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Abstract - Natural convection from a spinning sphere with temperature dependent viscosity, thermal conductivity and viscous 

dissipation was studied. A unique system of non-similar partial differential equations was solved using the bivariate local-linearization 

method (BLLM). This method use Chebyshev spectral collocation method applied in both the η and ξ directions. Similar equations in 

the literature are normally solved by inaccurate time-consuming finite difference methods. This work introduces a robust method for 

solving partial differential equations arising in heat and mass transfer. The numerical method was validated by comparison to the 

results previously published in the literature. The method is fully described in this article and can be used as an alternative method in 

solving boundary value problems. This work also presents rarely reported results of the effect of selected parameters on spin-velocity 

profiles g(η).  
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1. Introduction 
The concept of free convection from spherical surfaces has received attention in the area of fluid flow due to its 

practical application. These applications include among others studies around the earth’s atmosphere, cooling around 

spherical surfaces. These studies applied numerical solutions to ordinary and partial differential equations but did not focus 

on the accuracy of the numerical methods. We discuss the methods used in the literature and new method introduced in this 

work. These methods are finite differences; implicit and explicit, the Keller-box, the Homotopy analysis method, the local 

non-similarity method of Minkowycz and Sparrow [1], Runge- Kutta method. In this work we discuss the newly developed 

bivariate local linearization method (BLLM) in Motsa et. al [2]. The method was extended from the quasi-linearization 

method (QLM) of Bellman and Kalaba [3] 

It is well known that analytical methods are restricted to simple cases and equations which normally do not accurately 

describe practical situations. We therefore make use of numerical methods. Numerical methods have been widely reported 

to be accurate and sometimes are comparable to analytical solutions. The methods include finite difference techniques 

reported by Gaffar et. al. [4], El-Amin and Sun [5], Ramteke and Kishore [6], Rhahimi and Jalali [7] and Zainuddin et al. 

[8]. The finite difference based Kellerbox method is also reported by Blottner et al. [9], Nayela et. al. [10], Haquea et. al 

[11], Alim et. al [12] and Narayana et. al. [13]. These methods have widely been used, they involve approximating 

functions and their derivatives in differential equations. These methods are accurate but need more computation time. 

In numerical methods, efforts have been made to reduce computational time and achieve accurate results. More 

accurate hybrid methods were developed, such as the Homotopy analysis method which was reported in Makukula et. al 

[14], Motsa and Sibanda [15] and Nadeem and Saleem [16]. This method is easy to implement and accurate and better than 

finite difference methods. The solution of ordinary differential equations arising in fluid flow were also solved using 

Matlab bvp4c based on Runge-Kutta method. The method is adaptive (adjusts) the numerical step size at every iteration 

Bogacki and Shampine [17]. The Runge-Kutta method is easy to use and more accurate than the traditional finite 

difference methods, Shampine [18]. The Runge-Kutta method was used by among others Ghalambaz et. al. [19] and 

Kameswaran et. al. [20]. 

This study focuses on the application of more accurate numerical method based on spectral collocation technique to a 

system of partial differential equations arising in fluid flow. Fluid flow around spheres was studied by among others 

Kabeir et. al. [21], Jafarpur and Yavanovich [22] and Nayela et. al. [10], Gaffar et. al. [4], in their work they applied finite 
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difference techniques such as the Keller-box method. In this work we show that the bivariate local linearization method 

(BLLM) can be used as an alternative method for solving boundary value problems accurately. The method is easy to 

implement as shown in the solution method section. 

 

2. Mathematical Formulation 
Consider a steady, incompressible three dimensional flow of a Newtonian fluid around a sphere. The Cartesian 

coordinates x,y and  z are along the, u,v  and w  are the respective velocity components. The surface of the sphere is 

maintained at constant temperature sT   and the ambient temperature at T . 

The governing equations can be written as: 
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Equations (1) - (4) are subject to boundary conditions 

 

𝑢 = 0, 𝑣 = −𝑉𝑠, 𝑤 = 𝑎Ω, 𝑇 = 𝑇𝑠, 𝑦 = 0,  
 

(5) 

 

𝑢 ⟶ 0, 𝑤 ⟶ 0, 𝑇 ⟶ 𝑇∞, 𝑦 ⟶ ∞, (6) 

 

where the subscripts s and   refer to the surface and ambient conditions.  a is the radius of the sphere, r  is the 

density of the fluid, K is permeability parameter, pC  is the specific heat capacity, g is the acceleration due to gravity, Tb  is 

the coefficient of thermal expansion of the fluid, sV  is the suction velocity at the surface and, Ω is the angular velocity of 

the spinning sphere. 

We assume linear surface temperature on the sphere surface. The dynamic viscosity and thermal conductivity varies as 

a linear function of temperature as in Animasaun [23]. 

 

 

𝜇(𝑇) = 𝜇0[𝑎1 + 𝑏1(𝑇𝑠 − 𝑇)] 
 

(7) 

 

𝜅(𝑇) = 𝜅0[𝑎2 + 𝑏2(𝑇 − 𝑇∞)] 
 

(8) 

 
where µ0 is the coefficient of viscosity and κ0 is the constant value of the coefficient of thermal conductivity further 

away from the sphere surface, A, a1, a2, b1, b2 are constants; in this study we consider a1 = a2 = 1 only, 

Using the following similarity transformations 

 

𝜉 =
𝑥

𝑎
, 𝜂 =

𝑦

𝑎
𝐺𝑟

1
2, 𝜓 = 𝜐0𝜉𝐺𝑟

1
4𝑓(𝜉, 𝜂) (9) 
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𝑢 =
𝜐0𝐺𝑟

1
2

𝑎
𝜉𝑓′(𝜉, 𝜂), 𝑣 = −

𝜐0𝐺𝑟
1
4

𝑎
[𝜉

𝜕𝑓

𝜕𝜉
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(10) 

𝑤 =
𝜐0𝐺𝑟

3
4

𝑎
𝑔(𝜉, 𝜂), 𝜃 =

𝑇 − 𝑇∞

𝑇𝑠 − 𝑇∞
 (11) 

 

Where   3 2
T s 0Gr (g (T T )a ) /b u  is the Grashof number and ψ is the dimensional stream function defined by 

  au / yy  and   av / xy . 0 0 /u m r ν0 is the constant kinematic viscosity of the fluid. we obtain the 

following partial differential equations are written as 

 

(1 + 𝜖1(1 − 𝜃))𝑓′′′ + 2(1 + 𝜉 cot 𝜉) 𝑓𝑓′′ − 𝑓′2
− 𝜖𝑔2 − 𝜖1𝜃′𝑓′′ 

        +𝐾𝑝[1 + 𝜖1(1 − 𝜃)]𝑓′ + 𝜃 = 𝜉 (𝑓′
𝜕𝑓′

𝜕𝜉
− 𝑓′′

𝜕𝑓

𝜕𝜉
) 

 

(12) 

(1 + 𝜖1(1 − 𝜃))𝑔′′ + (1 + 𝜉 cot 𝜉) 𝑓𝑔′ − 2𝑓′𝑔 − 𝐾𝑝[1 + 𝜖1(1 − 𝜃)]𝑔 = 𝜉 (𝑓′
𝜕𝑔

𝜕𝜉
− 𝑔′

𝜕𝑓

𝜕𝜉
) 

 

(13) 

(1 + 𝜖2𝜃)𝜃′′ + 𝑃𝑟(𝑓𝜃′ − 𝑓′𝜃) + 𝜖2𝜃′2 + (1 + 𝜉 cot 𝜉) 𝑓𝜃′                    
 

                                                                  +𝑃𝑟𝐸𝑐[1 + 𝜖1(1 − 𝜃)](𝑓′′2
+ 𝑔′2

)           = 𝜉 (𝑓′
𝜕𝑔

𝜕𝜉
− 𝑔′

𝜕𝑓

𝜕𝜉
) 

(14) 

 

and the boundary conditions are written as 

 

𝑓′ = 0, 𝜉
𝜕𝑓

𝜕𝜉
+ (1 + 𝜉 cot 𝜉) 𝑓 = 0, 𝑔 = 1, 𝜃 = 1, 𝜂 = 0 

(15) 
𝑓′ → 0, 𝑔 → 0, 𝜃 → 1, 𝜂 → ∞ 

 

 
where ’prime’ denotes the differentiation with respect to η, ε is the spin parameter, ε1 is the temperature-dependent 

viscosity parameter, ε2, is the thermal conductivity parameter, Ec is the Eckert number, 

1
2

pK 1 / Gr Da  is the Darcian 

drag force term and Pr is the Prandtl number. 

 

3. Solution Method 
The resulting differential equations were solved using the bivariate local-linearization method (BLLM). The iteration 

scheme for solving the coupled non-linear partial differential equations system (12)- (14) 

 

ℵ𝑘[𝐹, 𝐺, 𝑇] = 0, 𝑘 = 1,2,3. (16) 
 

      where  1 2, and 3  are non-linear operators that denote equations (12) -(14) respectively. F, G and T are defined as 

 

𝐹 = (𝑓, 𝑓′, 𝑓′′, 𝑓′′′,
𝜕𝑓

𝜕𝜉
,
𝜕𝑓′

𝜕𝜉
) , 𝐺 = (𝑔, 𝑔′, 𝑔′′,

𝜕𝑔

𝜕𝜉
) , 𝑇 = (𝜃, 𝜃′, 𝜃′′,

𝜕𝜃

𝜕𝜉
) 

 

(17) 
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where primes are the derivatives with respect to h . The quasi-linearization method which is based on the Taylor series 

expansion of k about some previous approximation of the solution denoted by r r r[F ,G ,T ] , It is assumed that the difference 

between the current and previous solution is small. Applying the quasi-linearization on equations (12) -(14) gives 

 

ℵ𝑘[𝐹, 𝐺, 𝑇] ≈ ℵ𝑘[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] + [𝐹 − 𝐹𝑟 , 𝐺 − 𝐺𝑟 , 𝑇 − 𝑇𝑟]. ∇ℵ𝑘[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] (18) 

 

where ∇ is a vector of partial derivatives defined as     f g{ , , }q  

The linearized equations are written as 

 

𝐹∇𝑓ℵ𝑘[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] + 𝐹∇𝜃ℵ𝑘[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] + 𝐹∇𝜙ℵ𝑘[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] = 

𝐹∇𝑓[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] + 𝐹∇𝜃[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] + 𝐹∇𝜙[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] − ℵ𝑘[𝐹𝑟 , 𝐺𝑟 , 𝑇𝑟] 

 

(19) 

 

for k = 1,2,3 the above equations form a system of three coupled partial differential equations that can be solved 

iteratively for f( , ),g( , ), ( , ).x h x h q x h  The bivariate local-linearization scheme (BLLM) corresponding to (12) -(14) become 

 

𝑎0,𝑟(𝜉, 𝜂)𝑓𝑟+1
′′′ + 𝑎1,𝑟(𝜉, 𝜂)𝑓𝑟+1

′′ + 𝑎2,𝑟(𝜉, 𝜂)𝑓𝑟+1
′ + 𝑎3,𝑟(𝜉, 𝜂)𝑓𝑟+1 + 𝑎4,𝑟(𝜉, 𝜂)

𝜕𝑓′𝑟+1

𝜕𝜉
+ 𝑎5,𝑟(𝜉, 𝜂)

𝜕𝑓𝑟+1

𝜕𝜉
= 𝑅1,𝑟 (20) 

𝑏0,𝑟(𝜉, 𝜂)𝑔𝑟+1
′′ + 𝑏1,𝑟(𝜉, 𝜂)𝑔𝑟+1

′ + 𝑏2,𝑟(𝜉, 𝜂)𝑔𝑟+1 + 𝑏3,𝑟(𝜉, 𝜂)
𝜕𝑔𝑟+1

𝜕𝜉
= 𝑅2,𝑟 (21) 

𝑐0,𝑟(𝜉, 𝜂)𝜃𝑟+1
′′ + 𝑐1,𝑟(𝜉, 𝜂)𝜃𝑟+1

′ + 𝑐2,𝑟(𝜉, 𝜂)𝜃𝑟+1 + 𝑐3,𝑟(𝜉, 𝜂)
𝜕𝜃𝑟+1

𝜕𝜉
= 𝑅3,𝑟 (22) 

 

Where 

 

𝑎0,𝑟(𝜉, 𝜂) = 1 + 𝜖1(1 − 𝜃𝑟), 𝑎1,𝑟(𝜉, 𝜂) = (1 + 𝜉 cot 𝜉) 𝑓𝑟 − 𝜖1𝜃′ + 𝜉
𝜕𝑓𝑟

𝜕𝜉
 

 

   (23) 

𝑎2,𝑟(𝜉, 𝜂) = −(2𝑓′
𝑟 − 𝐾𝑝(1 + 𝜖1(1 − 𝜃𝑟)) + 𝜉

𝜕𝑓′𝑟

𝜕𝜉
 ) 

 

   (24) 

𝑎3,𝑟(𝜉, 𝜂) = 2(1 + 𝜖1(1 − 𝜃𝑟))𝑓𝑟, 𝑎4,𝑟(𝜉, 𝜂) = −𝜉𝑓′𝑟,𝑎5,𝑟(𝜉, 𝜂) = −𝜉𝑓′′𝑟, 

 

    (25) 

 

𝑏0,𝑟(𝜉, 𝜂) = (1 + 𝜖1(1 − 𝜃𝑟)), 𝑏1,𝑟(𝜉, 𝜂) = (1 + 𝜉 cot 𝜉) 𝑓𝑟 + 𝜉
𝜕𝑓𝑟

𝜕𝜉
 

 

   (26) 

 

𝑏2,𝑟(𝜉, 𝜂) = − (2𝑓′
𝑟 − 𝐾𝑝(1 + 𝜖1(1 − 𝜃𝑟))) , 𝑏3,𝑟(𝜉, 𝜂) = −𝜉𝑓′𝑟, 

 

 (27) 

 

𝑐0,𝑟(𝜉, 𝜂) = (1 + 𝜖2𝜃′′𝑟), 𝑐1,𝑟(𝜉, 𝜂) = 𝑃𝑟𝑓𝑟 + 𝑃𝑟(1 + 𝜉 cot 𝜉) 𝑓𝑟 + 2𝜖2𝜃′ + 𝑃𝑟𝜉
𝜕𝑓𝑟

𝜕𝜉
 

 

 (28) 

 

𝑐2,𝑟(𝜉, 𝜂) = (𝜖2𝜃′′𝑟) − 𝑃𝑟𝑓′
𝑟 − 𝑃𝑟𝐸𝑐𝜖1(𝑓′′

𝑟
2

+ 𝑔′
𝑟
2

), 𝑐3,𝑟(𝜉, 𝜂) = −𝜉𝑃𝑟𝑓′𝑟, 

 

 (29) 

 

𝑅1,𝑟 = 𝜖𝑔𝑟
2 + 2(1 + 𝜖1(1 − 𝜃𝑟))𝑓′′𝑟𝑓𝑟 − 𝜃𝑟 − 𝜉𝑓′

𝑟

𝜕𝑓𝑟

𝜕𝜉
, 

 

(28) 

 

𝑅2,𝑟 = 𝟎, (29) 
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𝑅3,𝑟 = 𝜖2𝜃′′𝑟𝜃𝑟 + 𝑃𝑟𝜖2𝜃′𝑟
2 − 𝑃𝑟𝐸𝑐(1 + 𝜖1)(𝑓′′

𝑟
2

+ 𝑔′
𝑟
2

) (30) 

 

Applying the Chebyshev spectral collocation method to system (20) – (22) we obtain the numerical solutions used in this 

work. 

 

4. Results and Discussion 
In order to understand the physics of the problem, the results are illustrated in the form of Figures 1 - 6 showing the 

effects of various physical parameters on spin velocity profiles, velocity profiles and temperature profiles. The results are 

discussed in detail; we show that the method used in this work also obtains accurate results. 

In this work we also present Tables 1 - 3. The tables illustrate the accuracy of the method used and displays the effect 

of selected parameters of the physical properties such as the skin-friction coefficient fC ( )x  and the heat-transfer coefficient 

Nu( )x , where x  is the time. 

In this section we assume that the Prandtl number is between Pr = 0.72 at 20oC and Pr = 1 for Newtonian fluids. All 

other parameters are chosen arbitrarily being careful to stay within the acceptable range of these types of fluids. 

The numerical results were validated for the skin friction  ff ''(0) C ( )x  and heat transfer  '(0) Nu( )q x

coefficients for the Newtonian fluid. The results obtained by the BLLM were compared to the results obtained by Ece [24] 

and were found to be in excellent agreement as shown in Table 1. 

 
Table 1: Caption for table goes at the top. 

 

 Ece [24] BLLM 

Pr 𝑓′′(0)                               − 𝜃′(0)   𝑓′′(0)                               − 𝜃′(0) 

1 0.681483                    0.638855 0.68148323                           0.63885528 

10 0.433268                    1.275499  0.43326769                           1.27549871 
 

 
Fig. 1: Effect of 1e on spin velocity profiles for  

    



w p

2

f 0.5, 0.1,Pr 1,Ec 1,K 0.1,

0.2.

e

e
. 
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Fig. 2: Effect of pK on spin velocity profiles for  

    



w p

2

f 0.5, 0.1,Pr 1,Ec 1,K 0.1,

0.2.

e

e
 

 

 In Figure 1, shows a graph of the effect of temperature-dependent viscosity parameter ε1 on the spin velocity profiles 

g(η). Increasing ε1 result in the increase of spin velocity profiles. Increasing ε1 reduce viscosity, therefore the velocity of 

flow is enhanced. Figure 2 shows the effect of the drag-force term Kp on spin velocity profiles. Increasing Kp result in the 

decrease in the spin velocity profiles. This is caused by the drag opposing fluid motion, which in turn reduce spinning 

velocity. 

 

 
Fig. 3: Effect of e on velocity profiles for suction wf 0.5(suction) ,  wf 0.5(blowing) for

    1 p 20.1,Pr 1,Ec 1,K 0.1, 0.2.e e  

 
Fig. 4: Effect of 1e on velocity profiles for suction wf 0.5(suction) ,  wf 0.5(blowing) for

    p 20.1,Pr 1,Ec 1,K 0.1, 0.2.e e  
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In Figure 3, the graph shows the effect of increasing spin parameter for both suction and blowing cases on velocity 

profiles f '( )h . Increasing the spin parameter reduce velocity profiles. This is because the direction of fluid flow and spin 

direction are perpendicular, this effect then reduce velocity in the flow regime. Figure 4 shows the effect of temperature 

dependent viscosity ε1 on velocity profiles f '( )h . Increasing ε1 slightly reduce velocity profiles close to the surface and are 

increased further away from the surface. Increasing ε1 reduce viscosity, the velocity close to the surface is slow due to both 

the spinning effect and no-slip conditions at the surface. The increase in the velocity further from the surface is attributed 

to the effect of spinning. 

 

 
Fig. 5: Effect temperature dependent viscosity parameter on temperature profiles for  

    p 20.1,Pr 1,Ec 1,K 0.1, 0.2.e e  

 

 
Fig. 6: Effect thermal conductivity parameter on temperature profiles for      p 10.1,Pr 1,Ec 1,K 0.1, 0.2.e e  

 

In Figure 5 shows the effect of ε1 on temperature profiles ( )q h , increasing ε1 has an effect of increasing 

temperature profiles. Increasing ε1 is interpreted as increasing the temperature of a fluid which then reduce 

viscosity. In Figure 6 increasing ε2 result in the increase in the temperature profiles. This effect is caused by the 

fact that if the heat transfer in the solid boundary is increased, this heat is then transferred through the solid-

liquid interface into the flow regime thereby increasing fluid temperature. 
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Table 2: Effect of spin parameter ε on f ''(0) and  '(0)q with increasing x . 

 

  0.1e   0.3e   0.5e  

x  f ''(0)               '(0)q  f ''(0)               '(0)q  f ''(0)               '(0)q  

0 0.74468227   0.26467850 0.74468227    0.26467850 0.74468227     0.2646785 
10 0.74871704   0.88291067 0.80762128    0.88291067 0.68981280     0.88291067 

20 0.76514459   084807283 0.82341886    0.84807283 0.70687032     0.84807283 

30 0.82032612   0.90915995 0.75678297    0.90915995 0.69323981     0.90915995 

40 0.80394128   0.82987832 0.74724319    0.82987832 0.69054509     0.82987832 

50 0.81698621    0.82260666 0.75778304    0.82260666 0.69857987     0.82260666 

60 0.81515119   0.83760231 0.75349204    0.83760231 0.69183289     0.83760231 

70 0.79913025   0.78790396 0.74093332    0.78790396 0.68273638    0.78790396 

80 0.80442314    0.75871666 0.74505431    0.75871666 0.68568549    0.75871666 

90 0.79796829   0.73811823 0.73839852    0.73811823 0.67882875    0.73811823 

100 0.79231715   0.70837858 0.73309865    0.70837858 0.67388015    0.70837858 

 

In Table 2 shows the effect of spin parameter ε on skin-friction fC ( )x and heat- transfer Nu( )x coefficients with 

increasing value of x . The skin friction coefficient increase then decreases with increasing x . This is the skin-friction 

distribution around the spherical surface. The heat-transfer coefficient decrease with increasing x . Similarly, the heat-

transfer distribution around the spherical surface is shown. 

Increasing the spin parameter e  does not affect the skin friction coefficient for  0x , but the distribution decreases 

with increasing x . This is attributed to the fact that, increasing spin dislodges fluid contact on the surface of the sphere 

thereby reducing the skin-friction coefficient. Increasing the spin parameter seem not to affect the heat-transfer coefficient 

distribution. 

 

Table 3: Effect of temperature-dependent viscosity parameter ε1 on f ''(0) and  '(0)q with increasing x  

 

 1 0.2e  1 0.4e  1 0.6e  

x  f ''(0)               '(0)q  f ''(0)               '(0)q  f ''(0)               '(0)q  

0 0.74468227      0.26467850 0.71670168    0.05496846 0.68862656    0.16622826 

10 0.80762128     0.88291067 0.83887649    0.86775129 0.86930503    0.91915083 

20 0.82341886     0.84807283 0.85441969    0.82265424 0.88462403    0.84747657 

30 0.82032612     0.90915995 0.85663602    0.90388503 0.89205803   0.96014218 

40 0.80394128     0.82987832 0.83294474   0.80126475 0.86113869   0.82280043 

50 0.81698621     0.82260666 0.84862801   0.79401796 0.87943995   0.80318861 

60 0.81515119     0.83760231 0.84941407   0.81611308 0.88278241   0.83243293 

70 0.79913025    0.78790396 0.82963391    0.75352538 0.85926127   0.74728640 

80 0.80442314    0.75871666 0.83594231    0.71957230 0.86657931    0.69410993 

90 0.79796829    0.73811823 0.82973575    0.69669319 0.86057312    0.66156762 

100 0.79231715    0.70837858 0.82353867    0.66519293 0.85381302    0.63345890 

 

In Table 2 shows the effect of temperature-dependent viscosity parameter ε1 on skin friction and heat transfer 

coefficient with increasing value of ξ. Increasing ε1 result in the increase in the skin-friction coefficient. Increasing ε1 is 

interpreted as lowering the viscosity, this enhances no-slip conditions. On the contrary, if ε1 is decreased, then viscosity 

increases reducing skin-friction at the surface. 
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Increasing the ε1 decrease the heat-transfer coefficient. This is caused by the fact that when the temperature is 

increased in the flow regime, the heat transfer on the solid-liquid interface is reduced. 

 

5. Conclusion 
The study of free convection from a spinning sphere with temperature-dependent viscosity, thermal conductivity and 

viscous dissipation effects was conducted. The most common partial differential equations which are normally solved 

using time consuming finite difference methods were considered. These equations were solved by recently developed 

spectral method called the bivariate local linearization method. This method makes use of the Chebyshev spectral 

collocation technique independently in both η and ξ directions. This is done by choosing Chebyshev Gauss-Lobatto points 

in those directions. The method is fast and easy to implement as shown the solution method section. The method avoids 

time consuming discretisation process and still obtains accurate results. The results obtained were compared to those in the 

literature and found to be in excellent agreement. This work contributes to the introduction of robust numerical methods in 

the area of heat and mass transfer. 

The effect of selected parameters on the spin-velocity profiles is also presented. Increasing the temperature-dependent 

viscosity parameter increase spin-velocity profiles. Increasing the drag-force term reduce spin-velocity profiles. These 

results are rarely reported in the literature. This work also opens further research in more complicated partial differential 

equations using the numerical method used here. 
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