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ABSTRACT 

The creation of scientific weather forecasts is troubled by many technological challenges 
while their utilization is dismal. Consequently, the majority of small-scale farmers in Africa 
continue to consult weather lore to reach various cropping decisions. Weather lore is a 
body of informal folklore associated with the prediction of the weather based on indige-
nous knowledge and human observation of the environment.  As such, it tends to be more 
holistic and more localized to the farmers’ context. However, weather lore has limitations 
such as inability to offer forecasts beyond a season. Different types of weather lore exist 
and utilize almost all available human senses (feel, smell, sight and hear). Out of all the 
types of weather lore in existence, it is the visual or observed weather lore that is mostly 
used by indigenous societies to come up with weather predictions. Further, meteorologists 
continue to treat weather lore knowledge as superstition partly because there is no means 
to scientifically evaluate and validate it. The visualization and characterization of visual sky 
objects (such as moon, clouds, stars, rainbow, etc) in forecasting weather is a significant 
subject of research. In order to realize the integration of visual weather lore knowledge in 
modern weather forecasting systems, there is a need to represent and scientifically 
substantiate weather lore. This article is aimed at coming up with a method of organizing 
the weather lore from the visual perspective of humans. To achieve this objective, we 
used fuzzy cognitive mapping to model and represent causal relationships between 
weather lore concepts and weather outcomes. The results demonstrated that FCMs are 
efficient for matrix representation of selected weather outcome scenarios caused visual 
weather lore concepts. Based on these results the recommendation of this study is to use 
this approach as a preliminary processing task towards verifying weather lore. 

Keywords: Weather lore, indigenous knowledge, drought forecasting, fuzzy 
logic, cognitive mapping. 

INTRODUCTION  

In the olden lifestyles, the scientific (especially Seasonal Climate Forecasts 
(SCFs)) weather forecasting methodologies in use today were not available; 
people observed (Risiro, Mashoko, Tshuma and Rurinda, 2012) their environ-
ment to determine weather patterns. Clues to future weather patterns were 
realized by looking at the skies, using the behavior of animals, birds, as well as 
plants (Baliscan, 2001; Dube and Musi, 2002); it was also based on beliefs and 
myths (Pasztor, 2010; Warren, 1998). Among the observed indicators, it is the 
observation of the sky (Mountaineering Council of Scotland, 1998) that played 
the greatest role as a weather prediction method. For instance, a red sky at 
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sunset indicated dry weather condition while red sky at sunrise meant rain was 
expected. It has been demonstrated that cloud patterns can be used as accurate 
weather predictors (Mountaineering Council of Scotland, 1998). The rainbow has 
also been an indicator of weather as it refracts the light and breaks it down into 
colors (Zuma-netshiukhwi, Stigter and Walker, 2013); for instance, a rainbow in 
the morning to the west usually indicated approaching rains.  

We can define weather lore as the body of informal folklore associated with the 
prediction of the weather based on indigenous knowledge (IK) and human 
observation of the environment (Chiwanza, Musingafi and Mupa, 2013). In order 
to investigate relationships in weather lore concepts, a considerable collection of 
weather lore is required so that it can be prepared for comparison and possible 
validation (Anandaraja and Rathakrishnan, 2008). One of the problems in testing 
the confidence of weather lore on predicting weather is that there are wide 
varieties of weather lore which are found in the details of indigenous sayings 
exhibiting region and pattern variations (United-Nations, 2004). Most of the 
weather lore is identified by the communities using it to support their livelihoods 
and is not globally available for comparison and validation (Zuma-netshiukhwi, 
Stigter and Walker, 2013). Sufficient process of gathering IK on weather lore 
would be the first step towards representing weather lore in order to produce 
some useful information. Since forecasting weather accurately is a challenge 
even with today's supercomputers (Lynch, 2008), represented weather lore can 
be processed further and incorporated into modern weather prediction systems. 

A number of researchers have been directing efforts towards promoting weather 
lore especially on disaster management (Enock, 2013; Johansson and Achola, 
2013; Okonya and Kroschel, 2013) and how to integrate them to the SCFs 
(Chagonda et al., 2015). This is driven by the realisation that SCFs and weather 
lore complement each other (Abdulrashid, 2013; Masinde, Bagula and Muthama, 
2013) and that the rich weather lore could help in making the forecasts more 
relevant to the local people’s context. Though having generated promising 
results, such integration initiatives still face many challenges (Chiwanza, Mus-
ingafi and Mupa, 2013; Johansson and Achola, 2013; Khalala, Makitla, Botha 
and Alberts, 2014; Msuya and Programme, 2007). They for instance tend to take 
the approach of using the weather lore to enrich the SCFs and hence losing 
most of the weather lore’s richness especially the more sustainable indigenous 
drought mitigation strategies (Masinde and Bagula, 2012). Weather lore is 
holistic (Acharya, 2011; Chinlampianga, 2011); it describes the effects of the 
forecast on the people’s way of life. It gives the details of the rain season in 
terms of onset, cessation, general distribution (are there dry spells in between), 
and its suitability for different crops, among others. The forecast further gives 
decision support information such as when to start and stop planting, how many 
times planting should be done, what to plant, how to plant and even where to 
plant (Masinde and Bagula, 2012). Weather lore is so dynamic, in the short-term 
(up to 24 hours) for example, it gives very accurate information on rainfall tim-
ings, including the nature (hails) and direction of the rain. Trying to represent 
these aspects using conventional system (Shoko, 2012) would yield an incom-
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prehensible complex system (Fajman, 2011). On the other hand, fuzzy cognitive 
mapping (FCM) can model imprecise data and nonlinear functions of arbitrary 
complexity and that it is based on natural language (Singh, H., Singh, G. and 
Bhatia, 2013); this makes it an appropriate vessel for modelling weather lore for 
use in forecasting sub-Saharan droughts systems.  

Knowledge in systems that are characterized by uncertainty (Nakashima and 
McLean, 2012; Pappenberger et al., 2005) and complex processes can be 
represented using fuzzy cognitive mapping (a combination of fuzzy logic and 
cognitive mapping) (Hossein, Zarandi, Khademian and Minaei-bidgoli, 2012). 
Fuzzy logic is derived from fuzzy set theory (Stylios and Groumpos, 2004) 
dealing with reasoning that is approximate rather than precisely deducible from 
classical predicate logic. A cognitive map is a representation and reasoning 
model on causal knowledge (Kanagasabhapathy and Kumaravel, 2014) in the 
form of directed, labelled and cyclic graph whose nodes represent causes or 
effects and whose arcs represent causal relations between these nodes. Cogni-
tive maps represent beliefs (knowledge) which are laid out about a given domain 
of interest and are useful as a means of decision support. Fuzzy cognitive map-
ping has proven efficient for solving problems in which a number of decisions 
and uncontrollable variables are causally interrelated. FCM is a powerful tool in 
decision making which aims at capturing the functioning of a complex system 
based on human understanding. FCMs are made up of signed diagraphs (Dis-
sanayake and AbouRizk, 2007; Maitra and Banerjee, 2014) with feedback that 
describes the causal links between concepts. To come up with common FCM, 
knowledge from different experts can be accumulated through combining several 
FCMs into a big FCM by merging same concepts (Jones, 2010). 

THEORETICAL FRAMEWORK 

Fuzzy cognitive maps can be used to represent the causal knowledge and 
experience, which have been accumulated over a certain period on a complex 
phenomenon; this makes them a good candidate for modelling and representing 
weather lore. In modelling weather lore, an FCM is developed using human IK 
experts (Msuya and Programme, 2007) that know the operation of the system 
and its behaviour in different circumstances. Weather lore is hardly documented; 
it is orally (Chiwanza, Musingafi and Mupa, 2013; Msuya and Programme, 2007; 
Suter, 2013) passed on from one generation to the next. In the face of events 
such as industrialisation and modernisation, a significant proportion of weather 
lore has been lost (Owiny and Maretzki, 2014; United-Nations, 2004). The ability 
of FCMs to work efficiently with missing data in modelling systems with nonline-
arities and surrounding uncertainty (Carvalho, 2010) will help re-dress this. This 
(ability of FCMs) is facilitated by the use of artificial neural networks (Rahul and 
Khurana, 2012) techniques that incorporate ideas from fuzzy logic, to create 
decision support systems (Singh, H., Singh, G. and Bhatia, 2013). 
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mining the impact of a change in a concept on other concepts and; (d) determi-
nation of the evolution of a system with time, given a set of values for all con-
cepts at a point in time (Carvalho, 2010). When the nodes of the FCM are fuzzy 
sets, then they are called as fuzzy nodes. FCMs with edge weights or causalities 
from the set {.1, 0, 1} are called simple FCMs. An FCM with cycles is said to 
have a feedback and as such, the FCM is called a dynamical system.  

Finite number of FCMs can be combined together to produce the joint effect of 
all the FCMs. Let E1, E2, . , Ep be the adjacency matrices of the FCMs with nodes 
C1, C2, ., Cn then the combined FCM is computed by adding all the adjacency 
matrices E1, E2, ., Ep . The combined FCM adjacency matrix is denoted by E = E1 
+ E2 + ...+ Ep 

Fuzzy cognitive maps application domains  

To predict or forecast (Sperry and Jetter, 2012), the concept of fuzzy logic can 
be combined with fuzzy cognitive maps (FCM) to determine the relationship 
between various input factors. Modelling and controlling (Elpiniki, 2011) of 
complex problems qualitatively uses FCMs as a tool for answering what if ques-
tions during the solution planning stage. To facilitate reasoning in complex 
systems fuzzy logic and FCMs can model complex social problems and the 
dynamic causal relationships of the context variables in a virtual world where the 
variables update their states with respect to different update times. FCMs are 
simple graphical representation, and as such, they can be used to make 
knowledge widely available through computer systems. FCMs are able to incor-
porate experts’ knowledge and represent (Papageorgiou, 2008) knowledge in a 
symbolic manner to relate states, processes, policies, events, values and inputs. 
FCMs have been used effectively in medical fields (Guerram, Maamri and 
Sahnoun, 2010) for decision making, diagnosis and predictive classification, with 
the experience of many experts and knowledge from historical data combined to 
form the FCMs. 

DESIGNING FUZZY COGNITIVE MAPS 

FCMs constructed by experts using prior knowledge do not acquire the implicit 
knowledge from the data of systems directly as this may distort the dynamical 
behaviour of the system (Aguilar, 2005) in which knowledge representation and 
reasoning are based on FCMs. A prediction and control model based on fuzzy 
cognitive maps can be developed followed by constructing a genetic algorithm 
(Dissanayake and AbouRizk, 2007) for finding the connection matrix of the FCM. 
Fuzzy cognitive map models can be tested dynamically though simulations 
(Xirogiannis and Glykas, 2004) where scenarios are introduced and predictions 
made by viewing dynamically the consequences of the corresponding actions. 
To get complex personal knowledge concerning concepts, a controlled interview 
can be used and information transcription from recorded interview to the concept 
map formalized (Sperry and Jetter, 2012). Fuzzy cognitive maps are recorded in 
the form of matrices of relations between concepts (Din and Cretan, 2014). A 
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learning method that can improve the speed of learning process and the quality 
of learning FCMs with more nodes (Chrysafiadi and Virvou, 2013; Stach, Kurgan 
and Pedrycz, 2007), was proposed to construct causal graph based on historical 
data and by using Tabu Search (Pang, 2013) (a metaheuristic search method 
employing local search methods used for mathematical optimization). FCMs can 
be constructed using a systematic approach where concepts are gathered from 
survey respondents followed by taking into account the expert judgment in 
causal relationships between the concepts. A prediction algorithm can be con-
structed using fuzzy cognitive map and fuzzy c-means clustering algorithm was 
where a genetic algorithm is applied to learn weights of the FCM (Rangarajan et 
al., 2012). This way, a fully learned fuzzy cognitive map can be used to repre-
sent, store fuzzy logic relationships of fuzzy time series and realize prediction 
(Singh, H., Singh, G. and Bhatia, 2013). Fuzzy cognitive maps can be designed 
using crisp decision trees (Elpiniki, 2011; Jones, 2010) (well known intelligent 
techniques that extract rules from both symbolic and numeric data) that have 
been fuzzified. Fuzzy rules can be combined and used to express non-
monotonic causality in fuzzy cognitive maps along with aggregation operators for 
combining multiple causal influences. In situations where domain experts are not 
able to express the causal relationships data driven methods for learning FCMs 
can be used (Stach, Kurgan and Pedrycz, 2007). Heuristically, FCM learning, an 
FCM construction can be accomplished in the following steps: (a) identification of 
concepts and its interconnections determining the nature (positive, negative or 
null) of the causal relationships between concepts; (b) initial data acquisition by 
the expert opinions and/or by an equation analysis when the mathematical 
system model is known; (c) submitting the data from the expert opinions to a 
fuzzy system which output represents the weights of the FCM; (d) weight adap-
tation and optimization of the initially proposed FCM, adjusting its response to 
the desired output; and (e) validation of the adjusted FCM. The process of 
gathering and integrating knowledge from experts in form of fuzzy cognitive 
maps can be enhanced with choices of graph-based learning methods in order 
to improve the effectiveness of the final digraphs.  

Research hypothesis 

FCMs can be used efficiently for modelling and representing weather lore as 
used in traditional communities for seasonal weather forecasting. 

METHODOLOGY 

Structured interviews (Duan and Hoagwood, 2013; Preist, Massung and Coyle, 
2014) were done in the South African community of KwaZulu-Natal and Kenya 
(Taita-Taveta County). During the interview sample astronomical and meteoro-
logical images were exposed to informants for identification and description of 
associated weather. In each of the case study locations private venues were 
arranged for interview sessions. The research population was the community 
members of the study communities. The systematic purposive sampling method 
(Risiro, Mashoko, Tshuma and Rurinda, 2012) was used to select 50 respond-
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ents (perceived knowledgeable persons) comprising of both traditional farmers 
and herdsmen and local residents.  

Data was collected with the help of research assistants (selected students on 
vacation and volunteers) from the communities.  

The research assistants were trained with regard to interpretation of the ques-
tionnaire, interviewing guidelines and research ethics. An introductory letter from 
the university was used to introduce the researchers. The collected data was 
digitized for storing in a computer and for transferring to the main researcher. A 
spreadsheet was used for easy storage and retrieval of data. For safety and 
recovery of information backup copies of the data were made and stored sepa-
rately.  

Structured interviews (Stern and Easterling, 1999) using questionnaires proved 
satisfactory to gather qualitative information. The data collection method permit-
ted the respondents enough time and capacity to question their opinions on the 
visual weather lore domain. The focus points of the interviews were decided by 
the main researcher since there were aspects in the weather lore domain the 
research was interested in exploring (visual astronomical and meteorological). 
The main objective of using structured interviews was to understand the re-
spondent(s) point of view so that individual opinions about the visual weather 
lore could be analyzed. 

Qualitative research (Duan and Hoagwood, 2013) was used to describe the 
causal links between visual weather lore and weather outcomes. Quantitative 
methods were used to establish statistically significant conclusions about the 
populations in the case study locations by analyzing the gathered data from the 
representative sample of the population.  

The research used purposive sampling (Meier, 2011) to target a particular 
category of respondents. The study targeted respondents in the rural communi-
ties of KwaZulu-Natal (South Africa) and Taita-Taveta (Kenya) where farmers 
and people who rely on weather for their activities were located. The major 
drawback was that the research incorporated other categories of people such as 
teachers since most farmers and herdsmen are difficult to get during daytime 
working hours. A general category of respondents who were residents in the 
case study locations were considered. 

The data analysis involved identifying key indicators of causal effects between 
visual weather lore and weather outcomes (also referred to as concepts in this 
research). These indicators were were recorded by scales of magnitudes of 
effects between the concepts (strong negative, negative, none, positive and 
strong positive).  

The collected data was set up in an SPSS codebook with some scales of semi-
informal transformations. In order to derive common knowledge the data was 
analyzed using both quantitative (such as percentage or number of respondents) 
and descriptive statistics (mode and mean of categorical responses). The ana-
lyzed data was represented as group knowledge (on visual astronomical and 
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meteorological weather concepts and the causal effects on short term weather) 
using statistical summaries.  

The responses for all the respondents in case study locations were collated, 
analyzed, and summarized to answer the research questions. The analysis was 
categorized in terms of the following sections which provided answers to specific 
research objectives.  

(a) Study area and demographic information of the respondents – the interest at 
this point was to understand the way of life and economic activities of the 
people. This was also reflected in the experience and length of stay in the 
communities. 

(b) Impact of weather on daily activities of the respondents – the interest of this 
was to determine if weather affects the daily activities of the people in the 
communities. The answer to this section provided a clue whether or not the 
communities relied on weather and therefore they use some means to pre-
dict weather.  

(c) Means of forecasting weather as used by respondents – the interest at this 
point was to determine the frequently used methods of predicting weather 
outcomes. Since some communities in rural areas do not rely on modern 
technology, answers to this provided a clue if the people relied on traditional 
visual weather indictors.  

(d) Respondent(s) knowledge of visual (meteorological and astronomical) 
weather indicators – the interest in this was to determine if the people had 
knowledge on visual (astronomical or meteorological) weather indicators. 
The knowledge of this indicator provided a clue whether or not they used 
visual weather lore to predict weather outcomes. 

(e) Causal links and effects between the visual weather indicators and weather 
outcomes – the interest of this was to determine if people could link between 
visual weather indicators and weather outcomes. The analysis results of this 
section gave a clue on whether links exist between visual weather indicators 
and weather outcomes. 

(f) Identification of weather seasons characteristics – the interest at this point 
was to determine the pattern in weather seasons between the case studies 
and to come up with a general trend in the weather seasons. 

SEASONAL WEATHER KNOWLEDGE REPRESENTATION  

A fuzzy cognitive mapping (FCM) based prediction scenario process consisting 
of six steps, was used. This process has been used by previous researchers to 
come up with fuzzy cognitive maps based scenario prediction systems (Jetter, 
2011).  

The first FCM step was the clarification of information requirements (Jones, 
2010). This step was achieved by using literature review together with prelimi-
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nary studies that were aimed at understanding the visual weather lore domain. In 
this step the scope of the visual weather lore domain to be investigated was 
defined. The second step was to define a plan for gathering relevant weather 
lore related information. This step allowed the identification of the sources of 
visual weather lore knowledge as well as selection of appropriate methods for 
gathering visual weather lore knowledge. The third step involved gathering of 
knowledge that was achieved through two case studies. In this step the final 
output was data that was organized with causal relations between visual weather 
lore and weather outcomes. In the fourth step conceptual seasonal fuzzy cogni-
tive maps were designed. The fifth step was the design of detailed fuzzy cogni-
tive maps that had represented weather lore causal effects between the 
combined case studies. In this step the selection of input variables and functions 
for fuzzy cognitive maps were designated. The final step involved testing the 
fuzzy cognitive maps, interpretation of resulting predicted weather outcomes 
(outputs). 

RESULTS 

Range of visual weather lore knowledge 

The study considered visual weather lore aspects from the world perspective; for 
this, literature was reviewed to gain insights on the global perceptions of weather 
lore. A wide variety of visual astronomical and meteorological weather indicators 
were identified from literature (Mwagha and Masinde, 2015) and considered for 
further investigation (Table 1). 

Reduction of the identified visual weather concepts 

Based on clouds patterns, colour and shape characteristics, the following clouds 
characteristics were linked to specific cloud types: cirrus, cirrostratus, cirrocumu-
lus, high clouds, low clouds, medium clouds, blue clouds, brown clouds, cauli-
flower clouds, feathery clouds, filaments clouds, grey clouds, layered clouds, 
nimbus, red clouds, rippled clouds, tower clouds, uniform clouds and white 
clouds. 

Using knowledge on associations and characteristics of clouds, the clouds 
concepts were re-grouped according to levels. For instance, high clouds consist-
ed of cirrus, cirrostratus and cirrocumulus clouds which were characterized by 
being white and taking the shapes of feathers, filaments or hair. The high clouds 
appeared yellow or red at sunset (Table 2). 
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Table 1: Initial weather indicators. 

Object Indicators 

Cloud color White Grey        

Cloud types Altocumulus Altostratus Cirrocumulus Cirrostratus Cirrus Cumulonimbus Stratocumulus Stratus 

Cloud shape Cauliflower Towers       

Cloud patterns Feathery Layered Rippled Uniform  Filaments   

Cloud levels Low Medium High      

Sun  Hallo around        

Stars  Dull Twinkle       

Stars  Filled Few       

Moon phase New Full Dark Transition Hallo around    

Night sky Clear Dark Red       

Lightning  High Low       

Rainbow  Morning Evening       

Table 2: Grouping of clouds by levels. 

Cloud Group Cloud Type Characteristics 

High clouds Cirrus Feathery, white, filaments, hair like, yellow/red at sunset/rise 

 Cirrostratus Creates halo around sun/moon, white, can cover all sky, hair like, smooth 
smooth 

 Cirrocumulus Clusters of small round white patches, ripples/grains  

Middle clouds Altostratus Grey/bluish cloud sheets, thin can reveal sun 

 Altocumulus White/grey patches, rounded masses or rolls 

Low and vertical 
clouds  

Stratus A fog not far from ground, gray cloud layer, a uniform base 

Stratocumulus Layered, Gray or whitish patch, honeycomb appearance, rounded masses 
or rolls 

Nimbostratus Dark rain clouds, covers sky, blocks sun, grey, continuous rain cloud, 
results from thickening altostratus 

Cumulus Fair weather, cauliflower, detached, rising mounds, domes or towers 

Cumulonimbus Brings and goes with rain, thunderstorm cloud, mountain or huge tower 

Using knowledge on concept associations, the initial concepts were condensed 
by clustering similar and restating opposing concepts leading to a fewer number 
of concepts. The notion of condensing the concepts was necessitated by fuzzi-
ness in the occurrence of concepts meaning that some concepts could overlap 
and inherit characteristics of other concepts. The clouds concepts were reduced 
to high, medium and low level clouds respectively. The dark and clear sky were 
considered to be opposing each other hence by identifying one concept, the 
other could be determined as the converse. Twinkling and many stars were 
combined to represent one concept, while dull and few stars were combined to 
come up with a new concept. The twinkling/many and dull/few stars were deter-
mined as opposing hence by identifying one, the other is determined as the 
converse. The rainbows occurring at any time of the day were reduced to repre-
sent a single concept. The concepts relating to lightning (much and less) were 
taken to represent a single concept. Due to the fact that changes in weather 
outcomes occur mostly between the full/visible to dark moon transitions, the 
concepts dark moon, full moon, decreasing moon, increasing moon and new 
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Table 3: Relation between concepts (Kenya vs South Africa). 

Concept to Concept 
Causal Effect (mode Values) Causal Effect (mean Values) 

Kenya South Africa Kenya South Africa 

High clouds to low clouds .0 .0 -.1 -.2 

High clouds to medium clouds .0 .0 -.1 -.3 

High clouds to clear sky .5 .5 .5 .5 

High clouds to many stars .0 .0 -.1 -.1 

High clouds to rainbow .0 .0 -.1 .0 

High clouds to lightining -1.0 -1.0 -.8 -.9 

High clouds to partial/dark moon .0 .0 .0 .0 

High clouds to full/visible moon .0 .0 .1 .1 

Medium clouds to low clouds .0 .0 .0 .0 

Medium clouds to clear sky -.5 -.5 -.5 -.5 

Medium clouds to many stars .0 .0 -.2 -.2 

Medium clouds to rainbow .0 -1.0 -.3 -.5 

Medium clouds to lightining .0 .0 .1 .1 

Medium clouds to partial/dark moon .0 .0 .1 .1 

Medium clouds to full/visible moon .0 -1.0 -.2 -.5 

Low clouds to clear sky -1.0 -1.0 -.8 -.9 

Low clouds to many stars .0 .0 -.1 -.1 

Low clouds to rainbow .0 .0 -.1 .0 

Low clouds to lighining .0 .0 .1 .0 

Low clouds to partial/dark moon .0 .0 .1 .0 

Low clouds to full/visible moon .0 .0 -.2 -.1 

Clear sky to many stars .0 .0 .2 .1 

Clear sky to rainbow .0 .0 .1 .1 

Clear sky to lightining -1.0 -1.0 -.8 -.8 

Clear sky to partial/dark moon .0 .0 -.2 -.5 

Clear sky to full/visible moon .0 .0 .2 .2 

Many stars to rainbow .0 .0 .2 .1 

Many stars to lightining .0 .0 -.2 -.1 

Many stars to partial/dark moon .0 -.5 -.2 -.3 

Many stars to full/visible moon .0 .0 .3 .3 

Rainbow to lightining .0 .0 -.3 -.2 

Rainbow to partial/dark moon .0 .0 .0 .0 

Rainbow to full/visible moon .0 .0 .1 .1 

Lightining to partial/dark moon .0 .0 .2 .1 

Lightining to full/visible moon .0 .0 -.2 -.1 

Partial/dark moon to full/visible moon .0 .0 -.2 -.1 
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Table 4: Summary of causal effects. 

Concept to Outcome 

Seasonal causal effects (modal Values) 

Winter Summer  Autumn Spring 

Kenya South 
Africa Kenya South 

Africa Kenya South 
Africa Kenya South 

Africa 

High clouds to rain -1.0 .0 -1.0 -1.0 -1.0 -.5 -1.0 -.5 

Low clouds to rain .5 .5 .0 1.0 1.0 1.0 .5 .5 

Medium clouds to rain .0 .5 .5 .5 .5 .5 -.5 .5 

Clear sky to rain -1.0 .0 -1.0 -.5 -1.0 -1.0 -1.0 -.5 

Many stars to rain -1.0 .0 -.5 -1.0 -1.0 -1.0 -1.0 -1.0 

Rainbow to rain -.5 -.5 -.5 -.5 -.5 -1.0 -.5 -.5 

Lightning to rain .5 .5 .0 1.0 1.0 .5 1.0 1.0 

Partial/dark moon to rain .5 .0 .5 .5 .5 .5 .5 .5 

Full/visible moon to rain .0 .0 -.5 -1.0 -.5 -.5 -.5 -1.0 

High clouds to dry 1.0 1.0 1.0 1.0 1.0 .5 1.0 .5 

Low clouds to dry .5 1.0 -1.0 -1.0 -1.0 -1.0 -.5 .5 

Medium clouds to dry -.5 1.0 -.5 -.5 -.5 -1.0 .5 -.5 

Clear sky to dry 1.0 1.0 1.0 1.0 1.0 .5 1.0 .5 

Many stars to dry .5 1.0 1.0 1.0 1.0 -1.0 1.0 .5 

Rainbow to dry .0 1.0 .5 .5 .5 .5 .5 -.5 

Lightning to dry -.5 -1.0 -1.0 -1.0 -1.0 -.5 -1.0 -1.0 

Partial/dark moon to dry -.5 -.5 -.5 -1.0 -.5 -.5 -.5 -1.0 

Full/visible moon to dry .5 .5 1.0 1.0 .5 .5 .5 -1.0 

High clouds to hot .5 -.5 1.0 1.0 .5 .5 1.0 .5 

Low clouds to hot -1.0 -.5 -1.0 -1.0 -.5 -.5 -.5 -.5 

Medium clouds to hot -.5 -.5 -.5 1.0 .5 -1.0 .5 -.5 

Clear sky to hot .5 .5 1.0 1.0 1.0 .5 1.0 1.0 

Many stars to hot .5 .5 1.0 1.0 1.0 -1.0 1.0 .5 

Rainbow to hot .5 .5 1.0 .5 .5 .5 .5 .5 

Lightning to hot -.5 -1.0 -1.0 -.5 -.5 -.5 -1.0 -.5 

Partial/dark moon to hot -.5 .0 -.5 -1.0 -.5 -.5 -.5 -.5 

Full/visible moon to hot .5 .5 1.0 1.0 1.0 .5 .5 1.0 

High clouds to cold -.5 1.0 -1.0 -1.0 -1.0 .5 -1.0 -1.0 

Low clouds to cold 1.0 1.0 .5 .5 .5 .5 .5 .5 

Medium clouds to cold .5 1.0 .5 -1.0 .5 .5 .5 .5 

Clear sky to cold -.5 .5 -1.0 -1.0 -1.0 .5 -1.0 -1.0 

Many stars to cold -.5 .5 -.5 -1.0 -.5 .5 -1.0 -1.0 

Rainbow to cold -.5 .5 -.5 -1.0 -.5 .5 .5 -.5 

Lightning to cold .5 1.0 .5 .5 1.0 .5 1.0 .5 

Partial/dark moon to cold .5 1.0 -.5 .5 .5 .5 .5 .5 

Full/visible moon to cold -.5 1.0 -1.0 -1.0 -.5 .5 -.5 -1.0 



 18 

 

Aggregation of seasonal knowledge from case studies 

To represent common knowledge for the two case studies, joint statistics mode 
values were determined for:  

• between the visual astronomical and meteorological concepts (Table 5) and  
• between the astronomical and meteorological concepts to weather outcomes 

in the various seasons (Table 6). 

Table 5: Aggregated causal effect (Kenya and South Africa). 

Concept to concept Value  Concept to concept Value 

High clouds to low clouds 0  Low clouds to lighining 0 

High clouds to medium clouds 0  Low clouds to partial/dark moon 0 

High clouds to clear sky 0.5  Low clouds to full/visible moon 0 

High clouds to many stars 0  Clear sky to many stars 0 

High clouds to rainbow 0  Clear sky to rainbow 0 

High clouds to lightining -1  Clear sky to lightining -1 

High clouds to partial/dark moon 0  Clear sky to partial/dark moon 0 

High clouds to full/visible moon 0  Clear sky to full/visible moon 0 

Medium clouds to low clouds 0  Many stars to rainbow 0 

Medium clouds to clear sky -0.5  Many stars to lightining 0 

Medium clouds to many stars 0  Many stars to partial/dark moon -0.25 

Medium clouds to rainbow -0.5  Many stars to full/visible moon 0 

Medium clouds to lightining 0  Rainbow to lightining 0 

Medium clouds to partial/dark moon 0  Rainbow to partial/dark moon 0 

Medium clouds to full/visible moon -0.5  Rainbow to full/visible moon 0 

Low clouds to clear sky -1  Lightining to partial/dark moon 0 

Low clouds to many stars 0  Lightining to full/visible moon 0 

Low clouds to rainbow 0  Partial/dark moon to full/visible moon 0 
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Table 6: Kenya and South Africa aggregated seasonal causal effects. 

Concept to outcome Winter Summer Autumn Spring 

High clouds to rain -0.5 -1 -0.75 -0.75 

Low clouds to rain 0.5 0.5 1 0.5 

Medium clouds to rain 0.25 0.5 0.5 0 

Clear sky to rain -0.5 -0.75 -1 -0.75 

Many stars to rain -0.5 -0.75 -1 -1 

Rainbow to rain -0.5 -0.5 -0.75 -0.5 

Lightning to rain 0.5 0.5 0.75 1 

Partial/dark moon to rain 0.25 0.5 0.5 0.5 

Full/visible moon to rain 0 -0.75 -0.5 -0.75 

High clouds to dry 1 1 0.75 0.75 

Low clouds to dry 0.75 -1 -1 0 

Medium clouds to dry 0.25 -0.5 -0.75 0 

Clear sky to dry 1 1 0.75 0.75 

Many stars to dry 0.75 1 0 0.75 

Rainbow to dry 0.5 0.5 0.5 0 

Lightning to dry -0.75 -1 -0.75 -1 

Partial/dark moon to dry -0.5 -0.75 -0.5 -0.75 

Full/visible moon to dry 0.5 1 0.5 -0.25 

High clouds to hot 0 1 0.5 0.75 

Low clouds to hot -0.75 -1 -0.5 -0.5 

Medium clouds to hot -0.5 0.25 -0.25 0 

Clear sky to hot 0.5 1 0.75 1 

Many stars to hot 0.5 1 0 0.75 

Rainbow to hot 0.5 0.75 0.5 0.5 

Lightning to hot -0.75 -0.75 -0.5 -0.75 

Partial/dark moon to hot -0.25 -0.75 -0.5 -0.5 

Full/visible moon to hot 0.5 1 0.75 0.75 

High clouds to cold 0.25 -1 -0.25 -1 

Low clouds to cold 1 0.5 0.5 0.5 

Medium clouds to cold 0.75 -0.25 0.5 0.5 

Clear sky to cold 0 -1 -0.25 -1 

Many stars to cold 0 -0.75 0 -1 

Rainbow to cold 0 -0.75 0 0 

Lightning to cold 0.75 0.5 0.75 0.75 

Partial/dark moon to cold 0.75 0 0.5 0.5 

Full/visible moon to cold 0.25 -1 0 -0.75 
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Aggregated mode values for the four weather seasons were summarized to 
depict the trends in the aggregated causal effects for the winter, summer, au-
tumn and spring seasons. 

Implementation of the fuzzy cognitive maps models for weather lore  

In this research the membership functions for the terms of the causal effect were 
classified to signify strength of cause based on values in the range [-1, 1] as 
follows: 

0.5 _ 1

0 0.5

0

0.5 0

1 _ 0.5

strong positive

positive

none

negativee

strong negative

< ≤
< ≤

=
− < <

− ≤ < −
 

Equation 2: Representation of concepts relations using fuzzy cognitive maps. 

The relations between the concepts were represented by a statistically weighted 
n x n adjacency matrix W, which mapped the causal weights at the intersection 
of concepts pair’s (see Equation 3). 

11 1

1

...

.
j

i ij

w w

W

w w

� �
� �= � �
� �� 	  

Equation 3: The value n represents the number of interacting concepts that falls 
in the range 1 ( , )i j n≤ ≤  

The general rule of fuzzy cognitive maps (Din and Cretan, 2014; Najafi and 
Afrazeh, 2008) was applied i.e. for any concept ci, the causal effect of concept ci 
on another concept ci is wij 

The final (Kenya and South Africa) fuzzy cognitive maps were formulated as n x 
n matrices W, using the results of statistical analysis. The adjacency matrices 
were filled with values wij indicating the strength of the relationship between 
interacting concepts at position cij. A positive sign (+ or no sign) was used before 
the value to indicate an enhancing effect while a negative sign (-) was used to 
indicate a depressing effect. The value of zero (0) was used to mean that con-
cept ci has no causal effect to an adjacent concept cj 
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Table 7: Final fuzzy cognitive map for winter season. 
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Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.75 -0.75 1.00 

Medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.25 0.25 -0.50 0.75 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -0.50 1.00 0.50 0.00 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.75 0.50 0.00 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.50 0.00 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.75 -0.75 0.75 

Partial/dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 -0.50 -0.25 0.75 

Full/visible moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.25 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 8: Final fuzzy cognitive map for summer season. 
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Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.75 -0.75 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -1.00 -0.75 0.50 

Partial/dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.75 -0.75 0.00 

Full/visible moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.75 1.00 1.00 -1.00 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 9: Final fuzzy cognitive map for autumn season. 
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Table 10: Final fuzzy cognitive map for spring season. 
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Influential sky weather concepts (also referred to as astronomical and meteoro-
logical weather concepts) were portrayed through weather lore domain under-
standing and analysis (high clouds; low clouds; medium clouds; clear sky; many 
stars; rainbow; lightning; partial/dark moon; full/visible moon; rain; dry; hot; cold). 

The seasonal fuzzy cognitive maps were accomplished by analyzing and inter-
preting the relations between the sky concepts. The analysis results permitted a 
more understanding concerning the structural properties and dynamics of the 
seasonal fuzzy cognitive maps. The type and the role of each sky concept within 
seasonal fuzzy cognitive maps were accomplished by analyzing the density, 
indegree, outdegree and centrality measures 

FCMs are found to be a useful mechanism for representation of interactions in 
complex systems since they have been used successfully in many different 
application areas. Collections of important visual weather lore concepts were 
used to guide in design of the FCM. As a first step only astronomical factors 
related to cloud physics only were used to come up with a model of the FCM. 
Causal links between visual weather concepts have been investigated using two 
case studies in which results were compared and aggregated to build up com-
mon knowledge. The results of statistical knowledge were used to formally 
represent seasonal weather knowledge using fuzzy cognitive maps in the form of 
connection matrices and network graph. 

In further research the FCM can be enhanced by incorporating sub FCMs from 
other WL aspects such as animals or plants behaviours. With the complexity of 
incorporation of many concepts from sub FCM models, the FCM outputs after 
can be demonstrated by machine learning methods.  

The applications and preservation of the weather lore need to be recognized by 
policy bodies. This will assure that research findings are put in economic use as 
well as advancing research outputs. 
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