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Training a neural network involves large amounts of data, and complex 

relationships exist between all the different parameters, so one will never 

understand or spend time on the solution at all. 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

DECLARATION OF INDEPENDENT WORK 

I, LUCAS BERNARDO NIGRINI, hereby declare that this research project 

submitted for the degree DOCTORATE TECHNOLOGIAE: ENGINEERING: 

ELECTRICAL, is my own independent work that has not been submitted before 

to any institution by me or anyone else as part of any qualification. 

 

           ....................................................       ................................. 

L.B. Nigrini     Date 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 
 

ACKNOWLEDGEMENTS 
 

I would like to thank the following persons and institution for their help with, and 

contribution to the completion of this project: 

 

The Central University of Technology, Free State, for the opportunity to do this 

project. 

 

Prof G.D. Jordaan for his friendship and assistance as promoter. 

 

Mr W.R. Kleyn of Eskom Bloemfontein - Electricity Delivery Systems Support, for 

supplying the load data. 

 
 



iv 
 

SUMMARY 
 
 
Because power generation relies heavily on electricity demand, consumers are 

required to wisely manage their loads to consolidate the power utility‟s optimal 

power generation efforts. Consequently, accurate and reliable electric load 

forecasting systems are required. 

 

Prior to the present situation, there were various forecasting models developed 

primarily for electric load forecasting. Modelling short term load forecasting using 

artificial neural networks has recently been proposed by researchers.  

 

This project developed a model for short term load forecasting using a neural 

network. The concept was tested by evaluating the forecasting potential of the 

basic feedforward and the cascade forward neural network models.  

 

The test results showed that the cascade forward model is more efficient for this 

forecasting investigation. The final model is intended to be a basis for a real 

forecasting application. The neural model was tested using actual load data of the 

Bloemfontein reticulation network to predict its load for half an hour in advance. 

 

The cascade forward network demonstrates a mean absolute percentage error of 

less than 5% when tested using four years of utility data. In addition to reporting 

the summary statistics of the mean absolute percentage error, an alternate 

method using correlation coefficients for presenting load forecasting performance 

results are shown. 

 

This research proposes that a 6:1:1 cascade forward neural network can be 

trained with data from a month of a year and forecast the load for the same 

month of the following year. This research presents a new time series modeling 

for short term load forecasting, which can model the forecast of the half-hourly 

loads of weekdays, as well as of weekends and public holidays. Obtained results 

from extensive testing on the Bloemfontein power system network confirm the 

validity of the developed forecasting approach. This model can be implemented 

for on-line testing application to adopt a final view of its usefulness. 
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CHAPTER 1 

INTRODUCTION 

Electric load forecasting is one of the principal functions in power systems 

operations. The inspiration for accurate forecasting lies in the nature of electricity 

as a service and trading article; bulk electricity cannot be stored. For any electric 

utility, the estimate of the future demand is necessary to manage the electricity 

production in an economically reasonable way so as to meet peak demands 

without unnecessary load shedding or power cuts [46]. 

 

System loads vary through daily and seasonal cycles, creating difficult operating 

problems. Forecasting allows a utility company to schedule load shedding without 

affecting the load generation capacity of the national grid. 

  

Different statistical load forecasting models have been developed. Practically, 

there is a subtle difference in conditions and needs of every situation where there 

is a need for electric load demand. This has a significant influence on choosing 

the appropriate load forecasting model. The results of the methods used to 

forecast electric load, presented in publications, are usually not directly 

comparable to each other.  

 

Some recently reported forecasting approaches are based on neural network 

techniques. Many researchers have presented good results. The attraction of 

these forecasting methods lies in the assumption that neural networks are able to 

learn properties of the electric load curve, which would otherwise be hardly 

discernable.  

 

Research on neural network applications in load forecasting is continuing. 

Results using different network model structures and training algorithms is not 

complete. To make use of these techniques in a real application such as 

Bloemfontein City, a comparative analysis of the properties of two different neural 

models seems appropriate. 
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1.1 Problem statement 

“To develop an efficient Artificial Neural Network-based model for Short Term 

Load Forecasting and apply this model to a real life case study to evaluate the 

performance of the proposed approach and provide a one half-hour ahead 

forecast for the Bloemfontein power system network”. 

 

Any large network‟s electric load to be forecasted is a pseudo-random, non-

stationary process composed of thousands of individual components. The variety 

of possible approaches to do the forecasting is extensive. One possibility is to 

take a macroscopic view of the problem by trying to model the future load as a 

reflection of its earlier behaviour with time series prediction using an appropriate 

statistical tool.  

 

This still leaves the field open to several diverse solutions. Because of the 

pseudo-random nature of the load, the only objective method to evaluate this 

approach is through experimental confirmation.  

 

Load forecasting is an important topic in Energy Markets for planning the 

operations of load producers. Bloemfontein Municipality (CENTLEC (Pty) Ltd) 

needs to frequently review the Notified Maximum Demand (NMD), declared at 

300 MW in 2009, for it to avoid possible penalty charges payable to Eskom for 

exceeding the contractual maximum demand threshold. 

 

Short Term Load Forecasting (STLF) can be used to address this problem. It has 

been mentioned very often as a solution in power systems literature in the late 

1990s. One reason is that recent scientific innovations have brought in new 

approaches to solve the problem. The development in computer software and 

technology has broadened the possibilities for solutions, working in a real-time 

environment. Genetic algorithms, neural networks, expert systems and fuzzy 

logic are some of the software tools used to find possible solutions in predicting 

the electric load “up front” [27, p.249]. 
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1.2 Objectives of thesis and execution of the project 

This work entails the investigation of the design of an accurate, robust neural 

model that can be used to estimate the future electric load by using the historical 

electric load data patterns to train such a network.  

 

Analysing the objective specifications 

 

1.  Using a forecasting time horizon of one month, which means that a neural 

network is built and trained for each month of the year if forecasting 

deployment is eventually realized. 

 

2. The same network structure, training algorithm and data input structure is 

to be used for forecasting the load in each of the twelve months of a year. 

 

3. Experimenting and testing a short term dynamic, half-hour ahead updating, 

neural network forecaster for each of the late autumn and winter months of 

May, June and July. The final neural network structure can then be used 

repeatedly, for training and to predict the electric load for the rest of the 

year; one network for each month of the year. 

  

4. Each of the three final networks must be trained with the least possible 

amount of historical load data, using the minimum quantity of inputs to 

predict the load, with a half-hour lead time. For the training and testing of 

each network, each week of a month starts off on a Saturday morning  

at 00:00:00 and ends seven days later on Friday night at 23:59:59. 

 

5. Evaluating suitable network training algorithms and adjusting the topology 

elements of the neural network to keep the Mean Absolute Percentage 

Error (MAPE) below 5% during forecasting. 
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The research procedure of this project is represented by the flowchart in Figure 

1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Research phases during execution of the project 

CONCLUSION 
A neural network can be built and trained for each month of 
the year if forecasting deployment is eventually realized.   
This is necessary so that the local load management can be 
planned to meet the expected demand. 

RESULTS 
A 6:1:1 cascade forward neural network was 
developed with a forecasting time horizon of one 
month using MATLAB software 

MODEL SELECTION, FITTING AND VALIDATION 
Selecting and testing for a suitable neural network model 
architecture through experimental methods. Use four years 
of selected electric load data to investigate the models‟ 
behaviour.  

EXPECTED MODEL BEHAVIOUR PARAMETERS 
1. Accuracy – prediction error to be kept to below 5%. 
2. Robustness – develop a neural network model with the 

least amount of input values and the smallest amount of 
neurons in the hidden layer. 

HYPOTHESIS 
A dynamic, half-hour ahead updating, forecasting  
neural network model can be used to predict the  
electric load of Mangaung. 

OBJECTIVE 
Develop an accurate and robust neural network model  
that can be used in the local industry to forecast the  
value of the half-hour ahead electric loads using historical 
electric load data as training patterns. 
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1.3 Structure of this thesis 

The essential layout of this project is shown in Figure 1.2  

 

 

 

Figure 1.2: Layout of the thesis 
 

An introduction to electric load forecasting theory with specific reference to short 

term load forecasting opens Chapter 2. The different shapes of load curves in a 

typical load pattern, planned load shedding, and a blackout are compared. Neural 

network theory with reference to the backpropagation and cascade correlation 

Chapter 1 - Introduction

Chapter 2 - Literature review

Chapter 3 - Methology

Chapter 4 - Results

Chapter 5 - Conclusion
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model, Levenberg-Marquardt minimization training algorithm and performance 

validation are also considered. 

 

Since the aim of the project was not to investigate the mathematical theory 

behind neural networks, but its implementation in a working load forecasting 

model, little theory in this regard was covered. Only those aspects which 

influence the load forecasting model were identified. 

 

The feedforward and the cascade forward neural network models were chosen 

for comparison according to: 

 

 their architecture;  

 backpropagation and Levenberg-Marquardt training algorithms; 

 and performance using the mean absolute percentage error as a 

benchmark.  

 

Extensive tests were done for three months of the year: May, June and July, for 

the three running years 2007, 2008 and 2009, to obtain a suitable model. This 

process is described extensively in Chapter 3. 

 

Chapter 4 provides an exposition of how the final 6:1:1 neural cascade forward 

network was trained and its forecasting potential evaluated for the three months 

of the year: May, June and July, for the three running years 2007, 2008 and 

2009. Evaluation was done using the mean absolute percentage error (MAPE) 

and correlation coefficients to measure and evaluate this cascade networks‟ 

performance. The MAPE, Daily Peak MAPE and linear regression plots, using 

July 2009 as a case study, are discussed in more detail. All these results are 

presented in this chapter. 

 

The outcome of this research is concluded in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Electric load forecasting 

Numerous books have been written about electric machinery, transmission 

systems and the protection technology needed to produce and deliver electric 

power. In comparison, little has been recorded about electric load forecasting.  

 

A forecast is a prediction of some future event. The importance of forecasting lies 

in the prediction of changes in load behaviour, which has a significant effect on 

various types of planning and decision-making processes in power systems 

operations and financial management.  

 

Despite the large range of problem situations that involve forecasts, there are 

only two broad types of forecasting techniques: qualitative methods and 

quantitative methods. 

 

Qualitative forecasts are often used in situations where there is little or no 

historical data on which to base the forecast. Quantitative forecasting techniques 

apply historical data to a forecasting model. The model recognizes patterns in the 

historical data and expresses a linear or non-linear relationship between the 

previous and current values of the data. Then the model projects the recognized 

data patterns into the future. The three most widely used Quantitative forecasting 

models are regression models, smoothing models and time series models [32, 

p.4]. Forecasting electric load curves are dependent on the assembly of historical 

load data so it will fall in the category of quantitative forecasting. 

 

2.1.1 Forecasting the load curves 

Normally, electric load curves alternate with time from a slow random swing to 

rapidly repeated pulses through daily, weekly, monthly, and annual cycles, 

creating continuously varying load curves from season to season. The 
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predictability of these load curves can be modeled with a wide range of roughly 

defined forecasting time periods, which includes: 

Long term forecasting 

The forecasting of bulk power for periods, years into the future. Usually, only 

peak loads are predicted. 

Medium term load forecasting 

The forecasting of bulk power for periods six months to one year ahead. Usually 

peak loads are forecasted and sometimes off-peak load values are also 

considered. 

Short term load forecasting 

This refers to much less than a “year ahead” forecast, and occasionally to a “one 

day ahead” forecast. The short term load forecasts differ from their long term 

counterparts in that peak forecasts assume less importance than forecasts at 

specific times; e.g., hour by hour forecasts will assume greater importance. 

 

Load forecasting, especially Short Term Load Forecasting (STLF), is dependent 

on a combined load made up of different components. As an example, the load 

requirements can be decomposed into residential, industrial and commercial 

components [12, p.273] where the: 

 

 Residential demand is proportional to a change in daily temperature; 

 Industrial loads are sensitive to economic and political factors; and the 

 Commercial demand is sensitive to the “day of the week” and occasional 

holidays [22, p.302].   

 

2.1.2 Quantitative short term load forecasting using time series data with a 

neural network model 

Forecasting is usually based on identifying, modeling, and extrapolating the 

patterns found in historical data. Because historical data do not change 

dramatically very quickly, statistical methods, e.g. neural networks, are useful for 

short term forecasting [16, p.302].  
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It should be noted that power system transients such as sudden overloads due to 

short circuits, line harmonics or blackouts cannot be predicted with a forecasting 

model. 

 

Most forecasting problems involve the use of time series data [36], which are 

amongst the oldest methods applied in load forecasting [19, p.904]. An electric 

load pattern is principally a time series [3, p.2]. A time series can be described as 

a sequential set of hourly, daily, or weekly data measured over regular intervals. 

A time series forecasting takes an existing series of data xt-n…,xt-3, xt-2, xt-1, xt and 

forecasts the xt+1 data value where:  

 

xt+1 is the target value of x that we are trying to model; 

xt is the value of x for the previous observation where we use 

x to indicate an observation and t to represent the index of the time period.  

   

As mentioned in par. 2.1, quantitative forecasting techniques involve the use of 

time series data (historical) and a forecasting model, i.e. an artificial neural 

network capable of representing complex nonlinear relationships. The model 

summarises patterns in the data and expresses a statistical relationship between 

previous and current values of the variable x, in this case. Patterns in the data 

can then be projected into the future, using this model [32, pp.1-5].   

 

In neural network time series forecasting, two approaches are available in 

updating forecasting models over time: the rolling window approach and the 

sliding window approach. 

 

The Rolling window approach uses a constant starting point and all the available 

data to train the neural network to anticipate the next value(s) and is not 

emphasized here. A disadvantage of this approach is that it is not very likely to 

give optimum results when the time series process is changing over time. 

 

The Sliding window approach uses a changing starting point and a set of the 

latest observations to train the neural network to predict the next value(s). The 

sliding window approach adds a new training value and disregards the oldest one 
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BACKPROPAGATION 

FORWARD PASS 

from the training sample set which is used to update the neural model. The input 

sample set size, presented to the neural network, stays fixed as it slides forward 

with time.  

 

It is not easy to determine an appropriate input sample set size that is useful for 

training the forecasting network. Too small a sample input set may restrict the 

power of the neural network to do proper forecasting by not adjusting the  

network parameters properly. However, the sliding window approach, with the 

changing starting point in the training sample set, is more suitable to contemplate 

changes occurring in the underlying process of the time series [33, pp.3-8].  

 

As an example of a sliding window technique, Figure 2.1 shows a standard, 

trained back propagation neural network performing time series prediction using 

four equally time spaced input data points, sliding over the full training set of 

electric load data to predict the next output data point value [6]. 

  

 
 
   
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 2.1: Time series prediction using the “sliding window” approach 
 

The rate at which the samples are taken will dictate the maximum resolution of 

the model. Once the network is trained with this set the same technique is used 
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with new data points to predict the future electric load. It is not always true that 

the model with the highest resolution will give the best forecasting performance. 

 

Currently, the available power generation capacity in South Africa is running in 

short supply. Load shedding needs to be applied frequently across the country to 

ensure the security of electricity supply, especially during the winter peak 

electricity demand of May, June and July. So, forecasting short term load can 

play an important role in power system operations decisions, taken when load 

shedding becomes a priority in the colder months of each year.  

 

2.1.3 Load shedding 

Occasionally, a misconception arises when discussing everyday load, load 

shedding and a blackout. One first has to understand the difference between a:  

 

 typical load pattern,  

 planned load shedding and a  

 blackout event  

 

before considering the useful application of electric load forecasting.  

 

A weekly load characteristic for Bloemfontein - July 2009 will be taken as an 

example to graphically illustrate the difference between the three concepts: 

 

A typical load pattern 

In Figure 2.2 it can be seen that the valleys in the daily pattern fluctuate little in 

magnitude and the base load floats at more or less 125 MW. The peak load 

levels for each day, indicating the Maximum Demand used for that day varies 

between 250 MW and 280 MW depending on the day-type one is looking at. An 

underlying repeating cyclic pattern, with random magnitudes at random periods, 

can be observed in the data. 
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Figure 2.2: A typical weekly load pattern 
 

Planned Load shedding 

Load shedding, also known as a rolling blackout, occurs when a power company 

cuts off electricity to selected areas to save power. This is a controlled way of 

rotating generating capacity. As an example, an area blackout can vary between 

two to six hours before the power is restored and the next area is cut off. 

Hospitals, airport control towers, police stations, and fire departments are often 

exempt from these rolling blackouts. One would be tempted to think that the load 

shedding curve would have the following shape, discussed next, which for 

practical reasons, are not predictable. 

 

Example of an impracticable load shedding pattern 

 

Figure 2.3 is a “clipped” version of the previous weekly pattern. It illustrates a 

hypothetical situation where the Maximum Demand is continuously controlled by 

cutting off the peak load to a maximum level of approximately 250 MW. In reality 

this type of load control is impractical to achieve. 
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Figure 2.3: An impractical weekly load shedding pattern 
 

Example of a realistic load shedding pattern 

 

Figure 2.4 shows a practical situation. The load shedding curve closely follows 

the normal electric load demand pattern with a smaller peak magnitude in most 

places and can be presented to a load forecasting model for further research. 

 

 

 
Figure 2.4: An actual weekly load shedding pattern  
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Example of a blackout event 

 

Figure 2.5 shows a total power cut during a part of Sunday night and Monday. 

This type of uncontrolled power outage can affect a whole city or a big part of a 

country due to a network overload, act of Nature, terrorism or bad maintenance 

planning. If it lasts for more than a day or three, it can have a displeasing long 

term impact on transportation, water supply, communication, the local economy 

and the crime rate. 

 

 

Figure 2.5: An example of a blackout occurring on a Monday 
 

To summarise: 

 

1. A typical daily load varies in a cyclic pattern and can be presented to a 

forecasting model. 

2. Load shedding affects only a part of the populated area and: 

 can be classified as an example of short term load variation. 

 on average the load drops to below its previous maximum daily peak 

load level values. 

 a neural network can follow this type of change in load. 

3. A blackout affects the whole city or region and it is totally unpredictable. 
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Economic and demographic factors in this region change very slowly over very 

long periods of time so medium- and long term forecasting is not applicable to 

critical factors like daily load shedding. However, short term load forecasting 

plays an important role when a decision is to be made during times of load 

shedding. 

 

Some relatively recent forecasting models are available for research to predict 

the shape of electric load curves. The development of Artificial Intelligence (AI), 

especially Artificial Neural Networks (ANN) can be applied for research to model 

short term load forecasting.   

 

Artificial neural networks have been extensively used as time series predictors; 

these are usually feed-forward networks that make use of a sliding window over 

the input data sequence. Using a combination of a time series and a neural 

network prediction method, the past events of the load data can be explored and 

used to train a neural network to predict the next load point. 

 

There are many neural network training methods and architectures that can be 

used to model a forecasting problem, but only the applications and principles 

used in this investigation will be discussed next. 

2.2 Some principles of artificial neural networks 

2.2.1 Introduction 

Artificial neural networks, “roughly” based on the architecture of the brain, are 

rising as an exciting new information-processing concept for AI systems. Their 

working mechanism is totally different from conventional computers in the 

following way: 

 

 They do not need to be programmed, as they can learn from examples 

through training. 

 They can produce correct outputs from noisy and incomplete data (fault 

tolerant), whereas conventional computers usually require correct data. 
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 If one or more neurons or communication lines are damaged, the network 

degrades „gracefully‟ (that is, in a progressive manner), unlike sequential 

computers which can fail catastrophically after isolated failures. 

 They are economic to build and to train. 

 

Due to these differences in working mechanisms, considerable interest have 

been created in the possibilities for applying neural networks in engineering, and 

have resulted in a great deal of research over the last few years. Some of the 

claimed advantages are exaggerated, but others are certainly proven, and neural 

networks are slowly becoming a standard technology for engineers   [26, p.95], 

[2, p.31]. 

 

In the 1980‟s research in neural networks increased substantially because 

personal computers became widely available [55, p.41]. Two new mathematical 

tools were responsible for the rejuvenation of neural networks in the 1980s: 

 

 The use of statistical mechanics explaining the operation of a certain class 

of network; 

 The discovery of the back-propagation algorithm for training multi-layer 

perceptron networks.   

 

These new developments recharged the interest in the field of neural networks.  

 

2.2.2 Moving to artificial neural network structures 

 

An artificial neural network consists of a number of very simple processors, also 

called neurons, which are analogous to the biological neurons in the brain. The 

neurons are connected by weighted links passing signals from one neuron to 

another. 

 

The input signal is transmitted through the network neurons to its outgoing 

connection. Each neuron connection can split into a number of branches, the 

weighted links, to transmit the received signal. The links can amplify or weaken 
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Input signals Output 
signals 

each signal as it passes through, according to its allocated weight value. A simple 

network is illustrated in Fig 2.6.  

 

 

 

 

 

 

 

 

 

Figure 2.6: Layout of a plain artificial neural network 
 

More complex systems will have more layers of neurons with some having 

increased layers of input neurons and output neurons. 

 

Next, the behaviour of a neural network is discussed by first showing the 

essential features of neurons and their weighted links. However, because our 

knowledge of neurons is incomplete and our computing power is limited, this 

mathematical model is a crude portrayal of real networks of neurons. 

2.2.2.1 A general mathematical neuron model - the perceptron 

A specific artificial mathematical neuron, the perceptron, is considered, based on 

McCulloch and Pitt‟s model. The perceptron is the simplest form of a neural 

network and consists of a single neuron with adjustable weighted links and an 

activation function called a “hard limiter”, sign- or a threshold function. 

 

This perceptron-neuron, shown in Figure 2.7, computes the weighted sum of the 

input signals and adds the result to a bias value, . This constitutes the net input 

X that will be presented to the activation function. This activity is referred to as a 

linear combination.  
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If the net input is less than a threshold value (e.g. zero on the x-axis), the neuron 

output is -1. But if the net input is greater than or equal to the zero threshold 

value on the x-axis, the neuron becomes activated and its output value, Y, 

becomes +1.  

 

This situation is referred to as the neuron having “fired”. The perceptron-neuron in 

Figure 2.7 uses the “sign” or “threshold” activation function. 

 

















0

0

Xif1,

Xif1,
Y

i
θ

n

1 i i
w

i
xX

 

 

 

 

 

 

 

 

Figure 2.7: A single layer, two input, linear threshold perceptron where X is 

the net input and Y is the neuron output 

 

In Figure 2.7 it can be seen that the combination of the weighted links and the 

activation function are used to control the amplitude of the output. An activation 

function is a mathematical function used by a neural network to scale numbers to 

a specific range. 

  

http://www.heatonresearch.com/wiki/Neural_network
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There are many activation functions that one can choose from and each one has 

its own special merits [5, p.44]. The four basic activation functions are discussed 

next. 

2.2.2.1.1 Basic activation functions 

Many different types of linear or nonlinear activation functions (or limiters) can be 

designed [18, pp.2-6]. Choosing the correct function depends on the particular 

problem to be solved.  A basic reference model for the presentation of activation 

functions is shown in Figure 2.8 [7, p.21].  

 

        Heaviside Step function     Sigmoid  function          Linear function             Sign function                      

 

 

 

  

        

  

 

 

f x  =  

1, if x≥0

0, if x<0 

          f x  = 
1

1+e-x 
         f x  = x          f x  =  

1, if x≥0

-1, if x<0 

                         

 
Figure 2.8: Four basic types of activation functions 
 

1. The Heaviside step function and the Sign function are binary functions 

that hard limit the input to the function to either a 1 or a 0 for the binary 

type, and a -1 or a 1 for the bipolar type. 

2. Sigmoid functions are the most commonly used function in the 

construction of artificial neural networks [21, p.14].  They are also known 

as “squashing functions”, thought of as a slowly softened Sign function 

[17]. This type of function is nonlinear and therefore differentiable 

everywhere, causing greater weight change activity to take place for 

neurons where the output is less certain (i.e. close to 0.5 where the slope 
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is the steepest) than those in which it is more certain (i.e. close to 0 or 1) 

[1, p.138]. This type of nonlinearity is very important, or else the input-

output relationship of the network will be reduced to that of a single layer 

perceptron network [21, p.157]. Interestingly, artificial neurons containing 

sigmoidal functions resemble a type of biological neuron found in the brain 

[56, p.5]. 

3. The Linear limiter is a continuous function where the output purely 

reflects the input. This function is usually combined with other functions for 

specific tasks at hand, i.e. linear networks. 

2.2.2.2 Connecting perceptrons into structures called network architectures 

A single perceptron is not very useful because of its limited mapping ability. 

Multiple perceptrons can be connected as building blocks of a larger, much more 

practical structure called an artificial neural network or a complex nonlinear 

mapping tool. This type of neural net can deal with complex nonlinearities in a 

fairly general way [56, p. 2]. Many kinds of neural networks exist today and 

variations of older structures are invented regularly [47, p.14]. 

 

There is a large variety of neural network structures to choose from. The 

selection or design of a particular network depends on the uniqueness of the 

intended application. The following aspects should be given careful consideration: 

 

 How well can the network model the system? 

 How efficient can the network structure and parameter values be adapted? 

 Amount of accuracy required; 

 Overall problem complexity; 

 System stability; 

 Is off-line or on-line implementation required? 

 

Other important questions to consider when setting up a neural network are: 

 

 Should the network be fully or partially connected? 

 Should there be any sub-structures within the neural network? 
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Input layer Hidden layer Output layer 

Back propagation training: Adapting the layer weights/bias using the 
output error data values until a predetermined value is reached. 

Direction of flow of the input data  

 How many layers are needed?  

 How many neurons should be in each layer? 

 What type of activation function should be used [23, p.28]?  

 Can one obtain a sufficient historical data set from the system to be 

predicted to train the neural network? 

 

Once the network connection structure has been decided upon, the following step 

would be to adjust the network biases and weights by a suitable training method 

so that the network input/output relationship is very close to that of the system to 

be modeled.  

 

The well-known feedforward connection structure will be discussed next. The 

term “Feedforward” means that the input signal moves from the input to the 

output layer. 

2.2.2.3 Multilayer feedforward network connection structure 

All feedforward neural networks have an input layer and an output layer, but the 

number of hidden layers may vary. This class of layered network has one or more 

hidden layers presented in the three-layer net, as shown in Figure 2-9.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 2.9: A fully connected multilayered feedforward network 



22 
 

This network structure is referred to as a 3:4:2 network because it has 3 inputs, 4 

hidden neurons and 2 output neurons.  This network is said to be fully connected 

in the sense that every neuron in each layer is connected to every other neuron in 

the next forward layer.  

 

If some of the communication links between the neurons are not part of the 

designed network then it is referred to as being partially connected. The “hidden 

layers” can communicate backwards with the input source nodes and forward 

with the output layer in some determined manner. By adding a hidden layer or 

two, the neural net can handle some highly nonlinear problems that would be 

difficult to describe mathematically. 

 

The most efficient number of hidden layers depends in a complex way on the: 

 

 number of input and output units; 

 number of training cases; 

 amount of noise in the input signal; 

 complexity of the function or classification to be learned; 

 network‟s architecture; 

 type of hidden layer activation function; 

 training algorithm; 

 regularisation.  

 

2.2.3 Training a neural network 

 
Training is as essential for a neural network as programming is for a computer to 

function properly. The activation function of a neuron is fixed when the network is 

set up and the set of signals to which it is supposed to react is fixed. During the 

training phase, the only adjustment that can be made to individual neuron‟s 

input/output behaviour is to its own input weights and biases [43]. Therefore, the 
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correct choice of a learning algorithm is an important issue in network 

development. 

 

One of the problems that can occur during training is over-learning or over-fitting. 

The desire for the neural network is to provide a correct mapping of the test data 

and maintain the ability to generalize for new data. The results of over-fitting can 

already be visible in the test stage [24, p.274].  

  

A critical goal during training is to find a network large enough to learn the task 

but small enough to generalize [20, p.53].  

 

In this project, the neural network must be able to learn a model of the electric 

load which it will be predicting. It must be able to maintain the model adequately 

and reliably when used to predict real load variations so as to achieve the 

particular goals of the application of interest [21, p.24]. 

 

For different network structures, different training algorithms have been 

developed. Neural nets are classified according to their corresponding training 

algorithms:  

 

 fixed weight networks; 

 supervised networks; and  

 unsupervised networks.  

 

No learning is required for a fixed weight network, so the common training 

algorithms are supervised and unsupervised learning [54, p.249].  

2.2.3.1 Supervised training 

The prevailing current of thought of artificial neural network development has 

been focused on supervised learning networks. To commence learning this type 

of network, data needs to be gathered and consists of pairs of input/output 

training sets. First the training sets are presented to the network. Then, through 

comparison of the actual and desired response (the error) at the output stage, 
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adjustments of the weights and biases of the whole parameter space are made. 

In this way, learning or proper classification is facilitated with the help of a 

teacher, as shown in Figure 2.10 [37, p.14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Block diagram of learning with a teacher 
 

The special quality of a network exists in the values of the bias and weights 

between any two of its neurons, so we need a method of adjusting the bias and 

weights to solve a particular mathematical problem.  For feedforward networks, 

the most common training algorithm is called Back Propagation (BP). A BP 

network learns by example, that is, we must provide a learning set that consists 

of pairs of data sets (input examples and the known-correct outputs for each 

case). So, we use these input-output examples to show the network what type of 

performance is expected, and the BP algorithm adjusts the weights and biases in 

the network after the input/output pairs are compared. 

2.2.3.1.1 Supervised training using backpropagation 

The backpropagation training algorithm was first described by Rumelhart and 

McClelland [42] in 1986; it was the first convenient method for training neural 

networks. The original procedure used the gradient descent algorithm to adjust 

the weights toward convergence, using the gradient (the direction in which the 

performance index will decrease most rapidly). The term “backpropagation” or 
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“backprop” is often used to indicate a neural network learning algorithm using the 

gradient descent algorithm. 

To make practical forecasts for this work, the different neural networks were 

trained using appropriate data series sets. Training examples in the form of 

(input, target) pairs of vectors are extracted from the data series. The input and 

target vectors are equal in size to the number of network inputs and outputs, in 

the order mentioned.  

For every training example presented to the network, the algorithm follows a 

sequence of steps to adapt each neuron‟s weight and bias values before the 

following training example is presented to it. The sequence is as follows:   

1. The learning procedure works in small adjustable incremental steps: one 

of the example pairs is presented to the network in a forward pass, and the 

network produces some outputs based on the present state of its bias and 

weights (initially, the outputs will be random because the values of the 

biases and weights were chosen randomly). The output of the first layer 

becomes the input to the second layer and so forth until a final value is 

available at the output layer, the network output.  

2. The final output value is compared to the target value. This is the 

difference (the error) between the desired value (the target that the 

network will need to learn) and the actual network output value obtained 

from the input training examples in 1. 

3. This error is backpropagated from the output layer to the first hidden layer 

through the network, calculating the gradient (vector of derivatives) of the 

change in error with respect to the changes in weight values. 

4. All the network neuron weights and biases in proportion to the error are 

updated. 

5. Steps 1 to 4 is repeated until the difference, measured using a 

performance index (e.g. the mean square error) has been reduced to a 

preset value.  
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Each complete cycle of these steps is called an epoch. Training will end when a 

maximum number of epochs or a network output error limit is reached as 

programmed by the network user. 

Training can be time consuming, depending on the number of example sets, 

network size and topology, epoch- and error limits. 

Because the error information is propagated backward through the network, this 

type of training method is called backward propagation. A mathematical 

description of the above sequence will be explained next.   

Backpropagation algorithm 

Kindly abusing the much quoted work of Hagan, Demuth and Beale, “Neural 

Network Design” [18, pp.11-7 to 11-13], a brief explanation of a more accepted 

approach to the backpropagation training algorithm is shown where the notation 

from Hagan is represented as follows: 

Scalars: small italic letters…a, b, c 

Vectors: small bold  letters…a, b, c 

Matrices: capital BOLD letters…A, B, C 

Vector: column of numbers. 

Row vector: a row of a matrix used as a vector 
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Figure 2.11: Two layer network shown in abbreviated notation where the 
output vector of the first (hidden layer), a1, becomes the input vector to the 
second (output) layer 
 

Consider an example of a multilayer feedforward network as in Figure 2.11. 

 

Step 1 - Forward propagation 

For an M layer network the system equations in matrix form are given by  

 a0=p, (2.1) 

for the input layer where the input vector elements am+1enter the network through 

the weight matrix W and 

 

  am+1= f  m+1 Wm+1am+bm+1  for m = 0,1,…,M-1,  (2.2) 

 

is the transfer function vector for the output layer, so that the last network layer 

outputs, considered as the network outputs, are: 

 

 a = aM, (2.3) 

where  

 

𝐩= network input vector and 
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a0, a1 … a𝑀= network output vectors 

 

Step 2 - Backpropagation 

The task of the network is to learn associations using a training set of prototype 

input-output examples: 

  p1,t1  ,  p2,t2  , …,  pq,tq  , (2.4) 

where pq is a network input and tq is the matching target output. For each input pq 

applied to the network, the network output (a) will be compared to the target 

output (t). The difference will be the error (e), used to calculate the performance 

index F(x) using the mean square error (MSE): 

 

 F(x) = E [ e2 ] = E [ (t – a )2 ]. (2.5) 

 

 Where x is the vector of network weights and biases and E[ ] donates the 

expected value where the expectation is taken over all sets of input-target pairs.  

The algorithm adjusts the network parameters to minimize the MSE. 

 

For a multiple output network it generalizes to vectors 

 

 F(x) = E [eTe] = E [(t - a) T (t - a)]. (2.6) 

 

So the approximate MSE (Single sample) or performance index for the network is 

 

 𝐹   x =  𝐭 k − 𝐚 k  
T
 𝐭 k − 𝐚 k  = 𝐞T k 𝐞 k  (2.7)  

 

where the expectation of the squared error is replaced by the squared error at 

iteration k. 

 

The steepest descent algorithm searches the parameter space (adjusting the 

weights and biases) in order to reduce the mean square error 𝐹   x . Updating the 

weights at each iteration k is 
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  wi,j
m  k+1  = wi,j 

m k  – α
∂ F 

∂ wi,j
m     (2.8)

  

 and the biases is 

 bi,j
m  k+1  = bi,j 

m  k  – α
∂ F 

∂ bi
m  (2.9)  

 

Where α is the learning rate which determines the length of the step in the search 

direction to minimize 𝐹   x  . 

 

The error is an indirect function of the weights in the hidden layer, so the chain 

rule of calculus is used to compute the partial derivatives. The derivatives in Eq. 

2.8 and Eq. 2.9 are written as: 

 

   
∂ F 

∂ wi,j
m =  

∂ F 

∂ 𝑛 i
m  ×

∂𝑛𝑖
𝑚

∂ wi,j
m   (2.10) 

 

  
∂ F 

∂ bi
m =  

∂ F 

∂ ni
m   ×

∂𝑛𝑖
𝑚

∂ bi
m   (2.11) 

 

Since the net input to a layer m is a function of the weights and bias in that layer: 

 

  𝑛𝑖
𝑚 =  𝑤𝑖,𝑗

𝑚𝑎𝑗
𝑚−1𝑠𝑚−1

𝑗=1 + 𝑏𝑖
𝑚   (2.12) 

 

The second term in Eq. 2.10 and Eq. 2.11 will be 

  

  
∂𝑛𝑖

𝑚

∂ wi,j
m =  𝑎𝑗

𝑚−1         (2.13) 

And 

           
∂𝑛𝑖

𝑚

∂ bi
m = 1 (2.14) 

  

Specify s as the sensitivity of the performance index 𝐹  to changes in the i th 

element of the net input at layer m: 
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    𝑠𝑖
𝑚 ≡ 

∂ F 

∂ 𝑛 i
m   (2.15) 

 

Then Eq. 2.10 and Eq. 2.11 can be reduced to  

 

  
∂ F 

∂ wi,j
m =  𝑠𝑖

𝑚𝑎𝑗
𝑚−1   (2.16) 

  

   
∂ F 

∂ bi
m =  𝑠𝑖

𝑚   (2.17) 

 

This algorithm can now be expressed as 

  

  𝑤𝑖,𝑗
𝑚  𝑘 + 1 = 𝑤𝑖,𝑗

𝑚  𝑘 −∝ 𝑠𝑖
𝑚𝑎𝑗

𝑚−1  (2.18) 

 For the weight and 

  𝑏𝑖
𝑚  𝑘 + 1 = 𝑏𝑖

𝑚  𝑘 −∝ 𝑠𝑖
𝑚  (2.19) 

 For the bias 

 

The next step is to propagate the sensitivities backward through the network to 

compute the gradient: 

 

Compute the sensitivity 𝑠𝑚  which requires another application of the chain rule. 

This part of the routine has led to the term “backpropagation”. It describes a 

“repetitive” relationship in which the sensitivity  𝑠𝑚  at layer m is calculated from 

the sensitivity 𝑠𝑚+1 at layer m+1. To derive this relationship for the sensitivities, 

the following Jacobian matrix is used:  
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⋯
𝜕𝑛1

𝑚 +1

𝜕𝑛
𝑠𝑚
𝑚

𝜕𝑛2
𝑚 +1

𝜕𝑛1
𝑚

⋮
𝜕𝑛

𝑠𝑚 +1
𝑚 +1

𝜕𝑛1
𝑚

𝜕𝑛2
𝑚 +1

𝜕𝑛2
𝑚

⋮
𝜕𝑛

𝑠𝑚 +1
𝑚 +1

𝜕𝑛2
𝑚

⋯

𝜕𝑛1
𝑚 +1

𝜕𝑛
𝑠𝑚
𝑚

⋮
𝜕𝑛

𝑠𝑚+1
𝑚 +1

𝜕𝑛𝑠𝑚
𝑚  

 
 
 
 
 
 

  (2.20) 

 

To find an expression for this matrix the following i,j elements of the matrix is 

considered: 
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𝜕𝑛𝑖

𝑚 +1

𝜕𝑛𝑗
𝑚 =  

𝜕  𝑤𝑖,𝑙
𝑚 +1𝑎𝑙

𝑚 +𝑏𝑖
𝑚+1𝑠𝑚

𝑙=1  

𝜕𝑛𝑗
𝑚   

 

  𝑤𝑖,𝑗
𝑚+1 ×

𝜕𝑎𝑗
𝑚

𝜕𝑛𝑗
𝑚 = 𝑤𝑖,𝑗

𝑚+1 ×
𝜕𝑓𝑚 (𝑛𝑗

𝑚 )

𝜕𝑛𝑗
𝑚 =  𝑤𝑖,𝑗

𝑚+1 × 𝑓𝑚 (𝑛𝑗
𝑚)  

where 

  

  𝑓𝑚 (𝑛𝑗
𝑚) =  

𝜕𝑓𝑚 (𝑛𝑗
𝑚 )

𝜕𝑛𝑗
𝑚       (2.21)  

 

 So the Jacobian matrix can be written as 

   

   
𝜕𝒏𝑚+1

𝜕𝒏𝑚 =  𝑾𝑚+1  ×  𝐹 𝑚  𝒏𝑚 ) (2.22) 

where 

 

    𝐹 𝑚  𝒏𝑚 ) =  

 
 
 
 
𝑓 𝑚 (𝑛1

𝑚) 0 ⋯ 0

0
⋮
0

𝑓 𝑚 (𝑛2
𝑚)

⋮
0

⋯
0
⋮

𝑓 𝑚 (𝑛𝑠𝑚
𝑚 ) 

 
 
 
 (2.23) 

     

Using the chain rule in matrix form, the recurrence relationship for the sensitivity 

can be written as: 

 

 𝒔𝑚 =
𝜕𝐹  

𝜕𝐧𝑚
=  

𝜕𝐧𝑚+1

𝜕𝐧𝑚
 
𝑇

𝜕𝐹 

𝜕𝐧𝑚 +1
 =  F 𝑚  𝐧𝑚  𝐖𝑚+1 𝑇

𝜕𝐹 

𝜕𝐧𝑚+1
       

     

     =  F 𝑚 𝒏𝑚  𝑾𝑚+1 𝑇𝒔𝑚+1  (2.24) 

 

The sensitivities are computed by starting at the last layer, and then propagating 

backwards through the network to the first layer. 

  

𝒔𝑀 → 𝒔𝑀−1 → ⋯ → 𝒔2 → 𝒔1 
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The starting point, 𝒔𝑚 , for the recurrence relation of Eq. 2.23 is obtained at the 

final network layer: 

 

 𝑠𝑖
𝑀 =

𝜕𝐹 

𝜕𝑛𝑖
𝑀 =

𝜕 𝒕−𝒂 𝑇   𝒕−𝒂 

𝜕𝑛𝑖
𝑀 =

𝜕   𝑡𝑗−𝑎𝑗  
2𝑆𝑀

𝑗=1

𝜕𝑛𝑖
𝑀 = −2 𝑡𝑖 − 𝑎𝑖 

𝜕𝑎𝑖

𝜕𝑛𝑖
𝑀     (2.25) 

 

So that from Eq. 2.21 

  𝑠𝑖
𝑀 =  −2 𝑡𝑖 − 𝑎𝑖 𝑓 

𝑀(𝑛𝑗
𝑀) 

 

Expressed in matrix form as    

  

    sM = -2 𝐅 M  nM   t - a  (2.26) 

 

  Sm=Fm nm  Wm+1 Tsm+1, for   m = M - 1,…, 2,1 (2.27) 

 

Step 3 - Weight update 

Backpropagation learning updates the network weights and biases in the 

direction in which the performance function diminishes most rapidly – the 

negative of the gradient. One iteration of this algorithm can be written as 

  

   Wm k+1  = Wm k  - ∆Wm k ,   (2.28) 

 

Where the change in weight is 

 

   ∆Wm k  = - α sm  am-1 
T

.  (2.29) 

 

and 

 

   bm k+1  =  bm  k  - ∆bm k ,  (2.30) 

 

Where the change in bias is 
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   ∆bm k  =  - α sm.  (2.31) 

 

The iteration is continued until the difference between the network response and 

the target function reaches some desired level set by the computer programmer. 

 

2.2.3.2 Drawbacks of backpropagation training 

The error performance surface 

 

The mean square error (MSE) performance surface for a single-layered linear 

network is a quadratic function with only one single stationary point and constant 

curvature. Therefore, this training algorithm is guaranteed to converge to a 

solution that minimizes the MSE if the learning rate, α, is not too large.  

 

The performance surface curvature for a multilayer nonlinear network, not a 

quadratic function, can vary widely in different regions of the weight parameter 

space. It would then be difficult to choose an appropriate learning rate for the 

steepest descent algorithm. For a flat surface, (a sigmoid transfer function output 

for large inputs saturates) a large learning rate would be suitable whereas for a 

region where the curvature is high, a smaller learning rate would be required.  

 

Another feature of this error surface is the existence of many local minimum 

points. The steepest descent algorithm would effectively stop at a local minimum 

or even if the surface gradient is close to zero.  

 

Also, if a multilayer network has two local minimum points with the same value of 

the squared error, the origin (0, 0) of the parameter space tends to be a saddle 

point for the performance surface. This might happen if the initial values of the 

weights and biases are set to zero. 

 

In conclusion, the initial parameters should then be chosen to be small random 

values [18, p.12-5]. 
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Convergence to the minimum error 

In some instances the entire training set is presented to the network (batch 

training) before the parameters are updated. Slow or fast convergence can occur 

due to sudden changes in the curvature of the surface over the path of the 

steepest descent‟s trajectory towards the minimum error. 

  

For example, changing the learning rate to speed up the convergence when it is 

traversing a flat section could make the algorithm‟s trajectory unstable when it 

reaches a steeper portion of the performance surface. This divergence or 

oscillations across the error surface can be smoothed out using a low pass 

“momentum” filter [18, p12-8].    

 

Improving the gradient descent algorithm 

 

Momentum 

If one could filter the steepest descent‟s trajectory by averaging the updates to 

the parameters, this might smooth out the oscillations and produce a stable 

trajectory. This is done by adding a low pass filter termed momentum. 

 

Adding a momentum coefficient γ tends to speed up convergence when the 

trajectory is moving in a steady direction. The larger the value of γ, the more 

“momentum” the trajectory has. 

  

When the momentum modification is added to the parameter updates for the 

steepest descent backpropagation, Eq.(2.29) and Eq.(2.31) change to: 

 

 

 ∆Wm k  = γ∆Wm k - 1  –  1 - γ α sm  am-1 
T

,  (2.32) 

And 

 

                             ∆bm  k  =  γ∆bm k - 1  –  1 - γ α sm.           (2.33)              

 

Where the momentum coefficient must satisfy  0≤ γ <1   
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2.2.3.3 Faster Training – a numerical optimization technique 

The previous section presented two backpropagation training algorithms: gradient 

descent, and gradient descent with momentum. These two methods are often too 

slow for practical problems. For improved training, a standard nonlinear least 

square optimization technique, the Levenberg-Marquardt algorithm, can be 

incorporated into the backpropagation training algorithm (See Chapter 9 of Hagan 

et al, for a review of basic numerical optimization [18]). It can converge from ten 

to one hundred times faster than the algorithms discussed previously.  

 

Levenberg-Marquardt modification to the backpropagation training 

algorithm  

This high performance algorithm is one of the faster methods for training 

moderate-sized feedforward neural networks up to several hundred weights. It 

was designed for minimizing functions that are the sums of squares of other 

nonlinear functions. This is beneficial to neural network training where the 

performance index is the mean square error. It is a variation of Newton‟s method. 

Newton‟s method requires calculation of the second derivative so it is only used 

when it is feasible to calculate the Hessian matrix 𝐇 [48, p.15].  

 

The Levenberg-Marquardt algorithm approaches second-order training speed 

without having to compute the Hessian matrix, which contains the second 

derivatives of the performance index along the network weights and biases axis. 

When the performance function has the form of a sum of squares, the Hessian 

matrix can be approximated as 

 𝐇 = 𝐉𝐓𝐉 (2.34) 

 

and the gradient can be computed as 

 

  𝐠 = 𝐉𝐓𝐞         (2.35) 

 

Where 

 J is the Jacobian matrix that contains the first derivatives of the network errors 

with respect to the weights and biases and, 
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 e is a vector of network errors [29, p.25].  

 

The Jacobian can be calculated using the standard backpropagation algorithm 

(section 2.2.3.1.1) that is less complicated than calculating the Hessian matrix. 

 

If the weight and bias update from 2.29 and 2.30 is equal to some value 𝛿 

 

                         δ = ∆Wm k + ∆bm  k ,    (2.36) 

 

Then the Levenberg-Marquardt algorithm approximates a function that can be 

solved by: 

 

      𝐉𝐓𝐉 + μ𝐈 δ =  𝐉T𝐞  (2.37) 

Where  

 J is the Jacobian matrix for the network, 

 μ  is the Levenberg damping factor Mu, 

𝐈  is the identity matrix, 

 𝛿  is the weight update vector and  

e is the error vector containing the output errors for each input vector used on 
training the network.  

The weight update 𝛿 tells us by how much the network weight and bias 

parameters should be adjusted to achieve a near zero performance goal.  

The μ damping factor is adjusted at each iteration, and influences the 

optimization process. If μ is equal to zero, this is just Newton‟s method, using the 

approximate Hessian matrix. When μ is increased, e.g. by a factor of 10, it is a 

step closer to the gradient descent direction.  

Newton‟s method is faster and more accurate near an error e minimum, so the 

intention is to change toward Newton‟s method as quickly as possible. As a 

result, μ is decreased after each successful step (closer to a zero performance 

http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
http://en.wikipedia.org/wiki/Levenberg�Marquardt_algorithm#Choice_of_damping_parameter
http://en.wikipedia.org/wiki/Gradient_descent
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goal) and is increased only when a tentative step would increase the performance 

function. In this way, the performance function (sum of the squares) is always 

reduced after each iteration cycle of the algorithm. The algorithm is assumed to 

have converged when some performance goal, in this case, zero, is reached. 

Typical Levenberg-Marquardt algorithm training parameters are shown in  

Table 2.1, with their default values: 

Table 2.1: LM training parameters 

 

Maximum number of epochs to train 100 

Performance goal 0 

Maximum validation failures 5 

Minimum performance gradient 1e-10 

Initial μ 0.001 

μ  decrease factor 0.1 

μ  increase or adjustment factor 10 

The next method to be discussed is the Cascade-Correlation architecture and 

supervised learning algorithm for artificial neural networks. It was developed by 

Scott Fahlman at Carnegie Mellon in 1990.  

Cascade-Correlation training is a supervised learning architecture that grows 

layers of hidden neurons of fixed nonlinear activation functions (e.g. sigmoid 

functions), in real training time, so that the network architecture can be 

determined efficiently. 

Instead of only adapting the weights in a network of fixed topology, Cascade-

Correlation begins with a minimal network, then automatically trains and adds 

new hidden neurons one by one, creating a multi-layer structure [52, p.9].  

Once a new hidden neuron/unit has been added to the network, its input-side 

weights are frozen. This unit then becomes a permanent feature-detector in the 

network, available for producing outputs or for creating new, more complex 

feature detectors.  

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Scott_Fahlman
http://en.wikipedia.org/wiki/Carnegie_Mellon
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2.2.3.4 A Variation of backpropagation training - The Cascade correlation 

training algorithm [11] 

Cascade correlation neural networks are “self-ordering” networks, finding their 

own size and topology. Through the training process, new neurons are added in 

the hidden layer, one at a time, producing a multi-leveled network formation. 

Initially, a cascade correlation neural network consists of only the input and 

output layer neurons with no hidden layer neurons. Every input is connected to 

every output neuron by a connection with an adjustable weight, as shown in 

Figure 2.12. 

 

Each node, depicted by the symbol    in Figure 2.12, represents a weight value 

between the input and the output neuron. Values on a vertical line are added 

together after being multiplied by their weights. So each output neuron receives a 

weighted sum from all of the input neurons including the bias. The output neuron 

sends this weighted input sum through its transfer function to produce the final 

output. 

 

 

 

 

  

 

 

 

 

Figure 2.12: Initial network state: No neurons in the hidden layer 
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After the addition of the first hidden neuron, the network would have the structure 

shown in Figure 2.13: 

 

 

 

 

 

 

Figure 2.13: Adding the first neuron to the network’s hidden layer 

The input weights for the new added hidden neuron in Figure 2.13 are shown as 

 - nodes to indicate that they are fixed once the neuron has been added. 

Weights for the output neurons, shown as „  - nodes‟, continue to be adjustable.  

Figure 2.14 is a schematic presentation of a network with two hidden neurons.  

 

 

Figure 2.14: Adding a second neuron to the network’s hidden layer 
 

Bias 

Input 
layer 

Output layer 
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Note that the second neuron receives inputs from the external inputs and pre-

existing hidden neurons. 

According to Fahlman and Lebiere [11], the Cascade-Correlation training 

algorithm has several advantages over the backpropagation training algorithm: 

 It is a self-organizing network and grows its own hidden layer(s) during 

training. The researcher does not have to be concerned with the design of 

the overall network architecture. 

 Very fast training times – often more than 1000 times as fast as a 

feedforward backpropagation network for this specific application. 

 Typically, cascade correlation networks are fairly compact, often having 

fewer than a dozen neurons in the hidden layer, retaining its structure it 

has built even if the training set changes.  

 Cascade correlation network training is quite robust, and good results can 

usually be obtained with little or no adjustment of parameters. 

Even a simple Cascade-Correlation network with no hidden neurons has 

considerable predictive power. For a fair number of problems, a cascade 

correlation network with just an input and an output layer provides excellent 

predictions.  

During training, the neural network learns the model of the application in which it 

will be operating and must maintain it adequately and reliably to achieve the 

particular goals of the application of interest, e.g. load forecasting. As briefly 

mentioned in 2.2.3, a problem that can occur during network training is called 

underfitting or overfitting. 

 

2.2.3.5 Underfitting and overfitting of artificial neural network output data 

Designing a network that does not have enough hidden layers or too small a 

number of neurons in the hidden layer(s) and exposing it to a complex signal, 

might make it fail to fully detect the signal, leading to under-fitting. It is rather like 



41 
 

sampling a complex, high frequency signal at too low a rate, as found in Digital 

Signal Processing. 

 

Another example is if the data set is very noisy due to a “measurement error”. 

Then a very complex network will fit the underlying noise as well as the intended 

signal, leading to over-fitting. Under-fitting and over-fitting can produce wild 

predictions in networks consisting of multilayered perceptrons. As a result, the 

network training needs to be done in such a way that the network weights and 

biases are adjusted to improve generalisation.  

 

Training neural networks to generalise 

A neural network can generalise when it correctly classifies input values that are 

not in its training data sets. A neural network can generalise well when the 

accuracy of classification is high and vice versa. 

 

 A complex, nonlinear function is programmed by the neural network from its 

inputs. If the training data is fitted well by the trained neural network and it 

classifies its data rather accurately, then there is probably some well-established 

mathematical relationship between the input/output vectors.  Estimating outputs 

from new inputs would probably be more accurate now and it will be said that the 

neural net is generalising quite well. One method used to improve generalisation 

is regularisation. 

 

Regularisation 

This requires changing the performance function, which is normally chosen to be 

the sum of squares of the network errors on the training set. The typical 

performance function used for training feedforward neural networks is the Mean 

sum of Squares of the network Errors (MSE): 

 

   MSE=
1

n
  At-Ft 

2n
t=1   (2.38) 

where 

At = actual value; 

Ft = forecast value; 

n = number of fitted data points. 
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To improve generalization one can modify the performance function by adding a 

term that consists of the Mean of the sum of Squares of the network Weights and 

biases, (MSW). 

 

The regularised MSE = γ MSE + (1 – γ) MSW   (2.39) 
 
Where 
 
γ = performance ratio 
 
For example, if the network is trained with the regularized performance function 

where the performance ratio γ is set to 0.5, it gives equal weight to the mean 

square errors and the mean square weights. 

 
 
and  
 

   MSW=
1

n
  wj 

2n
j=1   (2.40) 

Where  

j = layer number 

wj = weight and bias matrix in that layer 

 

Using the regularised performance function causes the network to have smaller 

values of weights and biases. This forces the network response to be smoother 

and less likely to overfit. 

 

The problem with regularization is that it is difficult to determine the optimum 

value for the performance ratio parameter γ. If one makes this parameter too 

large, one might get overfitting. If the ratio is too small, the network does not 

sufficiently fit the training data. 

  

A routine that automatically sets the optimal performance function to achieve the 

best generalization is the Bayesian framework of David MacKay [28, pp.415-447] 

where the weights and biases of the network are assumed to be random 

variables with specified distributions. The regularization parameters are related to 
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the unknown variances associated with these distributions. One can then 

estimate these parameters using statistical techniques. 

 

One feature of this algorithm is that it provides a measure of how many network 

parameters (weights and biases) are being used effectively by the network. This 

effective number of parameters should remain approximately the same, no matter 

how large the number of parameters in the network becomes. (This assumes that 

the network has been trained for a sufficient number of iterations to ensure 

convergence.) 

 

Training can be stopped if the algorithm has converged when the Sum of the 

Squared Error (SSE) and Sum of the Squared Weights (SSW) are relatively 

constant over several iterations [8, Chapter 5 - p.55].  

 

The response of the trained network is such that it will never overfit the data, and, 

therefore, the network will generalize well to new inputs. This eliminates the 

guesswork required in determining the optimum network size. 

 

A detailed discussion of Bayesian regularization is beyond the scope of this work. 

A discussion in the use of Bayesian regularization, in combination with 

Levenberg-Marquardt training, can be found in [14, pp. 1930-1935]. 

 

Once the chosen neural network is trained, it needs to be evaluated as a suitable 

forecasting model. One can build different neural network models and use the 

same data set on all of them to compare their forecasting performance. The final 

network model and training method is selected when the best model fit is 

obtained from the training and new validation data when measuring the neural 

networks performance.  

 

2.2.4 Measuring the neural network model performance 

 
The user of forecasts is concerned about the accuracy of future forecasts, not 

always about model goodness of fit [32, p.49]. There are many statistical 

methods that describe how well a model fits a given sample of data and a few of 
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these will be mentioned in 2.2.4.1. The quality of the forecasting model can also 

be investigated by the use of linear regression plots, briefly described in 2.2.4.2. 

This can provide useful guidance on how the forecasting model will perform when 

exposed to new data. 

2.2.4.1 Choosing the Mean Absolute Percentage Error (MAPE) 

The most important measure of a trained neural network‟s performance is its 

forecasting accuracy using data other than the training data. An acceptable 

method of measuring the accuracy of any ANN forecaster is argued over by 

forecasting academics and practitioners. The ANN‟s performance is often defined 

in terms of the forecasting error which is the difference between the actual value 

At  and the forecasted value Ft . 

 

 

 Forecasting error = At - Ft   (2.41) 

 

The most frequently used “measures of accuracy” in the forecasting literature [57, 

p.51] are the: 

 

MAD - Mean Absolute Deviation: 

  MAD=
1

n
  At-Ft 

n
t=1   (2.42) 

 

SSE - Sum of the Squared Errors: 

  SSE=  At-Ft 
2n

t=1  (2.43) 

 

MSE  - Mean Squared Error: 

  MSE=
1

n
  At-Ft 

2n
t=1   (2.44) 

 

RMSE - Root Mean Squared Error: 

 

   RMSE= 
1

n
  At-Ft 

2n
t=1   (2.45) 
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MAPE - Mean Absolute Percentage Error: 

 

 MAPE=
1

n
 

 At-Ft 

At

n
t=1 × 100 %  (2.46) 

 
Where 
 
At = actual value and At ≠ 0; 

Ft = forecast value; 

n = number of fitted data points.  

       

Equations 2.42 to 2.45 are scale–dependant measures of forecasting accuracy. 

So if one were forecasting electric load demand for Bloemfontein during the 

winter, the units would be expressed in Megawatts (MW). If the MAD, from Eq. 

2.42, for a month in the winter was 6 MW, one might not know whether it was a 

large or a small forecasting error. Furthermore, accuracy measures that are scale 

dependent do not facilitate comparison of a single forecasting technique across 

different time series or comparisons across different time periods.  

 

To achieve this, one needs a measure of relative forecast error such as Eq.2.46. 

Knowing that the percentage electric load forecasting error or the MAPE is 4 % 

can be much more meaningful than knowing that the MAD is 6 MW [32, pp.48-

51]. 

 

When measuring the forecasting performance of the different ANN‟s, the MSE is 

not used as it has the disadvantage of heavily weighting outliers when squaring 

each term. This weighs large errors more heavily than small ones and makes its 

use undesirable in many applications. 

 

Therefore, researchers rather use alternatives such as the MAPE, which can be a 

valuable approach for discriminating between competing forecasting models [44, 

p.6], [30, p.370]. 
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The MAPE can be used to decide on practical network architectures for future 

analysis of the possibility of using it to build a short term load forecasting model. 

 

In addition, besides the MAPE criterion other statistical measures are available to 

further evaluate the network‟s performance, using linear regression or scatter 

plots. 

2.2.4.2 Linear regression plots 

The success of a trained network can be considered to some degree by 

evaluating the MAPE on the training, validation and test sets, but it is often useful 

to look into the network response in more detail. One option is to perform a 

regression analysis [4, pp.298-318], [31, p.64] between the network output 

response F and the actual corresponding target A in the form  

 

 Output = m.Target + y.   (2.47) 

 

The MATLAB routine „plotregression’, as described below, perform this analysis 

[8, p.5-64]. It returns three parameters. The first is m, representing an estimate of 

the slope of the linear regression line for which the formula is 

    

    𝑚 =  
  At−A   Ft−F  n

t =1

  At−A  2n
t =1

  (2.48) 

Where 

 

At = actual value; 

A  = actual data average; 

Ft = forecast value; 

F  = forecasted data average; 

t = data point number; 

n = number of fitted data points. 
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and y represents an estimate of the y-intercept of the best linear regression, 

relating targets to network outputs.  

 

The intercept y, can be calculated from 

 

  y =  F − 𝑚A   (2.49) 

 

Where 

 

F  = forecasted data average; 

A  = actual data average; 

m = estimate of the slope. 

 

If there were a perfect fit (outputs exactly equal to targets), the slope would be 1, 

and the y-intercept would be 0.  

 

The third variable returned by MATLAB‟s plotregression is Pearson‟s correlation 

coefficient (the R value) between the outputs and targets. The R value is an 

indication of the relationship between the outputs and targets. It is a measure of 

how well the variation in the output is explained by the targets. The formula for R 

is 

 

 

  R = 
  At-A   Ft-F  n

t=1

   At-A  
2n

t=1
   Ft-F  

2n
t=1

    (2.50) 

 

Where 

At = actual value; 

A  = actual data average; 

Ft = forecast value; 
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F  = forecasted data average; 

t = data point number; 

n = number of fitted data points.  

 

If R=1, this indicates that there is an exact linear relationship between outputs 

and the actual values (targets). If R is close to zero, then there is no linear 

relationship between outputs and targets.  

 

In Figure 2.15, it is difficult to distinguish the best linear fit (blue line) from the 

perfect fit (dashed line) because the fit is 1, which illustrates a perfect fit. The 

network outputs are plotted versus the targets as open circles.  

 

 
 

Figure 2.15: An example of a perfect linear regression plot where the input  
values = output values so that the correlation coefficient R=1   
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A more practical example is illustrated by Figure 2.16. The perfect fit (output 

equal to targets) is indicated by the dashed line representing the perfect result 

where the network outputs = actual targets. The solid blue line represents the 

best fit linear regression line between outputs and targets. 

 

 
 

Figure 2.16: A more realistic example of a linear regression plot where the  

input values ≠ output values and the correlation coefficient R=0.89624   

 

2.2.5 Summary 

Load curve prediction can be modelled using a neural network time series 

forecasting model. Further to this, supervised training can be implemented to 

train a neural network. Moreover, the Levenberg-Marquardt modification can be 

applied to the backpropagation algorithm to improve the training performance. 

 

 From the exposition above it can be concluded that a self organising Cascade-

Correlation network is faster and more efficient than the feedforward network.   
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Also, generalisation can be improved by using the Bayesian framework. To 

conclude, the neural network‟s performance can be measured by making use of 

the MAPE and linear regression statistics.  
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CHAPTER 3 

METHODOLOGY 

For this project, electric load data consisting of active and reactive power, was obtained 

from the two 132 kV feeder voltage sources at Harvard substation, west of 

Bloemfontein. The active power component was extracted from the load data. This was 

used to develop an artificial neural model to predict power demand with a lead time of 

half an hour.   

 

Due to the economic growth of the Bloemfontein Municipal area, older power demand 

data was of decreasing relevance as it does not reflect the changes in the composition 

of the recent load demand accurately. Later data sets from 2006, 2007, 2008 and 2009, 

where the change in the Notified Maximum Demand (NMD) was less than ten per cent, 

was used to develop the neural network forecasting model. This type of model can be 

used to capture complex relationships between inputs and outputs or to find patterns in 

the electric load data.  

  

An important aspect of load forecasting is the relationship it has with load planning. 

Forecasting can be described as predicting what the future will look like, whereas 

planning predicts what the future should look like. There is no single correct forecasting 

method to use. Selection of a procedure should be based on the investigators‟ 

objectives and conditions (such as data, model and method, etc.). A good place to start 

is to identify the underlying factors that might influence the variable that is being 

forecasted. The procedure used to execute the investigation is then set out.  

3.1 Procedure used to develop the neural network forecasting model 

A procedure is a series of linked actions that convert one or more inputs into one or 

more outputs [32, p.12]. All work activities are conducted in specific procedures. 

Forecasting is no exception. The actions in this forecasting procedure are executed in 

the following sequence: 

http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Planning
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 Specification of the aim and objectives. 

 Data collection.  

 Data analysis. 

 Neural network model selection, training and testing. 

3.2 Specification of the aim and objectives 

Aim:  

 
To build, train and test a short term dynamic, half-hour ahead updating, neural 

network forecaster using the data for each of the late autumn and winter months of 

May, June and July 2007 to 2009. Once the network‟s performance has been 

verified, it could be extended to an annual forecasting system for future years. 

 

Objectives: 

 

 Each of the three networks for the three months must be trained with the least 

possible amount of historical data, using the minimum quantity of inputs to 

predict the weekly load, with a half-hour lead time. 

 

 Minimising the error during training by evaluating and adjusting the topology 

elements of the neural network to keep the weekly MAPE below 5% during 

forecasting. This was decided on to represent an accepted forecasting accuracy. 

 

 The neural networks functional reliability would be estimated experimentally [15, 

p.305]. Final evaluation of the STLF network‟s performance would be done by 

comparing weekly MAPE and R values (correlation coefficients), taken from the 

regression plots, to analyse the forecasting accuracy for each month. This is 

done by checking if the prediction error from week 1 to week 4 for each month is 

repeated consistently. Accuracy is limited by systematic (repeatable) errors [39, 

p.347].  
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LOAD DATA FROM PARKWEST FEEDER 1 & FEEDER 2 

 The forecasting time horizon decided upon will be one month which means that a 

network can be built and trained for each month of the year if on-line forecasting 

deployment is eventually realised. 

3.3 Data collection 

Historical load demand data for the years 2006 to 2009 from Parkwest Feeder 1 and 

Feeder 2 at the Harvard 132 kV substation was obtained from Eskom, Bloemfontein in 

the format shown in Table 3.1. Initially, the reliability and integrity of the data for the 

months of May, June and July was examined graphically, comparing each week of the 

same month of each year with the weekly data obtained from each other year e.g. the 

data of week 1, May 2006 was checked with the data for week 1, May 2007, week 1, 

May 2008 and week 1, May 2009, etc… 

Table 3.1: An example of load data obtained from ESKOM 
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3.4 Data analysis 

3.4.1 Load curve characteristics 

The load curve information for Bloemfontein, collected for the years 2006 to 2009, 

consisted of discrete data points, accumulated every half-hour, taking into account that 

24 hours equals 48 half-hours. As a result, the daily load curves comprised 48 

observations, which is the sampling rate of the data. As a result, a total of 17520 data 

points per year are available for investigation.  

 

As an example, the electric power expenditure in the year 2009 is shown in Fig 3.1.  

 

 

Figure 3.1: Annual load profile used from January 1 - 2009 to December 31 - 2009 
 

The load starts to pick up middle January as industry starts up and schools start after 

the Christmas holidays. A small drop is seen during April, depending on the span of the 

Easter holiday window. Energy demand reaches a maximum during winter. This can 

either be May, June or July depending on the type of winter season experienced during 

the specific year under observation. The load drops off as the season changes to Spring 

and stays constant until the December holidays during which a rapid drop to below  

200 MW is observed (for the duration of the holiday). 
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The following seasonal variation can be observed from this load profile: 

  

 A maximum consumption of less than 250 MW during the summer and autumn 

season; 

 A maximum consumption of more than 250 MW during the winter and early 

spring season; 

 The base load level barely drops below 100 MW throughout the year. 

 

Time series plots of the electric load data were created and visually inspected for 

familiar patterns e.g. trends, seasonal components and abrupt changes in magnitudes 

of peaks and valleys. Abnormal data points or outliers were checked for and removed if 

necessary. The purpose of this initial data examination was to obtain a „feel‟ for the 

data. In the region of the Free State, South Africa, the months in the seasons follow the 

pattern shown in Figure 3.2. 

  

 

Figure 3.2: Segmentation of the months in the different seasons of the year 
 
Usually, during the winter season, electric load consumption reaches an annual peak. 

Also, in the months of May, June and July, extensive load shedding is applied to save 

the considerable penalties induced when exceeding the NMD.  
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To predict the electric load during the winter period, a neural network was built, trained 

and validated for each of the three months of May, June and July, mentioned previously 

as the late autumn and winter months. 

 

Through the course of a month in a specific season, the weekdays and weekend load 

shape usually repeat in a fixed pattern. The weekly characteristics consist of five 

working days and two weekend days.  

 

The next objective to consider would be the load curve shape of the different day types 

of the week of each month to present to the neural network for training. From Figure 

3.3, days can be separated into different day types, each having its own distinctive 

features. The daily rhythm changes throughout the year. There are normal and special 

days, weekdays and weekends. 

 

 

 

Figure 3.3: Layout of possible day configurations for the neural net to learn 
 

In Figure 3.4 the load over two consecutive weeks with three weekends included in July 

2009 is shown. 
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Figure 3.4: Load profile from Midnight Saturday, 4th July 2009, to Midnight, 

Sunday 19th July 2009.  

 
The 12:00 AM‟s below the x-axis in the graph actually represents midnight at  

0:00 Hours. The load profile in Figure 3.4 shows the following features: 

 

 It is observed that the Saturday- and Sunday load patterns differ in shape from 

the rest of the week with lower peak load values. Households are usually more 

inactive over the weekend.  

 

 The Monday to Friday peak power use is higher compared to peak loads during 

Saturdays and Sundays due to a higher communal activity. An increase in 

“ramping of load” is required for Monday mornings as the community starts up 

after the weekend. (It is necessary that the forecast be as accurate as possible 

during these ramping periods to avoid any unnecessary interruptions to 

customers because of load shedding). 
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 The Tuesday to Thursday profiles are very similar under “normal” conditions, 

making it the easier days to forecast.  

 

 The load starts dropping off from a Friday evening peak, which is lower than the 

Friday morning peak, as the weekend starts. 

 

 The base load stays at approximately 140 MW over the two weeks.  

 

 The morning peaks are between 11:00 and 12:00 and the evening peaks are 

between 6:30 and 7:30. 

 

 A slight peak at 3:30 am each morning is due to geyser “load control”.  

 

As seen from Figure 3.4, there are differences between the seven days in the same 

week of the month and even between the “day types” of two consecutive weeks. So 

each day type has its own characteristic load pattern [34, pp.10-14]. 

 

From plotting these graphs one can explore the historical daily energy usage data to 

develop a forecasting model. Statistics and visual inspections may reveal that there are 

usage trends throughout each day, and these trends seem to depend on the day type of 

the week.  

 

This knowledge can be used to build and test a neural network to forecast the weekly 

load curves. Another possibility would be to use a separate network to forecast each 

day type. 

 

Using preliminary testing, the network forecasting results can be used to analyse these 

historical forecasting errors for daily, weekly, or monthly behaviour.  

 

The neural network‟s forecasting performance can be defined by the previous week for 

the next week, last year‟s monthly data for next year or include all the weekly day types. 
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In Figure 3.5 a typical day type profile is illustrated. Load consumption curves of a 

typical Wednesday in different seasons of the year 2009 are shown. 

 

 

 

Figure 3.5: Load curves of four Wednesdays in the four different seasons 
 

The special days vary at random and one must also look at its load curve shapes to see 

if one has to train the network especially for this occurrence. 

 

Investigating the profile of the electric load data plotted in Figure 3.6 to Figure 3.8 for 

the year of 2009 it is seen that on the special days of the year (see Fig. 3.3) the load 

consumption curves follow roughly the same pattern as on a Sunday in that same week, 
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so it was not deemed necessary to additionally train a network particularly for the 

special days.  

 

 

 

Figure 3.6: Freedom Day on a Monday 
 

 

 
Figure 3.7: Youth Day on a Tuesday 
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Figure 3.8: National Women’s Day on a Monday 
 

3.4.2 Data pre-processing 

Data pre-processing was done in three phases: 

 

1. Selected data was copied to files in EXCEL format to make importing and exporting 

the data to MATLAB more efficient. 

 

2. The data was checked for outliers and missing data. Minimal adjustments were 

identified and discarded or rectified. 

 

3. Data entering the MATLAB environment was normalised to the range [- 1; +1] for the 

ANN to facilitate training and prevent “squashing” by the sigmoid activation function 

[35, p.465]. 

3.5 Neural network model selection, training and testing 

All the computer simulations and development were done using MATLAB‟s Neural 

Network Toolbox™ for building, training, validating and testing neural network 

applications.  
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3.5.1 Method of selection of a network architecture or topology for further 

analysis 

The network topology describes the arrangement of the neural network. Choosing the 

proper neural network topology is regarded as a key aspect in optimisation and 

reliability of neural network performance.  

 

Selecting the topology of the neural network is a difficult decision. There are no specific 

directions for developing a neural network for a particular task. „Guidelines are either 

heuristic or based on simulations derived from limited experiments. Hence the design of 

an ANN is more of an art than a science‟ [57, p.42]. 

 

The network topologies available are numerous; each with its inherent advantages and 

disadvantages. Some networks sacrifice speed for accuracy, while some are capable of 

handling static variables and not continuous ones. 

 

For this project, the data sets were not large and did not consist of multiple arrays of 

input variables such as temperature, active power, reactive power and day type which 

would necessitate the use of complex topologies. Consequently, in order to arrive at an 

appropriate robust network topology, the multilayer feedforward network was 

investigated first. Next, the performance of the cascade-forward network topology was 

analysed.  

 

To develop an understanding of and gain in experience of how this load forecasting 

model would develop, an initial, experimental arrangement of the multilayer feedforward 

network architecture was set up to train and test the different load data configurations. 

 

This network‟s ability to model a set of input examples was measured using the MAPE 

performance function as discussed in section 2.2. 

 

Test runs, presented in this section, would serve as a baseline against which to choose 

between the two architectures. It includes input and hidden layer size testing for the 
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feedforward network and input layer size testing for the cascade forward network. Once 

the input set size and the hidden layer size had been determined, training tests were 

done to decide between the Levenberg-Marquardt with and without the Bayesian 

regularization training algorithm to fine-tune the final network‟s performance. 

 

3.5.2 Selecting the multilayer feedforward network configuration.  

 

The feedforward back propagation network structure is problem dependant. Therefore it 

is assumed that a network layout that is used for this load forecasting system will not 

automatically be suitable for another forecasting system. 

 

The architecture of the feedforward ANN was experimentally estimated using the 

Levenberg-Marquardt training method in conjunction with Bayesian regularization for 

improving generalization. The following criteria were considered: 

 

1. The size of the output layer. 

2. Interconnection of neural nodes. 

3. Type of activation functions used in each layer. 

4. The number of hidden layers. 

5. Determine the size of the input layer.  

6. Determine the size of the hidden layer. 

 

These criteria will be discussed in the following section. The question to be asked is 

which parameter is determined first and why? As mentioned, this is not a simple task. 

The first four criteria were first kept constant, to practical values, as mentioned in the 

next discussion, while criteria 5 and 6 were being adjusted simultaneously to get a “feel” 

for the rhythm of the problem. 

 

Criteria 5 and 6 were evaluated using the MAPE performance measurement. Four 

weeks of input data in July 2008 were prepared and presented to train this preliminary 



64 
 

network and the 4th week in July 2009 was used to validate the forecasting accuracy of 

this trained feedforward network.  

 

A decision, based on the results of Table 3.2, was then used to consider the next step in 

finding a suitable network for the investigation of a robust short term load forecasting 

model.  

3.5.2.1 Discussing the criteria used to estimate the initial feedforward network 

architecture experimentally  

Size of the network output layer 

The output layer is one only as dictated by the nature of this problem to be solved. 

 

Interconnection of the network nodes 

The nodes are fully connected. 

 

Activation functions used in the hidden and output layer 

The log sigmoid transfer function was initially used for test runs in the hidden layer. It 

squashes the input value from plus and minus infinity to an output value of a range of 

between zero and one. It is differentiable as mentioned in Chapter 2.2 so the derivative 

is easy to calculate, which is helpful for calculating the weight updates in the back 

propagation training algorithm. The linear transfer function was used in the output layer. 

 

Number of the network’s hidden layers 

It has been found empirically that a single hidden layer is sufficient for modelling most 

data sets. Additional hidden layers allow the neural network to model more complex 

functions. Usually just one hidden layer is required to solve most nonlinear problems 

[50, p.83], [9, p.393]. 

 

Size of the network input layer 

It should be noted that 3 half-hour data points equals 1.5 hours and 30 half-hour data 

points equals three quarters of a day (which could be lost for starting training). So it was 
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important to keep the input layer size as small as possible if one wants to keep within 

the constraints set out to use the minimum amount of input variables used to predict the 

load in 3.2.1    

 

Number of neurons in the network hidden layer(s) 

Too many neurons in the hidden layer(s) will make the model overfit the data.  In 

addition, if the net is too large, it will memorize rather than learn [40, p.684]. Use too 

few, then the model may not have sufficient power to fit the data. The neurons in the 

hidden layer(s) allow the network to: 

 

 detect the feature 

 capture the pattern in the data and  

 perform the complicated non-linear mapping between the actual and forecasting 

variables [38, pp.143-149].  

 

The appropriate number of hidden neurons is system-dependent [41], based on the 

investigator‟s experience. 

 

From the above criteria, the first stage was to determine the size of the network input 

layer and the number of neurons in the hidden layer heuristically using the following 

procedure: 

 

 The electric load data was pre-processed to fall in the range [-1, 1]. Then the 

training set of 336, half-hour sampled, electric load values were presented to the 

network sequentially, training the network for one week at a time, for the four 

weeks of July 2008. The weights and biases where updated after each input 

vector was presented to the network using supervised learning. Post-processing 

was done to convert the electric load data back to its standard value of kW units. 

 The fourth week in July 2009 (Saturday 25th July 2009 12:00 am to Friday 31st 

July 2009 12:00 pm) was arbitrarily chosen to measure the performance of the 

network architecture. 
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 To estimate the input layer size experimentally, the number of input data points 

presented to the network was varied incrementally from 3 to 30 points while an 

additional neuron was added to the hidden layer at the end of the incremental 

period every time the whole of the input sliding window was presented to the 

ANN, up to the point where there were 3 neurons in the hidden layer.  

 

The results are shown in Table 3.2. 

 

Table 3.2: Simultaneous recording of the network input size and the number of 

neurons in the hidden layer using a feedforward network 

 

Network 

Input  size 

Network Prediction 

error using MAPE with 

1 neuron hidden layer 

(%) 

Network Prediction 

error using MAPE with 

2 neurons hidden layer 

(%) 

Network Prediction error 

using MAPE with 3 

neurons hidden layer (%) 

3 4.01 4.2 4.41 

6 3.82 4.1 4.29 

9 3.7 4.14 4.57 

12 3.65 4.3 4.31 

15 3.66 4.91 4.7 

18 3.61 4.26 5.26 

21 3.62 4.05 4.99 

24 4.09 4.42 4.63 

27 4.11 4.64 5.29 

30 4.1 4.5 4.7 

 

Table 3.2 shows that as more neurons are added to the hidden layer, the MAPE values 

become larger. Using these results, a network with one neuron in the hidden layer was 

decided upon for further investigation. From figure 3.9 it can be seen that there is little 

fluctuation in the MAPE when using one neuron/node in the hidden layer when the 

network input size increases from 3 to 30 data points.    
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Figure 3.9: Plotting the results in Table 3.2 where the hidden layer of 1, 2 and 3 

nodes (or neurons) were used for comparison 

 

For further illustration, the graphs in Figure 3.10, Figure 3.11 and Figure 3.12 are shown 

for a visual inspection of the difference between the actual and predicted peaks and 

valleys of the two loads.  

 

 

Figure 3.10: Plotting the forecasting results of the 6 input feedforward network 

with a hidden layer of one neuron 
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Figure 3.11: Plotting the forecasting results of the 12 input feedforward network 

with a hidden layer of one neuron  

 

 

 

Figure 3.12: Plotting the forecasting results of the 12 input feedforward network 

with a hidden layer of two neurons  
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One cannot use the MAPE values alone to look for the most suitable network. Also, the 

MAPE value of two sets of tabled results can both be more or less the same but the 

overall “fit” of the predicted values on the actual values can look very different. 

 

From the accompanying MAPE values in Table 3.2 and comparing Figures 3.10, 3.11 

and 3.12 using visual inspection of the peaks and valleys, Figure 3.11 shows the best fit 

of Figures 3.10, 3.11 and 3.12. 

 

The 12:1:1 architecture of the feedforward network with a MAPE of 3.65 % illustrated in 

Figure 3.11 would be chosen for future comparison with the next network to be 

investigated, the cascade forward network. 

 

3.5.3 Selecting the cascade forward network 

The next stage was to apply the same training and testing data sets (July 2008 and 

week 4 - July 2009) used previously, to a new cascade forward network to optimize its 

network input layer size.  

 

Figure 3.13 shows the results when using a cascade forward network with the same 

log-sigmoid transfer function in the hidden layer and a linear transfer function in the 

output layer.  

 

Levenberg-Marquardt training with Bayesian regularization was used to determine the 

size of the input window. Once more, for further illustration, the MAPE results from 

Figure 3.13 and the graphs in Figure 3.14 to Figure 3.16 are shown as a guideline for 

visual inspection to decide on a suitable cascade forward network for comparison with 

the feedforward network in the next step of this study. 
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Figure 3.13: The graph shows the lowest MAPE at a network input size of 6 data 

points and one neuron in the hidden layer 

 

 

 

 

Figure 3.14: Plotting the forecasting results of the 6 input cascade forward 

network with a single neuron in the hidden layer 
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Figure 3.15: Plotting the forecasting results of the 12 input cascade forward 

network with a single neuron in the hidden layer 

 

 

 

Figure 3.16: Plotting the forecasting results of the 21 input cascade forward 

network with a single neuron in the hidden layer 



72 
 

Having decided on the feedforward configuration as shown in figure 3.11 the next step 

would be to choose the cascade configuration by comparing Figures 3.14, 3.15 and 

3.16 using visual inspection of the peaks and valleys. The structure in Figure 3.14, a 

6:1:1 cascade forward network with a MAPE value of 3.44 % was chosen for further 

comparison with the 12:1:1 feedforward network from Figure 3.11 with a MAPE value of 

3.65 %. This was decided from the lowest MAPE value obtained, shown in Figure 3.13.  

 

This completed the tests to select the input set size and the hidden layer size for the 

12:1:1 feedforward network and the 6:1:1 cascade forward network. 

 

3.5.4 Final selection of the feedforward or the cascade forward network 

The final selection was done again using the same training set (four weeks in July 2008) 

and testing week 4 in July 2009. 

 

Training the two neural networks involved the following actions: 

  

 The two networks‟ respective input layer sizes were kept constant;  

 Training occurred according to default neural toolbox parameters that were left 

constant for all the trials; 

 The hidden layer transfer functions were altered between Log-sigmoid and  

Tan-sigmoid for each network; 

 Selecting the Levenberg-Marquardt training algorithm with and without Bayesian 

regularisation; and 

 Finally, comparing the forecasting errors of the two networks.  

 

The results of this training are shown in Table 3.3. 
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Table 3.3: Results when training the two different networks with the data of week 

1,2,3 and 4 of July 2008 and forecasting week 4 of July 2009 

 

Network 

Tested 

Size 

of 

Input 

layer 

Hidden 

Layer 

Transfer 

Function 

Hidden 

layer 

size 

Output 

Layer 

Transfer 

Function 

Output 

layer 

size 

Network 

Training 

Algorithm 

% Error 

(MAPE) 

Newcf 6 Logsig 1 Purelin 1 Trainlm 4.04 % 

Newcf 6 Tansig 1 Purelin 1 Trainlm 4.44 % 

Newff 12 Logsig 1 Purelin 1 Trainlm 3.69 % 

Newff 12 Tansig 1 Purelin 1 Trainlm 3.69 % 

Newcf * 6 Logsig 1 Purelin 1 Trainbr 3.44 % 

Newcf 6 Tansig 1 Purelin 1 Trainbr 3.92 % 

Newff ** 12 Logsig 1 Purelin 1 Trainbr 3.65 % 

Newff 12 Tansig 1 Purelin 1 Trainbr 3.65 % 

 

Where the MATLAB functions used: 

 

Newff is the feedforward back propagation network architecture. 

Newcf is the cascade forward network architecture. 

Tansig is the tan-sigmoid transfer function. 

Logsig is the log-sigmoid transfer function. 

Purelin is the linear transfer function where the input = output. 

Trainlm is the Levenberg-Marquardt training function. 

Trainbr is the Bayesian regularization training function. 
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In Table 3.3 the following can be observed: 

 

 Empirically there is little difference between using the different network 

algorithms with different hidden layer size transfer functions and different network 

training algorithms if one looks at the MAPE results.  

 Both networks delivered MAPE results below 5 % as considered.  

 Comparing the best overall performance and fit between the 6:1:1 cascade 

forward network with a MAPE of 3.44 % and the 12:1:1 feedforward network with 

a MAPE of 3.65 % (marked with a single and a double asterisk in Table 3.3), the 

cascade forward network was selected because of the better MAPE value and a 

better visual fit (Compare the amplitudes of the peaks and valleys in Figure 3.11 

and Figure 3.14). 

3.5.5 Training with the correct set of data 

 The next stage that was investigated concerned the following two questions:  

 

1. How far ahead can the neural network forecast when it is trained with last year‟s 

monthly data?  

 

2. Would adding a fifth “average week” to the four weeks of training data, increase 

the network‟s forecasting flexibility by reducing over fitting? 

 

To test question 1 involved training and testing the cascade forward network‟s 

forecasting accuracy over a period of three successive years and then over two 

successive years as follows: 
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 Electric load data for the months of May, June and July 2007 to 2009 was 

structured in four week sets for presentation to the neural network to be trained 

and tested. 

 The data sets were divided into three. The training set for the month in year 2007 

and the two test sets for the months in 2008 and 2009. 

 Four weeks in the three months of May 2007, June 2007 and July 2007 (one 

week at a time) were used to train three cascade forward networks. 

 Four weeks in the three months of May 2008, June 2008 and July 2008 (one 

week at a time) and four weeks in the three months of May 2009, June 2009 and 

July 2009 (one week at a time) were now used to test the forecasting accuracy of 

the three trained cascade forward networks. 

 

The results for one year‟s training and two year‟s testing are shown in Tables 3.4, 3.5 

and 3.6. 

 

Table 3.4: MAPE results when testing May 2008 and May 2009 with the 2007 

trained network 

 

MONTH YEAR 

MAY 

2007 

MAY 

2008 

MAY 

2009 

ACTION TRAIN FORECAST FORECAST 

WEEK 1 o  3.77 % 5.88 % 

WEEK 2 o  3.93 % 5.89 % 

WEEK 3 o  3.84 % 4.68 % 

WEEK 4 o  3.67 % 5.03 % 

 

 



76 
 

Table 3.5: MAPE results when testing June 2008 and June 2009 with the 2007 

trained network 

 

MONTH YEAR 

JUNE 

2007 

JUNE 

2008 

JUNE 

2009 

ACTION TRAIN FORECAST FORECAST 

WEEK 1 o  3.55 % 3.71 % 

WEEK 2 o  3.38 % 3.73 % 

WEEK 3 o  3.21 % 4.64 % 

WEEK 4 o  3.36 % 4.5 % 

 

 

Table 3.6: MAPE results when testing July 2008 and July 2009 with the 2007 

trained network 

 

MONTH YEAR 

JULY 

2007 

JULY 

2008 

JULY 

2009 

ACTION TRAIN FORECAST FORECAST 

WEEK 1 o  3.37 % 4.42 % 

WEEK 2 o  3.53 % 4.36 % 

WEEK 3 o  3.59 % 4.43 % 

WEEK 4 o  3.56 % 3.97 % 

 

 

Observing the MAPE results in Tables 3.4, 3.5 and 3.6 there is a slight increase in error 

from 2008 to 2009 when applying the same network to predicting the load for two 

consecutive years in a row. The results for one year‟s training and the next year‟s 

testing are shown in Tables 3.7, 3.8 and 3.9:  
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Table 3.7: MAPE results when training May 2008 and testing May 2009 with the 

2008 trained network 

 

MONTH YEAR 

MAY 

2008 

MAY 

2009 

ACTION TRAIN FORECAST 

WEEK 1 o  4.24 % 

WEEK 2 o  4.21 % 

WEEK 3 o  3.85 % 

WEEK 4 o  3.78 % 

 

 

Table 3.8: MAPE results when training June 2008 and testing June 2009 with the 

2008 trained network 

 

MONTH YEAR 

JUNE 

2008 

JUNE 

2009 

ACTION TRAIN FORECAST 

WEEK 1 o  2.71 % 

WEEK 2 o  2.87 % 

WEEK 3 o  2.94 % 

WEEK 4 o  3.12 % 

 

Table 3.9: MAPE results when training July 2008 and testing July 2009 with the 

2008 trained network 

 

MONTH YEAR 

JULY 

2008 

JULY 

2009 

ACTION TRAIN FORECAST 

WEEK 1 o  3.57 % 

WEEK 2 o  3.70 % 

WEEK 3 o  3.63 % 

WEEK 4 o  3.44 % 
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Using Table 3.10 to compare the MAPE results in Table 3.7, 3.8 and 3.9 to the results in 

Table 3.4, 3.5 and 3.6 there is a slight reduction in the error when training the same 

network with only the previous year‟s data. The error gets slightly worse when using the 

2007 trained network for forecasting two consecutive years in a row. It was then 

decided that the previous year‟s monthly data is enough to train the network to predict 

the next year‟s monthly load.  

 

Table 3.10: Comparing the MAPE results in Table 3.4, 3.5 and 3.6 to the results in 

Table 3.7, 3.8 and 3.9 

 

 

MONTH 

AND 

YEAR 

TRAINED 

MAY 

2007 

FORECAST 

MAY 

2009 

TRAINED 

MAY 

2008 

FORECAST 

MAY 

2009 

TRAINED 

JUNE 

2007 

FORECAST 

JUNE 

2009 

TRAINED 

JUNE 

2008 

FORECAST 

JUNE 

2009 

TRAINED 

JULY 

2007 

FORECAST 

JULY 

2009 

TRAINED 

JULY 

2008 

FORECAST 

JULY 

2009 

WEEK 1 5.88 % 4.24 % 3.71 % 2.71 % 4.42 % 3.57 % 

WEEK 2 5.89 % 4.21 % 3.73 % 2.87 % 4.36 % 3.70 % 

WEEK 3 4.68 % 3.85 % 4.64 % 2.94 % 4.43 % 3.63 % 

WEEK 4 5.03 % 3.78 % 4.5 % 3.12 % 3.97 % 3.44 % 

 

 

To test question 2 (increasing the networks forecasting flexibility by reducing over 

fitting?) involved adding a fifth “average week” to the four weeks of training data. 

 

To test this question, the procedure used to train the cascade forward network involved 

the following stages: 
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 Electric load data was structured in five week sets (four weeks plus the monthly 

average as a fifth week), in the month of July 2006 to 2008, and separately 

presented to the neural network for training. 

 The training set for the network containing the data only for each month of a year 

e.g. four weeks plus the average week value in July 2006, one week at a time, 

were presented to the network.  

 Once the network was trained with the 5 sets of weekly parameters of July 2006, 

it was tested using the four weeks of July 2007 and so on for 2008 and 2009. 

 

The training set = week 1+week 2+week 3+week 4+ weekly average 

 

where the  

weekly average = 
week 1+week 2+week 3+week 4

4
 

Then: 

 

Train using 4 weeks July 2006 + average ► forecast July 2007  

Train using 4 weeks July 2007 + average ► forecast July 2008 

Train using 4 weeks July 2008 + average ► forecast July 2009 

 

Training July 2006, 2007 and 2008 without the average values then testing 2009 with 

the 2008 trained network 

 

week 1+week 2+week 3+week 4 

 

Then: 

 

Train July 2006 with no average ► Forecast week 4 July 2007 

Train July 2007 with no average ► Forecast week 4 July 2008 

Train July 2008 with no average ► Forecast week 4 July 2009 
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The results when training and testing the cascade forward network with and without the 

average week, measuring the forecasting accuracy using MAPE, are shown  

in Figures 3.17 to 3.19.  

 

 

Figure 3.17: MAPE values for July 2007 when training without and with the 
average 
  
  

 

 
Figure 3.18: MAPE values for July 2008 when training without and with the 
average 
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Figure 3.19: MAPE values for July 2009 when training without and with the 

average  

 

From Figure 3.17 to Figure 3.19, comparing the difference between the network trained 

with an average value and the same network trained with no average value, the overall 

difference in the MAPE is smaller than 0.5% for July 2007, 2008 and 2009. So in this 

instance, the influence of averaging the monthly data can be disregarded for training 

purposes. 

3.6 Summary 

A forecasting procedure, mentioned in 3.1, was used to develop and test the 

performance of an ANN to predict the annual peak electric load during the late autumn 

and winter period of the three months of May, June and July in 2007, 2008 and 2009. 

 

Time series plots of the electric load data was created and visually inspected for familiar 

patterns, e.g. trends, seasonal components and abrupt changes in magnitudes of peaks 

and valleys. Next, the load curve shape of the different day types of the week of each 

month was separated, each day type having its own distinctive features. The daily 

rhythm changes throughout the year, comprising continuous changes in normal and 

special days, weekdays and weekend load curve cycles. 
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 The special days, i.e. public holidays (see Fig. 3.3), differ from weekdays and one also 

had to look at its load curve shapes to see if the network needed to be trained 

especially for this occurrence. Investigating the profile of the electric load data plotted in 

Figure 3.6 to Figure 3.8 for the year of 2009 it can be seen that on the special days of 

the year the load consumption curves follows roughly the same pattern as on a Sunday 

in that same week, so it was not deemed necessary to additionally train a network 

particularly for the special days.  

 

As it was pointed out above, the load data sets which would be presented to the neural 

networks were not large and did not consist of multiple arrays of input variables such as 

temperature, active power, reactive power and day type necessitating the use of 

building complicated network architectures. So, in order to arrive at an appropriate 

robust network topology, the structure and performance of a multilayer feedforward 

network was investigated first.  

 

In order to develop an understanding of and gain experience in how this load 

forecasting model would develop, an initial, experimental arrangement of the multilayer 

feedforward network architecture was set up to train and test the different load data 

configurations. It included determining input and hidden layer size, utilising a MAPE of 

less than 5% as a benchmark. Initial load forecasting simulations served as a reference 

against which to select the developing forecasting models‟ architecture. 

 

The next configuration looked at was a cascade forward network with six electric load 

parameters as input units. One neuron was used in the hidden layer and one neuron in 

the output layer. The log sigmoid activation function was used in the hidden layer and 

the pure linear transfer function was used in the output layer respectively. This network 

input layer size was tested systematically, again using a MAPE of less than 5% as a 

benchmark.  

 

Each of the two ANN topologies were developed using three stages: a training, testing 

and evaluation stage. 
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Once the input set size and the hidden layer size of the two neural network models were 

determined, more performance tests were done to select between the Levenberg-

Marquardt with and without the Bayesian regularization training algorithm, to fine-tune 

the final network‟s performance (indicated in Table 3.3). 

 

The 6:1:1 cascade forward network was finally selected for the next phase of 

investigation since it was better at detecting the peak load levels and capturing the 

pattern in the data.  

 

The next stage that was investigated concerned the following two questions:  

 

1. How many years ahead can the neural network forecast when it is trained with a 

year‟s monthly data?  

 

2. Would adding a fifth “average week” to the four weeks of training data, increase 

the networks forecasting flexibility by reducing over fitting? 

 

To test question 1 involved training and testing the cascade forward network‟s 

forecasting accuracy over a period of three successive years and then over two 

successive years. The MAPE results in Table 3.10 differ only slightly when comparing 

the 6:1:1 cascade forward networks performance for forecasting one year and then for 

two consecutive years in a row. So it was decided that the one year‟s historical monthly 

data was enough to train the network to predict the next year‟s monthly load.   

 

To test question 2 involved adding a fifth “average week” to the four weeks of training 

data. From Figure 3.17 to Figure 3.19, comparing the difference between the network 

trained with an average value and the same network trained with no average value, the 

overall difference in the MAPE is smaller than 0.5% for July 2007, 2008 and 2009.The 

influence of averaging the monthly data was disregarded for training purposes as the 

overall difference in the simulated MAPE results was smaller than 0.5% for July 2007, 

2008 and 2009. 
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The method developed here considered factors such as the time frame, periodic 

characteristics of the load pattern of data, desired accuracy, availability of data, ease of 

operation and understanding. 

 

From the test runs made, and the results tabulated in Chapter 3, the 6:1:1 cascade 

forward network produced a better fit. So, it was used for the forecasting performance 

evaluation in Chapter 4 to obtain the final results. 
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CHAPTER 4 

DATA-BASED RESULTS 

As mentioned in section 3.2, the aim and objectives was to build a dynamic, half-hour 

ahead updating, forecasting model with a MAPE of less than 5%. The method used to 

examine the neural network‟s performance was to use one data set to train and test the 

neural network model and another set to validate it. (In this instance, the word “set” 

means four weeks of data selected in a month of choice, chosen for investigation). 

 

To obtain the experimental results shown in this chapter, the performance of the neural 

model selected in Chapter 3 was measured by training the network with the four week 

data set of May 2006 and evaluating it against the four week data set of May 2007, 

measuring the MAPE, one week at a time, shown in the sequence: 

 

1. Input May 2006 data ► train a new network ► compare forecasted and actual 

May 2007 data to validate the trained network. 

2. Input May 2007 data ► present to the taught network ► compare forecasted and 

actual May 2008 data to validate the trained network. 

 

Then, the same procedure was used for May 2008, May 2009 and repeated for the 

months of June, from 2007 to 2009 and July, from 2007 to 2009.  

4.1 An examination of the data presented to the neural forecasting model 

A new network with a new set of random weights was trained for each of the nine 

months used for testing. In this manner, the results obtained from the different networks‟ 

performance of nine sets of four weeks of forecasted load curves was measured: May 

2007, 2008, 2009, June 2007, 2008, 2009 and July 2007, 2008 and 2009. As an 

illustration, Figure 4.1 shows the data presented to the July 2009 neural network for 

training. The vertical lines separate the weekly data sets from each other. 
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Figure 4.1: Four weeks of data for the month of July 2008 is shown, which would 
be used for training the network for forecasting the month of July 2009  
 

Figure 4.2 shows the data used to measure the performance of the trained network‟s 

forecasting capability.  

 

 

Figure 4.2: All the actual output data for July 2009 week 1, 2, 3 and 4 is shown, 
which would be used to validate the trained network’s forecasting potential 
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Three examples of the actual data used to train, test and validate the neural networks 

for week 1 in the month of May 2009, week 3 in the month of June 2007, and week 2 in 

the month of July 2008 are shown below. These examples would indicate the different 

spatial attributes and the daily peak load level differences between the training and the 

actual weekly load curves to be predicted, to the reader. 

 

Figure 4.3 shows all the training data of the month of May 2008 and the actual week 1, 

May 2009. Most of the training and actual data is “masked in each other” and “seems” 

much easier for the network to learn when doing the actual forecasting.  

 

 

 

 
Figure 4.3: All the training load data for May 2008; week 1, 2, 3 and 4 is shown in  
comparison with the actual load data for week 1 in May 2009 
 

The forecasted results of the 6:1:1 cascade forward network for week 1 of May 2009 

can again be seen in figure 4.4. Week 1 in Fig. 4.4 is from the 2nd of May 2009 12:30 

AM to the 8th of May 2009 24:00 PM. 
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Figure 4.4:The actual and forecasted values for week 1 in May 2009  
 

Figure 4.5 shows the shapes of all four load curves used to train the forecasting network 

for June 2007. It can be seen that the network, once it has been trained, may have to 

predict a load curve with higher peak demand values than the peak values of the load 

curves with which it has been trained. 

 

Figure 4.5: All the training data for June 2006; week 1,2,3 and 4 is shown for  
comparison with the actual data for Week 3 in June 2007 
 
The actual performance of the 6:1:1 cascade forward network, forecasting week 3 of 

June 2007, can be seen in Figure 4.6. In this case, it seems that the network can 

estimate data points that lie outside the training set as shown in Fig. 4.5, e.g. Sunday, 

Monday, Tuesday, Wednesday, Thursday and Friday. 
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Figure 4.6: The actual and forecasted values for week 3 in June 2007  
 

Week 3 in Fig. 4.6 is from the 16th of June 2007 12:30 AM to the 22nd of June 2007, 

24:00 PM. 

 

Figure 4.7 shows all the training data of the month of July 2007 and the actual week 2 of 

July 2008. The training data amplitudes for the first two days, Saturday and Sunday, are 

lower than the actual data to be predicted and the training data for Monday to Friday, all 

plotted in blue and the actual data, plotted in red, is again “masked in each other” 

 

 

Figure 4.7: All the training data for July 2007 week 1, 2, 3 and 4 is shown for  
comparison with the actual data for week 2 in July 2008 
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The forecasting result of the 6:1:1 cascade forward network for week 2 July 2008 is 

shown below in Figure 4.8. Week 2 in Fig. 4.8 is from the 12th of July 2008 12:30 AM to 

the 18th of July 2008, 24:00 PM. Again, it seems that the network can estimate data 

points that lie outside the training set as shown for Saturday and Sunday in Fig. 4.7. 

  

 

Figure 4.8: The actual and forecasted values for week 2 in July 2008  
 

There is little correlation between the training patterns presented to the network and the 

forecasting results produced by the network. The three examples show that data points 

that lie outside the training set are predictable with the 6:1:1 cascade forward network. 

 

From the above three examples it can be observed that visually or empirically it is very 

difficult to compare the network‟s performance to the depth of training it receives, 

meaning that the proper training sequence or training data set‟s magnitude is very 

difficult to relate to the network‟s forecasting accuracy.  

 

After discussing the case study, the weekly MAPE and correlation coefficient (R) results 

for each of four weeks of May, June and July, 2007, 2008 and 2009 will be shown as a 

group in Figures 4.9, 4.10, 4.11 and 4.13 below for examination, to note the similarities 

or differences in performance of each monthly forecasting network built for the nine sets 

of results. 
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4.2 Case study 

4.2.1 The forecasting model performance for July 2009  

 
 A visual check of the accuracy of the forecasts is often the most powerful method for 

determining whether the configured artificial neural network model fits the data 

adequately. Scientifically this has little meaning. In addition, it would be meaningless to 

talk about “overall or the average value of this or that…” Instead, the MAPE and 

regression graphs were used to analyse and verify the 6:1:1 cascade forward network‟s 

mapping of the shape of the load curves‟ performance in this case study.  

 

Seven days contains 48 half–hour data points per day, which gives 336 data points 

available per week. The first six data points of each week were used to start off the 

sequential training sequence of the neural network. Of the 336 data points available, 

only 330 data points were plotted in each graph and used to calculate the displayed 

MAPE values and daily peak MAPE values, using the MAPE equation (2.46), adapted 

from [10]. 

 

The purpose of this case study was to observe the following: 

 

 Measure the trained network‟s performance, i.e. the forecasting accuracy, using 

the MAPE, which will be to check that the prediction error is repeatable from 

week to week. Accuracy is limited by systematic (repeatable) errors as 

mentioned in Chapter 3, Section 3.2. 

 

 How well the network detects the daily peak load levels [53, p.1397]. From a 

practical point of view, the forecasting error is usually less critical at off-peak load 

levels, e.g. Direct Load Control (DLC) levels compared to peak load levels.  

 

 Using linear regression to compare the correlation coefficients (equation 2.50) for 

week 1 to week 4, obtained from the scatter plots, for July 2009‟s actual and 

forecasted results. 
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The plotted graphs on the following pages show the sequence in which the 6:1:1 

cascade forward network’s performance was investigated: 

 

1. Training the network 

 

Four weeks of the training data from July 2008 which were used for the training set, and 

the four weeks of actual load consumed, which will also be used to do the forecasting, 

in July 2009, are shown in Fig, 4.9, for comparison. Note that the daily peak load levels 

for example in week three in Fig 4.9 differs considerably if one compares the training 

data (red plot) with the actual load data (blue plot). 

 

2. Testing the trained network 

 

Next, the same four weeks of training data from July 2008 were presented as a test set 

to the trained cascade forward network. The network‟s predicted results were compared 

with the training data using the MAPE and daily peak MAPE performance as a measure 

of its training capability, shown in Fig.4.10. 

 

3. Validating the trained network 

 

The four weeks of data from July 2009 were presented as a validation set to the trained 

network to check its MAPE and daily peak MAPE performance, shown in Fig.4.11. 

 

 

Day type and hour of the day details are irrelevant and therefore absent on the  

x-axis of each weekly plot in Figures 4.9, 4.10 and 4.11.  

 

The y-axis in Figures 4.9, 4.10 and 4.11 represents the kW Load used in each week.  
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Figure 4.9: Plotting the actual load used in four weeks from the 5th of July 2008 to 1st of August 2008 (red plot) 

and the actual load data to be forecasted for the four weeks from the 4th of July 2009 to 31st of July 2009 (blue 

plot)   
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Figure 4.10: Plotting the test results of the neural network for the four weeks from the 5th of July 2008 to 1st of 

August 2008. The training period is the same four weeks from the 5th of July 2008 to 1st of August 2008  
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Figure 4.11: Plotting the forecasting results of the neural network for the four weeks from the 4th of July 2009 to 

31st of July 2009 (red plot) and the actual load used during the same period (blue plot) 
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In Figure 4.9, week 1 to week 4 presents the graphical behaviour of the half-hourly load 

curves of July 2008 and 2009 on a weekly sub-period of the forecasting horizon of one 

month. Looking at the peak load levels of the four weeks shown in Figure 4.9, especially 

weeks 2, 3 and 4, it follows evident that the training data (red) contain peak load levels 

that are significantly lower than the peak load levels needed to be forecasted by the 

network. So, forecasting of data points that lie outside the training set was required to 

take place.  

 

Figure 4.10 shows the superimposed plots of the actual load, plotted in blue, used in 

July 2008 and the same July 2008 load forecasted by the trained neural network, 

plotted in red, for four consecutive weeks. Note that the forecasted daily peak load 

levels overshoot the actual daily peak load levels. This is indicated in the daily peak 

load level MAPE, which varies between 1.15 % and 2.76 %, shown in each sub-graph in 

Figure 4.10. The goodness of fit of the rest of the forecasted and actual load graphs, 

superimposed on each other, is clear. 

 

Figure 4.11 presents the graphical behaviour of the half-hourly actual load used in July 

2009 (plotted in blue), and the same load forecasted (plotted in red), superimposed. 

Note that the forecasted daily peak load levels again overshoot the actual daily peak 

load levels. This is indicated in the daily peak load level MAPE, which varies between 

1.72 % and 3.38 %, shown in each sub-graph in Figure 4.11. Again, the goodness of fit 

of the rest of the forecasted and actual load graphs, superimposed on each other, is 

acceptable. 

 

The July - week 4 graph, taken from Figure 4.11 as an excerpt, are shown zoomed in, 

as Figure 4.12. In it, the morning daily peak for the Bloemfontein weekly load demand 

normally occurs between 11:00 to 12:00 and the evening daily peak electric 

consumption varies between 19:00 and 21:00. This “twin peak” shaped load levels, in 

essence, symbolises the main daily peaks, namely: morning and evening peaks, typical 

also in a country like Portugal [45, p.8] and Canada [25, p.529]. 
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Figure 4.12: Showing the different peaks during a weeks load consumption, using 
Week 4, July 2009, as an example  
 

The “twin peaks” confirm the non-linear features of the load and often affects the 

forecasting accuracy negatively due to very sharp transitions in the load curve shape.  

 

Visually, observing the DLC- and daily peak load levels from Figure 4.10 and 4.11, it 

follows that the neural network seems to predict the bulk of the load data accurately, but 

also seems to over-predict these peak load levels as shown in Figure 4.12. However, 

these over-predicted DLC peaks shown in Figure 4.12 are not significant for forecasting, 

as they are not driven by consumer demand.    

 

Considering the fact that neural networks can only “model” data given to it within its 

training limits, these peak load level errors can be expected during performance 

measurements [51, p.109], [49, p.249].  
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4.2.1.1 Comparing the training and the validation sets using MAPE results  

Comparing the performance results for the same network in Table 4.1, the difference in 

the MAPE performance of the test set is less than 1%. The MAPE accuracy of 

prediction on the validation data also varies less than 1%. This indicates a reasonable 

forecasting consistency. The small discrepancy between the forecasting results 

indicates that overfitting is a minimum [13, p.731].  

 

Table 4.1: The MAPE values obtained from Figures 4.10 and 4.11, showing the 

trained and forecasted MAPE results for the months in July 2008 and July 2009 

 

 July Week 1 Week 2 Week 3 Week 4 

Test set 2008 2.68% 3.48% 3.52% 3.38% 

Validation set 2009 3.57% 3.70% 3.63% 3.44% 

 
 

All the MAPE results in Table 4.1, in terms of forecasted consumption, are encouraging, 

with a mean absolute error of less than 4%, measured as repeatable for each week of 

the same set.  

4.2.1.2 Comparing the training and the validation sets using correlation 

coefficient results from the weekly scatter plots  

The scatter plot is helpful in showing that certain data points have poor fits. Figure 4.13 

shows the four graphs of week 1, 2, 3 and 4 of July 2009 grouped together for 

comparison. The scatter plots of the network outputs versus the targets (plotted as open 

circles) are superimposed on the best linear fit (blue line) and the perfect fit (dashed 

line). The Target (x-axis) and Output (y-axis) represents the actual and predicted kW 

Load.  
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Figure 4.13: Plotting of the Target values (actual kW load used ) versus the Output values (neural network 

forecast) for  weeks 1, 2, 3 and 4 in July 2009 
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The R values (correlation coefficients) taken from Figure 4.13 are shown grouped 

in Table 4.2.  

 

Table 4.2: The correlation coefficients taken from Figure 4.13, rounded to 

two decimal places 

 

Week in July 2009 Correlation coefficient (R) 

Week 1: 04 July 2009 12:30 AM to 10 July 2009 24:00 PM 0.98 

Week 2: 11 July 2009 12:30 AM to 17 July 2009 24:00 PM 0.98 

Week 3: 18 July 2009 12:30 AM to 24 July 2009 24:00 PM 0.98 

Week 4: 25 July 2009 12:30 AM to 31 July 2009 24:00 PM 0.98 

 

For a perfect fit, the data should fall along a 45° line, where the network outputs 

are equal to the targets. In Figure 4.13, week 1 to week 4, it is difficult to 

distinguish the best linear fit line from the perfect fit line, which indicates that the 

trained network has a good performance. Therefore, the forecasting performance 

of the neural network is satisfactory, since the dispersion around the 45° line is 

limited.  

 

The neural network outputs track the targets very well for the validation set of four 

weeks and the R-value is over 0.97 for the total response. For this case study, 

the validation data indicates a good fit.  

 

In conclusion, a visual inspection and the high R values both confirm an overall 

acceptable linear relationship in the four graphs. 

 4.3 Overall forecasting model performance 

The forecasting results over a period of the three years, 2007, 2008 and 2009, for 

the three months of May, June and July amount to nine data sets (four weeks per 

month was chosen as a set) which was analysed using the weekly calculated 

MAPE values and the linear regression statistics as used in the case study. 

 

The two techniques used for the purpose of this analysis were to: 
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 Measure, using MAPE, each trained network‟s performance, i.e. the 

forecasting accuracy that is limited by prediction errors. The prediction 

error should be repeatable from week to week. 

 

 Use linear regression to compare the correlation coefficients (R) for week 

1 to week 4, obtained from the scatter plots for each month of May, June 

and July 2007 to 2009. 

 

 

4.3.1 The MAPE results 

 
Each of the nine neural networks used was trained with four full weeks of a 

specific month of the previous year. The trained network was then used to predict 

each of four weeks of the same month of the next year.  

 

The waveform of each week of the same month contains different harmonic 

components so the forecasting performance of each week cannot be compared 

with the other three weeks, it can only be compared by itself (actual versus 

predicted).  

 

The overall forecasting performance in the forecasting set is measured according 

to the aim in section 3.2 “Minimising the error during training by evaluating and 

adjusting the topology elements of the neural network to keep the MAPE below  

5 % during forecasting”. 

 

The MAPE measures the accuracy of the fitted time series values using the same 

number of samples regardless of the model, so one can compare MAPE values 

across models and therefore compare the accuracy of different models. Smaller 

values indicate better fitting models. 

 

 Tables 4.3, 4.4 and 4.5 show the results for May, June and July 2007 to 2009. 
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Table 4.3: The MAPE values obtained when forecasting the months in May 

2007, 2008 and 2009 

 

May Week 1 Week 2 Week 3 Week 4 

2007 3.41% 3.46% 3.50% 3.40% 

2008 3.77% 3.93% 3.84% 3.67% 

2009 4.24% 4.21% 3.85% 3.78% 

Table 4.4: The MAPE values obtained when forecasting the months in June 

2007, 2008 and 2009 

 

June Week 1 Week 2 Week 3 Week 4 

2007 3.12% 2.95% 2.96% 3.07% 

2008 3.55% 3.38% 3.21% 3.36% 

2009 2.71% 2.87% 2.94% 3.12% 

 

Table 4.5: The MAPE values obtained when forecasting the months in July 

2007, 2008 and 2009 

  

July Week 1 Week 2 Week 3 Week 4 

2007 2.89% 2.88% 2.83% 2.96% 

2008 3.37% 3.53% 3.59% 3.56% 

2009 3.57% 3.70% 3.63% 3.44% 

 

The MAPE results obtained from Tables 4.3 to 4.5 show that the forecasting error 

is repeatable from each month in May, June and July 2007 to 2009. The trial to 

trial accuracy is limited to a MAPE of below 5% by systematic (repeatable) errors. 

This meets the criterion set out in Chapter 3. 

 

4.3.2 The correlation coefficient results 

 
The regression correlation coefficients are shown below. Tables 4.6, 4.7 and 4.8 

show the results for May, June and July 2007 to 2009. 
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Table 4.6: Correlation Coefficient (R) results for May 2007, 2008 and 2009 
rounded to two decimal places 

 

May Week 1 Week 2 Week 3 Week 4 

2007 0.98 0.98 0.99 0.98 

2008 0.98 0.97 0.98 0.98 

2009 0.98 0.98 0.98 0.98 

 
Table 4.7: Correlation Coefficient (R) results for June 2007, 2008 and 2009 
rounded to two decimal places 
 

June Week 1 Week 2 Week 3 Week 4 

2007 0.99 0.99 0.99 0.99 

2008 0.98 0.98 0.99 0.98 

2009 0.99 0.99 0.99 0.99 

 

Table 4.8: Correlation Coefficient (R) results for July 2007, 2008 and 2009 
rounded to two decimal places 

 

July Week 1 Week 2 Week 3 Week 4 

2007 0.99 0.99 0.99 0.99 

2008 0.99 0.98 0.98 0.98 

2009 0.98 0.98 0.98 0.98 

 

For this investigation, the fit is reasonably good for all the data sets, with 

consistent R values of 0.97 or above as shown in Table 4.6, 4.7 and 4.8. 
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CHAPTER 5 

CONCLUSION 

As the load forecasting literature evolved over the years, some interest was 

shown in time-series forecasting using neural network modelling. Since neural 

networks have not been developed for handling a recurrent pattern of data inputs, 

either the input has to be pre-processed or the model has to be adapted to 

temporal tasks. Pre-processing is the easier of the two strategies because it turns 

a sequence of time-series elements into a single input. This can be achieved by 

sliding a so-called "time window" over the load data sequence. 

 

Huge amounts of data are needed for large neural network forecasting. It is more 

efficient to develop a compact model, with fewer degrees of freedom, that 

requires less training data and still obtain reliable results. The hidden layers 

should be small enough to allow generalisation, and large enough to produce the 

required mapping. 

 

The initial and final neural networks were developed using the electric power 

system data, obtained from ESKOM, Bloemfontein. The load data from the 

substation was directly accessed after preliminary screening for anomalous or 

missing data. It was not split up into residential, commercial and industrial 

components. The data used was collected over four years: 1 January 2006 to the 

30th of December 2009.  From this data, the winter months of May, June and July 

for the years 2007 to 2009 were used to train and develop the final neural 

network and evaluate its forecasting potential.  

 

5.1 General assessment 

The contributions of this thesis are discussed based on the objectives set out in 

Section 3.2 on p.51. The main objective was to build, train, test and validate a 

short term, dynamic, half-hour ahead updating, time series forecaster, with data 
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for each of the late autumn and winter months of May, June and July 2007 to 

2009, using a neural network model. 

 

First, the model finding process consisted of three phases:    

 model selection,  

 parameter estimation, and  

 performance testing. 

From the case study the next half-hour load data points were predicted for the 

four weeks of the month of July 2009, using the 6:1:1 cascade forward neural 

network model. All of the four MAPE values were below 4% for the four weeks of 

July 2009 and this was below the objective of a MAPE value of 5%.  

 

From Fig 4.11, the daily peak MAPE values vary between 1.72% and 3.38%. 

Visually it can also be seen that the forecasting model was slightly over-predicting 

the daily peak load levels during each week of a month. The monitoring of the 

daily peak load levels is critical (as penalty charges are payable for exceeding the 

NMD payable by consumers).  

 

Although the high weekly R values appear satisfactory and consistent in  

Table 4.2, generalisation was not complete, given that there is some dispersion 

around the 45° line as seen in the scatter plots in Fig.4.13. 

 

Finally, the neural network’s functional reliability over a period of three 

consecutive months was estimated experimentally. The STLF network‟s 

performance was done by comparing weekly MAPE and  

R values (correlation coefficients), taken from the regression plots, to analyse the 

forecasting accuracy for each month of May, June and July in 2007, 2008 and 

2009.  

 

From the weekly MAPE results in Tables 4.3, 4.4 and 4.5 in Chapter 4 it can be 

seen that the prediction error calculated for week 1 to week 4 in each of the three 
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months was repeated consistently and below 5% during forecasting. It indicates 

that a good performance level was maintained throughout. 

 

The high values of the correlation coefficient results in Tables 4.6, 4.7 and 4.8 

confirm a strong linear relationship between the actual and forecasted load 

curves. In this case, the network‟s overall response was satisfactory, and it can 

be tested on new monthly input/output pairs of data sets.  

 

Considering the evaluation of the final 6:1:1 cascade forward artificial 

neural network model developed during the course of the project, a number 

of definitive conclusions regarding its performance can be made: 

 

 The practical load data from Bloemfontein City in the Free State in South 

Africa was used to illustrate the proposed method, and the results indicate 

that the proposed method can obtain an acceptable accuracy that is 

effective for forecasting the short term load of this power system. 

 

 Future implementation of this type of forecasting model can prevent 

possible penalty charges for exceeding the NMD payable by Bloemfontein 

City Municipality. 

 

 This neural network represents a simple alternative to modelling short term 

electricity load since it is easy to compute, significantly reduces the 

number of variables to be considered, and generally contributes to greater 

accuracy of electric load forecasts.  

 

 This approach resulted in an economical forecasting model that not only 

has an acceptable short input data sample forecasting performance, but is 

easily constructed and applicable for day-to-day load forecasts for other 

territories with a similar load profile to Bloemfontein City. 

 

In conclusion, this investigation led to an approach suitable for constructing a 

single neural network model that has the advantage of circumventing the problem 

of forecasting weekends, special holidays, day of the week and off-peak/peak 
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models separately. The input vector and number of neurons in the hidden layer 

was kept to a minimum to avoid model over-parameterization.  The performance 

of the final STLF neural network has met the specifications of the aim and 

objectives set out in Section 3.2 in Chapter 3.  

 

It is the view of the author that the progress in load forecasting at this institution 

can move forward in the following direction: 

  

1. For future research the performance of the developed model can be 

validated with the latest annual data to be obtained from Eskom, 

Bloemfontein and other regions in South Africa. 

 

2. Acquire a better understanding of short term electric load forecasting 

dynamics and its statistical properties to investigate other appropriate ANN 

models using time series prediction.  

 

3. The developed model can be used as a part of a postgraduate course for 

further research into the field of medium- and long term load forecasting 

using time series prediction with artificial neural networks. 

 

 

 

 

 

 

 

 

 

 

 

 



108 
 

REFERENCES 

 
1. Aleksander, I. and Morton, H. An Introduction to Neural Computing. 2nd. 

UK: ITCP, 1995. 

 
2. Alfares, H.K. and Nazeeruddin, M. Electric load forecasting: literature 

survey and classification of methods. International Journal of Systems 

Science 33, no. 1 (2002): 23-34. 

 
3. Almeshaiei, E. and Soltan, H. A methodology for Electric Power Load 

Forecasting, Alexandria Engineering Journal, In Press, Corrected Proof, 

Available online 27 July 2011, ISSN 1110-0168, DOI: 

10.1016/j.aej.2011.01.015. 

http://www.sciencedirect.com/science/article/pii/S1110016811000330 

(accessed August 2011) 

 
4. Berk, K.N. and Carey, P. Data Analysis with Microsoft Excel. Toronto: 

Brooks/Cole, 2004. 

 
5. Cichocki, A. and Unbehauen, R. Neural Networks for Optimization and 

Signal processing. UK: John Wiley & Sons, Inc., 1996. 

 
6. Crone, S.F. EVIC'05 Slides - Forecasting with Neural Networks Tutorial. 

15 December 2005. (accessed July 2008). 

 
7. Davalo, E. and Naim, P. Neural Networks. UK: MacMillan Education, 

Limited., 1991. 

 
8. Demuth, H. and Beale, M. Neural Network Toolbox Guide: For Use with 

MATLAB. The MathWorks, Inc, Massachusetts. 2002. 

 
9. Djukanovic, M., Ruzic, S., Babic, B., Sobajic, D.J. and Pao, Y-H. A 

neural-net based short term load forecasting using a moving window 

procedure, International Journal of Electrical Power & Energy Systems, 

Volume 17, Issue 6, December 1995, Pages 391-397, ISSN 0142-0615, 

DOI: 10.1016/0142-0615(94)00009-3. 



109 
 

http://www.sciencedirect.com/science/article/pii/0142061594000093 

 
10. du Plessis, L. System Optimisation and the Impact of the Short Term 

Load Forecast. http://www.eepublishers.co.za/article/system-optimisation-

and-impact-of-short-term-load-forecast.html. (accessed 14/6/ 2011). 

 
11. Fahlman, S.E. and Lebiere, C. “The Cascade-Correlation Learning 

Architecture (CMU-CS-90-100).” Pittsburgh, 1991. 

 
12. Feinberg, E.A. and Genethliou, D. LOAD FORECASTING. Chap. 12 in 

APPLIED MATHEMATICS FOR POWER SYSTEMS. 2005. 

http://www.ams.sunysb.edu/~feinberg/public/lf.pdf (accessed 21/11/2010). 

 
13. Fidalgo, J.N. and Matos, M.A. Forecasting Portugal Global load with 

Artificial Neural Networks. Vol. 2, in Artificial neural networks - ICANN 

2007: 17th International Conference, edited by J. Marques de Sá, 731. 

Berlin: Springer-Verlag, 2007. 

 
14. Foresee, F.D. and Hagan, M.T. Gauss-newton approximation to Bayesian 

regulasization. Proceedings of the 1997 International Joint Conference on 

Neural Networks . 1997. 1930-1935. 

 
15. Galushkin, A.I. Neural Networks Theory. Berlin: Springer, 2007. 

 
16. Ghiassi,M., Zimbra, D.K. and Saidane, H. Medium term system load 

forecasting with a dynamic artificial neural network model. Electric Power 

Systems Research, Volume 76, Issue 5, March 2006, Pages 302-316. 

a. ISSN 0378-7796, DOI: 10.1016/j.epsr.2005.06.010. 

http://www.sciencedirect.com/science/article/pii/S0378779605001951 

(accessed July 2011). 

 
17. Gurney, K. Neural Nets by Kevin Gurney. 2004. 

http://www.shef.ac.uk/psychology/gurney/notes (accessed June 2010). 

 
18. Hagan, M.T., Demuth, H.B. and Beale, M.H. Neural Network Design. 

Boston: PWS Publishing Company, 1996. 

 

http://www.ams.sunysb.edu/~feinberg/public/lf.pdf
http://www.sciencedirect.com/science/article/pii/S0378779605001951


110 
 

19. Hahn, H., Meyer-Nieberg, S., and Pickl, S. Electric load forecasting 

methods: Tools for decision making, European Journal of Operational 

Research, Volume 199, Issue 3, 16 December 2009, Pages 902-907, 

ISSN 0377-2217, DOI: 10.1016/j.ejor.2009.01.062. 

http://www.sciencedirect.com/science/article/pii/S0377221709002094. 
(accessed May 2010). 

 
20. Hammerstrom, D. Working with neural networks. IEEE Spectrum, 1993: 

46-53. 

 
21. Haykin, S. Neural Networks: A Comprehensive Foundation. Upper Saddle 

river, New Jersey: Prentice Hall, Inc, 1999. 

 
22. Heydt, G.T. Computer Analysis Methods for Power Systems. New York: 

Macmillan Publishing Company, 1986. 

 
23. Hunt, K.J., Irwin, G.R., Warwick, K. Neural Network Engineering in 

Dynamic Control Systems: Advances in Industrial Control. London: 

Springer-Verlag London Limited, 1995. 

 
24. Jones, M.T. Artificial Intelligence: A Systems Approach. Sudbury, MA: 

Jones & Barlett Publishers, 2009. 

 
25. Kandil, N., Wamkeue, R., Saad, M. and Georges, S. An efficient 

approach for short term load forecasting using artificial neural networks, 

International Journal of Electrical Power & Energy Systems, Volume 28, 

Issue 8, October 2006, Pages 525-530, ISSN 0142-0615, DOI: 

10.1016/j.ijepes.2006.02.014. 

(http://www.sciencedirect.com/science/article/pii/S0142061506000676) 

(accessed May 2011). 

 
26. Kung, S.Y. Digital Neural Networks. USA: PTR Prentice-Hall, Inc., 1993. 

 
27. Lai, L. Intelligent System Applications in Power Engineering:evolutionary 

programming and neural networks. UK: Wiley & Sons Ltd, 1998. 

 
28. MacKay, D.J.C. Bayesian Interpolation. Neural Computation 4, no. 3 

(1992): 415-447. 

http://www.sciencedirect.com/science/article/pii/S0377221709002094


111 
 

 
29.  Madsen, K., Nielsen, H.B. and Tingleff, O. Methods for Non-linear Least 

Squares Problems. 2nd Edition. Informatics and Mathematical Modelling, 

Technical University of Denmark, DTU. April 2004. 

www2.imm.dtu.dk/pubdb/views/edoc_download.../imm3215.pdf. 

(accessed December 2010). 

 
30. Mandal, P., Senjyu, T., and Urasaki, N. Toshihisa Funabashi, A neural 

network based several-hour-ahead electric load forecasting using similar 

days approach, International Journal of Electrical Power & Energy 

Systems, Volume 28, Issue 6, July 2006, Pages 367-373, ISSN 0142-

0615, DOI: 10.1016/j.ijepes.2005.12.007. 

http://www.sciencedirect.com/science/article/pii/S0142061506000275 

(accessed March 2011). 

 
31. Middleton, M.R. Data Analysis Using Microsoft Excel. 3. Toronto: 

Brooks/Cole, 2004. 

 
32. Montgomery, D.C., Jennings, C.L. and Kulahci, M. Introduction to Time 

Series Analysis and Forecasting. Hoboken: John Wiley & Sons,Inc, 2008. 

 
33. Morantz, B.H., Whalen, T.G., Zhang, P. A Weighted Window Approach to 

Neural Network Time Series Forecasting. Georgia State University, 2003. 

3-8. 

 
34. Murto, P. Neural Network Models for Short Term Load Forecasting. 

Helsinki University Of Technology, Helsinki, Finland, 1998. 

 
35. Palmer-Brown, D.,Draganova, C., Pimenidis, E. and Mouratidis, H. 

Engineering Applications of Neural Networks. 11th International 

Conference, EANN. London: Springer, 2009. 465. 

 
36. Plummer, E.A. Time Series Forecasting with Feed-Forward Neural 

Networks:Guidelines and Limitations. University of Wyoming, Laramie, 

Wyoming, USA. 2000. 

 



112 
 

37. Priddy, K. L. and Keller, P. E. Artificial neural networks: an introduction. 

Bellingham, Washington, USA: SPIE-The International Society for Optical 

Engineering, 2005. 

 
38. Principe, J.C., Euliano, N.R. and Levebvre, W.C. Neural And Adaptive 

Systems: Fundamentals through Simulations . New York: John Wiley & 

Sons, Inc, 2000. 

 
39. Rabunal, J.R. and Dorado, J. Artificial Neural Networks in Real-Life 

Applications. Hershey: Idea Group Publishing, 2006. 

 
40. Reusch, B. Computational Intelligence: Theory and Applications. Edited 

by B. Reusch. Dortmund, Germany: Springer, 1999. 

 
41. Rui, Y. and Keib, A.A. A Review of ANN-based Short-term Load 

Forecasting Models.  

http://research.microsoft.com/en-us/um/people/yongrui/ps/review95.pdf 

(accessed March 2011). 

 
42. Rumelhart, D.E. and McClelland, J.L. Parallel Distributed processing: 

Explorations in the Microstructure of Cognition. Cambridge, MA. MIT 

Press. 1986. 

 
43. Russel, I. Learning in a Neural Network. 2004. 

http://uhaweb.hartford.edu/compsci/neural-networks-Learning.html 

(accessed July 2011). 

 
44. Santos, P, J, Martins, A. G. and Pires., A.J. Designing the input vector to 

ANN-based models for short term load forecast in electrical distribution 

sytems. 2004. 

http://www.inescc.pt/documentos/14_2004.pdf 
(accessed June 2011) 

 
45. Santos, P.J., Martins, A.G., Pires, A.J., Martins, J. F. and Mendes,  

R. V. Short-Term Load Forecast Using Trend Information and Process 

Reconstruction.  

www.inescc.pt/documentos/14_2004.pdf 

http://research.microsoft.com/en-us/um/people/yongrui/ps/review95.pdf
http://www.inescc.pt/documentos/14_2004.pdf
http://www.inescc.pt/documentos/14_2004.pdf


113 
 

(accessed May 2009). 
 

46. Sargunaraj, S., Sen Gupta, D.P. and Devi, S. Short Term Load 

Forecasting for Demand Side Management. IEEE Xplore, no. Release 2.2 

(1997): 1-8. 

 
47. Sarle, W.S. Neural Network FAQ. 2004. ftp.sas.com/pub/neural/FAQ.html. 

 
48. Shan, S. A Levenberg-Marquardt Method For Large-Scale Bound-

Constrained Nonlinear Least-Squares. The University of British Columbia, 

Computer Science. Vancouver. Canada (2008): 1-8. 

 
49. Slade, P. and Gedeon, T.D. Bimodal Distribution Removal. In New Trends 

in Neural Computation: International Workshop on Artificial Neural 

Networks, IWANN ,93 Sitges Spain June 1993, edited by Joan Cabestany, 

Alberto Prieto José Mira, 249. Berlin: Springer-Verlag, 1993. 

 
50. Sumathi, S. and Paneerselvam, S. Computational Intelligence 

Paradigms: Theory & Applications Using MATLAB . Boca Raton, Florida: 

CRC Press, Taylor and Francis Group, 2010. 

 
51. Swingler, K. Applying Neural Networks: A Practical Guide. San Francisco: 

ACADEMIC PRESS, 1996. 

 
52. Teng, C.C. Mixed-Mode Supervised Learning Algorithms for Multilayered 

Feed-Forward Neural Networks. University of Illinois, Urbana-Champaign, 

Illinois, 1993. 

 
53. Yalcinoz, T. and Eminoglu, U. Short term and medium term power 

distribution load forecasting by neural networks, Energy Conversion and 

Management, Volume 46, Issues 9-10, June 2005, Pages 1393-1405, 

ISSN 0196-8904, DOI: 10.1016/j.enconman.2004.07.005. 

http://www.sciencedirect.com/science/article/pii/S019689040400192X 

(accessed January 2011). 

 

ftp://ftp.sas.com/pub/neural/FAQ.html
http://www.sciencedirect.com/science/article/pii/S019689040400192X


114 
 

54. Yang, J. and Chen, C. Dominant Neuron Techniques. Vol. 2, in 

Optimization Techniques, edited by C.T. Leondes, 249. San Diego: 

Academic press, 1998. 

 
55. Zaknich, A. Neural Networks for Intelligent Signal Processing. Singapore: 

World Scientific Publishing Co. Pte. Ltd, 2003. 

 
56. Zalzala, A.M.S. and Morris, A.S. Neural Networks for Robotic Control: 

Theory and Applications. UK: Ellis Horwood, 1996. 

 

57. Zhang, G., Patuwo, B.E. and Hu, M.Y. Forecasting with artificial neural 

networks: The state of the art. International Journal of Forecasting Volume 

14, Issue 1, 1 March 1998, Pages 35-62, ISSN 0169-2070, DOI: 

10.1016/S0169-2070(97)00044-7. 

http://www.sciencedirect.com/science/article/pii/S0169207097000447 

(accessed August 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


