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ABSTRACT

The creation of scientific weather forecasts is troubled by many technological challenges
while their utilization is dismal. Consequently, the majority of small-scale farmers in Africa
continue to consult weather lore to reach various cropping decisions. Weather lore is a
body of informal folklore associated with the prediction of the weather based on indige-
nous knowledge and human observation of the environment. As such, it tends to be more
holistic and more localized to the farmers’ context. However, weather lore has limitations
such as inability to offer forecasts beyond a season. Different types of weather lore exist
and utilize almost all available human senses (feel, smell, sight and hear). Out of all the
types of weather lore in existence, it is the visual or observed weather lore that is mostly
used by indigenous societies to come up with weather predictions. Further, meteorologists
continue to treat weather lore knowledge as superstition partly because there is no means
to scientifically evaluate and validate it. The visualization and characterization of visual sky
objects (such as moon, clouds, stars, rainbow, etc) in forecasting weather is a significant
subject of research. In order to realize the integration of visual weather lore knowledge in
modern weather forecasting systems, there is a need to represent and scientifically
substantiate weather lore. This article is aimed at coming up with a method of organizing
the weather lore from the visual perspective of humans. To achieve this objective, we
used fuzzy cognitive mapping to model and represent causal relationships between
weather lore concepts and weather outcomes. The results demonstrated that FCMs are
efficient for matrix representation of selected weather outcome scenarios caused visual
weather lore concepts. Based on these results the recommendation of this study is to use
this approach as a preliminary processing task towards verifying weather lore.

Keywords: Weather lore, indigenous knowledge, drought forecasting, fuzzy
logic, cognitive mapping.

INTRODUCTION

In the olden lifestyles, the scientific (especially Seasonal Climate Forecasts
(SCFs)) weather forecasting methodologies in use today were not available;
people observed (Risiro, Mashoko, Tshuma and Rurinda, 2012) their environ-
ment to determine weather patterns. Clues to future weather patterns were
realized by looking at the skies, using the behavior of animals, birds, as well as
plants (Baliscan, 2001; Dube and Musi, 2002); it was also based on beliefs and
myths (Pasztor, 2010; Warren, 1998). Among the observed indicators, it is the
observation of the sky (Mountaineering Council of Scotland, 1998) that played
the greatest role as a weather prediction method. For instance, a red sky at
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sunset indicated dry weather condition while red sky at sunrise meant rain was
expected. It has been demonstrated that cloud patterns can be used as accurate
weather predictors (Mountaineering Council of Scotland, 1998). The rainbow has
also been an indicator of weather as it refracts the light and breaks it down into
colors (Zuma-netshiukhwi, Stigter and Walker, 2013); for instance, a rainbow in
the morning to the west usually indicated approaching rains.

We can define weather lore as the body of informal folklore associated with the
prediction of the weather based on indigenous knowledge (IK) and human
observation of the environment (Chiwanza, Musingafi and Mupa, 2013). In order
to investigate relationships in weather lore concepts, a considerable collection of
weather lore is required so that it can be prepared for comparison and possible
validation (Anandaraja and Rathakrishnan, 2008). One of the problems in testing
the confidence of weather lore on predicting weather is that there are wide
varieties of weather lore which are found in the details of indigenous sayings
exhibiting region and pattern variations (United-Nations, 2004). Most of the
weather lore is identified by the communities using it to support their livelihoods
and is not globally available for comparison and validation (Zuma-netshiukhwi,
Stigter and Walker, 2013). Sufficient process of gathering IK on weather lore
would be the first step towards representing weather lore in order to produce
some useful information. Since forecasting weather accurately is a challenge
even with today's supercomputers (Lynch, 2008), represented weather lore can
be processed further and incorporated into modern weather prediction systems.

A number of researchers have been directing efforts towards promoting weather
lore especially on disaster management (Enock, 2013; Johansson and Achola,
2013; Okonya and Kroschel, 2013) and how to integrate them to the SCFs
(Chagonda et al., 2015). This is driven by the realisation that SCFs and weather
lore complement each other (Abdulrashid, 2013; Masinde, Bagula and Muthama,
2013) and that the rich weather lore could help in making the forecasts more
relevant to the local people’s context. Though having generated promising
results, such integration initiatives still face many challenges (Chiwanza, Mus-
ingafi and Mupa, 2013; Johansson and Achola, 2013; Khalala, Makitla, Botha
and Alberts, 2014; Msuya and Programme, 2007). They for instance tend to take
the approach of using the weather lore to enrich the SCFs and hence losing
most of the weather lore’s richness especially the more sustainable indigenous
drought mitigation strategies (Masinde and Bagula, 2012). Weather lore is
holistic (Acharya, 2011; Chinlampianga, 2011); it describes the effects of the
forecast on the people’s way of life. It gives the details of the rain season in
terms of onset, cessation, general distribution (are there dry spells in between),
and its suitability for different crops, among others. The forecast further gives
decision support information such as when to start and stop planting, how many
times planting should be done, what to plant, how to plant and even where to
plant (Masinde and Bagula, 2012). Weather lore is so dynamic, in the short-term
(up to 24 hours) for example, it gives very accurate information on rainfall tim-
ings, including the nature (hails) and direction of the rain. Trying to represent
these aspects using conventional system (Shoko, 2012) would yield an incom-
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prehensible complex system (Fajman, 2011). On the other hand, fuzzy cognitive
mapping (FCM) can model imprecise data and nonlinear functions of arbitrary
complexity and that it is based on natural language (Singh, H., Singh, G. and
Bhatia, 2013); this makes it an appropriate vessel for modelling weather lore for
use in forecasting sub-Saharan droughts systems.

Knowledge in systems that are characterized by uncertainty (Nakashima and
McLean, 2012; Pappenberger et al., 2005) and complex processes can be
represented using fuzzy cognitive mapping (a combination of fuzzy logic and
cognitive mapping) (Hossein, Zarandi, Khademian and Minaei-bidgoli, 2012).
Fuzzy logic is derived from fuzzy set theory (Stylios and Groumpos, 2004)
dealing with reasoning that is approximate rather than precisely deducible from
classical predicate logic. A cognitive map is a representation and reasoning
model on causal knowledge (Kanagasabhapathy and Kumaravel, 2014) in the
form of directed, labelled and cyclic graph whose nodes represent causes or
effects and whose arcs represent causal relations between these nodes. Cogni-
tive maps represent beliefs (knowledge) which are laid out about a given domain
of interest and are useful as a means of decision support. Fuzzy cognitive map-
ping has proven efficient for solving problems in which a number of decisions
and uncontrollable variables are causally interrelated. FCM is a powerful tool in
decision making which aims at capturing the functioning of a complex system
based on human understanding. FCMs are made up of signed diagraphs (Dis-
sanayake and AbouRizk, 2007; Maitra and Banerjee, 2014) with feedback that
describes the causal links between concepts. To come up with common FCM,
knowledge from different experts can be accumulated through combining several
FCMs into a big FCM by merging same concepts (Jones, 2010).

THEORETICAL FRAMEWORK

Fuzzy cognitive maps can be used to represent the causal knowledge and
experience, which have been accumulated over a certain period on a complex
phenomenon; this makes them a good candidate for modelling and representing
weather lore. In modelling weather lore, an FCM is developed using human IK
experts (Msuya and Programme, 2007) that know the operation of the system
and its behaviour in different circumstances. Weather lore is hardly documented;
it is orally (Chiwanza, Musingafi and Mupa, 2013; Msuya and Programme, 2007;
Suter, 2013) passed on from one generation to the next. In the face of events
such as industrialisation and modernisation, a significant proportion of weather
lore has been lost (Owiny and Maretzki, 2014; United-Nations, 2004). The ability
of FCMs to work efficiently with missing data in modelling systems with nonline-
arities and surrounding uncertainty (Carvalho, 2010) will help re-dress this. This
(ability of FCMs) is facilitated by the use of artificial neural networks (Rahul and
Khurana, 2012) techniques that incorporate ideas from fuzzy logic, to create
decision support systems (Singh, H., Singh, G. and Bhatia, 2013).
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Modelling of Fuzzy cognitive maps

In modelling FCMs, cognitive maps are used to represent causal relationships
among concepts that could be assigned values (Calais, 2008). Causal relation-
ships between two concepts can be of types — positive, negative or neutral
(Kanagasabhapathy and Kumaravel, 2014). Increase in the value of one concept
yields a corresponding positive or negative increase in the concepts connected
to the concept. FCMs consist of factor-concepts (inputs) and decision-concepts
(outputs). The relationship between two concepts in FCMs can take a value in an
interval called weight (Praveena et al., 2012).

An FCM (Figure 1) is represented as a directed graph (Carvalho, 2010) where
each node represents a concept (representation of a characteristic of the system
such as events, actions, goals, values and trends being modelled by the FCM).
Each arc (E) is directed as well as weighted, and represents a causal link be-

tween concepts, showing how concept C, causes concept C..

Figure 1: A sample FCM.

In FCMs the directed edge E; from causal concept C, to concept C, measures
how much C, causes C, The edges E, take values in a fuzzy causal interval [0,1]
or [-1,1] according to system specifics. E; = 0 indicates no causality, E;> 0 indi-
cates causal increase C, increases as C, increases (or C; decreases as C, de-
creases). E;< 0 indicates causal decrease or negative causality. C decreases as
C, increases (and or C, increases as C, decreases). In an FCM, the state of a
node C, is determined by the sum of its inputs modified by causal link weights,
and a non-linear transfer function S (Equation 1).

n—1

at+)=SQ c,)ow;)
j=0

Equation 1: Where t=concept t; t+1=next concept after concept t; w=causal
weight; S= sum.

Updating the states of an FCM includes feeding the FCM with a stimulus state
vector until it converges to one of the three possibilities (Karagiannis and
Groumpos, 2013) i.e. state vector remains unchanged; a sequence of state
vectors keep repeating or the state vector keeps changing indefinitely. The
evolved states of an FCM can be useful in decision support. FCMs can be used
in problem domain analysis by: (a) determining how significant a concept is; (b)
determining the degree of influence of a concept on other concepts; (c) deter-
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mining the impact of a change in a concept on other concepts and; (d) determi-
nation of the evolution of a system with time, given a set of values for all con-
cepts at a point in time (Carvalho, 2010). When the nodes of the FCM are fuzzy
sets, then they are called as fuzzy nodes. FCMs with edge weights or causalities
from the set {.1, 0, 1} are called simple FCMs. An FCM with cycles is said to
have a feedback and as such, the FCM is called a dynamical system.

Finite number of FCMs can be combined together to produce the joint effect of
allthe FCMs. Let E, E,, ., E, be the adjacency matrices of the FCMs with nodes
C,, C,, ., C, then the combined FCM is computed by adding all the adjacency
matrices E,, E,, ., E, . The combined FCM adjacency matrix is denoted by E = E,
+E,+ ..+ E

21 )

Fuzzy cognitive maps application domains

To predict or forecast (Sperry and Jetter, 2012), the concept of fuzzy logic can
be combined with fuzzy cognitive maps (FCM) to determine the relationship
between various input factors. Modelling and controlling (Elpiniki, 2011) of
complex problems qualitatively uses FCMs as a tool for answering what if ques-
tions during the solution planning stage. To facilitate reasoning in complex
systems fuzzy logic and FCMs can model complex social problems and the
dynamic causal relationships of the context variables in a virtual world where the
variables update their states with respect to different update times. FCMs are
simple graphical representation, and as such, they can be used to make
knowledge widely available through computer systems. FCMs are able to incor-
porate experts’ knowledge and represent (Papageorgiou, 2008) knowledge in a
symbolic manner to relate states, processes, policies, events, values and inputs.
FCMs have been used effectively in medical fields (Guerram, Maamri and
Sahnoun, 2010) for decision making, diagnosis and predictive classification, with
the experience of many experts and knowledge from historical data combined to
form the FCMs.

DESIGNING FUZZY COGNITIVE MAPS

FCMs constructed by experts using prior knowledge do not acquire the implicit
knowledge from the data of systems directly as this may distort the dynamical
behaviour of the system (Aguilar, 2005) in which knowledge representation and
reasoning are based on FCMs. A prediction and control model based on fuzzy
cognitive maps can be developed followed by constructing a genetic algorithm
(Dissanayake and AbouRizk, 2007) for finding the connection matrix of the FCM.
Fuzzy cognitive map models can be tested dynamically though simulations
(Xirogiannis and Glykas, 2004) where scenarios are introduced and predictions
made by viewing dynamically the consequences of the corresponding actions.
To get complex personal knowledge concerning concepts, a controlled interview
can be used and information transcription from recorded interview to the concept
map formalized (Sperry and Jetter, 2012). Fuzzy cognitive maps are recorded in
the form of matrices of relations between concepts (Din and Cretan, 2014). A
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learning method that can improve the speed of learning process and the quality
of learning FCMs with more nodes (Chrysafiadi and Virvou, 2013; Stach, Kurgan
and Pedrycz, 2007), was proposed to construct causal graph based on historical
data and by using Tabu Search (Pang, 2013) (a metaheuristic search method
employing local search methods used for mathematical optimization). FCMs can
be constructed using a systematic approach where concepts are gathered from
survey respondents followed by taking into account the expert judgment in
causal relationships between the concepts. A prediction algorithm can be con-
structed using fuzzy cognitive map and fuzzy c-means clustering algorithm was
where a genetic algorithm is applied to learn weights of the FCM (Rangarajan et
al., 2012). This way, a fully learned fuzzy cognitive map can be used to repre-
sent, store fuzzy logic relationships of fuzzy time series and realize prediction
(Singh, H., Singh, G. and Bhatia, 2013). Fuzzy cognitive maps can be designed
using crisp decision trees (Elpiniki, 2011; Jones, 2010) (well known intelligent
techniques that extract rules from both symbolic and numeric data) that have
been fuzzified. Fuzzy rules can be combined and used to express non-
monotonic causality in fuzzy cognitive maps along with aggregation operators for
combining multiple causal influences. In situations where domain experts are not
able to express the causal relationships data driven methods for learning FCMs
can be used (Stach, Kurgan and Pedrycz, 2007). Heuristically, FCM learning, an
FCM construction can be accomplished in the following steps: (a) identification of
concepts and its interconnections determining the nature (positive, negative or
null) of the causal relationships between concepts; (b) initial data acquisition by
the expert opinions and/or by an equation analysis when the mathematical
system model is known; (c) submitting the data from the expert opinions to a
fuzzy system which output represents the weights of the FCM; (d) weight adap-
tation and optimization of the initially proposed FCM, adjusting its response to
the desired output; and (e) validation of the adjusted FCM. The process of
gathering and integrating knowledge from experts in form of fuzzy cognitive
maps can be enhanced with choices of graph-based learning methods in order
to improve the effectiveness of the final digraphs.

Research hypothesis

FCMs can be used efficiently for modelling and representing weather lore as
used in traditional communities for seasonal weather forecasting.

METHODOLOGY

Structured interviews (Duan and Hoagwood, 2013; Preist, Massung and Coyle,
2014) were done in the South African community of KwaZulu-Natal and Kenya
(Taita-Taveta County). During the interview sample astronomical and meteoro-
logical images were exposed to informants for identification and description of
associated weather. In each of the case study locations private venues were
arranged for interview sessions. The research population was the community
members of the study communities. The systematic purposive sampling method
(Risiro, Mashoko, Tshuma and Rurinda, 2012) was used to select 50 respond-
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ents (perceived knowledgeable persons) comprising of both traditional farmers
and herdsmen and local residents.

Data was collected with the help of research assistants (selected students on
vacation and volunteers) from the communities.

The research assistants were trained with regard to interpretation of the ques-
tionnaire, interviewing guidelines and research ethics. An introductory letter from
the university was used to introduce the researchers. The collected data was
digitized for storing in a computer and for transferring to the main researcher. A
spreadsheet was used for easy storage and retrieval of data. For safety and
recovery of information backup copies of the data were made and stored sepa-
rately.

Structured interviews (Stern and Easterling, 1999) using questionnaires proved
satisfactory to gather qualitative information. The data collection method permit-
ted the respondents enough time and capacity to question their opinions on the
visual weather lore domain. The focus points of the interviews were decided by
the main researcher since there were aspects in the weather lore domain the
research was interested in exploring (visual astronomical and meteorological).
The main objective of using structured interviews was to understand the re-
spondent(s) point of view so that individual opinions about the visual weather
lore could be analyzed.

Qualitative research (Duan and Hoagwood, 2013) was used to describe the
causal links between visual weather lore and weather outcomes. Quantitative
methods were used to establish statistically significant conclusions about the
populations in the case study locations by analyzing the gathered data from the
representative sample of the population.

The research used purposive sampling (Meier, 2011) to target a particular
category of respondents. The study targeted respondents in the rural communi-
ties of KwaZulu-Natal (South Africa) and Taita-Taveta (Kenya) where farmers
and people who rely on weather for their activities were located. The major
drawback was that the research incorporated other categories of people such as
teachers since most farmers and herdsmen are difficult to get during daytime
working hours. A general category of respondents who were residents in the
case study locations were considered.

The data analysis involved identifying key indicators of causal effects between
visual weather lore and weather outcomes (also referred to as concepts in this
research). These indicators were were recorded by scales of magnitudes of
effects between the concepts (strong negative, negative, none, positive and
strong positive).

The collected data was set up in an SPSS codebook with some scales of semi-
informal transformations. In order to derive common knowledge the data was
analyzed using both quantitative (such as percentage or number of respondents)
and descriptive statistics (mode and mean of categorical responses). The ana-
lyzed data was represented as group knowledge (on visual astronomical and
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meteorological weather concepts and the causal effects on short term weather)
using statistical summaries.

The responses for all the respondents in case study locations were collated,
analyzed, and summarized to answer the research questions. The analysis was
categorized in terms of the following sections which provided answers to specific
research objectives.

(a) Study area and demographic information of the respondents — the interest at
this point was to understand the way of life and economic activities of the
people. This was also reflected in the experience and length of stay in the
communities.

(b) Impact of weather on daily activities of the respondents — the interest of this
was to determine if weather affects the daily activities of the people in the
communities. The answer to this section provided a clue whether or not the
communities relied on weather and therefore they use some means to pre-
dict weather.

(c) Means of forecasting weather as used by respondents — the interest at this
point was to determine the frequently used methods of predicting weather
outcomes. Since some communities in rural areas do not rely on modern
technology, answers to this provided a clue if the people relied on traditional
visual weather indictors.

(d) Respondent(s) knowledge of visual (meteorological and astronomical)
weather indicators — the interest in this was to determine if the people had
knowledge on visual (astronomical or meteorological) weather indicators.
The knowledge of this indicator provided a clue whether or not they used
visual weather lore to predict weather outcomes.

(e) Causal links and effects between the visual weather indicators and weather
outcomes — the interest of this was to determine if people could link between
visual weather indicators and weather outcomes. The analysis results of this
section gave a clue on whether links exist between visual weather indicators
and weather outcomes.

(f) Identification of weather seasons characteristics — the interest at this point
was to determine the pattern in weather seasons between the case studies
and to come up with a general trend in the weather seasons.

SEASONAL WEATHER KNOWLEDGE REPRESENTATION

A fuzzy cognitive mapping (FCM) based prediction scenario process consisting
of six steps, was used. This process has been used by previous researchers to
come up with fuzzy cognitive maps based scenario prediction systems (Jetter,
2011).

The first FCM step was the clarification of information requirements (Jones,
2010). This step was achieved by using literature review together with prelimi-
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nary studies that were aimed at understanding the visual weather lore domain. In
this step the scope of the visual weather lore domain to be investigated was
defined. The second step was to define a plan for gathering relevant weather
lore related information. This step allowed the identification of the sources of
visual weather lore knowledge as well as selection of appropriate methods for
gathering visual weather lore knowledge. The third step involved gathering of
knowledge that was achieved through two case studies. In this step the final
output was data that was organized with causal relations between visual weather
lore and weather outcomes. In the fourth step conceptual seasonal fuzzy cogni-
tive maps were designed. The fifth step was the design of detailed fuzzy cogni-
tive maps that had represented weather lore causal effects between the
combined case studies. In this step the selection of input variables and functions
for fuzzy cognitive maps were designated. The final step involved testing the
fuzzy cognitive maps, interpretation of resulting predicted weather outcomes
(outputs).

RESULTS

Range of visual weather lore knowledge

The study considered visual weather lore aspects from the world perspective; for
this, literature was reviewed to gain insights on the global perceptions of weather
lore. A wide variety of visual astronomical and meteorological weather indicators
were identified from literature (Mwagha and Masinde, 2015) and considered for
further investigation (Table 1).

Reduction of the identified visual weather concepts

Based on clouds patterns, colour and shape characteristics, the following clouds
characteristics were linked to specific cloud types: cirrus, cirrostratus, cirrocumu-
lus, high clouds, low clouds, medium clouds, blue clouds, brown clouds, cauli-
flower clouds, feathery clouds, filaments clouds, grey clouds, layered clouds,
nimbus, red clouds, rippled clouds, tower clouds, uniform clouds and white
clouds.

Using knowledge on associations and characteristics of clouds, the clouds
concepts were re-grouped according to levels. For instance, high clouds consist-
ed of cirrus, cirrostratus and cirrocumulus clouds which were characterized by
being white and taking the shapes of feathers, filaments or hair. The high clouds
appeared yellow or red at sunset (Table 2).
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Table 1: Initial weather indicators.

Object Indicators
Cloud color White Grey
Cloud types Altocumulus [ Altostratus Cirrocumulus | Cirrostratus | Cirrus Cumulonimbus | Stratocumulus | Stratus
Cloud shape Cauliflower | Towers
Cloud patterns | Feathery Layered Rippled Uniform Filaments
Cloud levels Low Medium High
Sun Hallo around
Stars Dull Twinkle
Stars Filled Few
Moon phase New Full Dark Transition Hallo around
Night sky Clear Dark Red
Lightning High Low
Rainbow Morning Evening

Table 2: Grouping of clouds by levels.

Cloud Group Cloud Type Characteristics

High clouds Cirrus Feathery, white, filaments, hair like, yellow/red at sunset/rise

Cirrostratus Creates halo around sun/moon, white, can cover all sky, hair like, smooth
smooth

Cirrocumulus Clusters of small round white patches, ripples/grains

Middle clouds Altostratus Grey/bluish cloud sheets, thin can reveal sun
Altocumulus White/grey patches, rounded masses or rolls

Low and vertical Stratus A fog not far from ground, gray cloud layer, a uniform base

clouds

Stratocumulus Layered, Gray or whitish patch, honeycomb appearance, rounded masses

or rolls

Nimbostratus Dark rain clouds, covers sky, blocks sun, grey, continuous rain cloud,

results from thickening altostratus

Cumulus Fair weather, cauliflower, detached, rising mounds, domes or towers

Cumulonimbus

Brings and goes with rain, thunderstorm cloud, mountain or huge tower

Using knowledge on concept associations, the initial concepts were condensed
by clustering similar and restating opposing concepts leading to a fewer number
of concepts. The notion of condensing the concepts was necessitated by fuzzi-
ness in the occurrence of concepts meaning that some concepts could overlap
and inherit characteristics of other concepts. The clouds concepts were reduced
to high, medium and low level clouds respectively. The dark and clear sky were
considered to be opposing each other hence by identifying one concept, the
other could be determined as the converse. Twinkling and many stars were
combined to represent one concept, while dull and few stars were combined to
come up with a new concept. The twinkling/many and dull/few stars were deter-
mined as opposing hence by identifying one, the other is determined as the
converse. The rainbows occurring at any time of the day were reduced to repre-
sent a single concept. The concepts relating to lightning (much and less) were
taken to represent a single concept. Due to the fact that changes in weather
outcomes occur mostly between the full/visible to dark moon transitions, the
concepts dark moon, full moon, decreasing moon, increasing moon and new
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moon were condensed to two concepts — full/visible moon and partial/dark moon.
The weather outcomes were reduced to only four concepts (rain, hot, cold and
dry) which proved significant to the daily activities of humans. The concepts,
cloudy and clear skies were considered redundant while the concepts of windy
and calm were considered having non visual characteristics. The final list of
interacting concepts were determined as: high clouds; low clouds; medium
clouds; clear sky; many stars; rainbow; lightning; partial/dark moon; full/visible
moon; rain; dry; hot and cold

CASE STUDY OF KWAZULU-NATAL PROVINCE OF SOUTH AFRICA

Description of the study area

KwaZulu-Natal (Figures 1 and 2) is South Africa’s third smallest province with a
total area of 94,361 square kilometers and taking up 7.7% of South Africa's land
area. The province has the second largest population in South Africa (10.3
million people in 2015). Climate in the coastal areas of KwaZulu-Natal is subtrop-
ical with summer temperatures rising to over 30° celsius. KwaZulu-Natal gets the
most rain (over 1 000mm a year) in South Africa, which occurs between the
months of October and April and mostly during the summer months of December
to February in which thunderstorms can occur almost every afternoon. During
winter seasons, the temperatures are usually mild to warm (average are over 20°
celsius) and the probability of rain is low. KwaZulu-Natal has fertile soils making
agriculture the major economic activity.

Figure 1:
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Figure 2: Map of KwaZulu-Natal.

Case Two: Taita-Taveta county of Kenya
Description of the study area

Taita-Taveta (Figures 3 and 4) is an arid and semi arid (ASAL) county in Kenya
covering an area of 17,083.9 km2. The County lies between 2° 46’ north to 4°
10’ north and longitudes 37° 36’ east to 30°14’ east. The altitude of Taita-Taveta
varies between 481m above sea level in the lowlands to 2,200m above sea level
for highlands, giving two distinct climatic characteristics, with the hills experienc-
ing lower temperatures (as low as 18.2°C) compared to the lower zones with an
average temperature of 24.6°C. The average temperature in the county is 23°C.
The county is divided into highlands zone, dry lowlands zone and some volcanic
foothills. The highlands receive high rainfall and are suitable for horticultural
farming. The county experiences two rain seasons the long rains between the
months of March and May and the short rains between November and Decem-
ber. The rainfall distribution is uneven in the county, with the highlands receiving
higher rainfall than the lowland areas. The highlands have cooler temperatures
while the lowland areas experience higher temperatures. The major economic
activities in the county include ranching and farming (such as maize and sisal).
(Taita-Taveta County Government Profile, 2015).
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Figure 3: Data points at KwaZulu-Natal.
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Figure 4: Map of Taita-Taveta.

Significance of weather on daily activities and knowledge of visual weather
indicators

The analysis of the two case studies depict that weather is significant on human
activities (Figure 5). This is depicted by the statistics that majority of humans
(58% in South Africa and 71% in Kenya) stating that sometimes weather affects
their daily activities. Majority (above 50%) of the respondents in both case
studies stated that they often check for weather forecasts. On the knowledge of
visual weather indicators most of the respondents in both case studies stated
that they knew (over 50%) some visual indicators and that the visual indicators
help (over 50%) them to predict weather.



USING FUZZY COGNITIVE MAPS IN MODELLING & REPRESENTING WEATHER LORE FOR SEASONAL WEATHER FORECASTING

Ikanga. .MSII’IB&

Mwakingali

. Kariakoo.,
Mariwenyi .

Sofia
. Kaloleni
Maweni
Gimba Kirumbi
Miegwa. Mgange. .Muwabiti
Kalambe. umanzi
Kilundi, -ranyanga

O Wiarapu..Te 1
Zongowani. Man

-Talio™*“

.Buguta .Sasenyi

Figure 5: Data points in Taita-Taveta.

Causal effects between astronomical and meteorological concepts: Kenya
vs South Africa

The mode (preferred since it is the most repeated) and mean knowledge (sepa-
rately for Kenya and South Africa) were determined for each set of interacting
concepts. The analysis (Table 3) showed that weather season’s patterns in
Kenya and South Africa correspond but the extremes (between high and low
values) vary significantly.
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Table 3: Relation between concepts (Kenya vs South Africa).

Concept to Concept

Causal Effect (mode Values)

Causal Effect (mean Values)

Kenya South Africa Kenya South Africa
High clouds to low clouds .0 0 -1 -2
High clouds to medium clouds .0 0 -1 -3
High clouds to clear sky 5 5 5 5
High clouds to many stars 0 .0 -1 -1
High clouds to rainbow 0 .0 -1 .0
High clouds to lightining -1.0 -1.0 -.8 -9
High clouds to partial/dark moon .0 .0 .0 .0
High clouds to full/visible moon .0 .0 A A
Medium clouds to low clouds .0 .0 .0 .0
Medium clouds to clear sky -5 -5 -5 -5
Medium clouds to many stars .0 .0 -2 -2
Medium clouds to rainbow .0 -1.0 -3 -5
Medium clouds to lightining .0 .0 A A
Medium clouds to partial/dark moon 0 .0 A A
Medium clouds to full/visible moon .0 -1.0 -2 -5
Low clouds to clear sky -1.0 -1.0 -8 -9
Low clouds to many stars .0 .0 -1 -1
Low clouds to rainbow .0 .0 -1 .0
Low clouds to lighining .0 .0 A .0
Low clouds to partial/dark moon .0 .0 A .0
Low clouds to full/visible moon .0 .0 -2 -1
Clear sky to many stars 0 .0 2 A
Clear sky to rainbow .0 .0 A A
Clear sky to lightining -1.0 -1.0 -8 -8
Clear sky to partial/dark moon .0 .0 -2 -5
Clear sky to full/visible moon .0 .0 2 2
Many stars to rainbow .0 .0 2 A
Many stars to lightining .0 .0 -2 -1
Many stars to partial/dark moon .0 -5 -2 -3
Many stars to full/visible moon .0 .0 3 3
Rainbow to lightining .0 0 -3 -2
Rainbow to partial/dark moon .0 .0 .0 .0
Rainbow to full/visible moon .0 .0 A A
Lightining to partial/dark moon .0 .0 2 A
Lightining to full/visible moon .0 .0 -2 -1
Partial/dark moon to full/visible moon .0 .0 -2 -1
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Table 4: Summary of causal effects.

Seasonal causal effects (modal Values)

Concept to Outcome Winter Summer Autumn Spring
e | fiica | oM@ | Nica | Xema | higa | Kewa | oica
High clouds to rain -1.0 .0 -1.0 -1.0 -1.0 -5 -1.0 -5
Low clouds to rain 5 5 .0 1.0 1.0 1.0 5 5
Medium clouds to rain .0 5 5 5 5 5 -5 5
Clear sky to rain -1.0 .0 -1.0 -5 -1.0 -1.0 -1.0 -5
Many stars to rain -1.0 .0 -5 -1.0 -1.0 -1.0 -1.0 -1.0
Rainbow to rain -5 -5 -5 -5 -5 -1.0 -5 -5
Lightning to rain 5 5 .0 1.0 1.0 5 1.0 1.0
Partial/dark moon to rain 5 .0 5 5 5 5 5 5
Full/visible moon to rain .0 .0 -5 -1.0 -5 -5 -5 -1.0
High clouds to dry 1.0 1.0 1.0 1.0 1.0 5 1.0 5
Low clouds to dry 5 1.0 -1.0 -1.0 -1.0 -1.0 -5 5
Medium clouds to dry -5 1.0 -5 -5 -5 -1.0 5 -5
Clear sky to dry 1.0 1.0 1.0 1.0 1.0 5 1.0 5
Many stars to dry 5 1.0 1.0 1.0 1.0 -1.0 1.0 5
Rainbow to dry .0 1.0 5 5 5 5 5 -5
Lightning to dry -5 -1.0 -1.0 -1.0 -1.0 -5 -1.0 -1.0
Partial/dark moon to dry -5 -5 -5 -1.0 -5 -5 -5 -1.0
Full/visible moon to dry 5 5 1.0 1.0 5 5 5 -1.0
High clouds to hot 5 -5 1.0 1.0 5 5 1.0 5
Low clouds to hot -1.0 -5 -1.0 -1.0 -5 -5 -5 -5
Medium clouds to hot -5 -5 -5 1.0 5 -1.0 5 -5
Clear sky to hot 5 5 1.0 1.0 1.0 5 1.0 1.0
Many stars to hot 5 5 1.0 1.0 1.0 -1.0 1.0 5
Rainbow to hot 5 5 1.0 5 5 5 5 5
Lightning to hot -5 -1.0 -1.0 -5 -5 -5 -1.0 -5
Partial/dark moon to hot -5 .0 -5 -1.0 -5 -5 -5 -5
Full/visible moon to hot 5 5 1.0 1.0 1.0 5 5 1.0
High clouds to cold -5 1.0 -1.0 -1.0 -1.0 5 -1.0 -1.0
Low clouds to cold 1.0 1.0 5 5 5 5 5 5
Medium clouds to cold 5 1.0 5 -1.0 5 5 5 5
Clear sky to cold -5 5 -1.0 -1.0 -1.0 5 -1.0 -1.0
Many stars to cold -5 5 -5 -1.0 -5 5 -1.0 -1.0
Rainbow to cold -5 5 -5 -1.0 -5 5 5 -5
Lightning to cold 5 1.0 5 5 1.0 5 1.0 5
Partial/dark moon to cold 5 1.0 -5 5 5 5 5 5
Full/visible moon to cold -5 1.0 -1.0 -1.0 -5 5 -5 -1.0
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Aggregation of seasonal knowledge from case studies

To represent common knowledge for the two case studies, joint statistics mode
values were determined for:

* between the visual astronomical and meteorological concepts (Table 5) and

* between the astronomical and meteorological concepts to weather outcomes
in the various seasons (Table 6).

Table 5: Aggregated causal effect (Kenya and South Africa).

Concept to concept Value Concept to concept Value
High clouds to low clouds 0 Low clouds to lighining 0
High clouds to medium clouds 0 Low clouds to partial/dark moon 0
High clouds to clear sky 05 Low clouds to full/visible moon 0
High clouds to many stars 0 Clear sky to many stars 0
High clouds to rainbow 0 Clear sky to rainbow 0
High clouds to lightining -1 Clear sky to lightining -1
High clouds to partial/dark moon 0 Clear sky to partial/dark moon 0
High clouds to full/visible moon 0 Clear sky to full/visible moon 0
Medium clouds to low clouds 0 Many stars to rainbow 0
Medium clouds to clear sky -0.5 Many stars to lightining 0
Medium clouds to many stars 0 Many stars to partial/dark moon -0.25
Medium clouds to rainbow -0.5 Many stars to full/visible moon 0
Medium clouds to lightining 0 Rainbow to lightining 0
Medium clouds to partial/dark moon 0 Rainbow to partial/dark moon 0
Medium clouds to full/visible moon -0.5 Rainbow to full/visible moon 0
Low clouds to clear sky -1 Lightining to partial/dark moon 0
Low clouds to many stars 0 Lightining to full/visible moon 0
Low clouds to rainbow 0 Partial/dark moon to full/visible moon 0




USING FUZZY COGNITIVE MAPS IN MODELLING & REPRESENTING WEATHER LORE FOR SEASONAL WEATHER FORECASTING

Table 6: Kenya and South Africa aggregated seasonal causal effects.

Concept to outcome Winter Summer Autumn Spring
High clouds to rain -0.5 -1 -0.75 -0.75
Low clouds to rain 0.5 0.5 1 0.5
Medium clouds to rain 0.25 0.5 0.5 0
Clear sky to rain -0.5 -0.75 -1 -0.75
Many stars to rain -0.5 -0.75 -1 -1
Rainbow to rain -0.5 -0.5 -0.75 -0.5
Lightning to rain 0.5 0.5 0.75 1
Partial/dark moon to rain 0.25 0.5 0.5 0.5
Full/visible moon to rain 0 -0.75 -0.5 -0.75
High clouds to dry 1 1 0.75 0.75
Low clouds to dry 0.75 -1 -1 0
Medium clouds to dry 0.25 -0.5 -0.75 0
Clear sky to dry 1 1 0.75 0.75
Many stars to dry 0.75 1 0 0.75
Rainbow to dry 0.5 0.5 0.5 0
Lightning to dry -0.75 -1 -0.75 -1
Partial/dark moon to dry -0.5 -0.75 -0.5 -0.75
Full/visible moon to dry 0.5 1 0.5 -0.25
High clouds to hot 0 1 0.5 0.75
Low clouds to hot -0.75 -1 -0.5 -0.5
Medium clouds to hot -0.5 0.25 -0.25 0
Clear sky to hot 0.5 1 0.75 1
Many stars to hot 0.5 1 0 0.75
Rainbow to hot 0.5 0.75 0.5 0.5
Lightning to hot -0.75 -0.75 -0.5 -0.75
Partial/dark moon to hot -0.25 -0.75 -0.5 -0.5
Full/visible moon to hot 0.5 1 0.75 0.75
High clouds to cold 0.25 -1 -0.25 -1
Low clouds to cold 1 0.5 0.5 0.5
Medium clouds to cold 0.75 -0.25 0.5 0.5
Clear sky to cold 0 -1 -0.25 -1
Many stars to cold 0 -0.75 0 -1
Rainbow to cold 0 -0.75 0 0
Lightning to cold 0.75 0.5 0.75 0.75
Partial/dark moon to cold 0.75 0 0.5 0.5
Full/visible moon to cold 0.25 -1 0 -0.75
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Aggregated mode values for the four weather seasons were summarized to
depict the trends in the aggregated causal effects for the winter, summer, au-
tumn and spring seasons.

Implementation of the fuzzy cognitive maps models for weather lore

In this research the membership functions for the terms of the causal effect were
classified to signify strength of cause based on values in the range [-1, 1] as
follows:

0.5 < strong _ positive <1
0 < positive <0.5
0 =none
—0.5 < negativee <0
—1< strong _negative < —0.5

Equation 2: Representation of concepts relations using fuzzy cognitive maps.

The relations between the concepts were represented by a statistically weighted
n x n adjacency matrix W, which mapped the causal weights at the intersection
of concepts pair's (see Equation 3).

Equation 3: Th<e \(alue<n represents the number of interacting concepts that falls
in the range 1 = (- /) <7

The general rule of fuzzy cognitive maps (Din and Cretan, 2014; Najafi and
Afrazeh, 2008) was applied i.e. for any concept ¢, the causal effect of concept c,
on another concept ¢ is v,

The final (Kenya and South Africa) fuzzy cognitive maps were formulated as n x
n matrices W, using the results of statistical analysis. The adjacency matrices
were filled with values w; indicating the strength of the relationship between
interacting concepts at position c¢;. A positive sign (+ or no sign) was used before
the value to indicate an enhancing effect while a negative sign (-) was used to
indicate a depressing effect. The value of zero (0) was used to mean that con-
cept ¢ has no causal effect to an adjacent concept ¢,
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Table 7: Final fuzzy cognitive map for winter season.

w S =

- < 38 é 2 é S
High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -0.50 1.00 0.00 0.25
Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.75 -0.75 1.00
Medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.25 0.25 -0.50 0.75
Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -0.50 1.00 0.50 0.00
Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.75 0.50 0.00
Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.50 0.00
Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.75 | -0.75 0.75
Partial/dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 -0.50 | -0.25 0.75
Full/visible moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.25
Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 8: Final fuzzy cognitive map for summer season.

» S g

B8 =& E 14 g %

2 3 = £ = e z £ S =

% % % g g g £ % % % = > = =
o T o = S = o par} o [irng o a T S

High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 1.00 -1.00
Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 -1.00 | -1.00 0.50
Medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.50 -0.50 0.25 -0.25
Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -0.75 1.00 1.00 -1.00
Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.75 1.00 1.00 -0.75
Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.75 -0.75
Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -1.00 | -0.75 0.50
Partial/dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.75 | -0.75 0.00
Full/visible moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.75 1.00 1.00 -1.00
Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 9: Final fuzzy cognitive map for autumn season.

= =
8 L 3 @ = @
= 2|l a3l | | 88| 2|=2| 2
= = S = = > 2 £ = =
2 = = 3 S £ = g = = = - = =
3 = S = S = & 5 & 2 & S = 55
High clouds 0.00 | 0.00 | 0.00 | 0.50 | 0.00 [ 0.00 | -1.00 | 0.00 | 0.00 -0.75 0.75 0.50 -0.25
Low clouds 0.00 | 0.00 | 0.00 | -1.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 1.00 -1.00 | -0.50 0.50
Medium clouds 0.00 | 0.00 | 0.00 | -0.50 | 0.00 [ 0.00 | 0.00 | 0.00 | -0.50 0.50 -0.75 | -0.25 0.50
Clear sky 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | -1.00 | 0.00 0.00 -1.00 | 0.75 0.75 -0.25
Many stars 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 [ 0.00 0.00 0.00 -1.00 | 0.00 0.00 0.00
Rainbow 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 -0.75 0.50 0.50 0.00
Lightning 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 0.75 -0.75 | -0.50 0.75
Partial/dark moon 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 [ 0.00 0.00 0.00 0.50 | -0.50 [ -0.50 0.50
Full/visible moon 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 -0.50 0.50 0.75 0.00
Rain 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
Dry 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
Hot 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cold 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 10: Final fuzzy cognitive map for spring season.
= [=3
8 2z ] @ = @
= 3| 2 el z| £ 5| 2| E| 2
= = S = s > o £ = =
2 = = 3 E] £ = g = = £ - - =
3 = = = = = & 5 & 2 & S = 3
High clouds 0.00 0.00 0.00 0.50 0.00 0.00 | -1.00 | 0.00 0.00 | -0.75 | 0.75 0.75 | -1.00
Low clouds 0.00 0.00 0.00 | -1.00 | 0.00 0.00 0.00 0.00 0.00 0.50 0.00 | -0.50 | 0.50
Medium clouds 0.00 0.00 0.00 | -0.50 | 0.00 0.00 0.00 0.00 | -0.50 | 0.00 0.00 0.00 0.50
Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 | -1.00 | 0.00 0.00 | -0.75 | 0.75 1.00 | -1.00
Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | -1.00 | 0.75 0.75 | -1.00
Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | -0.50 | 0.00 0.50 0.00
Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 | -1.00 | -0.75 | 0.75
Partial/dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 | -0.75 | -0.50 | 0.50
Full/visible moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | -0.75 | -025 | 0.75 | -0.75
Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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The final fuzzy cognitive maps connection matrices consisted of collective
knowledge from both Kenya and South Africa (Tables 7, 8, 9 and 10). An FCM
network for the spring season is depicted in figure 6.

The significance of the visual weather concepts were analyzed and presented in
Table .

Table 11: Analysis of the importance of nodes (concepts) for spring season.

Concepts Outdegree Indegree Centrality
High clouds 4.75 0.00 475
Low clouds 2.50 0.00 2.50
Medium clouds 1.50 0.00 1.50
Clear sky 4.50 2.00 6.50
Many stars 3.50 0.00 3.50
Rainbow 1.00 0.00 1.00
Lightning 3.50 2.00 5.50
Partial/dark moon 2.25 0.00 2.25
Full/visible moon 2.50 0.50 3.00
Rain 0.00 5.75 5.75
Dry 0.00 4.25 4.25
Hot 0.00 5.50 5.50
Cold 0.00 6.00 6.00

Significance and knowledge on visual weather
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Figure 6: Significance and knowledge on weather indicators.
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Figure 7: FCM for the spring season; (C1=high clouds; C2=low clouds;
C3=medium clouds; C4=clear sky; C5=many stars; C6=rainbow; C7=lightining;
C8=partial/dark moon; C9=full/visible moon: C10=rain; C11=dry; C12=hot;
C13=cold).

DISCUSSION AND CONCLUSIONS

An investigation was completed on the most influential visual weather concepts
that humans exploit in deciding on weather outcomes in the process of planning
for their daily activities. The investigation established that traditional knowledge
was locality specific, due to the fact that the effects of weather outcomes vary
from different categories of people (such as farmers and general rural inhabit-
ants).

The results of analyzing knowledge from the two case studies showed that
weather is significant on human activities. This was depicted by the result that
majority of human daily activities (58% in South Africa and 71% in Kenya) were
sometimes affected by weather. The analysis results also depicted that the
majority of respondents in both case studies often check for weather forecasts.
The results also showed that most of the respondents in both case studies knew
some visual indicators and that the visual indicators help them to predict weather.
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Influential sky weather concepts (also referred to as astronomical and meteoro-
logical weather concepts) were portrayed through weather lore domain under-
standing and analysis (high clouds; low clouds; medium clouds; clear sky; many
stars; rainbow; lightning; partial/dark moon; full/visible moon; rain; dry; hot; cold).

The seasonal fuzzy cognitive maps were accomplished by analyzing and inter-
preting the relations between the sky concepts. The analysis results permitted a
more understanding concerning the structural properties and dynamics of the
seasonal fuzzy cognitive maps. The type and the role of each sky concept within
seasonal fuzzy cognitive maps were accomplished by analyzing the density,
indegree, outdegree and centrality measures

FCMs are found to be a useful mechanism for representation of interactions in
complex systems since they have been used successfully in many different
application areas. Collections of important visual weather lore concepts were
used to guide in design of the FCM. As a first step only astronomical factors
related to cloud physics only were used to come up with a model of the FCM.
Causal links between visual weather concepts have been investigated using two
case studies in which results were compared and aggregated to build up com-
mon knowledge. The results of statistical knowledge were used to formally
represent seasonal weather knowledge using fuzzy cognitive maps in the form of
connection matrices and network graph.

In further research the FCM can be enhanced by incorporating sub FCMs from
other WL aspects such as animals or plants behaviours. With the complexity of
incorporation of many concepts from sub FCM models, the FCM outputs after
can be demonstrated by machine learning methods.

The applications and preservation of the weather lore need to be recognized by
policy bodies. This will assure that research findings are put in economic use as
well as advancing research outputs.
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