolic mirror 

Top Square 30 38 

Square second from the top 36 39 

Square third from the top 42 42 

Bottom square 42 42 

 

Obviously the sizes rendered by the hyperbolic mirror are more accurate and less 

dependent on its vertical position relative to the AGV than the same for the semi-

spherical mirror. 
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 (a)  (b) 

Figure 5.3: (a) Spherical shaped mirror used in Swanepoel’s research with results 

obtained; (b) Developed mirror used in research with results obtained 

 

Figure 5.3(b) shows an improvement over the results obtained in Figure 5.3(a) with 

respect to the ratio in shape and size of the squares representing objects close to the vision 

system (bottom part of figure) to objects further from the vision system (top part of 

figure) of the AGV. The deformation of the shape at the top of Figure 5.3(a) is more (with 

a decrease in height) than that of Figure 5.3(b). These ratios reflect a square object 

without image corrections or calibration.  

The smaller shape of the mirror used in the research had a darker appearance of the 

picture (as seen in Figure 5.3(b)) as expected because of the smaller diameter of the 

mirror. This issue was discussed, that the level of illumination drops as the diameter 

decreases, in section 3.2.1.  

A ghost reflection is also evident because of the acrylic properties as can be seen in the 

differences between Figure 5.3(a) and (b). Figure 5.4 shows this pattern of refraction 

(Snell’s law [66]) and reflection (Schön [67]), which have an influence on the apparent 

Results obtained in the evaluation 

Different mirror shapes used in the evaluation process 

Squares depicting objects  

further from the AGV 

Squares depicting objects  

close to the AGV 

Squares depicting an 

improved height 

representation 
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focus of the image. This ghost reflection however did not make a difference as the edge 

could still be detected with a specific threshold level for the edge detection. 

 

 

 

(a) (b) 

Figure 5.4: Refraction and reflection influences on the image, (a) round mirror 

with no reflection and refraction; (b) used mirror with acrylic setup 

with the reflection and refraction 

 

Utilising Table 3.2, selecting a frame size of 201 X 360, relates to only 4 frames per 

second available for image processing (i.e. navigation and control) after omnidirectional 

conversion compared to 23 frames per second  selecting a frame size of 96 X 128. A pixel 

count of approximately 6 times less resulted in an improvement of approximately 6 times 

more frames per second available for image processing, without the image acquisition 

time taken into consideration. It is evident that, changing from a high resolution picture 

frame (high resolution camera) to a lower resolution picture (low resolution webcam) 

saved considerable processing time as the function for converting a single frame is almost 

directly related to the image size. 

image taken 

refraction 

occurrence 

reflection 

occurrence 

image taken 
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Selecting the area of interest also assisted with the edge detecting process, selecting the 

lines to be sent through the Kalman Filter for route navigation. The area of interest 

included the straightest lines section of the converted frame indicated in Figure 5.5(a), 

making image corrections and implementing calibration unnecessary, saving valuable 

processing time. 

 

 Straight section Curved section 

  

(a) (b) 

Figure 5.5: (a) Selected frame in front of AGV; (b) Resulted straight edge by 

selecting area of interest 

 

In Figure 5.5(b) it is evident that both left and right route edges are more linear than those 

in Figure 5.5(a) making image corrections unnecessary. The area selected and shown in 

Figure 5.5(b) is still covering enough area in front of the AGV making navigation 

possible and not missing obstructions close to the AGV platform. 

As the software target platform used in the research was a specific laptop, the frames per 

second achieved by the system were evaluated on the laptop. Figure 5.6 shows the drastic 

decrease in frames per second available to work with in image processing after each stage 

on the system, including that obtained by the PC for comparison. 
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Figure 5.6: Decrease in frames per second along the process of image processing 

on the laptop platform relative to that of a PC 

 

The frame rate of 30 frames per second available from the camera is decreased to almost 

14 frames available after acquisitioning with a selected frame size of 96 X 128. This 

frame rate is further decreased to 2 frames per second after omni conversion process 

available on the laptop and 7 frames per second on the PC for image processing. The 2 

frames per second was too slow to evaluate the navigation properly thus the reason for 

selecting a camera facing the front (simulating the area of interest) for the evaluation of 

the navigational system. 

 

5.2 AGV platform results 

This section gives an overview of the AGV platforms’ evaluated performances in terms of 

their speed and physical attributes through several experimental results on the two 

different NI platforms used, indicated in Figure 4.3 (3 and 4 wheel NI AGVs). 

In section 4.6.2 it was noted that the maximum speeds the individual AGVs achieved 

were 2.7 and 1.3 kilometres per hour without utilising any vision, depicted in Table 5.4. 

The maximum frame rates achieved by using the omnidirectional vision in the study were 

7 frames per second for the PC and 2 frames per second for the laptop, seen in Figure 5.6. 

Using this information relates to a distance travelled of 36.5 cm per second with the 
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slowest AGV of the two. This distance travelled by the AGV between sequential images 

is calculated as 18 cm using the laptop control - which performs at 2 frames per second. 

 

Table 5.4: Comparative speeds of the 3- and 4-wheeled AGVs used in the 

research without vision 

 3-Wheel AGV 4-Wheel AGV 

Maximum speed obtained in forward/reverse without 

vision 

2.7 km/h 1.3 km/h 

Individual speeds denoted in meter per minute 45.24 m/min 21.9 m/min 

Individual speeds denoted in centimetre per second 75.4 cm/sec 36.5 cm/sec 

 

 

This speed of 18cm per frame was clearly too fast to allow image processing using the 

laptop. The AGV’s speed needed to be reduced because, at least 6 to 8 frames per second 

was necessary for proper vision control (section 4.5.4). This meant that the AGV travelled 

more than a meter at 6 frames per second (18 cm x 6 frames = 108 cm). This is more than 

a typical turning circle distance (90 cm) allowed in section 4.7.6, before a control decision 

could be made. Altering the AGV’s speed to suit the processing time of the laptop related 

to a speed of 12 cm per second (derived from equation (5.1)), which was not suited for the 

final industry application.  

 

                                    
                            

                                  
 (5.1) 

                                                             

  
                            

                                              
 

 = 6 cm/frame at 2 frames/sec 

 = 12 cm/sec 

This gave reason for not using the omnidirectional vision in conjunction with the vision 

control and rather opting for a single camera and a low resolution area of interest for the 

rest of the evaluations. 
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5.3 Navigation and control system 

In this section the performance of the route navigational system of the AGV was 

evaluated, in terms of following the route as expected and using vision with a single low 

resolution webcam [57].  

As there was no provision made for localisation of the AGV by means of dead reckoning 

as in Swanepoel’s [7, pp. 41-44] research or utilising laser scanners and visual odometry 

as in Scaramuzza et al.’s [68] work, the movement of the AGV needed to be monitored 

and noted by observation during assessment.  

The vision recording feature of the surroundings of the AGV mentioned in section 4.5.5 

was used in recording the live streaming of the AGV as it progressed on its route during 

evaluation. These results were compared and noted with respect to the orientation of the 

AGV and its position on the route. What was evident was that the AGV could follow the 

set route with ease and that the commands generated from the navigation system did give 

the desired output to the AGV drive controls.  

Figure 5.7 shows some of the results plotted and the position and orientation of the AGV 

noted for a specific evaluation performed. 
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Figure 5.7: AGV position and orientation along a destined route plotted for 

evaluation 
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Figure 5.8 indicates the corresponding arrow direction control indication for monitoring 

purposes and AGV movement control. Point 7 in both Figure 5.7 and Figure 5.8 indicates 

an unexpected movement toward (expected to continue on a straight route) the right hand 

side of the corridor because of the chrominance edge picked up. The unexpected 

movement of the AGV was also part of the reason for implementing the reconfigurable 

control signs discussed in section 5.4. 

 

     
1 2 3 4 5 

     
6 7 8 9 10 

Figure 5.8: Corresponding frame captures for the positions indicated in Figure 5.7 

 

Table 5.5 indicated the actual movement of the AGV with respect to the frame captures in 

Figure 5.8.  The generation of the control commands and how it is created is discussed in 

section 4.5.5 with reference to Figure 4.24 indicating in which direction limits the route 

detection falls. 

 

Table 5.5: Corresponding movement noted for evaluated test run of AGV with 

respect to the corresponding frames in Figure 5.8 

Frame No. Description of AGV movement 

1 AGV moving straight from its starting position. 

2 AGV turning 90° left because of corridor wall in front. 

3 AGV turning slightly right too close to wall. 

4 Another movement slightly right. 

5 AGV turning slightly left. 

6 A slightly right movement. 

7 Unexpected sharp right movement of AGV because of chrominance border. 

8 Slightly left movement. 

9 Slightly right movement. 

10 AGV STOP because of irregular line and chrominance in front. 
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Illumination of the environment played a big role not just by detecting the edges but also 

because chrominance processing was implemented. Utilising the webcam, the auto white 

balance played a big role in the RGB and HSV colour values. Applying the white balance 

setting in the manual option improved the results as the threshold settings could be 

changed to satisfaction with each different environment trial run. 

 

5.4 Reconfigurable ability of the AGV 

In this section, the performance of the sign recognition system of the AGV was evaluated. 

The sign recognition system provided the route reconfigurablility to be applied by the 

operator by placing the applicable signs along the route for a specific AGV.  

The sign recognition system made provision for signs to be detected at a rotated angle of 

±7.5° (section 4.7.1). The signs could however be detected to a maximum rotated angle of 

45° for the left and right sign and 30° rotated angle for the Stop sign. This vertical 

rotation detection was better than expected although the signs were never placed at such 

angles. Detection situations where the sign was so skew were also never encountered. 

Figure 5.9 indicates the results achieved in simulations testing the system as it was never 

placed at this angle in the actual evaluation runs but, could occur if a sign stand was 

knocked over or placed incorrectly. 
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Right sign at ±45° 

  
Left sign at ±45° 

  
Stop sign at ±30° 

Figure 5.9: Indication of the degree at which the signs could be detected utilising 

sign recognition 

 

With the left and right sign rotated beyond the 45° mark the sign was detected as 

indicating the opposite direction. Thus the arrow shape played very little role in the 

recognition phase because of the low resolution implemented in the templates. The 

angular shape played the predominant role as expected. 

All of the signs could be detected safely at a maximum distance of 15 metres from the 

AGV, with the resolution of the webcam set to 640 x 480 pixels per frame. This resolution 
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was however not used as the area of interest was implemented for conserving processing 

time. With the frame resolution setting of 180 x 96, the signs could be detected at a 

maximum range of 2.4 metres, determined experimentally. The detection distance 

decreased dramatically with the decrease in the resolution used on the webcam settings 

with the signs size and templates resolution kept constant. This result correlates with the 

predicted distance derived from using; the data in Table 4.2, graph drawn shown in Figure 

5.10 and using the prediction equation (5.2) obtained through a curve fit – producing 

Table 5.6.  

The prediction equation calculating: 

              
             

         (5.2) 

where distance represent the distance in centimetres between the camera setup and sign to 

be detected and pixels represent the pixel count of the average height by length of the sign 

to be detected (represented by the bounding box and Boolean picture size). All the 

answers and calculations relate to a sign of approximately 18 cm x 18 cm in size. 

 
Distance to a sign from AGV (cm) 

Figure 5.10: Distance to a sign plotted against the pixel count of the sign detected 

with curve fit 

 

Figure 5.10 indicates the distance from the signs to the AGV plotted against the 

experimental results (pixel count) including the predicted results (pixel count) with the 

equation obtained applying a curve fit. 

y = -54.15ln(x) + 179.36 
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Table 5.6: Experimental results with predicted distance of signs detected from 

AGV 

 Distance to a sign Approximate pixel count Predicted pixel count 

 40 cm 174 X 174 179 X 179  

 50 cm 144 X 144 142 X 142 

 60 cm 120 X 120 120 X 120 

Experimental 
results obtained 

Table 4.2 

70 cm 106 X 106 104 X 104 

80 cm 96 X 96 92 X 92 

 90 cm 84 X 84 82 X 82 

 100 cm 76 X 76 74 X 74 

 110 cm 66 X 66 67 X 67 

 120 cm 60 X 60 60 X 60 

 130 cm 55 X 55 55 X 55 

 140 cm 50 X 50 50 X 50 

 150 cm 45 X 45 45 X 45 

 160 cm 40 X 40 40 X  40 

 
 
 

170 cm 36 X 36 36 X 36 

180 cm 32 X 32 33 X 33 

190 cm 28 X 28 29 X 29 

 200 cm 25 X 25 26 X 26 

 210 cm 22 X 22 23 X 23 

 220 cm 20 X 20 20 X 20 

 230 cm 16 X 16 17 X 17 

 240 cm 14 X 14 14 X 14 

  

 Values obtained experimentally to evaluate the predicted values 

The conclusion would be that there must be enough pixels to be used in the correlation 

process utilising a template size of 12 x 12 pixels for detection. The size of the detection 

template results in a predicted distance of 2.5 metres for sign detection. Utilising a 

template size of 18 x 18 pixels for recognition resulted in a predicted distance of 2.27 

metres. The sign detected range at this set webcam resolution resulted in an expected 

distance between these two indicators at a distance of 2.4 m proven and obtained 

experimentally.   

Each time a sign is recognised a Tag number is allocated to the sign while it is tracked. A 

registry of 9 is kept but this number could be changed by a variable setting in the 



 5.4  Reconfigurable ability of the AGV 114 

 

  

 

 

program. An indicator is also allocated to the recognised sign, 1 for Stop, 2 for Left and 3 

for Right as could be seen in a previous Figure 4.44 mentioned to keep track of the 

particular sign. 

Encountering the signs at an offset horizontal front angle also did not provide a problem 

as the deviation from the straight on position could vary to as much as 50° without failure 

to recognise the sign as could be seen in Figure 5.11. 

 

  
Right sign at 50° and 60° right 

  
Left sign at 50° left and 65° right 

  
Stop sign at 50° left and 60° right 

Figure 5.11: Indication of the offset to the straight on angle for sign recognition 

 

Bounding box 
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The AGV movement control acted on the signs control function at a predefined distance, 

set at 70 cm for evaluation purposes, determined by the set area of the bounding box. The 

distance between the sign and AGV was determined by the average area of the bounding 

box seen in Figure 5.11 around the sign (explained in section 4.7.6). As the sign size was 

kept constant the biggest change experienced in the dimensions of the bounding box was 

the width. The reason was the angle at which the AGV approached the sign. The height of 

the bounding box relative to the distance between the AGV and sign also seemed to stay 

almost constant. The result was that the AGV acted on the sign command much closer at 

a large angle deviation from head on to the sign. This resulted in a distance of reaction of 

between 40 cm and 64 cm which did not pose any problems as the size of the platform 

was relatively small. This is perhaps better illustrated in Figure 5.12. 

 

 

 

 

Figure 5.12: Distance from the sign determined by area at different angles of 

approach 

 

This resulted perhaps in a more stochastic approach where the sign height compensated a 

bit for the loss in width by the increase of pixel count the closer the AGV got to the sign. 

This prompted an approach to just use the height of the sign rather than the bounding box. 

Utilising the bounding box were still a better stochastic approach leaving the possibility 
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of placing the signs at different heights along the route which is more flexible in an 

industry approach. 

Different colours were introduced to provide different AGVs with the ability to follow 

their own routes. To select a specific colour the RGB (method 1 discussed in section 

4.7.5) and hue (H) values (method 3 section 4.7.5) were successful but very vulnerable to 

lighting conditions. The method selecting the correct YCbCr values proved to be the most 

robust method with low light conditions and white balance changes utilising 

the webcams. 

 

5.5 Summary 

The omnidirectional vision system was evaluated by means of simulations on a PC 

platform before it was implemented for navigation and control purposes on a laptop 

placed on an AGV. This chapter includes both these results. The omnidirectional vision 

system performed well on the PC platform but, the laptop was lacking processing power. 

The AGV platforms performed well. The 3-wheel AGV travelled at double the speed of 

that of the 4-wheel AGV with the same drive commands because of mechanical 

differences. As the omnidirectional setup had a high centre of gravity the 3-wheel AGV 

was more stable because of the larger base area. 

Implementing route navigation with sign control utilising different colours in conjunction 

with the omnidirectional vision system proved difficult because of the lack in the laptops 

processing power. Applying the concept of area of interest, not including image 

corrections and calibration and utilising an own developed mirror configuration proved to 

be viable solutions enabling use of the laptop. Testing the navigational and control system 

with the omnidirectional vision configuration as acquisition system in real time resulted 

in a maximum operational speed for the AGV of approximately 6 cm/sec. This is not 

viable for an industry application. Hence, testing of the AGV control system was limited 

to a single camera facing in the direction of movement, representing an “area of interest” 

system, saving time on the omnidirectional image acquisition time. This enabled testing at 

a speed of 12 cm/sec – which is still slow for an industrial application, but proved the 

viability of a vision-based control system. 
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Testing different AGVs on individual routes proved the navigation and sign control 

concept to be a workable vision system utilising a low resolution area of interest. All of 

the tests performed on the AGVs were done in real time and the reconfigurability of the 

system proved to be successful. 

 

5.5.1 Possible improvements of the refraction and reflection of the mirror and 

camera setup 

The construction of the mirror and camera could be improved because of refraction and 

more importantly reflection. Changing the design and/or materials could improve the 

image quality. Glass has a typical reflection percentage of 8% [69, p. 2], quarts has a 

better reflective percentage of typically 4 to 5% [70] and acrylic (Perspex®) is 4% [71, p. 

20]. The application of an anti-reflective (AR) coating may also help [72]. 

 

5.5.2 Possible improvements on the vision navigation and control system 

Although it did not happen during a specific trial run it was evident from other 

evaluations that the resolution of the eight direction control and movement of the AGV 

would need a higher number of intervals. As the AGV got closer to the route border 

detected at a specific angle and no steering control was detected at that angle to steer the 

AGV away or in the right direction, the AGV ran over the route edge before it altered the 

control direction or never even corrected the direction of the AGV. This is explained by 

Figure 5.13 were the AGV drifted toward the left edge of the route border at an angle that 

would not be detected to steer it away. 
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 Indication of direction control boundaries – Figure 4.24 

 Boundaries for forward movement by the AGV 

 (between 0.5 and –0.5 radians)  

 

 

 Route Border 

  

 

 Outside the route of the AGV  

 Route the AGV was travelling on 

  

 Arrow indicating forward moving AGV 

control instead of turning slightly to the  

right  

Arrow representing route direction (derived from Rho value – Hough transform) 

Figure 5.13: Explanation for the need for a higher selection control resolution 

 

In Figure 5.13 the border of the route is still within the 0.5 and –0.5 radians range. Thus 

the AGV control generates a forward movement. The AGV is actually too close to the 

border and will run into the wall or over the route boundary. In this case a slight 

movement to right would have been preferred. 

Thus the steering control between full Left and Right needs a higher resolution of steering 

angles to accurately control the AGV as illustrated by Figure 5.14. There was also no 

need for the reverse sections as this was not needed or implemented as the AGV comes to 

a stand still if no route is detected or if it is a dead end. 

 

 
(a) (b) 

Figure 5.14: Directions resolution improvement suggestion, (a) higher resolution 

direction division in radians; (b) resultant direction code to be 

generated and test if no lines for movement 
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This higher resolution control was, however, not implemented during execution of 

the project. 

 

5.5.3 Conclusion with regard to the relationship between – webcam resolution, 

template resolution and distance to a sign 

In the sign navigation and control of the AGV the following relationships between: 

 the distance from a sign to an AGV,  

 the set resolution of the webcam or area of interest used in the vision acquisition,  

 the resolution of the templates to be used, and  

 sign size.  

were that the further the sign needs to be recognised from the AGV the higher the 

resolution of the webcam or area of interest needs to be, the higher the template resolution 

forces the sign to be detected closer to the AGV and increasing the sign size would 

increase the distance for detection. 

This is represented by equations (5.3) to (5.5). 

                                      (5.3) 

                    
 

                   
 (5.4) 

                                    (5.5) 
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 Chapter 6  

Conclusion 

 

This chapter summarises the contributions of this thesis and possible directions 

for future research. 

 

6.1 Summary 

The main aim of this research was to develop an omnidirectional vision sensor observing 

AGV surroundings. This sensor is of no use if there are no applications for such a device. 

Navigation with vision was applied. In accomplishing this task the research was divided 

into the following facets: 

 research to possible solutions and applications ( Chapter 2), 

 development of the omnivision sensor ( Chapter 3), 

 development of navigating an AGV by means of vision ( Chapter 4), 

 evaluating the systems developed ( Chapter 5), and 

 a conclusion ( Chapter 6). 
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6.2 Original contributions 

The research carried out in this project led to the development of a MATLAB
®
 function 

used in the conversion of an omnidirectional picture to a panoramic picture displaying a 

360° view of the camera position surroundings. This function was used in testing the 

conversion speed of the transform as well as certain possible calibrations to be used. 

In testing the possibility of using either MATLAB
® 

or C# as software platform, a C# 

program was developed in converting omnidirectional pictures to panoramic pictures 

selecting the area to be converted. This program made use of the executable function 

compiled in MATLAB
®
 and C# was used to develop the graphical user interface (GUI). 

As processing speed was a factor throughout the research selecting a specific area of 

interest in the Omnidirectional picture led to considerable savings in processing speed. 

This paved the way to use low-cost and resolution cameras. 

Vision implemented on the AGV as sensory component, guided the research in 

implementing edge and chrominance route navigation. This also led to the 

implementation of reconfigurable sign positioning and detection for navigation 

applications. Specific control actions for navigation based on distance from the sign 

utilising vision were implemented. This concept in navigation led to a reconfigurable 

navigated AGV with minimal operator intervention. 

The research produced publications in an accredited journal, several proceedings and a 

poster presented as can be verified in the references.  

 

6.3 Evaluation of, and the conclusion of the vision system 

Even though the omnidirectional vision system worked well in the development phase of 

the research on single frame conversions, it required high computational power with large 

programming execution resources for conversions of a video stream. This was too time-

consuming for the laptop platform used which resulted in a slow moving AGV. Proving 

the possibility of using omnidirection vision for the applicable navigational application 

was still possible. Utilising omnidirectional vision still proved the elimination of sensors 

to be used in identifying the AGV’s surroundings. 



 6.4  Evaluation of, and the conclusion of a navigation interface 122

    

 

 

Utilising an in-house developed mirror setup system improved the aspect ratios of the 

visual environmental input of the AGV saving on omnidirectional calibration and 

conversion time. The research for utilising NN and GA in identifying the AGV’s 

surroundings was also put on hold by these results. 

Implementing the area of interest concept saved valuable computational time on 

implementation but there are other options still to be investigated for improving time 

management listed as options for future research. 

 

6.4 Evaluation of, and the conclusion of a navigation interface 

The navigation results proved to be working well utilising route and sign navigation. The 

Prewitt edge detection proved to be the best choice for edge detection in this project. The 

Hough line detection proved to be functional in route navigation, where both edge of an 

object and chrominance were utilising in route detection. 

The concept of using an area of interest not only helped in saving conversion time of the 

omni picture but, also assisted in the detection of the route by selecting the relevant area 

of interest. This saved on time utilised for correction strategies of the picture and area to 

be converted. 

Coloured sign navigation was implemented by using three different signs, applying 

tracking and detection. The signs colour was then used for different AGVs, defining each 

AGV’s route. The distance to the sign was detected by using the area of the sign counting 

the pixels within a bounding box surrounding the sign. A pre-set distance to a sign 

triggered a specific navigation command. 

Ambient lighting proved to be a factor in detection the route and signs as was to be 

expected. The lighting could be improved in each scenario or evaluation, but provision 

was also made in terms of variable parameters for fine tuning in the program navigation 

and control programming blocks. These settings and light improvements were however 

route and area specific. 

Using a single camera without omnivision assisted in the speed of the AGV platform as 

less processing time was consumed to perform the conversions on the laptop platform. 
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Lighting quality also improved as the light path from an object did not need to travel 

through the Perspex and onto the small mirror area. 

 

6.5 Assembly of different systems in a single platform 

The choice of using MATLAB
®
 solely as software platform for the vision, navigation and 

control of an AGV proved to be the best solution for this specific research and possible 

future development as the different concepts could be tested and combined in one 

platform. There is an unproven possibility that MATLAB
®
 contributed to a slower 

processing time than the industrial implementation of, for example C# or LabVIEW
TM

. 

This evaluation between platforms, however, did not form part of the investigation. 

Combining the vision system, navigational system, sign recognition system and AGV 

control proved to be possible even on a laptop and did function to prove the concept, but 

at too slow speed for industry applications.  

Even if the software simulations and AGV experimental testing provided promising 

results, there are still some aspects like the hardware platform, software algorithms and 

lighting configuration that can be improved upon to provide better performance. 

 

6.6 Future research 

In improving the processing speed and the machine vision system the following could be 

investigated: 

 The processing power for the AGV navigation could be located on an alternative 

processor not situated on the AGV or machine vision system. The speed of the 

bidirectional communication system between the machine vision system and the 

operational control system of the AGV will then be a determining functional 

characteristic of the complete system.  

 Alternatively it might be possible to “teach” the AGV to interpret sensed optical 

signals as representing specific physical phenomena, distorted in the same manner. 

In other words, rather than convert the captured omnidirectional images into its 

panoramic equivalent – as humans do – it might be possible to programmatically 
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convert the physical environment into its distorted equivalents. The relative merits 

of these two techniques could be investigated and the most appropriate system 

implemented in the final configuration. NN, GA and fuzzy logic could also be 

possible solutions. These were initially investigated as possible solutions to the 

omnidirectional navigation control system. 

 2-D versus 3-D optimisation could also be investigated by either using two 

photographic systems in a stereovision configuration, or via possible focus or 

reflector movement. The aim with this will be to accurately determine the physical 

size of an object and its distance from the vision system.  

 Very-high-speed integrated circuits (VHSIC) hardware description language 

(VHDL) and Field-Programmable Gate Array (FPGA) could be incorporated in 

the transform from omnidirectional conversion to panoramic [73][74]. 

Implementing the proven concept using an area of interest (section 3.4) and 

perhaps a compiler generating the mapping could be investigated. 

 Incorporating parallel processing by identifying cores to certain functions [50]. 

 Development of the vision control software on a more relevant industrial platform 

for example incorporating it on the sRio platform [75]. 

 Include a localisation technique similar to those used in Swanepoel’s [7, pp. 41-

44], Boje’s [35, pp. 70-88] and Scaramuzza et al.’s [68] to be used for correlation 

in localisation and mapping. 

 



  

  

125 

 

Appendix A – Colour inset 

  
Figure 2.13, page 18. Figure 2.15, page 19. 

 

 

 

 

 
Figure 2.21, page 26. 
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Figure 2.22, page 26.  

 Figure 3.6, page 41. 
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Figure 3.7, page 41. 
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Figure 4.13, page 69. 
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Figure 4.16, page 71. 
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(c) (d) 

Figure 4.22, page 77. 

   

Figure 4.38, page 90. 
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Figure 4.39, page 91. 

 

 

Figure 4.40, page 92 
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Appendix B 

B.1 Compiling an standalone executable file utilising the mcc 

command in MATLAB
®
 from an m-file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATLAB Compiler 
 

1. Prerequisites for Deployment  

*  Verify the MATLAB Compiler Runtime (MCR) is installed and ensure you have 

installed version 7.10. (The same version that you used to compile the .m files with)      

*  If the MCR is not installed, run MCRInstaller, located in: 

   C:\Program files\MATLAB\R2009a\toolbox\compiler\deploy\win32\ 

MCRInstaller.exe  

For more information on the MCR Installer, see the MATLAB Compiler 

documentation.     

NOTE: You will need administrator right to run MCRInstaller.  

 

2. Files to Deploy and Package 

Files to package for Standalone  

-imunwrapbenm.exe, the executable file generated with the mcc command. 

-MCRInstaller.exe  

   - include when building component by selecting “include MCR” option in 

deploytool. 

-This readme file  

 

3. Definitions 

MCR – MATLAB Compiler uses the MATLAB Compiler Runtime (MCR), which is 

a standalone set of shared libraries that enable the execution of M-files. The MCR 

provides complete support for all features of MATLAB without the MATLAB GUI. 

When you package and distribute an application to users, you include supporting files 

generated by the builder as well as the MATLAB Compiler Runtime (MCR). If 

necessary, run MCRInstaller to install the correct version of the MCR. For more 

information about the MCR, see the MATLAB Compiler documentation. 

 

For a complete list of product terminology, go to  

http://www.mathworks.com/help and select MATLAB Compiler. 

 

*  NOTE: <matlabroot> is the directory where MATLAB is installed on the target 

machine. 
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4. Appendix  

A. On the target machine, add the MCR directory to the system path specified by the 

target system's environment variable. 

  

i. Locate the name of the environment variable to set, using the table below: 

    Operating System        Environment Variable 

    Windows                  PATH 

 

ii. Set the path by doing one of the following: 

NOTE: <mcr_root> is the directory where MCR is installed on the target machine.          

 

On Windows systems: 

* Add the MCR directory to the environment variable by opening a command 

prompt and issuing the DOS command: 

 

            set PATH=<mcr_root>\v710\runtime\win32;%PATH%  

 

        Alternately, for Windows, add the following pathname: 

            <mcr_root>\v710\runtime\win32 

        to the PATH environment variable, by doing the following: 

            1. Select the My Computer icon on your desktop. 

            2. Right-click the icon and select Properties from the menu. 

            3. Select the Advanced tab. 

            4. Click Environment Variables.   

 

NOTE: On Windows, the environment variable syntax utilises backslashes (\), 

delimited by semi-colons (;). 
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