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Article highlights 

 
• No suitable anti-prion drug has been identified so far.  

• Efficiency of anti-prion compounds was based on multifactorial nature of the disease. 
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• Pocket-D is the most important binding pocket for prion inhibition and conversion 
from PrPC-PrPSc. 

• The salt bridges between Arg156-Glu196 and Arg156- His187 play an important role in 
prion folding. 

• Presence of oxymethyl groups and electro-negative nitrogen enhance anti-prion 
activity. 

• Pharmacophore analysis gives us more knowledge of drug binding to PrPC hotspots. 

• Conformations of amyloid fibrils and protein oligomers are very important for future 
anti-prion drug discovery. 
 

Introduction: To date, various therapeutic strategies identified numerous anti-prion compounds 
and antibodies that stabilize PrPC, block the conversion of PrPC-PrPSc and increased effect on 
PrPSc clearance. However, no suitable drug has been identified clinically so far due to the poor 
oral absorption, low blood–brain-barrier [BBB] penetration, and high toxicity. Although some of 
the drugs were proven to be effective in prion-infected cell culture and whole animal models, 
none of them increased the rate of survival compared to placebo.  
 Areas Covered: In this review, the authors highlight the importance of in silico approaches like 
molecular docking, virtual screening, pharmacophore analysis, molecular dynamics, QSAR, 
CoMFA and CoMSIA applied to detect molecular mechanisms of prion inhibition and 
conversion from PrPC-PrPSc. 

Expert opinion: Several in silico approaches combined with experimental studies have provided 
many structural and functional clues on the stability and physiological activity of prion mutants. 
Further, various studies of in silico and in vivo approaches were also shown to identify several 
new small organic anti-scrapie compounds to decrease the accumulation of PrPres in cell culture, 
inhibit the aggregation of a PrPC peptide, and possess pharmacokinetic characteristics that 
confirm the drug-likeness of these compounds.  

 
Key words: Prion, Docking, Molecular Dynamics (MD), QSAR (Quantitative Structure Activity 
Relationship), CoMFA (Comparative Molecular Field Analysis), CoMSIA (Comparative 
Molecular Similarity Indices).  
 
 
 
 
1. Introduction 

 
Prion disease is characterized to be lethal for both humans and animals. They occur by the 
deposition of an abnormal proteinase K-resistant isoform PrPSc or PrPres in the brain [1] [2].  
Studies have shown that prion disease arises when the normal cellular protease sensitive form of 
prion protein, PrPC [PrPsen], which is rich in α-helix, is converted into an abnormally folded, 
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disease-related isoform PrPSc, which is beta rich [3]. Studies have shown that this processes of 
conversion from PrPC-PrPSc takes place through an intermediate form of PrPC represented as 
PrP* with the help of another protein named as protein X [4] [5] [6]. Once the conversion starts, 
the deposition of PrPsc will increase enormously causing the disease invariably fatal [4]. 
Currently, no effective therapy or vaccine exists due to long incubation periods ranging from 
months to decades without showing any signs of the disease. Consequently, numerous studies 
have been directed towards the development of therapeutics for preventing the conversion of 
PrPc to PrPsc involved in neurodegeneration despite, the lack of a detailed understanding of the 
cellular mechanism of prion propagation. To date, various compounds like quinacrine and its 
structurally related tricyclic anti-depressants [7-9], statins [10], pyrazolones [11], indole-3-
glyoxylamides [12, 13],  and pyridyl hydrazones [14] including ‘Compound B’,  have been 
shown to reduce PrPsc accumulation in a cell culture model of prion diseases. Later, pyrazolone 
compound has been shown to be up to 130 fold more effective compared to quinacrine in 
inhibiting the accumulation of PrPsc [15]. In addition, larger polyanionic or polycationic 
molecules [e.g., dendritic polyamines of PAMAM] were reported to exhibit anti-prion activity in 
cells [16] [17]. Except for PAMAM, none of the approved drugs or experimental compounds 
were reported to lower levels of PrPSc in stationary-phase cells [18]. Once the therapeutic activity 
of Congo red was discovered, more amyloid dye derivatives and glucoseaminoglycan mimetics 
have been used as possible candidates for treating prion diseases [19] [20]. Studies also shown 
that a new class of amyloidophilic chemicals, styrylbenzoazole derivatives was shown as 
effective as anti-prion compounds with a more discrete labeling of amyloid deposition in brain 
tissues affected by prion diseases, which have better penetration through the blood-brain barrier 
[21] [22]. The compound “GN8” could interact with N-terminal domain of PrPC. However, the 
studies of the chemical shift changes caused by "GN8" binding show that the major binding 
region is located at C-terminal domain [23].  The compounds, 2-aminothiazoles that represent a 
promising new class of drug leads for prion diseases were also discovered that improve 
metabolic stability and permeability in mice. Some of these inhibitors show stronger inhibitory 
activities toward SHaPrP [24]. In contrast, a variety of compounds with a large structural 
diversity was identified as high potent inhibitors and accelerators of PrPC [25]. Although the two 
compounds, tacrolimus and aztemizole were already marketed as anti-prion drugs, they were 
withdrawn from the US market because of possible neurotoxicity and rare cardiac arrhythmias 
when used at elevated levels. Micromolar treatment of furamidine derivative DB772 on sheep 
microglial using sheep derived prion strains showed the minimal effect on cell viability and near-
maximal anti-prion activity [26]. Initial medicinal chemistry efforts have also identified four aryl 
amides differing in their N-linked aryl groups doubled the survival of prion-infected mice. 
However, none of these compounds has shown efficacy against CJD (Creutzfeldt–Jakob disease) 
prions [27]. Recently, drug-like, brain-penetrant iron tetrapyrrole derivative showed inhibition of 
prion replication and PrPC mediated toxicity. Nevertheless, these studies are still under 
investigation [28]. Thus, the current challenge of developing the most efficient compounds was 
based on multifactorial nature of the disease which is difficult to understand experimentally. This 
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review will provide the necessary information for future therapeutic research, both in laboratory 
models and in clinical trials.  

 

2. In silico studies of anti-prion compounds 

The molecular docking strategy is a standard high-throughput screening method of choice 
to filter anti-prion compounds in silico. Using rational structure-based drug design, two 
inhibitors of PrPSc accumulation in ScN2a [scrapie-infected mouse neuroblastoma] cells were 
identified that specifically bind to PrPC residues: Gln168, Gln172, Thr215, and Gln219. Moreover, in 
silico screening of 210,000 compounds for their ability to block PrPSc formation in ScN2a cells 
yielded 63 potential inhibitors, resulting in the identification of the inhibitor with an IC50 of 18 
μM [29] [29]. However, none of the compounds identified in the ScN2a cell culture system were 
proven effective in prion-infected mouse models. Out of 1050 pyridine dicarbonitriles screened, 
45 compounds were selected for synthesis. Finally, in vitro screening using surface plasmon 
resonance has selected a total of 19 compounds bound to different conformers of prion protein 
[30]. The most effective compound ‘GN8’ fits into the pocket-C between the α1-β2 loop and α2 
to α2-α3 loop created by distant residues Asn159 and Glu196 and inhibits the formation of PrPSc 
[23] [Fig.1]. Fragment molecular orbital calculations also proved that four amino acids Asn159, 
Gln160, Lys194, and Glu196 are important for the bridging conformation of the GN8-PrPC complex 
[31]. By using these studies several binding poses were predicted, in agreement with NMR 
studies using docking and all-atom MD refinements. The calculated dissociation of free energy 
[7.8 ± 0.9 kcal/mol] agrees with experimental dissociation constant [Kd] of 3.9 μM, 
corresponding to ΔG0 = -7.5 kcal/mol [32]. Based on their binding-free energies, a set of anti-
prion compounds were classified into five categories as: [I] binders and effective, [II] low 
binders and effective, [III] binders and not effective, [IV] low binders and not effective, and [v] 
accelerators [25]. Screening a library of 149 water soluble metabolites identified thiamine as a 
prion ligand with a binding constant of ~60 μM using a combination of 1D NMR, fluorescence 
quenching and surface plasmon resonance. Pharmacophore analysis using computer-aided 
docking and molecular dynamics, revealed the common features of interaction with other 
thiamine binding proteins [33]. Docking studies also revealed that thiamine binding to pocket-B 
between α1 and L1 is similar to other thiamine binding proteins [34] [Fig.1]. Further studies on 
2-aminothiazoles have shown that the compounds with quinoline bind with higher affinity to 
pocket-D between α1 and α2 and α3 loop than isoquinoline and naphthalene groups [35] [Fig.1]. 
Previous studies also showed that tetracycline strongly binds to solvent exposed functional 
sidechains of threonine’s 190-193 on α2 [36]. Recently, Kamatari and co-workers classified anti-
prion compounds based on four potential molecular mechanisms of action: [I] specific 
conformational stabilization of PrPC; [II] nonspecific stabilization; [III] promotion of PrPC 
aggregation and precipitation [IV] interactions with PrPSc or membrane proteins [37]. The 
methoxychalcones and oxadiazoles that were active in reducing PrPres levels by more than 50% 



5 
 

at a 1µM concentration in cell culture was shown to interact directly with PrPC. Anti-prion 
compounds against murine PrPC revealed that most prevalent binding modes occurred between 
α2 and the antiparallel β-sheet [38]. Virtual screening followed by cluster analysis identified two 
compounds BMD42-29 and BMD42-35 with strong interactions in the “GN8” binding site [39]. 
Some of these ligand protein complexes were further studies using molecular dynamics and 
montecarlo simulation studies to see the effect of ligand on prion protein stability. 

 
3. Molecular Dynamics (MD) on prion pathogenic conversion 

MD simulations of human PrPC revealed that both wild type and mutant Glu200Asp 
maintained the native protein structure, whereas Glu200Lys partially unfolds [40]. Under the 
strongly acidic condition, tertiary structure becomes more compact after 10-ns simulations 
stabilized by parallel secondary structures and a large number of new, non-native contacts 
between the side chains. Protonation of Asp202 and Glu196 disturbs the stability of the native fold 
by eliminating a single negative charge at one of the key sites. Such changes in the tertiary 
structure were not observed in the simulations with higher temperature. According to these 
studies, the most fluctuations of the human prion protein occur in the mutant model [PDB: 
2K1D] at “GN8” binding pocket with residues ranging from Thr190 to Lys194. Homology 
modelling and structural dynamics of the buffalo PrPC mutant [BufPrPC] at residue 143 have 
shown five hydrogen bonds and a strong salt bridge between Asp178–Arg164 [O–N] keeping the 
β2–α2 loop intact. Mixed Monte Carlo and MD simulations of the human prion protein mutant 
Asp178Asn could cross a free-energy barrier that resulted in the unfolding of α1 due to the loss 
of a specific hydrogen bond between α1 and α3, involving residues Tyr149 and Asp202 [43]. Non-
Markovian metadynamics method showed that antiparallel β-sheet in the pathogenic Asp178Asn 
mutant is significantly weaker than in the wild-type mouse PrPC [44]. Furthermore, the structural 
instability was shown larger with higher RMSD (Root Mean Square Deviation) in Asp178Asn 
mutant compared with wild type with a stable Cation–π interaction [45]. When His187 is mutated 
to Arginine, the hydrophobic core of PrPC is exposed due to a breakdown of the salt bridge 
between His187–Arg156 [N–O] linking α-helices α2 and α1. The protonation of His187 leads to loss 
of interaction between two PrP subdomains. Parallel simulations at pH 2 showed an intermediate 
stable β-rich structure in the formation of PrPSc, indicating that misfolding may precede 
dimerization [46]. In the presence of Trimethylamine N-Oxide, simulations at lower pH also 
showed lower helical content and higher β-sheet yielding a PrPSc-like state [47]. Mutant 
structural studies of Ala117Val globular domains [109-228 and 90-228] finally showed an 
increase in the β-sheet compared with wild type. Essential collective dynamics revealed that the 
β-strand β1, and the loop β1-α1, exhibit relatively high levels of variability, dynamical disorder 
and local flexibility. When applied to ovine PrPC, the α2α3 dimer interface shows strong intra-
molecular and inter-molecular correlations relative to the β-sheet dimer interface [48]. By 
combining mutagenesis and molecular dynamics on OvPrP, the conformationally stable β-sheet 
was observed as the possible nucleus of oligomerization, which is in good correlation with 
deploymerization kinetics of purified α2α3 oligomers [49]. Recent MD simulations on 
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monomeric soluble state of mouse PrPC suggest that Tyr169 stabilizes the 310-helical 
conformation of the β2-α2 loop more than the single-point mutants Tyr169Gly, Tyr169Ala, 
Tyr169Phe, Arg164Ala, Phe175Ala, and Glu178Ala [51]. Binding of “GN8” to flexible spots on 
α2 near Glu196 prevents urea-induced denaturation of PrPC [41].  Further studies using MD 
simulations showed that NPR-053 and -056 bind to same “GN8” binding site of PrPC around the 
residues N159, Q160, K194 and E196 [42]. The energy calculations based on MM-GBSA [Molecular 
mechanics with generalized Born and surface area solvation] estimated the primary binding 
mode of Congo red and GNNQQNY (Pocket A in Fig.1) protofibril to be more stable than the 
secondary binding mode by -5.7 kcal/Mol. Solid-state nuclear magnetic resonance analyses 
followed by MD simulations of luminescent conjugated polythiophenes revealed that anionic 
side chains interacted with regularly spaced cationic residues of amyloid fibrils. Interestingly, the 
most favorable binding energy obtained was shown to be highly effective therapeutically [50]. 
Overall, these studies predict the importance of salt bridges between Arg156-Glu196 and Arg164-
Asp178, and Arg156- His187 in stabilizing PrPC 

4. QSAR, CoMFA and CoMSIA studies of anti-prion compounds 
 

QSAR studies of 2-aminothiazoles indicated that asymmetric molecules having high 
nitrogen content and low propensity to form hydrogen bonds are highly potent anti-prion 
compounds.  In addition, 3D-QSAR of tetracycline derivatives revealed the presence of hydroxyl 
groups, electron donors, alkylamine substitution and NMe2 group in a non-epi configuration are 
predicted to possess anti-fibrillogenic activity [52]. Further, studies using CoMFA and CoMSIA 
maps reveal that the compounds with oxymethyl groups and electro-negative nitrogen are highly 
favorable to enhance anti-prion activity [35]. Recently, it was concluded  that anti-prion 
activities of small molecules are greatly influenced based on shape of the molecular surface area, 
distribution of charge, ability to form contacts, and the presence of nitrogen atoms [53]. These 
results predict that electronegative nitrogen plays an important role in anti-prion activity of small 
molecules computationally. 
 

5. Conclusion 

Although extensive research has been done on prion disease, a suitable method of diagnosing the 
prion disease is yet to be discovered. The promising therapeutic that was identified for 
preventing prion disease was proved to be disappointing when subsequently tested in vivo for 
increasing the rate of survival. To compensate experimental studies, in silico strategies were used 
to identify several characteristics of folding pathway and protein aggregation on a molecular 
level. These studies could provide useful information for in silico drug discovery against prion 
disease targeting PrPC. Undoubtedly, the pharmacophore analysis of PrPC-ligand complex 
obtained using molecular docking gives us a more accurate understanding of drug binding to hot 
spots of PrPC. Further advanced studies should be developed in future to evaluate these effects in 
different experimental models of disease using NMR of the compounds–PrPC complexes. 



7 
 

6. Expert Opinion 
 
Despite the multipronged approach to tackle the conversion of PrPC to PrPSc, there is no effective 
medication for the transmitted prion disease due to longer incubation periods without showing 
any signs of the disease. Only few methods exist to detect PrPSc in the brain of CWD (Chronic 
Wasting Disease) in animals besides using neuropathological and immune-histochemical 
methods after death. Peripheral administration of many compounds in prion infected model of 
vCJD (Variant Creutzfeldt–Jakob disease) in humans was also not shown to be effective. Due to 
the difference in mammalian and yeast PrPC sequences, a yeast-based screen was not proven 
useful even though the compounds diminish the propagation of yeast prion proteins [PSI+] & 
[URE3] [54] [55] [56] [57]. Compounds that were identified in cell-free conversion assays and 
neuroblastoma-derived N2a cell line are of potential interest, but they are not qualified as drugs 
due to the lack of efficiency in crossing the BBB. Intra-ventricular infusion of pentosan 
polysulfate showed adverse effects such as hematoma formation at higher levels. Even though 
congo red was shown anti-prion activity in an in vivo model, the benzidine structure makes it 
unsuitable for animal or human use because of its carcinogenic and toxic properties [58]. Later, 
Congo red analogs showed much effective in tissue culture with limited effect in vivo [59] [60]. 
Furthermore, PrP amyloid imaging ligands not only showed anti-prion clearance in cell culture 
but also showed some effectiveness in Tg20 PrP over-expressing transgenic mice in vivo [21] 
[14]. However, the incubation period was not extended significantly in Tg7 mice and wild-type 
hamsters infected with 263K PrPSc. Additionally, anti-prion compounds identified in ELISA-
based assay utilizing ScN2a cells do not show direct interaction with recombinant PrP [61]. 
Recent studies on conjugated polythiophenes in prion-infected mice increased the survival rate 
by only 8%. Detecting the underlying mechanism of these identified anti-prion compounds will 
be one of the key steps to be further optimize them as molecular chaperones in treating amyloid 
related diseases. To achieve this goal, several diagnostic methods, namely, protein misfolding 
cyclic amplication, conformation-dependent immunoassay, dissociation-enhanced lanthanide 
fluorescent immune assay, capillary gel electrophoresis, fluorescence correlation spectroscopy, 
flow microbed immono assay, optical Fiber Immunoassay [SOFIA] and real-time quaking-
induced conversion [RT-QuIC] etc. were developed precisely to detect PrPSc sensitivity [62] [63] 
[64] [65]. However, these assays are selective for compounds that inhibit PrPres formation. 
Simultaneously, synthetic peptides that were used to inhibit the conversion [PrPsen-PrPres] have 
shown the same biochemical properties like non-inhibitory peptides with β-sheets and sedimental 
PrPsen aggregates [66]. Antibody-mediated therapy using Fab fragments appeared to be 
promising in animal models but the delivery across the blood-brain barrier became a major 
challenge due to its shorter half-life [67]. Moreover, vaccine treatment for prion disease is not a 
good strategy as they need to be given before an infection starts. Although, RNAi approach 
delayed the onset of disease, all the animals used throughout the study died eventually. 
Expressing siRNA in mouse embryonic stem cells and neural precursors can be of use in 
differentiating to specific neuronal type on the site of brain damage, these therapies are still in 
the experimental phase of development. Due to these failures of time consuming experiments, 
computational strategies were applied to study the prion aggregation at atomic resolution. These 
studies indicated that formation of a α-sheet as a common structural transition [68] [69] [70] [71] 
[72]. Since all atom simulations are computationally expensive, multi-scale modelling is used for 
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easy comparison of the experimental data by taking the information from coarse-grained models 
for all atoms as constraints [73] [74] [75]. To avoid the problem of missing important 
information about critical nuclei, a discontinuous algorithm was utilized for doing MD 
simulations containing ~100 peptides. The calculated inter-molecular interactions between PrPC 

and its peptides will show the way to further development of new anti-prion and amyloid fibril 
inhibitors. Since the potential binding sites of PrPC are broadly distributed, wide range of anti-
prion compounds can be detected using virtual screening irrespective of binding affinities [76]. 
Moreover, ex vivo screening resulted in a novel anti-prion compound, termed “GN8” that works 
as a chemical chaperone. In contrast, a variety of compounds that was screened computationally 
with a large structural diversity have therapeutic efficacy against PrPSc at a rate of 2%. Some of 
these compounds stabilize PrPC conformation and act as possible candidates for the chemical 
chaperones [25]. The compound designed using a 3D pharmacophore model of PrPC-GN8 
complex inhibits PrPSc with a stronger binding affinity in a high-throughput misfolded protein 
detection assay than other compounds reported to date [39]. Using both CoMFA and CoMSIA in 
combination with fluorescence quenching studies, we showed that the compound [N-[4-[3, 4-
dimethoxyphenyl]-1, 3-thiazol-2-yl] quinolin-2-amine] binds to pocket-D similar to “GN8” 
binding site with a Kd value of 46.4 μM. In the same study, we also showed that 1-Substituted 
bicyclic compounds are more potent than 2-substituted naphthalene [35].  The pymol plugin 
“NAGARA” that was recently developed, identified several novel anti-prion compounds, 
including tegobuvir which was approved clinically for HCV infection [77]. Based on these 
available data, it was expected that in silico drug design against the binding pocket of PrPC 
would be a valuable tool for initial screening of potential anti-prion drugs from huge compound 
libraries. This provides clues about the small molecules interfering in the regulation of 
pathogenic conversion in prion infected cell cultures. Although these compounds were more 
helpful for drug design, these drugs have to be additionally validated using in vitro and in vivo 
assays with prion-infected animals. Due to the costs and time consuming, compounds that bind 
to specific pocket of PrPC will only be synthesized for further evaluation [23] [38]. Still there is a 
possibility of missing some effective compounds that do not bind to the C-terminal domain of 
PrPC or that have other molecular targets besides PrPC [61]. If an alternative target for such 
compounds is PrPSc, the three-dimensional structures of PrPSc aggregates in the form of dimers, 
trimers and oligomers should be determined in urgency with the help of supercomputers [78] 
[79]. This is not an easy task, and deserves attention from the scientific community, especially on 
the part of biophysicists and computational biologists. Although the selected drugs against PrPC 
and PrPSc were effective in infected cell lines of different prion strains, they did not increase the 
survival time of prion-infected mice [42]. This result reinforces the need for a thorough 
pharmacokinetic assessment of the most promising molecules. These findings based on both 
experimental and computational research indicate that prion propagation may be strongly 
inhibited by targeting auxiliary proteins like plasminogen along with PrPC in future drug 
discovery. However, the biggest challenge is still underway to discover 1. How the conversion of 
PrPC-PrPSc cause’s prion disease. 2. To diagnose the disease before significant brain damage 
occurs. 3. The ability of the treatment to distinguish between self and non-self and access to CNS 
via the blood-brain barrier. 4. How the auxiliary proteins involved in prion protein conversion 
from PrPC-PrPSc.  Future studies in the upcoming years may clarify issues about the biological 
pathways that are dominant or decisive for the process and how it is triggered. In addition, earlier 
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detection methods of the prion disease may be developed in the future for effective 
immunotherapy. At present, we are particularly interested to see the pathogenic conformations of 
amyloid fibrils and protein oligomers in neurodegenerative diseases. My personal opinion is that 
the molecules designed in silico should be tested in distinctive biologic assays at the same time 
with the normal and scrapie form of prion protein to see the effect of each molecule in different 
environmental conditions. The molecule which possessed more or less similar biological effect 
with different prion strains should be taken as lead compound for further optimization to become 
a clinical candidate. In this process, we strongly believe that various in silico approaches will 
address some of the fundamental unanswered questions in prion biology, especially in the area of 
protein oligomerization for developing better prion disease models, and suggest some possible 
therapeutic targets and pharmacological agents respectively.  
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Fig.1. Three-dimensional structure of cellular prion protein SHaPrP [PDB: 1B10] predicted 
using MOE software (Chemical Computing Group Inc, Canada). Alpha helices and beta sheets 
were shown in white color. Loops are represented as L1, L2, L3 and L4. Residues in the binding 
pockets were represented in stick mode. Binding pockets [A-D] are represented as Pocket A 
(Blue), Pocket B (Green), Pocket C (Yellow) and Pocket D (Maroon). Residues in pocket A, B, 
C and D are represented in blue, green, yellow and maroon colors.  
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