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Abstract: This paper considers a model predictive controller with reference tracking that manipulates
the integer switch positions of a power converter. It can be shown that the optimal switch position can
be computed in a new coordinate system by solving the closest vector problem in a lattice by iterative
slicing. A list of Voronoi relevant vectors defining the basic Voronoi cell of a lattice is used to find the
Voronoi cell containing the unconstrained optimum in an iterative manner. This concept is exemplified
for a three-level single-phase converter with an RL load.
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1. INTRODUCTION

Model predictive control (MPC), or receding horizon
control, uses a model of the system to predict over a finite
horizon the future evolution of the system’s controlled
variables. Using MPC over extended horizons has the
potential to improve the performance significantly [1, 2].
Unfortunately, this leads to an exponential increase in
the number of possible control sequences. In practice
this implies more computations to be performed during
each sampling interval. In power electronic systems with
short sampling intervals, this computational burden is a
challenging factor when considering an extension of the
MPC horizon.

The main purpose of our research is to reduce the online
computational burden of the controller so as to practically
implement extended horizon MPC for a multilevel inverter.
To achieve this, it is necessary to find the solution to the
optimization problem, i.e. the predicted control vector
of minimum Euclidean distance to the unconstrained
optimum in a transformed solution space. The work
presented here is a continuation of our previous work done
in addressing the same challenge [3]. Instead of utilizing a
binary search tree for solving the nearest neighbor problem
we now address the challenge via lattice theory and the
classic mathematical problem of closest vector problem
(CVP) as noted in the study of geometry of numbers
[4]. The general closest vector problem, as a function of
the dimension, has been shown to be non-deterministic
polynomial-time hard (NP-hard) [5], implying that all
exact solutions have exponential complexity. Approximate
solutions are faster and terminate in higher dimensions but
have also proven to be NP-hard for a certain degree of
optimality/exactness [6]. NP is formally referred to as the
set of decision problems solvable in polynomial time by a
theoretical non-deterministic Turing machine [7].

Three main approaches exist for solving the CVP,
namely enumeration based algorithms, space saturation
algorithms and Voronoi based algorithms. Enumeration
based algorithms following the Pohst [8] strategy have
traditionally been used as a practical tool [9]. This research
is aimed at implementing an alternative Voronoi based
method with pre-processing to find the exact solution
to CVP and subsequently optimizing the MPC problem.
The work applies the lattice slicing algorithm to the
unique lattice structure generated by the MPC optimization
problem in an attempt to evaluate performance and
practicality of the off- and on-line computational burden.

Section 2 introduces the mathematical background of the
MPC problem with the resulting state-space and geometry
laid out in section 3. In section 4 the lattice approach and
CVP solver are presented. The inverter implementation
and pre-processing requirements are stipulated in section
5. Section 6 concludes the paper.

2. MODEL PREDICTIVE CONTROL

The control action is determined by solving a finite horizon
open-loop optimal control problem at each sampling
instant, using the current state of the system, searching
for an optimal control sequence over the horizon and then
applying the first control action in the sequence to the
system. MPC applied to a single-phase Neutral Point
Clamped (NPC) inverter controls the inverter switches in
such a manner so as to generate an output current i in the
load that tracks a reference current i, as closely as possible
with minimal switching losses in the power switches. The
inverter topology is shown in Figure 1 with the neutral
point voltage assumed constant.
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Figure 1: Single-phase Neutral Point Clamped inverter

2.1 Mathematical modeling

The NPC inverter leg can deliver three voltage levels of
—0.5Vpc, OVpc and +0.5Vpc across the load which can be
represented by the integer values u € {—1,0,41} defining
the state of the switch positions. The voltage applied to the
RL load is v(t) = 0.5Vpc - u(t). The differential equation
describing the RL load in the continues time domain is:

di(t)

Converting (1) to the discrete time domain with sample
period Tj results in the predictive load current model i(k +
1) with input u(k) and state i(k) as noted in

i(k+ 1) = Ai(k) + Bu(k) 2)

withA = 5/*", B=12¢(1-A) and 1= L.

2.2 Cost function

To find the optimal control input to the inverter, we define
over a finite horizon N the quadratic cost function

k+N—1
I=" Y U+ =i+ )P+ A D). @)
1=k

This function is similar to the cost function defined in [1]
and consist of two terms, (i,(I+ 1) —i(I41))? to quantify
tracking error from the reference current i,, and A,, (A, (1))*
the switching cost. A tuning factor A, is used to adjust
the weight of the switching cost. J is a function of
the switching sequence U = [u(k)u(k+1)..u(k+N —1)]"
which leads to an exponential increase in possible
switching sequences over the horizon to evaluate.
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Figure 2: HU input vectors in the H-coordinate solution space
for horizon N = 2.

2.3 Optimization problem

The optimization problem for finding the optimum
switching sequence U, can be stated formally as

Uopt (k) = argrlgl(j]g.], 4)
subject to
i(l4+1) =Ai(l)+Bu(l) 5)

u(l) € {—1,0,+1}
Vi=k,...k+N—1.

A solution to the optimization problem (4) can be found by
rewriting the cost function in terms of the unconstrained
optimal solution U, (k) as derived in [1] and [10]

J = ||HU (k) — HUync(K) |3 - (©6)
H is an invertible lower triangular matrix that transforms
the switching sequence U(k) and the unconstrained

optimal Uyuc(k) to the m-dimensional H-coordinate
solution space with m = N.

3. SOLUTION SPACE PARTITIONING
3.1 Solution space

Solving the optimization problem (4) with cost function
(6) translates into the nearest neighbor search of
the m-dimensional vector HU,u.(k) to the set of
m-dimensional input vectors HU (k) in R™ Euclidean
space. Figure 2 depicts the spatial arrangement of the
3V input vectors in the H-transformed coordinate space
for the horizon N = 2 case. It can be observed that the
arrangement constitutes an m-dimensional parallelotope
with 2" orthants. The convex hull of the parallelotope is
defined by 2m hyperplanes of dimension m — 1.
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Figure 3: Voronoi diagram for the HU sites in the H-coordinate
space for horizon N = 2.

3.2 Voronoi partitioning

Polyhedral partitioning of the H-solution space into a
Voronoi diagram results in a number of convex Voronoi
cells, each consisting of all vectors in R™ nearest to their
respective HU Voronoi site [11]. The Voronoi cell V of an
individual site s € HU can be defined as

V(HU,s) ={xeR": x—s| < [lx—jll} D

Vje (HU),j#s.

The Voronoi diagram for the horizon N = 2 case is
shown in Figure 3 with 16 hyperplanes partitioning
the H-coordinate space and defining the borders of the
subsequent Voronoi cells.

4. CVP SOLVER
4.1 Voronoi cell of a lattice

The spatial arrangement of the HU input vectors can also
be defined in lattice theory as

A(H) = A(hy,hy,....h,) ={HU|U € Z"}.  (8)

The lattice A is generated from the full-rank base matrix
H with linearly independent column vectors hy,hy, ..., h, €
R™. The dimension and rank of the lattice are denoted by
the number of rows m and columns 7 of the base matrix H,
respectively. The two base vectors Ay, h, for the horizon
N = 2 case are indicated in Figure 2 with the darkened
orthant highlighting the span of the lattice base.

The Voronoi cells for a lattice structure are convex
polyhedra and are symmetrical in reflection through its
Voronoi site s. This can be observed in Figure 4 from
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Figure 4: The Voronoi relevant vectors defining the basic
Voronoi cell of a lattice and the translation thereof to all lattice
points in the H-coordinate space (N = 2).

the shaded Voronoi cell enclosing the origin s = 0 also
known as the basic Voronoi cell of a lattice. The borders
defining the m-dimensional basic Voronoi cell are (m —
1)-dimensional hyperplanes derived from their respective
Voronoi relevant vectors v. Voronoi relevant vectors
are lattice points closest to a specific lattice point; in a
m-dimensional lattice a maximum of 2"+! —2 Voronoi
relevant vectors can exist [12]. Each Voronoi relevant
vector is bisected orthogonally at its midpoint %v by a
hyperplane defining the border between the Voronoi site
and its Voronoi relevant vector. A border hyperplane is also
known as a facet of the respective Voronoi cell. In Figure
4 the Voronoi relevant vectors to the origin are indicated
by the 6 blue arrows with their respective facets defining
the basic Voronoi cell. The translative nature of the basic
Voronoi cell to all other lattice points is illustrated by the
dotted lines. The Voronoi relevant vectors can be described
as a subset S(A) C A of the lattice, defining the basic
Voronoi cell as

V(A,0) = {x e R : [|x]| < [lx—vI[} ©)

Vv e S(A),v#£0.

Due to the symmetrical nature of the Voronoi cell V(A,0)
the Voronoi relevant vectors are also reflections and for
every v the vector —v is also a Voronoi relevant vector.
The Voronoi cell can thus be defined in terms of Voronoi
relevant vector pairs {v,—v}. This simplifies S(A) to a
minimal set §'(A) C A where only one representative of
each Voronoi relevant vector pair is used to define the set.
The basic Voronoi cell can now be defined by

V(A,0) = {x e R™ : [|x]| < [lx=vI|, lxl| < [lx+vI|} (10)

Vv e S'(A),v #£0.
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Figure 5: Slicing of the H-coordinate space (N = 2) with
Voronoi border pairs located at i%v.

This clearly halves the number of Voronoi relevant vectors
required to define the basic Voronoi cell of a lattice. The
advantage obtained from the symmetry and the translation
of the basic Voronoi cell in a m-dimensional lattice is
that all the borders defining the Voronoi diagram of the
solution space can be determined from 2™ — 1 single-sided
Voronoi relevant vectors. For the horizon N = 2 case this
equals 3 single-sided Voronoi relevant vectors representing
3 hyperplanes or facets needed to describe the Voronoi
diagram consisting of 16 hyperplanes in total.

4.2 Iterative slicing algorithm

In the quest to find the closest lattice point to a vector
the algorithm developed by [13] achieves the objective
by iteratively calculating which Voronoi cell of the lattice
contains the given vector. Determining the closest lattice
point s to a vector x € R™ is done by finding the lattice
point s € A with the error vector e = s —x that resides inside
the basic Voronoi cell V(A,0). To verify the containment
of x in V(A,0) a number of slicing operations are required
using the pre-calculated list of Voronoi relevant vectors.
Instead of using distances, the basic Voronoi cell is
re-defined in terms of inner products to give

V(A,Q):{xeRm:|x~v|§;v||2} (11)

Vv e S (A),v#0.

Geometrically |x-v| translates into the orthogonal projec-
tion of x onto v, where the Voronoi border pair defined by
v is orthogonal and located at :I:%v. This slice through R™
is illustrated in Figure 5. The algorithm typically starts
with the lattice point at the origin s = 0 and iteratively
updates s until the resulting error e is found to be between
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all the slices defined by the set v € S'(A). At first glance
this search process seems to be exhaustive in nature but the
algorithm implements two principles for speeding up.

Firstly, the Voronoi relevant vectors v € S'(A) are sorted
in an ascending order in terms of their Euclidean norm
during the pre-calculation stage. This arrangement is
then utilized during the on-line operation of the algorithm
when the error vector is evaluated by |le||* < 1||v|* for
a specific Voronoi relevant vector v. Geometrically this
verifies if e resides within a sphere of radius %v. If so
then it is not necessary to verify containment of e by the
rest of the Voronoi relevant vectors in the ranked set of
increasing Euclidean norm thus eliminating unnecessary
computations.

Secondly, a further reduction in computational complexity
is obtained by not initializing the algorithm from the
typical lattice point s = O but from an estimated lattice
point closer to the given vector x. This will ensure e =
s —x to be smaller, resulting in less iterations and faster
termination of the algorithm. This estimation can be
achieved by various methods of which the Babai rounding
technique is a good example. The method estimates a
lattice point by

s=H |4, (12)
with H the lattice basis of full rank. Although this rounding
method is not guaranteed to solve CVP exactly, it is simple
and has been proved by Babai that ||s—x|| is within an
exponential factor of the minimal value if the lattice basis
is LLL-reduced [14]. Due to length constraints on this
paper, any further details on the lattice slicing algorithm
is deterred from but the reader is referred to [13] for a
comprehensive description.

5. IMPLEMENTATION
5.1 Off-line requirements

The load model parameters are required to determine the
H-transformation matrix for the horizon N. The lattice
slicing algorithm requires the basic Voronoi cell of a lattice
to solve the closest vector problem. This is a task that is
also deemed to be NP-hard [15], but since this operation is
only to be done once in the off-line process, we opted for
using an altered sphere-decoder from [9] to calculate the
2m+1 2 closest vectors to the origin. These vectors are
in 4 pairs and only one representative one-sided Voronoi
relevant vector of each pair is stored and ranked in terms
of their Euclidean norm. Another off-line computation
required is defining the convex hull of the m-dimensional
parallelotope by its 2m, (m — 1)-dimensional hyperplanes.
This is done for reasons explained in the on-line procedure.

5.2 On-line requirements
Implementing MPC in an multi-level inverter equates

to solving the closest vector problem (CVP) in the
N-dimensional H-solution space as described in section
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3.1. The lattice slicing algorithm solves CVP in a lattice
and it is not valid for finding vectors located outside the
lattice structure. In our three-level inverter application, the
lattice of the HU sites is as defined in (7) but with the
limitation that U € {—1,0,+1} (the lattice is truncated).
The valid region of operation for the slicing algorithm
for our lattice is the area enclosed by the basic Voronoi
cell and all translations thereof to the surrounding lattice
points limited to {—1,0,41} in m-dimensions. This area
is graphically illustrated in Figure 4 by the bounding
dotted line. The Voronoi diagram partitioning the solution
space for the HU-sites are similar to the Voronoi cell
translation of the HU-lattice only inside the described
parallelotope. Outside the parallelotope the partitioning
differs because our lattice is bounded by {—1,0,+1}
resulting in un-bounded Voronoi cells.

Therefore we must consider two possible scenarios that
might occur. One, in which HU,,, is inside the convex
hull of the parallelotope and another one in which HU,;;,
is located outside the parallelotope. The first situation is
the norm under stable continuous operation of the inverter
and the second usually occurs under transient conditions.
In addressing the second scenario it can be observed that
all Voronoi borders exiting the parallelotope are orthogonal
to the hull of the parallelotope. Thus if HU, is located
outside the parallelotope we project HU,;,. orthogonally
to a point with minimum distance on the hull of the
parallelotope. HU,,. is then updated with this new
hull-point which is valid for the lattice slicing algorithm to
solve. To initialize the algorithm, an approximated lattice
point is determined by utilizing (12)
HUey =H |UcH™']. (13)
The algorithm finds the closest HU lattice point to HU,;;,.
which relates to the optimal control sequence U, for the
inverter over N-horizons. From this sequence only the first
control action u(k) is selected and applied to the inverter.
A flowchart for the on-line process is shown in Figure 6.

5.3 Simulation

The proposed off- and on-line procedures were im-
plemented in a MATLAB® simulation model of the
single-phase NPC three-level inverter. ~ The validity
and performance of the control actions selected by the
iterative slicer were compared to those of the benchmark
exhaustive search method and an adapted version of the
sphere-decoder. The sphere-decoder applied the standard
top-down search method and was initialized with a sphere
radius equal to the initial error vector as introduced in the
lattice slicing algorithm

€= ”HUest_HUme”- (14)
A typical example with the following parameters is
considered.  Sampling interval of Tg = 25us, load-
resistance of R = 2Q, and inductance L = 2mH. The rated
r.m.s. output voltage of the inverter is Vac = 3.3kV with
an input dc-link voltage of Vpe = 5.2kV. Base quantities
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Figure 6: Flowchart of the on-line process for attaining the
optimal inverter control action during every sample period.

are used to establish a per unit system and the current
reference is assumed to be 0.8pu amplitude. A tuning
factor A, of 0.02 was selected. To determine the straight
out performance of the respective algorithms in terms of
their CVP solving capability we opted for a random set
of input vectors i(k) that limited HU,y. to stay within
the borders of the HU parallelotope. Using random
values instead of a reference sine-wave ensured that no
sequence or function is followed that can possibly assist
in the prediction of HU,y. Limiting the input values and
thus Uy, to values between {—1, +1} eliminated possible
variations in performance due to the different approaches
used in addressing transient conditions. The performance
in terms of average processing time by the respective
algorithms for 1000 samples over horizons 1 to 9 is plotted
in Figure 7.

The exhaustive search method enumerates all switching
sequences; the exponential increase in the computational
burden when extending the prediction horizon is shown in
Figure 7. This method is practical only in horizon 1 and
2 applications. We used it as benchmark and to verify the
correctness of the control actions determined by the other
two methods. Over the respective horizons the control
sequence (U, ) determined by both the iterative slicing
and sphere decoding methods correlated 100 percent with
the sequence obtained using the exhaustive search method.
In terms of algorithm termination time the iterative slicing
method outperformed the sphere decoder for horizons
N < 6 or dimensions m < 6. In higher dimensions,
its performance deteriorated due to the rapid increase in
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Figure 7: Algorithm termination times per 1000 random samples
over N-horizons.

complexity of the basic Voronoi cell. Containment of a
specific vector in a Voronoi cell is verified by the iterative
evaluation of 2" — 1 single-sided Voronoi relevant vectors.

6. CONCLUSION

We presented the application of iterative slicing as
alternative to the traditional enumeration method in
solving the closest vector problem and thus the MPC
problem for a single-phase NPC inverter. The method
obtains the exact solution to the problem and performed
well in dimensions below seven. Although the desired
performance in higher dimension has not been achieved,
some progress compared to our previous work was
obtained in the pre-processing time. This is due to the
calculation of the basic Voronoi cell of a lattice and storage
thereof in terms of the single-sided Voronoi relevant
vectors compared to storing all the Voronoi borders in
the Voronoi diagram of the partitioned solution-space.
Future work on reducing the computational burden will
include the possible improvement in initial lattice point
approximation and optimization of the search sequence
through the lattice structure.
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