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Abstract 

Radio frequency identification technology (RFID) has emerged as a key technology for 

automatic identification and promises to revolutionize business processes. While RFID 

technology adoption is improving rapidly, reliable and widespread deployment of this 

technology still faces many significant challenges. The key deployment challenges 

include how to use the simple, unreliable raw data generated by RFID deployments to 

make business decisions; and how to manage a large number of deployed RFID devices.  

In this thesis, a multi-agent based RFID middleware which addresses some of the RFID 

data and device management challenges was developed. The middleware developed 

abstracts the auto-identification applications from physical RFID device specific details 

and provides necessary services such as device management, data cleaning, event 

generation, query capabilities and event persistence. The use of software agent 

technology offers a more scalable and distributed system architecture for the proposed 

middleware. As part of a multi-agent system, application-independent domain ontology 

for RFID devices was developed. This ontology can be used or extended in any 

application interested with RFID domain ontology. 

In order to address the event processing tasks within the proposed middleware system, a 

temporal-based RFID data model which considers both applications’ temporal and spatial 

granules in the data model itself for efficient event processing was developed. The 

developed data model extends the conventional Entity-Relationship constructs by adding 

a time attribute to the model. By maintaining the history of events and state changes, the 

data model captures the fundamental RFID application logic within the data model. 

Hence, this new data model supports efficient generation of application level events, 

updating, querying and analysis of both recent and historical events. 

As part of the RFID middleware, an adaptive sliding-window based data cleaning scheme 

for reducing missed readings from RFID data streams (called WSTD) was also 

developed. The WSTD scheme models the unreliability of the RFID readings by viewing 

RFID streams as a statistical sample of tags in the physical world, and exploits techniques 

grounded in sampling theory to drive its cleaning processes. The WSTD scheme is 

capable of efficiently coping with both environmental variations and tag dynamics by 

automatically and continuously adapting its cleaning window size, based on observed 

readings.   
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Chapter 1: Introduction 

1.1 Introduction 

Radio frequency identification (RFID) is a technology that allows an object, a place or a 

person to be automatically identified without physical or visual contact. One simply 

needs to place a transponder (tag) in or on the object one intends to identify and query it 

remotely using a reader. The recent upsurge in interest in RFID technology stems from 

the development of low cost passive RFID tags with very small size and vigorous RFID 

standardizations efforts. With potentially significant applications [1] and the continuous 

decrease in both size and the cost of the passive RFID tags, it is predictable that every 

object could be tagged in the near future. This will enable item-level tracking replacing 

the omnipresent barcode labels that are used today in consumer products, opening a new 

range of pervasive computing applications.  

While it is important to both select tags and readers including finding the right 

arrangement of antennas to recognize tags, we still need to deal with the issue of what 

happens with the data collected by the readers. How can the data be used to provide 

reliable information to an enterprise information system? Where does the data go next?  

RFID middleware addresses these questions. The middleware technologies can be 

categorizes into three levels [2]:  

1. Software applications that solve connectivity problems and monitoring in specific 

vertical industries; 

2. Application managers that connect disparate applications within an enterprise; and  

3. Device brokers that connect applications to devices. 

The RFID middleware is the software subsystem that bridges the gap between the RFID 

hardware infrastructure which collects the data and the enterprise applications that wishes 

to utilize RFID data. It is an interface between the software components and the hardware 

components of the RFID system, and it is often referred to as the intelligent portion of the 

RFID system because it manages and coordinates it. The RFID middleware, therefore, 

provides the following benefits: 
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It insulates applications from the RFID hardware 

The RFID middleware provides the application with standardized interface to access the 

RFID hardware. This standard interface acts like an adapter allowing an application to 

read data from many different readers even though they may be made by different 

manufacturers and may all have different interfaces. The application developers do not 

need to worry about writing special code to read from each of the readers because the 

middleware will handle this heterogeneity. A software layer of the RFID middleware 

incorporates all the device drivers of different hardware and exposes to the application a 

standard set of interfaces to access any hardware. The middleware reduces the work that 

must be performed by the application developers from building multiple interfaces to just 

one. 

It processes raw data from RFID readers for consumption by applications 

The middleware is responsible for receiving simple tag data generated by multiple 

readers, filtering that data, smoothing and aggregating it to produce useful events prior to 

their integration into existing information systems.  In most cases, the amount of raw tag 

data read by the readers is large. As an example, consider that an RFID reader has the 

potential to acquire a tag every time it looks for a tag. If the reader is looking for a tag 

repeatedly at very small intervals (possibly ten or more times per second) it may actually 

report the same tag multiple times. However, most of the applications are most likely 

concerned with only one or possibly two “events”, the first event is the acquisition of a 

new tag (the tag’s entry into the reader field) and the second is the tag’s exit from the 

reader field. To produce an event, the middleware may also need to associate the received 

data with a location and an activity. RFID middleware is responsible for determining 

what qualifies as an event and determines how it is reported to the interested application. 

It provides an interface to manage readers  

The middleware provides a standard interface to monitor and manage RFID readers 

existing in the RFID system. It allows a remote monitoring application to communicate 

with the readers in order to recognize their operational status, verify their correct 

operation and generate alerts when devices do not operate properly or links to devices are 

interrupted. 

 

 



3 

 

It provides an application-level interface for querying filtered RFID events 

The RFID middleware also provides a standardized interface enabling an application to 

register for and receive filtered RFID events independent of which physical devices were 

used to collect the data or how it was processed. 

1.2 Challenges in the Development of RFID Middleware 

Despite the diversity of RFID applications, RFID systems have some common 

characteristics which are unique to the RFID domain [3]-[18] and they impose some 

significant challenges in the design of RFID middleware. These characteristics can be 

clustered into two groups; issues concerning data and issues concerning devices. 

1.2.1 Characteristics of RFID Systems Data  

Streaming and large volume 

RFID data is generated quickly and automatically, and accumulated for tracking and 

monitoring. The data generated can be enormous, which requires a scalable storage 

scheme, to achieve efficient queries and updates. Also, due to the nature of RFID 

applications which demand track and trace queries for individual items and the large 

volume of data, the lineage tracking problem is more critical and challenging in RFID 

than in traditional data warehousing [4], [6]. 

Implicit semantic data 

Raw data generated from an RFID system can be seen as stream of tuples comprised of 

the reader ID, observed tag ID, and the timestamp when the observation occurred [7]. 

This data carries implicit information about business processes such as changes of states, 

change of locations, and containment relationship among objects.  For example, the 

detection of number of tags at the dock door over a certain period of time should be 

automatically translated as “shipment arrived” event. Extracting this implicit information 

from these raw data is the most interesting and challenging issue in an RFID middleware 

system. Therefore, a framework is needed in order to automatically transform the simple 

observed data into business logic data that enterprise applications such as inventory 

tracking and resource planning can use. 
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Inaccurate data 

Missed reads are also an unfortunate reality with RFID systems [3]-[5], [9]-[11]. While 

reader performance is improving, cost pressures will always dictate that some RFID 

systems be used at the limited performance. In addition, problems such as reader 

interference and multipath fading will also cause many reads to be missed, “false negative 

reading”. Moreover, the location tolerance that makes RFID tags easy to read also makes 

them difficult to understand; for instance, whether a tag is in fact in the reader’s 

prescribed zone, or whether the read tag is simply passing by [8], “false positive reading”. 

Such erroneous and unreliable data must be semantically filtered online before it is 

transformed into business logic data. 

Data Redundancy 

RFID data on average is less useful than other data streams [12]. For example, in traffic 

monitoring and financial applications, every record might be useful for further analysis. 

On the other hand, in the case of RFID data, we should be able to identify data that has 

been read multiple times. The less useful part of RFID data is the data that are 

continuously reported after the initial reading. For instance, in supply chain management, 

a tagged item can move to the shelf and sit the whole day on the shelf and send the data to 

the RFID management system constantly after every 10 minutes. But, from the 

management point of view, the most useful information for event detection is when the 

tagged item moves to the shelf and when the item is removed from the shelf. Data 

redundancy can also be caused by an item being in vicinity of more than one reader [13]; 

as a result its data is read by more than one reader. Therefore, it is necessary to have a 

filtering mechanism to reduce RFID data redundancy before processing the observed raw 

data. 

Dynamic Data 

There are two basic categories of data in RFID systems, static data and dynamic data [7]. 

Static data are related to commercial entities and product/service groups such as location 

information, product level and serial level information.  While the entities are themselves 

static in the business processes, they dynamically interact with each other and generate 

event and state changes such as object location change, containments relationship change, 

etc. It is, therefore, essential to model all such information in an expressive data model 

suitable for application level interactions such as tracking and monitoring. 
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Spatial and Temporal 

Most RFID based applications are, in general, not interested in individual readings in 

time or individual devices in space, but rather in an application-level concept of temporal 

and spatial granules [14]. These granules define the lowest-level, atomic unit of both 

time and space in which an application is interested [14]. For instance, in a retail scenario 

when an application continuously monitors the count of items on each shelf, the temporal 

granule would be each 5 seconds. Many applications are also interested in the information 

such as when a certain object was at a certain location. A spatial granule groups items 

based on some spatial categories which will be the lowest level of spatial granule at 

which the application operates, such as a shelf in a retail scenario. Therefore, the RFID 

middleware needs to have explicit temporal and spatial data models for RFID data to 

support tracking, tracing and monitoring application queries. 

RFID data dissemination and Integration 

The raw data generated from the RFID network itself is not valuable unless it is 

correlated to other information. For example, when the dock door RFID reader registers 

the arrival of a new pallet, it is vital to be able to correlate this arrival event of a pallet 

and all uniquely tagged cases to a purchase order, an invoice or advanced shipment 

notice. This means that RFID data have to be integrated with existing legacy enterprise 

applications. In addition to that, the information captured by a reader is usually of interest 

not only to a single application, but to a diverse set of applications across an organization 

and its business partners. The captured RFID data must thus be broadcasted to the entities 

that indicated an interest in the data. Due to the event-driven nature of many processes 

observed with the help of RFID systems, there is a need to support asynchronous 

messaging as well as a query-response model [15], [16]. Different applications also 

require different latencies. Applications that need to respond immediately to local 

interaction with the physical objects require a short notification latency that is comparable 

to the observation latency. Legacy applications that are not designed to handle streaming 

data might need to receive batched updates on a daily schedule [15]. This requires an 

RFID middleware to be easily configured for different applications. 
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1.2.2 Characteristics of RFID Systems Devices 

Limited communication bandwidth 

RFID systems rely on the availability of unlicensed frequency bands with a limited 

number of channels. For example, the 13.56MHz band has only one channel, and UHF 

frequency band in Europe allows for fifteen 200kHz-wide channels between 865.0 MHz 

and 868.0 MHz [17]. Readers need to listen for other transmitters using the channel 

before beginning to communicate with the tags. Since large distribution centres might 

need to run as many as 100 readers, it follows that readers need to co-ordinate their 

activities somehow to avoid reader interference and missing tags that pass by while the 

reader is not operating. Another constraint is the limited bandwidth available per channel, 

which limit the data transmission rate between readers and tags. Therefore, an efficient 

device management scheme is necessary to squeeze the maximum read rate out of larger 

RFID deployments [8].  

Diversity of tag capabilities 

Different RFID applications deploy different types of tags with different capabilities. For 

example, the memory on a microchip embedded in the tag usually contains a unique 

identifier but some microchips also feature small amounts of additional random access 

memory. Due to the increased power required to write to the EEPROM on the microchip, 

the maximum distance between reader and tag for a “write” operation is a fraction of that 

for a “read” operation [17]. Therefore, since RFID middleware is supposed to be 

application-agnostic, its design should take into consideration the diversity of tag 

capabilities. 

Heterogeneous reader landscape 

The diverse computational and networking capabilities of readers are also characteristic 

of RFID networks. Low-cost readers usually support only a single antenna and a serial 

RS232 interface. More sophisticated readers support several antennas, a TCP host 

interface, and ample computing resources for on-device data processing. For this reason, 

middleware should be flexible and scalable to accommodate a diversity of reader 

capabilities and reader density. 

Sensor and actuator support 

In many applications it is not sufficient to only identify objects, but the current state of 

the objects in the physical world has also to be detected as well. For example, a 



7 

 

perishable goods chain monitoring system should be able to monitor temperature data 

along the chain. The middleware has thus to provide the means to integrate sensors such 

as temperature, humidity or shock sensors and make their data accessible by the 

applications. In addition, in many applications it is not mandatory to operate RFID 

readers continuously due to the limited bandwidth available, and it is even undesirable to 

have readers transmit while no tags are present. To initiate the tag inventory process at a 

reader when there are tagged objects arriving in the read range, external sensors, such as 

motion sensors, should thus be able to trigger the RFID readers. In addition to sensors, 

applications often have to quickly interact with the physical world using different kinds 

of actuators such as locks or even simple traffic lights to signal an application state to an 

operator [18]. 

From the above analysis of RFID data and devices, it is apparent that the true benefit and 

complexity of RFID system does not come from reading the tags alone, but also from 

getting correct information from those reads to the right place in a usable form. This 

demonstrates that the middleware is a crucial component of RFID system and that it 

serves an invaluable purpose.  

1.3 Statement of the Problem 

Most of the commercial middleware solutions offered by major IT vendors such as Sun 

Microsystems, IBM, Oracle, Microsoft and SAP are proprietary in nature; they are costly 

and heavily dependent on the support software [19]. Their major intention is to extend 

their existing platforms and middleware to accommodate RFID data.  They simply route 

RFID data to business applications by providing support for limited RFID rules; in fact, 

they only support primitive events or their simple combinations leaving the hard task of 

detecting complex events to client applications [19]. One disadvantage of such a system 

is that client applications are flooded with too much unnecessary data which it does not 

need. 

Another issue is that most commercial RFID middleware solutions use a fixed temporal 

smoothing filter, a sliding window over the reader’s data stream that interpolates for lost 

readings from each tag within the tag window, as a standard data-cleaning mechanism. 

Typically, the RFID middleware system requires the application to set the cleaning-

window size. However, setting a cleaning-window size is non-trivial task that requires 
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careful consideration of both deployment environment characteristics and RFID devices 

dynamic patterns [10]. In fact, ascertaining for the environment characteristics and 

hardware and software configurations in order to get the required performance represents 

a significant portion of monetary and time cost associated with RFID deployments [20]. 

The research presented here attempts to tackle some of the middleware development 

challenges described in section 1.2. Specifically, this study addresses event processing 

concerns within the middleware, realizing an adaptive data-cleaning mechanism which 

minimizes software configurations and provisioning of a scalable distributed architecture. 

1.4 Motivation for the Research 

RFID middleware is among the cornerstone subsystems of every non-trivial RFID 

deployment. This is because RFID middleware typically undertakes the important tasks 

of interfacing to various RFID readers, filtering RFID data streams, processing tag 

streams, generating business and application events, while also interfacing RFID data 

with the enterprise information systems. RFID middleware makes it possible to realize 

the true benefits offered by the deployments of RFID technology.  

RFID middleware affects the following techno-economic factors of the whole RFID 

technology deployment: 

Total cost of ownership (TCO) of RFID deployment: The cost of RFID middleware is 

a critical component of the overall TCO of the RFID solution. Its contribution to the TCO 

varies according to the characteristic of the deployment. Depending on the amount 

envisaged for consumables and hardware, it may represent a significant cost component. 

The quality of RFID middleware also affects other components of the TCO such as 

maintenance and support costs.  

Technical quality of the RFID deployment: The technical characteristics of an RFID 

deployment (including performance, functionality, and scalability) are largely dependent 

on the quality, robustness and versatility of the RFID middleware solution.  

Affect other elements of the deployment (notably the hardware): The compatibility 

between hardware and middleware, as well as the effective operation of the hardware are 

highly dependent on the middleware used.  
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The above factors illustrate the importance of developing efficient and effective RFID 

middleware solutions that will enhance the overall cost and performance of RFID systems 

deployment. In general, this research is motivated by the need to provide a middleware 

solution, which will facilitate widespread deployment of RFID systems. Within the 

middleware proposed, novel solutions to some of the middleware development challenges 

discussed in section 1.2 are also addressed and provided. 

1.5 Research Objectives  

The main objective of this research work is to address some of the RFID device and data 

management challenges described in section 1.2. The specific objectives of this research 

work are to address the following challenges within the middleware: 

1. To develop data cleaning or filtering techniques to clean the unreliable readings 

generated from the RFID data streams. 

2. To develop a high-level data model to support efficient generation, updating, 

querying, and analyzing of both recent and historical RFID events. 

3. To develop a scalable and distributed RFID middleware system architecture.  

4. To develop an application-independent domain ontology for RFID devices.  

To fulfil these objectives, a data model, a data cleaning scheme, a domain ontology and 

an RFID middleware prototype for managing RFID readers and processing the captured 

RFID data were designed and implemented. 

1.6 Limitation of Study 

One of the functionalities of the middleware system is to integrate the RFID system with 

the legacy enterprise applications.  However, this functionality is not implemented in the 

middleware prototype under discussion. The current prototype uses a graphical user 

interface in which a user can configure the type of data desired to receive from the RFID 

system. Also, the implemented prototype middleware uses passive read- only tags. 

However, the proposed cleaning scheme and RFID data model can be used with other 

types of RFID tags and systems. 
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1.7 Research Methodology 

The research methodology consist of three major activities as discussed below. 

• Development of a high-level data model to support efficient processing of the 

RFID events 

A literature study on the RFID data modelling and RFID event processing was done in 

order to get a thorough understanding of the subject. A new temporal-based RFID data 

model was then developed by extending the conventional Entity-Relationship (ER) model 

to include temporal information. ER constructs are made temporal by changing their 

semantics; that is, the ordinary relationship types are given temporal semantics making 

their instances record variation over time, rather than just single states. 

• Development of multi-agent based RFID middleware for data and devices 

management 

The key technologies used in the development of the multi-agent based RFID middleware 

are software agents, ontologies and relational databases. All the tasks involved in the 

middleware are assigned to different software agents. Agents within the middleware acts 

as a distributed community of data processing units able to: capture, manipulate, make 

decisions, and propagate information efficiently. The prototype middleware system is 

designed using the Process for Agent Societies Specification and Implementation 

(PASSI) methodology and implemented using the Java Agent Development Environment 

(JADE) platform and MySQL database. The choice of using PASSI methodology is 

driven by the step-by-step requirement-to-code guidance, and CASE tool support 

provided by this methodology. Also, PASSI is oriented towards a FIPA compliant 

implementation platform.  JADE is the most popular and matured open-source based 

platform, which is well-supported by its developers and users. It is important to note that 

JADE is fully compliant with FIPA specifications.  

Ontologies play a vital role in the development of multi-agent systems. All the 

information to be exchanged between the agents must conform to a common ontology. 

The ontology used for our middleware system is developed using Protégé ontology editor 

by following Ontology Development 101 methodology for ontology development. This 

methodology provides a simple guide that can be used even by non-expert in knowledge 
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representation field to develop an ontology. The JADE compliant ontology Java code is 

generated using Protégé ontology Bean Generator plug-in. 

Persistence storage is an essential part of the proposed middleware system. It is required 

for storing of the ontological information, including RFID static and dynamic data, using 

the developed temporal-based data model in order to provide an efficient querying and 

analysis of both recent and historical RFID events data. A Relational Database (RDB), 

and in particular MySQL, is used for persistent storage in the developed prototype 

middleware system. RDBs are the most commonly used type of data-persistence 

mechanism. Since the developed middleware is focused on integrating the RFID data 

with other legacy enterprise applications, a RDB, which is more likely used by many 

enterprises, was chosen.  MySQL is used because it is open source, free software and it is 

good enough for our prototype design, even though any type of RDB can be used. 

While the middleware system is implemented using the Java-based JADE platform, 

which is an object oriented technology, the data storage mechanism is based on relational 

technology.  Within the prototype middleware, the Java Persistent API also referred to as 

JPA is used as a persistent framework strategy to implement mapping between Java based 

objects and relational database. JPA is a Java programming language framework for 

managing object relational mapping in applications using Java platforms.  JPA fully 

encapsulates database access from the application objects. It reduces the coupling 

between the object schema and the data schema in such a manner that simple changes in a 

data schema do not affect the application code.  

• Development of data cleaning technique  

A thorough review and analysis of RFID tag-reader performance and RFID data cleaning 

techniques in the existing literature was conducted. Based on the results of the analysis, 

the observed RFID readings were modelled as an unequal probability random sample of 

tags in the physical world. A new, adaptive window-based data cleaning scheme called 

WSTD was developed based on the binomial sampling and π-estimator statistical 

techniques. The WSTD cleaning scheme contains a novel method of detecting tag 

transition by comparing the two cleaning-window sub-range observations or estimated 

tag counts.  
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The performance of the developed WSTD cleaning scheme in comparison to other 

window-based cleaning schemes was then evaluated. The data sets for our experiments 

were generated by a synthetic data generator that simulates the operation of RFID readers 

under a wide variety of conditions using MATAB. The generator is composed of two 

components. The first component simulates the movement of tags and the second 

component simulates tag detection by the reader. 

Finally, the implemented middleware prototype was updated to include the newly 

developed WSTD cleaning method. 

1.8 Thesis organisation 

The remainder of this thesis is organized as follows: 

Chapter 2 provides a literature review and introduction of the concepts and technologies 

used in this research. These include an introduction to RFID technology, Multi-agent 

technology and Ontology technology. 

Chapter 3 deals with RFID data modelling for efficient event processing. Readers’ 

observations generated from RFID deployments are raw data which provide no explicit 

semantic meanings. In order for these data to be useful, they need to be transformed into 

semantic data properly represented in their own data models before they can be integrated 

into applications. In this chapter we present a temporal-based RFID data model which 

considers both applications’ temporal and spatial granules in the data model itself for 

efficient event processing. 

Chapter 4 presents an analysis and design of our prototypical agent-based RFID 

middleware system and Chapter 5 presents the middleware system implementation. The 

middleware abstracts the auto-identification applications from physical RFID device 

specific details and provide necessary services such as device management, data cleaning, 

event generation, query capabilities and event persistence. 

Unreliability of the data streams generated by RFID readers is among the primary factors 

which limits the widespread adoption of the RFID technology. RFID data cleaning is, 

therefore, an essential task in the RFID middleware systems in order to reduce reading 

errors, and to allow these data streams to be used to make a correct interpretation and 

analysis of the physical world they are representing.  Chapter 6 covers the proposed 
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adaptive sliding-window based data cleaning scheme for reducing missed readings from 

RFID data streams and Chapter 7 presents the experimental evaluation of the cleaning 

scheme performance. 

Chapter 8 is the last chapter of the thesis and gives the concluding summary of the work 

described in this thesis; highlights the contributions of the thesis; and gives 

recommendations for future work. 
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Chapter 2: Literature Review 

2.1 RFID Technology  

2.1.1 Introduction to RFID  

RFID stands for Radio Frequency Identification and it is a type of automatic 

identification systems. RFID uses radio signals to acquire data remotely from tags within 

read or interrogation range. The data is then used for variety of purposes such as tracking 

an object, paying tolls or opening a door. 

RFID technology allows an object, a place or a person to be automatically identified 

without physical or visual contact. RFID represents a major step forward in relation to the 

laser-based barcode system, which is the most popular automatic identification system 

used today. Compared to a barcode system, an RFID system offers several advantages.  

The first advantage is that the RF tags do not require line of sight to be read. While a 

barcode must be scanned directly by a laser beam and cannot be read if something opaque 

stands between the reader/scanner and the label, the RF tags can be read through many 

materials, including boxes and other radiolucent products.  

The second advantage is increased read range; the effective read range of a laser-based 

barcode system is limited, because with increased distance comes an increased chance of 

materials passing between the reader’s laser and the barcode label. For example, attempts 

in the past to use barcodes for toll-way use or railcar identification failed because the 

vehicle speed combined with the increased likelihood of rain, snow or debris interrupting 

the laser’s line-of-sight at the crucial moment of passage rendered the technology highly 

unreliable for these applications.  

The third advantage is the ability to update the data; barcode data is fixed the moment the 

label is printed. It cannot be changed unless a new label is printed and attached. On the 

other hand, many RFID tags can be reprogrammed in the field to reflect current 

information such as storage location or date placed in service. More sophisticated RFID 

tags can also be integrated with sensors to record dynamic conditions such as temperature 

or meter usage as they change, and then transfer the current conditions or a record of 

conditions to a reader upon request.  
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Other advantages are that RF tags can store more data than barcodes and multiple RF 

tags can be scanned at once in contrast to barcodes which require an individual label to be 

scanned at a time. In short, RFID raises the standard for automatic identification 

technology and allows it to perform more valuable functions than have been possible with 

barcodes. 

2.1.2 The RFID System Components 

The RFID system is comprised of at least three basic components that include tags, 

readers and a host computing device, as shown in Figure 2-1.  An RFID tag or 

transponder is an identification device attached to an object to be identified while an 

RFID reader or interrogator is the device which recognizes the presence of RFID tags and 

read or write data to them. The reader can then inform a computer about the presence of 

the tagged items. The computer with which the reader communicates usually runs 

software that stands between readers and applications. This software is called 

middleware, and it is responsible for controlling the readers, receiving and managing the 

data generated by the readers and interacting with other enterprise applications interested 

in collected RFID data. 

 

Figure 2-1: Basic components of RFID system 

 

In addition to these basic components, RFID systems can also include other input and 

output devices such as sensors and actuators. These additional components act as triggers 

providing a certain level of automation to RFID systems. 
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2.1.3 RFID Tags 

RFID tags are devices containing identification and other information that can be 

communicated to a reader from a distance. Basically an RF tag consists of an integrated 

circuit (a small silicon chip), an antenna and an optional memory component. The 

antenna is used to communicate with the reader by coupling the tag chip to the RF signal 

generated by the reader antenna. RF tag antenna designs vary based on environment, 

operating frequency and applications of the tag.  

Different operating frequencies have different properties. Lower frequency signals are 

better able to travel through water, while higher frequencies can carry more information 

and can be read over a relatively longer distance.  In the low frequency bands (LF and 

HF), the tag is in the near-field region of the reader antenna resulting in a short reading 

distances and magnetic coupling with inductors which are used for energy and signal 

transfer. Tag antennas for use in LF and HF bands are thus formed as coils (inductive 

loops). In the Ultra high frequency (UHF) and microwave bands, the tags are located in 

the far field region of the reader antenna resulting in a relatively larger reading distance; 

in this case dipole antennas are used for electromagnetic backscatter coupling for energy 

and signal transfer.  

Although the RF spectrum is regulated mostly on a county-by-country basis, there are 

frequency ranges that are widely adopted around the world. Table 2.1 shows different 

frequency bands allocated for RFID applications, their availability, properties and 

limitations together with some typical RFID application areas [21]-[23]. 

 

 

 

 

 

 



17 

 

Table 2.1: Radio Frequency bands: properties and applications 

Frequency 

range 
ISM frequencies for RFID 

Properties and 

Limitations 

Some typical 

applications 

LF: 

30 kHz – 

300 kHz 

9 - 135 kHz 

 (Worldwide) 

Reading distance less than 

50 cm;  

Usable in metallic 

surroundings and on items 

with high water contents; 

Animal identification; 

Central locking 

systems for 

automobiles  

HF: 

3 – 30 MHz 
6.78MHz, 13.56MHz, 

27.125MHz               

(Worldwide) 

Reading distance less than 

3 m; 

Works on metallic surfaces 

but shielding is required 

Individual items; smart 

cards; access control; 

ticketing; e-passport; 

books 

UHF: 

300 MHz – 

3 GHz 

433 MHz (Worldwide)           

860 – 868 MHz (Europe)        

902 – 928 MHz (USA, Canada )     

840 – 845 MHz /865 - 868 MHz 

/ 920 – 925 MHz (China)       

865 – 868 MHz /  

915 – 921 MHz (South Africa)               

950 – 956 MHz (Japan)               

918 – 926 MHz (Australia) 

Reading distance less than 

9 m;   

High reading speed, but 

works poorly on metallic 

surfaces, under moist 

conditions and at close 

range 

Boxes, cases and 

pallets in supply chain;  

aircraft luggage 

 

Microwave: 

> 3 GHz 
2.45 GHz, 5.8 GHz 

(Worldwide) 

Reading distance greater 

than 10 m;  

Used in WLAN and WiFi 

systems 

Road toll and  

vehicle identification 

of all sorts;  

container tracking 

systems 

 

RF tags may have just enough memory to hold only the simplest information such as an 

identification code (little more than the amount of data on the average barcode label), or 

may have as much memory and processing power as a small computer.  

RFID tags can be classified in terms of their energy source, storage capacity and whether 

the stored data can be modified (rewritten) [21]. Classification of RFID tags is described 

below followed by a description of their physical characteristics and factors affecting 

their read range. 
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2.1.3.1 Active tags 

Active tags are tags with a built-in internal power source in the form of battery or a wired 

powered connection that provides the necessary power for tag operation and 

communication with the reader. The active tag can be designed with a variety of 

specialized electronics including microprocessors, different types of sensors or 

input/output devices.  They can process and store the input data from the sensor for 

immediate or later retrieval by a reader. Active tags in general have a range of about 

3 meters to more than 100 meters.  

Active tags can normally be read and written and configured in various modes. In 

standard mode, they transmit their ID code at a defined interval, possibly accompanied by 

other data. In order to save energy, active tags can also be put in quiescent mode, which 

they can only exit in response to a specific request from the reader or on the occurrence 

of a defined event generated by the sensor data, such as harmful vibration, deviation from 

specific temperature range or hazardous operating conditions.   

The primary advantages of the active tags are their higher reading range and reliability. 

Because they are powered by an internal battery, their field strength is higher, making it 

possible to be read from further distances and they do not need a continuous radio signal 

from the reader to power its internal circuit - making them more reliable. The limitations 

of active tags include limited lifetime of the battery, the cost and the size of the tags - 

which are directly linked to the inclusion of the battery in the tag. 

2.1.3.2 Passive tags 

Passive tags are tags that do not have a built-in power source; they are completely 

powered by the incoming RF signal from the reader. The incoming RF signal from the 

reader induces in the tag antenna a tiny but significant electrical current to activate the 

tag. They transmit data by modulating the RF signal of the reader antenna and they have a 

short read range of only a few meters (approximately 9 meters).  

Primary advantages of passive tags are their smaller size, cheaper price and unlimited 

lifetime because they do not use batteries. The limitation of passive tags is that the range 

of operation in terms of distance from the reader is limited to only a few meters. 
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2.1.3.3 Semi-active tags 

Semi-active tag is a combination of active and passive tag; it has a battery like active 

tags, which it uses to power its internal circuit, but it still uses the reader’s power to 

communicate with the reader - just like passive tag. Semi-active tags have the read 

reliability of the active tag with slightly improved read range of up to 30 meters. In 

addition, since semi-active tags become active only when they enter the RF field of the 

reader antenna, they have a longer lifetime than a fully active tag. 

2.1.3.4 Read-only tag (RO) 

These tags are assigned multi-bit (64-bit or 96-bit) data during the tag manufacturing 

stage (they are also referred to as factory programmed) and the data in the tag cannot be 

modified. RO tags are the simplest and most economical tags.  Another variant of read-

only tags is Write Once, Read Many (WORM) tags. WORM tags enable users to encode 

tags at the first instance of use with non-modifiable data, which cannot be changed but 

can be read as often as desired. 

2.1.3.5 Read/Write tag 

Read/Write tags can be reprogrammed in the field either by a dedicated programming 

device or by the reader itself. They have additional memory space where data can be 

written and modified. User data, handling instructions, sensor data or process data, can be 

stored in these tags. The memory space in these tags varies from just few bytes to 

hundreds of kilobytes. Writable tags can store data that can later be read by the authorized 

reader. This function is especially useful in situations where access to the database 

containing object data is not possible. 

2.1.3.6 Physical characteristics of RF Tags 

Because RFID tags must be physically attached to items of different shapes and sizes in 

different environments, they come in a wide assortment of shapes and sizes. The smallest 

tag, as of today, is the µ-tag produced by Hitachi [24], which only measures 

0.4 millimetres including the antenna. Furthermore, they may be housed in many 

different kinds of materials. Some of the physical characteristics of various tags include 

[22]: 
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• PVC or plastic buttons and disks, usually including a central hole for fasteners. 

These tags are durable and reusable. 

• RFID tags shaped like credit cards, which are called “contact-less smart cards”. 

• RFID tags made into layers of paper in a label, called “smart labels”. These may 

be applied with automated applicators similar to those used for bar code labels. 

• Small tags embedded in common objects such as clothing, watches, and bracelets. 

These small tags may also come in the form of keys and key chains. 

• Tags in glass capsules, which can survive even in corrosive environments or in 

liquids.  

RF tag antennas are often etched or printed metallic pattern on a circuit board or a thin 

film inside a small case, or sandwiched between layers of printed label. 

2.1.3.7 Tag Read Range 

Tag read range depends on much more than just the characteristics of the tag. Reader 

power and sensitivity, antenna range and polarization, and the reading environment can 

all affect the range at which a given tag may be successfully read. Certain attributes of the 

tag itself and its immediate surroundings also help determine a tag’s full read range, 

including: 

• Tag power source (battery-powered tags typically have greater range than those 

powered exclusively by the RF beam). 

• Type of materials between and around the tag and the reader. 

• Tag position relative to the antenna’s preferred orientation. 

• Relative tag speed (amount of time the tag is within read range, if either the tag or 

the reader is moving relative to the other). 

• Amount and rate of data to be exchanged between tag and reader and the overhead 

involved in error correction and other quality processes. 

• The tag antenna design. 

Tags, like every other element in an overall system design, affect system performance 

and should be configured to optimize the specific applications they are to be used for. 
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2.1.4 RFID Readers 

An RFID reader or interrogator is an electronic device which recognizes the presence of 

RFID tags and read or writes data to it.  RFID readers have three fundamental building 

blocks; the HF interface system, control system and antenna (e) [25]. These parts interact 

with each other and with an external host system as shown in Figure 2-2. 

 

Figure 2-2: General RFID reader block diagram [25] 

 

2.1.4.1 HF interface 

The HF interface system provides an interface to the antenna which transmits and 

receives signals and data to and from the tag. It generates the high frequency power 

which activates the tag and supplies it with power. It is also responsible for 

modulation/demodulation of data transmitted/received signal to/from the tag. 

2.1.4.2 Control system 

The control system provides essential communication links between the reader and the 

external entities. It controls all communication protocols with the tags, performs signal 



22 

 

coding and decoding and communicates with other reader input and output devices such 

as back-end host computer, sensors and actuators. Control systems incorporate different 

types of communication interfaces such as serial port connection RS232 or RS485, 

Ethernet RJ45 adapter, 802.x wireless interface and universal serial bus (USB).  

2.1.4.3 Antennas 

Antennas are required to transmit and receive RF signals to and from the tag.  In the LF 

and HF band antenna is a coil similar to a tag antenna. It is shaped to achieve the best 

possible coupling with the antennas of the tag to be read. In UHF band there is wide 

variety of antenna designs and they are tuned for specific environments in which they will 

be deployed. Depending on the type of the reader, an antenna can be integrated within the 

reader or external to the reader, also a reader can have one or more antennae connected to 

it. The critical importance of the use of the appropriate antenna in a specific environment 

cannot be underestimated for the success or failure of the communication between the tag 

and reader. RFID readers can be categorized based on their communication interface or 

by its mobility. A brief description of each category is given below. 

2.1.5 Air interface and Standards 

2.1.5.1 The Air Interface 

Air interface is the RF field that forms the link between the reader and the tag. The air 

interface specification is sets of rules which describes the operating frequency, the tag’s 

power source, type of coupling, communication mode, type of modulation, data-encoding 

methods used as well as the structure of transferred commands between reader and tag. 

These commands includes commands for reading and writing data, controlling the anti-

collision protocols, blocking individual memory cells and disabling tags. 

2.1.5.2 RFID Standards  

In the past few years, several organizations have attempted to create a single standard for 

communications in RFID that is compatible across various tags and readers to facilitate 

the rapid growth of RFID solutions. In the RFID field two main families stand out: ISO 

(International Organization for Standardization [26]) standards and EPC (Electronic 

Product Code [27]) standards. These standards address many, if not all, aspects of RFID 
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communications, from how the reader and tag communicate with each other (air interface 

specification) as well as specific uses of RFID technology. Standardization is thought to 

be the only means in which RFID can penetrate industrial solutions on a major scale. 

Standards ensure interoperability of various components of RFID systems that may be 

provided by different manufacturers’. Standards also ensure the development of dual 

frequency and wide frequency bands RFID tags (tags that can be used over the entire 

UHF band) for open RFID system applications (such as supply chain management) to be 

read worldwide without breaking radio regulation laws in different countries e.g. ISO 

10374 tags supports both 850 – 950 MHz and 2.4 – 2.5 GHz frequency bands for freight 

container identification. 

2.1.5.2.1 ISO standards 

In ISO family, the key defined RFID standards categorized based on specific applications 

are: 11784/5 and 14223 for animal identification [28], 14443, 15693 for contact-less 

smart cards [28]; 10374, 17363, 18185 for freight containers [29]; and 17358, 17364–

17367 for supply chain applications. Standards which describe the communication 

protocols between reader and tags are described in ISO 18000 series standards, while the 

data organization inside the tag independent of actual technology is specified in the 

15961-15963 standards. Procedures for measuring the efficiency of devices and air 

interface communications to verify the conformity of a device with standards are 

described in 10373, 18046 and 18047. Finally, ISO 21481, 23917 and 22536 describes 

standards for Near Field Communication (NFC) protocols. 

2.1.5.2.2 EPC Standards 

EPC standards are focused primarily on UHF frequencies in the 860 – 960 MHz band 

with electromagnetic coupling between tags and readers. EPC standards classify different 

classes of tags according to their functionalities, whereby each successive class is more 

sophisticated than the one below it. Table 2.2 shows an overview of EPC tag 

classification. Passive tags are classified in classes 0 to 3, Class 4 describes active tags, 

and Class 5 is reserved for tag readers and active tags that can read data from other tags.  

In mid-2006, ISO approved the Generation 2 UHF Air protocol as part of its ISO 18000-6 

standard, as amendment 18000-6c, which is the first common standard of ISO and 

EPCglobal.  The inclusion of the EPC standard in the global ISO standard is seen as an 



24 

 

important step towards a broad implementation of Class 1 Generation 2 RFID systems 

worldwide, as the World Trade Organization has guidelines about following standards 

endorsed by ISO and other global standards bodies [30]. 

 

Table 2.2: Overview of EPC Tag Classification [31], [32] 

Class Functionalities and properties 

Operating 

Frequency and 

Communication 

Gen. 1, Class 0 

Passive identity tags; Read-only; Stores up to 96 bits 

Most basic and thus cheapest type of tags 

860 – 930 MHz 

Backscatter 

Gen. 1, Class 1 

Passive tags;   

Read/Write Once;  Stores up to 96 bits 

860 – 960 MHz 

Backscatter 

Gen. 2, Class 1 

Generation 2: uniform specification that merge 

Generation 1 classes 0 and 1 with improved features; 

Passive tags with at least 256 bytes of memory; 

Read/Write; Adopted as ISO standard 18000-6c 

860 – 960 MHz and 

13.56 MHz 

Backscatter 

Class 2 

Passive tags with supplementary functions, such as data 

storage for encryption (security features) 

860 – 930 MHz 

Backscatter 

Class 3 

Semi-passive tags;  

Read/Write; < 100 Kilobytes of memory; security and 

sensors features 

860 – 930 MHz 

Backscatter 

Class 4 

Active tags;  

Read/Write; security and sensors features; They may be 

capable of broad-band peer-to-peer communication with 

other active tags in the same frequency band, and with 

readers. 

860 – 930 MHz 

Active 

Transmission 

Class 5 

Class 5 tags are essentially readers. They can 

communicate with all other classes and with each other.  

860 – 930 MHz 

Active 

Transmission 
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2.2 Multi-Agent Technology 

The RFID middleware prototype system developed in this research work employs 

software agents’ engineering methodologies. Hence, this section provides an introduction 

to the software agents’ technology and the motivation for using software agents’ 

technology for the middleware development.  

2.2.1 Definition of Software Agent 

There is no universally accepted definition of “software agent”, but the definition 

proposed by Jennings et al. in [33] has received much recognition from the researchers in 

the field. A software agent, which is henceforth referred to as ‘an agent’ is a software-

based computer system, situated in some environment that is capable of flexible 

autonomous action in order to meet its design objectives [33].  

Agents are characterized by following properties that are presented here in the form of 

definitions: 

• Autonomy: agents operate without the direct intervention of humans or others, and 

have some kind of control over their actions and internal state.  

• Social ability: agents interact with other agents (and possibly humans) via some 

kind of agent communication language.  

• Reactivity: agents perceive their environment and respond in a timely fashion to 

changes occurring therein.  

• Pro-activeness: in addition to acting in response to their environment, agents are 

able to exhibit goal-directed behaviour by taking initiative.  

To support interaction with its environment, an agent is equipped with a sensory system 

for receiving external information and a knowledge base about its environment. The 

actions of an agent alter its environment and thereby influence its future decisions. The 

prerequisite for this interaction is that the agent has suitable information about its 

environment. Performing actions and communicating with other agents are not possible in 

an unknown environment [34]. The common representation of the environment is known 

as ontology and it is discussed in section 2.3. 
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2.2.2 Multi-Agent Systems 

A Multi-agent system (MAS) is a system that is designed and implemented as several 

interacting agents. It can be defined as a loosely coupled network of problem solvers that 

work together to solve problems that are beyond the individual capabilities or knowledge 

of each problem solver [35]. Agents communicate with each other and thus perform 

cooperative activities in their environment. According to Jennings et al. [33], MAS is 

ideally suited for representing problems that have multiple problem solving methods, 

multiple perspectives and/or require multiple problem-solving entities. Such systems have 

the traditional advantages of distributed and concurrent problem solving, but have the 

additional advantage of sophisticated patterns of interactions. Examples of common types 

of interactions include:  

• Cooperation  - working together towards a common aim;  

• Coordination - organizing problem-solving activity so that harmful interactions are 

avoided or beneficial interactions are exploited; and  

• Negotiation - reaching an agreement acceptable to all the parties involved.  

It is the flexibility and high-level nature of these interactions that distinguishes multi-

agent systems from other forms of software and provides the underlying power of the 

paradigm. 

MAS has the following advantages over single agent and centralized systems: 

• MAS distributes computational resources and capabilities across a network of 

interconnected agents. Whereas a centralized system may be plagued by resource 

limitations, performance bottlenecks, or critical failures, MAS is decentralized 

and thus does not suffer from the "single point of failure" problem associated with 

centralized systems. 

• MAS allows for the interconnection and interoperation of multiple existing legacy 

systems. By building an agent wrapper or transducer agent around such systems, 

they can be incorporated into an agent society. 

• MAS allows for efficiently retrieving, filtering, and globally coordinating 

information from sources that are spatially distributed. 

• MAS models problems in terms of autonomous interacting component-agents, 

which is proving to be a more natural way of representing task allocation, team 

planning, user preferences, open environments, and so on. 
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• MAS provides solutions in situations where expertise is spatially and temporally 

distributed. 

• MAS has the potential to enhance overall system performance, specifically along 

the dimensions of computational efficiency, reliability, extensibility, robustness, 

maintainability, responsiveness, flexibility, and reuse.  

A detailed survey of research on programming languages, methodologies and 

development tools for MAS can be found in [36]-[38]. 

2.2.3 Motivation for using MAS for RFID Middleware 

Agents are being used in an increasingly wide variety of applications, ranging from 

comparatively small systems such as email filters to large, open, complex, mission- 

critical systems such as air traffic control. A comprehensive review of commercial and 

industrial applications using multi agent-based systems can be found in [39]. 

There is a strong correlation between RFID system deployments and the types of 

applications supported by multi-agent systems. Most RFID system deployments are 

distributed in nature; RFID readers installed in different strategic locations within the 

organizations are linked together creating a distributed network of readers.  Also, in most 

cases information collected from the RFID system is expected to be communicated to the 

other existing legacy organization applications. MAS, on the other hand, is characterized 

by the ability to solve problems in which data, expertise or control is distributed and it 

also allows for an easy integration of the new system with the existing legacy system. 

MAS offers system scalability and load balancing, which are the features desired in RFID 

system. These are the main factors for our decision to develop our RFID middleware 

prototype as a multi-agent system. 

The middleware system in this study is developed using agent oriented software 

engineering methodology called PASSI [40] and implemented using Java Agent 

Development Environment (JADE) platform [41]. Our choice of using PASSI 

methodology is driven by the step-by-step requirement-to-code guidance, and CASE tool 

support provided by this methodology. Also, PASSI is oriented towards a FIPA [42] 

compliant implementation platform.  JADE is the most popular and matured open-source 

based platform, which is well-supported by its developers and users. Most importantly, 

though, JADE is fully compliant with FIPA specifications. 
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2.3 Ontology Technology 

For agents to interoperate, cooperate and coordinate, they need a common understanding 

of the domain they are working in. That common representation of the objects, concepts, 

entities and relationships within the domain is refereed as an ontology [43]. Ontology 

plays a vital role in the development of a MAS. This section introduces the notion of an 

ontology; its benefits in the design and development of multi-agent systems, and lastly 

describes different types of ontologies.  

2.3.1 Definition of an Ontology 

Many definitions of ontologies have been given in the last two decades, but the most-

cited definition in the knowledge-sharing community is given by Gruber [43]:  

“An ontology is an explicit specification of a shared conceptualization”. 

A conceptualization refers to an abstract, simplified view of the world that we wish to 

represent for some purpose. The world view is often conceived as a set of concepts (e.g. 

entities, attributes, processes) their definitions and their inter-relationships. Explicit 

means that the type of concepts used and the constraints on their use are explicitly 

defined. Shared reflects the notion that an ontology captures consensual knowledge, that 

is, it is not restricted to some individual, but accepted by a group. An ontology provides a 

shared vocabulary, which can be used to model a domain that is, the type of objects, 

and/or concepts that exist, and their properties and relations. Every knowledge base, 

knowledge-based system, or knowledge-level agent is committed to some ontology, 

explicitly or implicitly [43]. 

2.3.2 Motivation for Ontologies in MAS 

The literature is currently rich with discussion of ontologies’ importance [44], such as in 

the areas of knowledge engineering [45], information retrieval [46], database design and 

integration [47] and natural language processing. This section focuses on the importance 

of ontologies in the context of MAS. Within this context, ontologies have been widely 

recognized for their significant benefits to interoperability, reusability, MAS development 

activities and MAS operation [48]-[52]. These benefits are actually inter-related with each 

other, as will be mentioned throughout the discussion. 
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2.3.2.1 Benefits of ontologies to interoperability 

Interoperability refers to the ability of heterogeneous components to interact and work 

with each other to achieve shared or individual goals [52]. Interoperability involves not 

only communication between the heterogeneous components, but also the ability of these 

components to use the exchanged information. In MAS, interoperability issues may arise 

between heterogeneous agents or between heterogeneous non-agent resources (such as 

knowledge sources and legacy application systems). Two prominent interoperability 

issues are [53]-[55]: 

• Semantic heterogeneity issue: occurring when the knowledge base of each agent, or 

the information/application of each resource, uses a different vocabulary to express 

the same information (e.g. “Price” versus “Cost”) and/or uses the same vocabulary to 

express different information (e.g. concept “Employee” in one agent/resource means 

anyone currently on payroll but in another agent/resource means anyone currently 

receiving benefits, thus including retirees). Another example of semantic 

heterogeneity is the scaling conflict, where the same concept refers to the different 

scales or references of measurement (e.g. concept “Price” may be measured in dollar 

in one agent/resource but in euro in another); and 

• Structural heterogeneity issue: occurring when the knowledge base of each agent, or 

the information/application of each resource, uses a different conceptual schema to 

represent its data. For example, concept “Customer-Name” is represented as an object 

in one agent/resource but as an attribute in another. 

Both of these heterogeneity issues can be addressed by the use of ontologies [45], [50], 

[54]. Specifically, when the knowledge bases of heterogeneous agents and the 

information/applications of heterogeneous resources are explicitly conceptualized by 

ontologies, the structural and semantic interoperability between these agents and 

resources can be achieved by mapping between these ontologies. Such a mechanism is 

known as “ontological mapping”, i.e. specifying the semantic correspondences between 

the concepts of one ontology with those of another. An in-depth discussion of on 

ontological mapping can be found in [44], [45], [50].  

2.3.2.2 Benefits of ontologies to reusability 

The capability of ontologies to enhance reuse has earlier been acknowledged and 

exploited by the Knowledge Engineering community in the development of knowledge 
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based systems [43]. An ontology was employed to capture domain knowledge of a 

system, while the system’s problem solving knowledge, which specifies the domain-

independent reasoning steps to solve the problem, was stored separately in a Problem 

Solving Method. Consequently, each knowledge-based system was designed as being 

composed of two components: a Problem-Solving Method and ontology [52], [56], [57]. 

This modularity in knowledge modelling, which was made possible by ontologies, 

enables the reuse of Problem-Solving Methods across different problem domains and the 

reuse of domain knowledge across different problems [44], [48], [54].  

In the context of MAS development, the above ontology-based mechanism of reuse could 

still be applied, since each agent in MAS is basically a knowledge-based system. Each 

agent can be modelled as being composed of two major knowledge components: the 

behavioural knowledge component, which captures the problem-solving knowledge of an 

agent in the form of plans, reflexive rules and/or actions that guide the agent’s behaviour 

in achieving its goals, and the (local) domain knowledge component, which contains the 

ontologies defining the domain related knowledge requirements of the agent’s behaviour. 

Given this approach of agent knowledge modelling, an agent’s behavioural/problem-

solving knowledge can be reused across agents with similar behaviour/goals in different 

domains, and its domain related knowledge can be reused across agents within the same 

domain area. 

2.3.2.3 Benefits of ontologies to MAS development activities 

Two major activities of MAS development that can be greatly facilitated by the use of 

ontologies are system analysis and agent knowledge modelling.  

System analysis involves the formulation of the problem to be solved (e.g. elicitation of 

system goals) and/or the representation of the application’s domain knowledge [55].  

• With regard to the problem formulation, the availability of an ontology which holds 

explicit, comprehensive knowledge about the target domain will greatly promote the 

developer’s understanding of the application, thereby facilitating its elicitation of the 

system goals and responsibilities. In fact, a weak ontological analysis often leads to 

an incomplete or inaccurate understanding of the application, thereby leading to an 

incoherent system [45]. The first step in developing an effective knowledge-based 

system has been recommended to be an effective ontological analysis [56]. Moreover, 
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when the target application covers multiple domains, the mappings between domain 

ontologies will help the developer to grasp the associations amongst these domains. 

These associations are particularly important if the development project involves 

multiple developers working on different domains [44]. 

• With regard to the representation of the application’s domain knowledge, ontologies 

offer a structured, explicit, human-readable mechanisms for representing domain 

knowledge. These characteristics promote the readability of an ontology, hence 

making it a reusable enhanced representation mechanisms.  

Agent knowledge modelling refers to the specification of local knowledge of each agent 

in the MAS, including problem-solving knowledge and local domain-related knowledge. 

Just as for application’s domain knowledge, an ontology can be used as an effective 

representation mechanism for agents’ local domain-related knowledge (which is typically 

a portion of the application’s domain knowledge) [54]. Different parts of ontologies can 

be assigned to different agents to represent the agents’ different views of the world [48]. 

In addition, as previously discussed, ontologies offer a mechanism for decoupling the 

modelling of agent domain-related knowledge from its problem-solving knowledge, 

hence promoting the reuse of agent knowledge modules.  

2.3.2.4 Benefits of ontologies to MAS operation 

Ontologies are beneficial to two major aspects of MAS operation: communication and 

agent reasoning. 

• Communication in MAS may occur between agents, between agents and non-

agent resources, and between agents and human users. 

Regarding inter-agent communication, even though sharing a common agent 

communication language (ACL) will allow agents to exchange messages (thanks 

to the common communication syntax), it does not ensure that the communicating 

agents will interpret the exchanged messages in a uniform and consistent manner, 

i.e. to share the same understanding of the semantics of the messages [44], [48]. 

Successful agent communication requires “ontological commitment” of the 

agents, i.e. an agreement between agents to share an ontology during 

communication [58]. This shared ontology provides the agents with a set of 

common vocabulary for formulating and interpreting the content of the exchanged 
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messages. This means that the local knowledge of each agent should contain the 

common ontology that is used for communication. This requirement indicates the 

inter-dependency between the ontology’s role in agent communication at run-time 

and the modelling of agent knowledge at design-time. 

• Regarding agent-resource communication, non-agent resources are normally 

accessed by agents via “wrappers”, i.e. specialized agents that provide interface to 

the resources [59]. Client agents can relay ACL queries and commands to the 

wrapper agents, which in turn translate and invoke them onto the underlying 

resources (Figure 2-3).  

 

 

Figure 2-3: Agent-resource communication 

 

Ontologies can be used to conceptualize the resources’ internal data and/or 

application, thereby allowing the wrapper agents to determine which vocabulary 

they should use to formulate input queries/commands to the resources and 

interpret outputs, without having to access the resource’s internal structure [58].  

• Regarding human-agent communication, ontologies can be used to facilitate the 

formulation of user queries and the representation of queries’ results. When a 

query/command needs to be formulated, the human user can consult the ontology 

committed by the agent receiving the query and use the vocabulary defined in that 

ontology as query terms [51], [60].  A query composed this way will be directly 

understood by the queried agent without any need for further query processing. 

When the results of the query are found, they can be represented using the same 

ontology as that previously used for query formulation. This allows the human 

user to receive a single representation scheme of the results, even if the results 

have been gathered from heterogeneous resources with different local 

representation schemes [51]. 

• Agent reasoning at run-time processes the problem-solving knowledge of the 

agent, and uses the domain-related knowledge held by the agent as inputs [46]. If 

the domain-related knowledge has been modelled as an ontology during agent 

Client Agent Wrapper Agent Resource

ACL Message

Native language

Queries/Command

Client Agent Wrapper Agent Resource

ACL Message

Native language

Queries/Command



33 

 

knowledge modelling at design time, with all relevant domain concepts and 

relationships being explicitly defined the agent reasoning process can easily 

utilize this knowledge and make the most out of it. The following are a few 

examples of how ontology-based knowledge can facilitate agent reasoning. 

o The taxonomy of concepts in an ontology can help agents to process a user 

query by decomposing it into sub-queries.  

o Mappings between ontologies may help agents to make useful inferences. 

o Mappings between ontologies of heterogeneous resources and a common 

ontology may help agents to determine the appropriate resources to use 

without having to access each resource’s internal data.  

o Axioms, rules and assertions that specify constraints on concepts and relations 

(if any) may help agents to reason.  

2.3.3 Classification of ontologies 

There is no universally accepted classification of ontologies, but the most common 

taxonomy for classifying ontology is by their level of generality [48], [61]-[63]: 

generic/top-level/upper-level ontologies, domain ontologies, task ontologies and 

application ontologies as shown in Figure 2-4. Generic/top-level/upper-level ontologies 

specify the general knowledge about the world, providing basic notions and concepts for 

things like space, time, matter, object, event and action. These concepts are independent 

of a particular problem or domain and can be re-used across applications. Domain 

ontologies describe concepts which are specific to particular domain. Domain ontologies 

may be reused across applications that belong to the same domain. Domain ontologies 

can be developed by refining generic ontologies. Task ontologies describe the entities 

relevant to problem-solving tasks and methods. Task ontologies can be also developed by 

refining generic ontologies. Application ontologies describe concepts that are specific to 

an application. Since each application is typically characterized by both a particular 

domain(s) and a particular task(s), Application ontologies are thus a synthesis of domain 

ontologies and task ontologies that have been specialized to model the application’s 

specific knowledge needs. 
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Figure 2-4: Types of ontologies [61] 

 

A more comprehensive review of ontologies including their representation languages, 

development tools and methodologies can be found in [63]-[66]. 

Ontology plays a vital role in the development of MAS. Because of no existing developed 

RFID ontology, the gap was filled by developing the ontology for RFID devices used in 

the MAS based middleware system discussed. RFID device ontology includes a 

description of devices which are specific to RFID domain. This ontology can also be 

reused or extended to be used in other applications. The development of the ontology 

which is combination of RFID device ontology and task an ontology is covered in 

Chapter 5, Section 1.  
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Chapter 3: RFID Data Modelling 

The RFID middleware is the software subsystem which bridges the gap between the 

RFID hardware infrastructure which collects the data and the enterprise applications that 

wishes to utilize the collected RFID data. It addresses questions such as; where does the 

collected data go next, and how can the data be used to provide useful information to the 

enterprise information systems? Therefore, a proper data model is vital for the efficient 

functioning of the middleware.  

RFID data modelling is the process of translating a physical RFID deployment world into 

its corresponding virtual world. Readers’ observations generated from RFID deployments 

are raw data which provide no explicit semantic meanings. In order for this data to be 

useful it needs to be transformed into semantic data properly represented in its own data 

model before it can be integrated into applications. Hence, RFID data modelling is the 

first and essential step for managing RFID data and for supporting business applications. 

The work by Harrison [67], summarizes the characteristics of RFID data, and provides 

some reference relations to represent the data. In their model, RFID data is modelled as 

events, thus state history and its temporal semantics are not explicitly modelled. This data 

model is not effective in supporting complex queries such as object tracking. Complex 

queries often need to be divided into numerous steps that are indirect and inefficient [67].  

Wang and Liu [4] propose a data model for RFID application which models both RFID 

events and states. Their model provides a more efficient support for complex queries. The 

model by Wang and Liu is based on the event observations generated from a single 

reader. However, as was pointed out above, in general, most of RFID based applications 

are not interested in individual readings in time or individual devices in space, but rather 

in an application-level concept of temporal and spatial granules [14]. These granules 

define the lowest-level, atomic unit of both time and space in which an application is 

interested [14]. The model presented here builds on the Wang and Liu model [4], but 

considered the application of temporal and spatial granules in the data model itself. In the 

data model under discussion, event observation is a combination of observations from 

one or more readers that cover the observed location of interest. Also, taking into 

consideration the temporal granule aspect of RFID application events and the need to 

reduce the volume of data generated by the RFID system as well as the way of dealing 
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with erroneous data, observations are modelled as macro-events with start and end time 

instead of instant events. In this section we present our proposed data model and discuss 

how the model is implemented in middleware. 

There are two basic categories of data in RFID systems, static data and dynamic data [7]. 

Static data are related to commercial entities and product/service groups such as location 

information, product level and serial level information. These are static attribute data 

about an object such as product description, which are more likely to remain the same 

throughout the lifecycle of the product. For example, the previous modelled RFID device 

ontology describes the static attributes of the RFID devices. 

3.1 Static RFID Data 

Although many entities may exist in RFID application, only some of them are directly 

related to RFID.  These fundamental entities in RFID applications follow from an 

examination of RFID systems: 

Tags – refers to the RFID tags also known as RF transponders. Tag has unique 

identification code stored in its memory and it is attached or embedded into the object for 

the purpose of identification using radio waves. 

Objects – An object is referred to as any entity tagged with an RFID tag. RFID tags act 

as a proxy of their corresponding objects. Observations of tags represent observations of 

the corresponding objects. 

Reader – These are RFID readers which use radio frequency signals to communicate 

with RFID tags and read data from tags or write data into tags. Each reader is also 

uniquely identified by its RFID Tag.  

Sensors – These can be sensors embedded in the RFID tags or standalone sensors such as 

temperature sensors, motion sensors, or location sensors. Tag-embedded sensors measure 

a target and then write the measurement to its master RFID tag. 

Location – Location can be geographical location or symbolic location [67]. Symbolic 

location is way of indicating that an object is in/on/at a particular discrete location. 

Location can contain another location. Different applications may have different location 

semantics; hence, granularity of symbolic location is defined according to application 

need.  Continuous geographical locations can be identified by a local sensor (e.g. GPS) or 
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a local position radar combined with reader as demonstrated in [68]. Some hybrid, active 

tags with integrated GPS are also available [68]. 

Containment - Another concept in RFID application related to location is the concept of 

containment.  Containment determines the hierarchical relationship among objects. For 

example, the tagged shelf containing tagged books, and the tagged case containing tagged 

items. The containment relationship implies important logic information; for example, a 

container object and its containing objects share the same location. Another similar 

concept is association, where tagged objects are associated with certain relationships. For 

example, a room may be associated with the list of furniture contained in the room, 

and/or a toolbox associated with the list of tools. 

Logical readers – logical readers are abstract names given to one or more readers that 

have a single logical purpose. For example, in a large warehouse, there may be five 

loading dock doors each with three readers for a particular door. It is more likely that an 

application trucking the flow of goods into trucks would want to read each individual 

door readers observations combined as a single event rather than combining all the 

warehouse door reader observations into single event. The logical reader name approach 

is more desirable than using reader identities - especially in the applications deploying 

fixed readers for the following reasons: 

• If the reader is changed, the unique identity of the reader will change, forcing the 

application configuration to be changed. 

• If the number of readers must change, e.g. because it is discovered that four 

readers are required instead of three to obtain enough coverage of a particular 

dock door, then the application configuration must be changed. 

The logical reader concept is synonymous to location.  In the prototypical middleware 

discussed here, the location and logical reader are used interchangeably. 

Operation - This refers to the situation where by the reader acts as a proxy of operation 

or operator. For example, the detection of number of tags by the dock door reader may 

mean “shipment arrival” operation. In a movable reader deployment an operator can 

either be a human operator or a motion control system. An operator with a reader 

performs certain operations or processes to targeted tagged objects. For example, a nurse 

wearing a wearable reader may interact with syringes, medicine and patients. Thus, the 
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interactions between the reader (operator) and object or combination of objects represent 

a certain operation. In this case, reader observations are used to track operations in which 

they imply the start or the end of operations. 

Transaction – Transaction can be viewed from two perspectives. The first one refers to 

the business transaction in which the tagged object is involved. For example, the 

checkout involves a credit card transaction with many tags readings. The second 

perspective refers to the predefined properties of the objects, such as “processing steps”, 

which can be written in writable tags. Here the latter perspective will be called object 

transaction. Hence, object transaction refers to the data written in the writable tags. 

While the fundamental entities in RFID applications are themselves static, relationships 

among these entities can be either static or dynamic. Static relationships are spatial and 

temporal independent and they are similar to the traditional Entity-Relationship (ER) 

model [70]. For example, the relationships between an object and its corresponding proxy 

tag, an object and its on-board sensor, location and its sub-locations (location 

containments) are static relationships. Once set, they rarely change. However, most of the 

entity relationships in RFID applications are temporal and spatial dependent, which lead 

to dynamic data.  

3.2 Dynamic and historical RFID Data 

Dynamic entity relationships between fundamental entities in RFID applications generate 

movement, workflow, operations, and business logic [4], [67]. These interactions can be 

categorized as either an occurrence of an event or a state change. According to definitions 

provided in [71], an event is an instantaneous fact, i.e. something occurring at an instant, 

while state is something that has extent over time. Events delimit states. The occurrence 

of an event results in a fact becoming true; later, the occurrence of another event renders 

that fact no longer valid. Hence, events and states are dual; states can be represented by 

their delimiting events, and events are implied by states.  

In RFID systems events are generated when entities interact with each other. RFID events 

include: 

• Observations – these are generated when readers interact with objects. 
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• Sensor Measurements – these are generated when the sensor senses a target(e.g. 

motion, temperature). 

• Object transaction– these are generated when a reader writes the data into the 

writable object’s tag. For example, the reader may write the processing steps 

performed on the object to the tag attached to the object; in this case the 

transaction is the processing step. 

• Business Transacted items – these are generated when an object participates in a 

business transaction. 

 

On the other hand, state changes are generated when the entity relationships changes. 

State changes include: 

• Change of object location – change of relationship between tagged object and 

location represents an object movement. Location changes come with the 

movement of objects in the business process.  

• Change of Object aggregation or containment relationships  

• Start or end of an operations – an RFID observation can be used to signify the 

start or end of an operation.  

• Change of reader locations – change of relationship between reader and 

location. For example, movable readers enter/leave a location. 

3.3 Modelling Static RFID Data 

Static RFID data are modelled following the conventional ER model. Static entities and 

static relationships are modelled as a single state relation (a two-dimensional relational 

database table with the tuples as rows and the attributes as columns). For simplicity an 

entity description is used to refer to all static-related attributes of an entity.  Each object, 

reader, sensor and location static entity is associated with RFID tag, which uniquely 

identifies it. 

From the above list of static RFID data we have the following static entity tables. 

• Object table – this table captures the unique identification code of the tagged 

object, and the object description. 
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• Reader table – this table captures the unique identification code of the reader and 

the reader description. 

• Sensor table – this table captures the unique identification code of the sensor, and 

the sensor description. 

• Location table – this table captures the unique identification code of the symbolic 

location, and the location description. A location containment table captures 

containment relationship between locations. For example, a large warehouse may 

have five loading dock doors, with each door identified as a separate location. 

• Logical reader table – this table captures the unique identification code of the 

logical reader, unique ID of the location, and the logical reader description 

• Transaction table – this table captures the unique identification of the 

business/object transaction, and the transaction description. 

• Operator Table – this table captures the unique identification of an operator, the 

unique identification of the reader which acts as the operator’s proxy and the 

operation description. 

In this static model, if nothing changes in the reality, the relations remains unchanged; 

otherwise the state of the relation is updated using data manipulation operations such as 

insertion, deletion or replacement, which takes place as soon as they are committed. In 

this process, past states of the entity updated is discarded and forgotten. This type of 

model produces a snapshot database in which the state of the database at any particular 

point in time is modelled to reflect the current status or the last-known status of the 

reality. However, one of the essential goals of an RFID-enabled application is to trace 

objects, track objects or to monitor the system at any location, at any time, or both. For 

example, an RFID tracing application will require looking back in time at an historical 

list of all observations of an object. Tracking application will require looking forward in 

time and obtaining the most recent observation, while monitoring application looks at the 

current state of the system.  RFID applications track and trace objects by keeping track of 

their movements among different locations through RFID observations.  Tagged objects 

moving in the RFID deployed environment are automatically sensed and observed with 

their identifications, locations and movement paths recorded. While these movements are 

observed and recorded as sequence of observations, they signify process/movements in 

applications. This is another example of implicit semantic of RFID data which need to be 
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extracted and explicitly expressed in the data model. It also illustrates the importance of 

the data model which preserves the entity events and states histories for the successful 

execution of RFID applications.  

In the static model, the history of events and states of the entities and their relationships 

are not considered. Therefore, in addition to the static model we also need a temporal 

based model which will effectively map the RFID observation into application logic in 

the real world while preserving the history of events and states generated from these 

observations. 

3.4 Modelling Dynamic RFID Data 

Time is an essential part of information about the constantly evolving real world. As time 

passes, researchers are interested in monitoring what is true at the present time, as well as 

in the past and future. The key observation is that while the present is continuously 

changing, most of the world description is remaining the same and the casual 

relationships among events and states of entities are embedded in temporal information. 

Therefore, facts or data need to be interpreted in the context of time. A time-based model 

provides a support to handle historical queries about past status, trend analysis for 

decision support systems as well as the way to represent retroactive and proactive 

changes occurring in the system [72], [73]. 

 

One way of dealing with temporal information is to add one or more time attributes to a 

model [72]. This approach was used here and, therefore, dynamic data in the middleware 

are modelled by extending the conventional ER model to include temporal information. 

ER constructs are made temporal by changing their semantics, i.e. the ordinary 

relationship types are given temporal semantics making their instances record variation 

over time, rather than just single states. 

Since states have duration and events do not, the valid time of states is thus modelled 

using pair of time attributes ��
��_����  and ���_����  which represents the duration of 
the state. The valid times of events are modelled using an attribute ���
�� which 
represent the occurrence timestamp of the event. 
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3.4.1 Temporal Events  

Once again, in general, most sensor-based applications are not interested in individual 

readings in time or individual devices in space, but rather in an application-level concept 

of temporal and spatial granules [14]. These granules define the lowest-level, atomic unit 

of both time and space in which an application is interested [14]. Although RFID readers 

are able to produce data at a very high rate, applications are often concerned with data 

from a large time duration, or temporal granule. For instance, in a retail scenario when an 

application continuously monitors the count of items on each shelf, the temporal granule 

might be 5 seconds. Therefore, the “event” of interest in the application often means 

macro-event, which is defined as a holistic fact with duration, i.e. something occur over 

an interval of time taken as whole [71]. To support the notion of temporal granules in our 

model, observations are modelled as macro-events with start and end time. Within macro-

event duration, the observations are aggregated and compared to detect obvious outliers. 

Modelling temporal granule aspect within the data model helps to reduce the volume of 

data generated by the RFID system and also provides a way of dealing with erroneous 

data.  

Observation Events – Observation tables capture the raw read data generated by the 

readers at a certain location within specified time duration. For simplicity, single 

surrogate primary keys are used to identify the entities. 

a) In the read-only tag deployments - It includes unique ID of the observation 

(objev_id), unique ID of the object (obj_id), start and end time of the macro-
event, number of times the same tag was read (tag_count), and the location 
unique ID (location_id) which represent where the tag was read.  

!"#$%�_$&$'� 
(objev_id, obj_id, start_time, end_time, tag_count, location_id) 

As explained before, the macro-event contains one or more instant tag reads, 

meaning that within that time the same tag can be read more than once by 

either the same reader or by more than one reader forming one logical reader 

in the location of interest. The attribute tag_count represent the number of 
times the same tag was read during the macro-event duration. This coalescing 

of the instant read tag values over the macro-event duration eliminates 

duplicate reads while reducing the amount of data accumulated by the 
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application and hence reduces the storage requirements. As will be explained 

later, tag_count  also helps to detect erroneous tag reads. 
b) In the read-write tag deployments – where reader can write data to the tag. 

The writing and reading actions are done independently, and writing can be 

more frequent than reading. When a reader interacts with an object for 

reading, the reader observes both the tag ID and the logged object transaction 

history.  In this case, we have an additional table which keeps record of the 

logged object transactions, called the !"#$%�_!�,-'�-%�.!' table. To 
link the object event instance with its list of object’s object transaction 

instances, the object event unique ID is added into the list of object_otransaction entity table attributes.  This attribute relates the object 
event table with the object’s object transaction table in a one-to-many 

relationship with each other. 

!"#$%�_$&$'� 
(objev_id, object_id, start_time, end_time, tag_count, location_id) 
!"#$%�_!�,-'�-%�.!'  
(object_transaction_id, objev_id, writer_id, value, Tstamp) 

Each object’s object_transaction table keeps record of its corresponding 
object event (objev_id), object transaction ID (object_transaction_id), the 
written data (value), the reader which wrote the information in the tag 

(writter_id), and the time when the information was written (Tstamp). It is 
important to keep the record of the reader that wrote the information, because 

the reader that wrote the data into the tag might not be the same reader that 

read the data. Also, the writer reader might be a proxy to operator, and such 

information can be used to add more semantics to the data collected. 

c) In the sensor-embedded tag deployment – where the sensor embedded in 

the tag periodically senses the target object and writes the sensor 

measurements to the tag. When a reader interacts with an object, the reader 

observes both the tag ID and the logged sensor measurements history. In this 

case, there is an additional table that keeps records of the logged sensor 

measurements, called the �$'�!,_2-�- table. To link the object event 
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instance with its list of sensor data instances, the object event unique ID is 

added into the list of sensor data entity table attributes.  This attribute relates 

the object event table with the sensor data table in a one-to-many relationship 

with each other. 

!"#$%�_$&$'� 
(objev_id, object_id, start_time, end_time, tag_count, location_id) 
�$'�!,_2-�- (sensor_id, objev_id, value, Tstamp) 

The �$'�!,_2-�- table keeps records of the sensor measurements, 
including the primary key of its associated object event instance (objev_id), 
sensed value (value), and the time of sensing (Tstamp). If the sensor type is a 
location sensor then the sensor data is recorded in the 3!%-�.!'�$'�!,_2-�- TABLE. This table keeps a record of the object’s 
physical location coordinates (x, y, z), unique ID of the sensor which read the 

data (sensor_id), its corresponding object event instance (objev_id) and the 
time at which the data was read (Tstamp). 

3!%-�.!'�$'�!,_2-�- (sensor_id, objev_id, x, y, z, Tstamp) 
• Business Transaction Events – The business transaction event table keeps 

records of information about the business transaction in which the object 

participated. Its attributes include business transaction unique ID 

(business_transaction_id), object unique ID (obj_id) and time when the 
transaction occurred (Tstamp). 
    "�,-'�-%�.!'_!"#$%� (business_transaction_id, obj_id, Tstamp) 

3.4.2 Temporal States  

As described before, state changes are generated when the entity relationships change 

over time. Also, state is associated with duration. 

• Change of object location. The !"#$%�_3!%-�.!' table – this table keep 
record of object location history as the object moves from one location to another. 

Its attributes include object unique ID (obj_id), location unique ID (location_id), 
and the time duration [start_time, end_time] during which the object stays in that 
location. The combination of (obj_id, location_id, start_time) can be used as a 
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primary key to uniquely identify an individual object location instance or another 

single surrogate primary key can be added. 

!"#$%�_3!%-�.!' (obj_id, location_id, start_time, end_time) 
• Change of containment/Association relationship. The %!'�-.'7$'� table – 

this table keep records of object containment history as their containment or 

association relationships changes over time. Its attributes includes object unique 

ID (obj_id), parent object unique ID (parentObj_id), and the time duration 
[start_time, end_time] during which the object is contained in its parents object. 

%!'�-.'7$'� (obj_id, parentObj_id, start_time, end_time) 
• Operation. The !�$,-�.!' table – this table keeps records of the operations 

performed by an operator.  Its attribute includes the unique ID of the operator who 

performed the operation (operator_id), the object being operated (obj_id) on, and 
the life span of the operation [start_time, end_time]. 

!�$,-�.!' (operator_id, obj_id, start 9 time, end_time) 
• Change of reader locations – The ,$-2$,_3!%-�.!' table – this table keeps 

record of reader location as it is moved from one location to another. Its attributes 

includes unique reader ID (reader_id), unique location ID (location_id), and the 
duration of the reader in that location [start_time, end_time].  

,$-2$,_3!%-�.!' (reader_id, location_id, start 9 time, end_time) 
The above presented model extends the conventional ER construct by adding time 

attribute to the model. The ordinary relationship types are given temporal semantics 

making their instances record variation over time, rather than just single states.  By 

maintaining the history of events and state changes, the data model captures the 

fundamental RFID application logic into data model itself. Although state changes 

information can be derived from events data, explicitly modelling of the state changes 

information into the data model provides a better support for complex queries. Most of 

the RFID queries are time based queries with temporal constraints such as history, 

temporal snapshot, temporal slicing, temporal joins and temporal aggregates. History 

queries retrieve the history information of an object; for example, location history, 

temperature measurements history, and objects transaction.   Snapshot queries retrieve the 

snapshot information of an object; for example, location at time t, and temperature at time 
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t. Temporal slicing queries retrieve the information of the object during the time interval 

(t1, t2). Temporal join queries find information by joining multiple relations on a certain 

constraint. Temporal aggregation queries summarize aggregation information at certain 

snapshot or interval. Examples of basic queries can be found in [67].The above model 

efficiently supports all these types of queries. The semantics of the data model is 

generalized from RFID data, thus fits directly with RFID data.  

Table 3.1 summarizes the RFID data model tables for different types of RFID 

deployments. The same information is also summarized in Figure 3-1, Figure 3-2, and 

Figure 3-3 which shows the event and state dynamic relationships generated by 

interaction of static entities within the RFID system. Note that not all tables are necessary 

for a given deployment. 

Table 3.1: RFID Data Model Tables for Different Deployment Types 

Deployment Type 

 

Table 

Read-only 

tags 

Read-write 

tags 

Read-write 

tags with 

onboard sensor 

Static Entity Tables:    

OBJECT X X X 

READER X X X 

LOCATION X X X 

LOCATION_CONTAINMENT X X X 

OTRANSACTION  X X 

BTRANSACTION X X X 

SENSOR   X 

OPERATOR X X X 

Dynamic Event Tables:    

OBJECT_EVENT X X X 

OBJECT_OTRANSACTION  X X 

SENSOR_DATA   X 

LOCATIONSENSOR_DATA X X X 

BTRANSACTION X X X 

OPERATION X X X 

Dynamic State Tables    

OBJECT_LOCATION X X X 

CONTAINMENT X X X 

READER_LOCATION X X X 
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Figure 3-1: Data Model for read-only tags RFID deployment 

 

 

Figure 3-2: Data Model for read-write tags RFID deployment 
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Figure 3-3: Data Model for read-write tags with onboard sensor RFID deployment 

 

3.5 Application Level Events Processing 

The middleware developed uses the above data model and some rules to automatically 

transform the raw data generated by RFID system into higher semantic data which are 

able to support most of the RFID applications queries. The extracted higher semantic data 

such as location change, containment change or operation are captured into the data 

model as state change information. 

 

An assumption is that the user specifies the temporal granule of the event as the macro-

event duration (e.g. read tags for 1 minute), as well as the location or the logical reader at 

which the observation has to be performed. As explained before, a logical reader/location 

can consist of one or more readers. 

3.5.1 Observation Events 

Readers vary in their capabilities and functionalities. Some readers are capable of 

performing some aggregation and filtering functionalities while others simply read the 
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tags and report the raw read data without any aggregation or filtering. Therefore, in order 

to cater for low range readers, the middleware provides a functionality which performs 

the aggregation and filtering of tag reads within the macro-event duration. 

The following algorithm for aggregating tags collected during the micro-event duration is 

explained in section 3.5.1.1 below. 

3.5.1.1 Aggregation algorithm – for a one reader 

 

 Initialize count = 0 // number of tag reads received from the reader  Initialize tagEventList =  new ArrayListCD // list of tag events  While Cmicro-event durationD { read tag  create a new tag event object set scanned input value as tag_id readTime =  new DateCD  // capture the read time set the tag discovery time as readTime set the tag last seen time as readTime update tag event if Ccount>0D //check if the tag already exists in the list  If Cnot in the listD  initialize its tag_count =  1 add tag to the list else  increment its tag_count 9>  �
�_	�L�� M 1  update its lastSeenTime 9>  ��
����� else Ccount = 0D � this is first tag add it in the list initialize its tag_count =  1 add tag to the list increment count   } 
 

 

After the micro-event duration each reader produces data with the reader unique ID and 

list of its tag events  

             Reader observation � Creader_id, tagEventListD  
 Where, 
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 tagEventList ={tgev1, tgev2, tgev3…} 
 tagev = Ctag_id, discoveryTime, lastSeenTime, tag_countD  

 tag_id     Is a unique ID of a tag 

 discoveryTime  Is the first time the tag was read by the reader 

 lastSeenTime  Is the last time the tag was read by the reader 

 tag_count    Number of times in which this tag was read by reader  

during event duration 

  

3.5.1.2 Aggregation for more than one reader 

The data from readers which form a logical reader or the readers which are deployed in 

the location of interest are then combined together to generate event data. The assumption 

here is that the client of the data is interested in the location where the object was found 

rather than the reader which observed the object. 

 Event_Observation � Clocation_id, combined_tagEventListD 
If there are two or more reader data instances with the same �
�_.� in their tag event list, 

their  tag_count  are added to form new aggregated �
�_	�L��, last seen time is set to the 
greater last seen time, and discovery time is set to be the minimum discovery time. 

RQ �tagEventQCtag_idQ, discoveryTimeQ, lastSeenTimeQ, tag_countQD RR �tagEventRCtag_idR, discoveryTimeR, lastSeenTimeR, tag_countRD 
 

If tag_id Q =  tag_idR 
Then �  tag_count =  tag_countQ  M  tag_countR 

   discoveryTime =  minCdiscoveryTimeQ , discoveryTimeRD     
   lastSeenTime =  maxClastSeenTimeQ, lastSeenTimeRD 

 

Since readers, containers and even some locations can also be attached with tags to 

uniquely identify them; the RFID Tag table has an attribute called ������S����T�� of 
enumeration data type which describes what type of entity it identifies. The enumeration 

data type is: 
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ENUMCXOBJECTX, XREADERX, XSENSORX, XLOCATIONX, XCONTAINERX, XOBJECTandCONTAINERXD. 
Where, 

OBJECT, READER, SENSOR and LOCATION identify their respective entities; and 

%!'�-.'$, – identifies any object which can contain another object e.g. toolbox; 
and 

!"#$%�
��%!'�-.'$, – identifies any entity which can be both container and 
object. For example, cases and pallets: case contains items which are objects; when 

loaded into a pallet, cases are viewed as objects and pallet as container, and when 

pallets are loaded into truck they are viewed as objects while truck becomes a 

container of the pallets. This concept can be referred to as nested containment. 

This attribute identifies which type of entity is observed and it also aids in deciding state 

changes to be triggered by the occurrence of an event.  

 

Note that nested containments are difficult to resolve; for example, where more than one 

container object is observed and the list of objects, it is difficult to know which container 

an object belongs to. This implementation assumes that the containment concept is used 

in a structured environment such that only one container is observed at a time with no 

nested containment. 

 

From the event observation (]�	
����_��, 	��^����_�
�$_���3���), object events are 
generated from the tag events whose tag’s identifierType is either OBJECT or 

CONTAINER. These events are stored in the OBJECT_EVENT table of the data model 

discussed previously. 

 

OBJECT_EVENT 

(�^`�__��, �^`�	�_��, ��
��_����, ���_����, �
�_	�L��, ]�	
����_��) 
Where, 

 !^`�	�_�� =  �
�_�� Ca��b �
�’� ������S����T�� =  !"#$%� || %!'�-.'$,D 
 ��
��_���� =  ���	�_��T���� 

 $��_���� =  ]
���������� 
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3.5.2 State changes Events 

As explained before, events delimit states. The occurrence of an event results in a fact 

becoming true; later, the occurrence of another event renders that fact no longer valid. 

Hence, occurrence of an event triggers state changes. 

 

a) Location change – Any tag event in the event observation 

(]�	
����_��, 	��^����_�
�$_���3���) whose tag’s ������S����T�� is 

OBJECT or CONTAINER triggers an update of object location.  If tag’s ������S����T�� is READER it triggers an update of reader location and if it is a 
SENSOR it triggers an update of sensor location. 

For example, if the last object location is the same as the event location, update ���_���� of the location to the ���_���� of the event, otherwise new object 
location tuple is added to the OBJECT_LOCATION table with ��
��_���� and ���_���� corresponding to event start and end times. 
For each new OBJECT_EVENT tuple  

�UPDATE: OBJECT_LOCATION  

  If object last location = event location 

  �Update object location end time  

�^`�	�_]�	
����. ���_���� =  �_���. ���_���� 
  Else add new  

  �^`�	�_]�	
����C�^`_��, ]�	
����_��, ��
��_����, ���_����D 
b) Containment change –  From the event observation 

(]�	
����_��, 	��^����_�
�$_���3���), if there is any tag event whose tag’s 
identifierType is CONTAINER, it triggers the object containment change with 

parent object being the container object and the children object being other tag’s 

in the event whose ������S����T�� is OBJECT. 
For each new event observation with tag event whose tag’s 

 ������S����T�� =  %!'�-.'$, 
�UPDATE: CONTAINMENT (�^`_��, �
����!^`_��, ��
��_����, ���_����) 
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If object last parent object = event container 

  �Update containment end time  

 	���
������. ���_���� =  �_���. ���_���� 
Else add new containment    

(�^`_��, 	���
����_��, ��
��_����, ���_����) 
c) Operation – From the reader observation (��
���_��, �
�$_���3���), if this 

reader is associated with OPERATOR entity, this observation triggers changes in 

OPERATION table, with operation objects being the objects in the tag event list 

with the tag whose ������S����T�� is OBJECT or CONTAINER. 
For each new reader observation whose reader is associated with operator 

�UPDATE: OPERATION (����
���_��, �^`_��, ��
��_����, ���_����) 
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Chapter 4: Middleware System Design 

What is presented in this chapter is the prototypical design and analysis of the proposed 

agent-based RFID middleware system, called RDDM (RFID Device and Data 

Management) middleware. The middleware abstracts the Auto-ID applications from 

physical RFID specific details and provides necessary services such as device 

management, data cleaning, event generation, query capabilities and event persistence.  

The prototype system is designed by using the agent oriented software engineering 

methodology PASSI [40], and implemented using the Jade Platform [41] and a MySQL 

relational database. One attractive feature of the software agents and multi-agent systems 

(MAS) is their ability to represent a complex software system as a modular society of 

cooperating autonomous problem solvers. MAS is a mature technology with a proven 

potential to enhance overall system performance, specifically along the dimensions of 

computational efficiency, reliability, extensibility, robustness, maintainability, 

responsiveness, flexibility, and reuse [33]. On the other hand, most of RFID system 

deployments are distributed in nature, RFID readers or tagged devices installed in 

different strategic locations within the organizations are linked together creating a 

distributed network of RFID devices. We argue that using of MAS distributed 

architecture approach for the middleware provides a scalability and load balancing 

through distribution of the computing resources and capabilities across a network of 

interconnected agents. The MAS modular approach also provides an adequate level of 

reuse of the middleware or its components to facilitate development of the Auto-ID 

applications. Using MAS for a middleware system development is what makes this 

middleware system different from other research-based RFID middleware systems. A 

detailed review of existing RFID middleware solutions can be found in [74] and [75]. 

This prototype system assumes the read-only deployment using read-only passive RFID 

tags with no other types of sensors. Only the unique identifier of the tagged object is 

stored in the tag and all object related data are stored in the back-end information 

systems. The main advantage of such a system is that these types of tags are relatively 

cheaper and there is no need to encrypt the simple identifier because access to the data on 

the network is restricted. Because of its modular temperament, the system can be 

extended to include other data entities and accommodate different types of RFID 
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deployments and applications. For example, to add support for another type of sensor a 

proxy agent for that sensor should be modelled and added to the system. The middleware 

also uses a discrete (symbolic) location model in which the location of the object can 

either be identified by a fixed reader’s location or with some special tags which are fixed 

to represent a location. Fixed reader’s locations can be used to identify the position of 

moving object, while fixed location tags can be used to identify location in the case of a 

mobile reader.  

4.1 System Requirement Analysis 

Based on an analysis of different RFID applications and the study of other work on RFID 

middleware [3], [5], [6], [8], [15], [16], an RFID middleware system should meet the 

following requirements: 

• Support for heterogeneous reader landscape.  

The diverse computing and networking capabilities of readers is also an important 

RFID consideration when developing RFID infrastructure support. Low cost readers 

usually support only a single antenna and a serial RS232 interface. These reader types 

are connected to a computer which hosts the application directly or forwards the 

captured data over a network connection. More sophisticated reader devices support 

several antennas, a TCP host interface, and ample computing resources for on-device 

data processing, such as filtering and aggregation. 

• Fault and configuration management.  

The proliferation of readers mandate fault and configuration management. This 

includes monitoring the health of RFID readers and accessing the RFID reader 

configurations remotely.  

• RFID data filtering.  

A common feature of all applications that make use of the captured data is the desire 

to receive filtered RFID events rather than all RFID data captured. Different 

applications are interested in a different subset of the total data captured, based on the 

reader, reader antenna, and tag involved. 
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• RFID data aggregation.  

RFID systems generate significant amount of data that can be aggregated in a number 

of different ways. RFID data can be aggregated in the time or space domain, e.g., by 

combining data from different readers and reader antennas that observes the same 

location or by detecting the movement of a tagged objects. Since RFID permits 

identification at the instance-level rather than at the class-level, there is also the 

possibility to report the quantity of objects belonging to a specific category. 

• RFID data interpretation.  

From an application perspective, it is also desirable to provide a mechanism that 

interprets the captured RFID data in a given business context and that turns the low 

level RFID event into the corresponding business events. For example, the detection 

of a tag by reader R1 followed by reader R2 can be translated as a person leaving the 

office. 

• RFID data dissemination.  

The information captured by a reader is usually of interest not only to a single 

application, but to a diverse set of applications across an organization and its business 

partners. The captured RFID data must thus be broadcast to the entities that indicated 

an interest in the data. Due to the event-driven nature of many processes observed 

with the help of RFID systems, there is a need to support asynchronous messaging as 

well as a query-response model. Different applications also require different latencies. 

Applications that need to respond immediately to local interaction with the physical 

objects require a short notification latency that is comparable to the observation 

latency. Legacy applications that are not designed to handle streaming data might 

need to receive batched updates on a daily schedule. 

• Persistency of event data.  

The data received by RFID readers need to be stored persistently to allow applications 

to query the data. For example, an application that wants to retrieve the track and 

trace information about a certain object needs to query all related historical RFID 

events related to the object. 
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• Location information.  

The system has to provide a mechanism to enrich RFID data with location 

information since applications are interested when a certain object was at a certain 

location. For many applications, symbolic location names are sufficient in business 

context definitions. For example, the query of a track and trace application should 

return a list of times, locations and object states for a given object. 

To model this system, the first step was identifying and analyzing the system stakeholders 

and their intentions.  Stakeholders are modelled as social actors who depend on each 

other for goals to be achieved, tasks to be performed and resources to be furnished. 

Intentions are modelled as goals which are later grouped together to form system 

functionalities. 

4.1.1 System Stakeholder 

The main stakeholders for the developed prototype system are: 

• Client applications – these are enterprise software applications which need the 

data captured by the RFID system.  

• Administrators – these are individuals who are responsible for installation and 

configuration of the middleware system, as well as monitoring the performance of 

the system.  

• Readers – these are infrastructure components responsible for acquiring raw data 

from RFID tags and forwarding them to the middleware system. 

Figure 4-1 shows the actor diagram for the RDDM middleware system with their primary 

goals. A reader’s goal is to collect data from RFID tags and forwarding it to the 

middleware; client applications want to receive RFID event reports and administrators 

want to configure the system. 
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Figure 4-1: Actor diagram modelling the key stakeholders of the RDDM middleware 

system 

4.1.2 System Architecture 

Figure 4-2 shows the proposed RFID middleware architecture with four main layers: 

device management layer, data management layer, business process interpretation layer 

and an interface layer.  The architecture is motivated by the analyzed system 

requirements and system stakeholders.  
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with the physical RFID readers to collect the read data. The collected data is then filtered 
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further event processing. The device monitor is used to monitor the pertinent health 

information of the connected devices. The parameters to be monitored can include IP 

address, port number, connectivity status and operation status.  The device configuration 
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Figure 4-2: System Architecture 

 

Data Management Layer 
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object related information such as object location, aggregation information, the 

environment of the tagged object and inference and association rules are maintained in 

the database. 

Interface layer 

The interface layer connects the system with the real world; it provides a graphical user 

interface GUI allowing the system administrator or user to interact with the system and 

also it provides a means for integrating the middleware system with other enterprise 

applications interested in the data. By using the device management interface the user can 

specify, configure and monitor the set of devices connected to the middleware. By using 

the data management interface the user can define the rules for processing the incoming 

data collected by the devices and subsequently define where to send the information after 

processing. The application interface is responsible for integrating the middleware with 

other enterprise applications interested in RFID data. 

 

4.2 System design  

This middleware system is designed following agent oriented software engineering 

(AOSE) methodology. AOSE is concerned with the engineering of software that has the 

concept of agents as its core computational abstraction. Several methodologies exist for 

the analysis, design and implementation of agent oriented software. An author of [37] 

offers a very good guide to the broad body of literature on AOSE and comparison of 

various methodologies can be found in [38]. Among the AOSE methodologies which 

exist we choose to use PASSI methodology [40] for our system development. This choice 

is driven by the availability of step-by-step requirement-to-code guidance, 

documentations and easy-to-use design tools offered by this methodology. PASSI has 

also been used successfully in several projects in both robotics and information systems 

[76].  

PASSI is comprised of five models (System Requirements, Agent Society, Agent 

Implementation, Code Model and Deployment model) which include several distinct 

models as shown in Figure 4-3. PASSI methodology includes the use of ontologies and 

communications with a FIPA compliant structure. 
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Figure 4-3: The models of the PASSI methodology [40] 
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Figure 4-4: Domain Description diagram - functionalities of the RDDM middleware 

system 

 

4.2.2 Agent Identification 
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According to definition of agent by Jennings et al. in [33], it is possible to see an agent as 

a use case or package of use cases [40]. Therefore, agent identification starts from the use 

case diagram (Figure 4-4) of the previous step which describes the decomposition of 

system functionalities. One or more use cases are grouped into different packages 

forming a new diagram (Figure 4-5), called an agent identification diagram. Each 

package defines the functionality of a specific agent with the package name representing 

an agent name, while the system stakeholders (which are external entities interacting with 

our system, i.e. administrator, client application and reader) are represented as actors.   

The relationships between use cases of different agents are stereotyped as 

“communication”. 

 

Figure 4-5: Agent identification diagram 
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interface for a user to configure logical readers, set reader configuration, monitor 

operation status of the device or configure client applications.  

Device Manager Agent 

The Device Manager agent is responsible for managing persistent device-specific 

information about all the devices that are deployed and registered in the middleware.  

Examples of such device-specific information include the device name, model number, 

protocols that the device support, operating frequency, network protocols, power level, 

connectivity, active antennas and additional information for operating a particular device. 

Device Monitor Agent 

The Device Monitor agent is responsible for monitoring the operational status of the 

device together with network connectivity. It keeps real-time pertinent heath information 

of each reader connected on the system. Parameters monitored include: reader 

connectivity status; automatically discovery of the connected devices with their IP 

addresses or port numbers; tag ID, discovery time and tag read count; and process events 

and alarm generated in case of unusual operational status. 

Logical Reader Manager Agent 

The RFID readers generally have multiple antennas connected to it. These antennas may 

be placed in groups at different locations for tracking purposes. A group of antennas at 

one tracking location may belong to single or multiple readers. There may also be readers 

whose antennas are part of various groups allowing a single reader to be a part of multiple 

tracking locations. Our middleware renders this functionality by introducing a notion of 

Logical Reader and modelled as logical reader manager agent, which allows us to 

combine multiple reader-antenna pairs with a single logical purpose. The Logical Reader 

is a virtualization of a tracking location and is used to associate multiple reader-antenna 

pairs to the tracking location. 

Client Application Manager Agent 

The Client Application Manager agent is responsible for managing persistent information 

about client applications that interact with the middleware. The information includes the 

name, notification address and message format. 
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Client Application interface Agent 

Each enterprise application interested in receiving RFID event data from the middleware 

is represented with a transducer agent referred to as Client Application interface agent. 

The Client Application interface Agent is responsible for interfacing the enterprise 

application with the middleware. It encapsulates the client application APIs and provides 

client application with the common APIs to specify, in high-level and declarative way 

what type of data they are interested in receiving and to notify the client when the data is 

delivered. In this way the middleware can receive requests using different communication 

protocols (such as XML-RPC or SOAP-RPC) and translate those requests into agent 

communication language (ACL) to be processed by the other agents within the 

middleware. 

Report Request Handler Agent 

The Report Request Handler Agent is responsible for handling the report requests made 

by client applications. It maintains the client subscriptions and the current status of the 

request. An event report request also referred to as �_������	 defines how the event 
report is to be generated. It contains the list of logical readers whose data read are to be 

included in the event data, a specification of how the boundaries (beginning and the end) 

of the event are to be determined and the specification which describe how the report 

should be generated from the event data. During its execution cycle, the �_������	 
transits in three states: unrequested, requested and active. Once defined, the �_������	 
state is said to be “unrequested”; when the client subscribes to that �_������	, the status 
changes from “unrequested” to “active” state; and in this last state the read data from 

readers accumulates into event data based on an event boundary specification (duration 

time). When the event duration time elapses the accumulated event data is sent to a 

generate report and the �_������	 status changes from the “active” to “requested” state 
until the repeat period of the event boundary specification elapses, in which case the 

status changes from “requested” to “active”. The accumulation of event data from readers 

then starts again based on the time duration.     

Report Delivery Handler Agent 

The Report Delivery Handler Agent is responsible for handling the delivery of generated 

event reports to the client in an appropriate format. It receives the event reports in ACL 
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and translates them to the format understandable by the client application before sending 

it to the client. It also monitors the delivery of the reports and handles exceptions.  

Event Report Generator Agent 

The Event Generator Agent is responsible for generating event reports requested by client 

applications.  The agent contains several data processors such as filters, aggregators and 

buffers.  These data processors with appropriate processing rules and algorithms are 

responsible for receiving tag reads from readers, filtering the incoming detected raw data, 

aggregating multiple incoming events into one higher–level event, temporary storage of 

observed events and translation of cleaned filtered and aggregated events into appropriate 

format as requested by the client.  

Reader Agent 

Each reader device to be included in middleware is represented with a transducer agent 

referred to as reader agent. The reader agent acts like an interface between a reader 

device and other agents in the middleware system. The reader agent encapsulates the 

reader manufacturer’s APIs and provides a common API to access the reader device. 

Therefore, adding support for a new type of a reader is a matter of adding new reader 

agent in the middleware and does not require modification to any other part of the 

middleware.   

4.2.3 Role Identification 

In PASSI methodology, the role identification phase is considered to be part of both the 

System Requirements and Agent Society models (as shown in Figure 4-3). Role 

identification is a functional/behavioural description of the agent and therefore part of the 

System Requirement model, but it is also a representation of its relations with other 

agents and as a consequence a part of the Agent Society model [40]. 

A sequence diagram in UML is a kind of interaction diagram that shows how processes 

operate with one another and in what order. They are also called event diagrams, event 

scenarios and timing diagrams. We use sequence diagrams to identify the roles played by 

agents when interacting with other agents within the system.  
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In general, one sequence diagram is drawn for each inter-agent communication depicted 

in the agent identification use case diagram (Figure 4-5). These sequence diagrams 

describe the important use case scenarios occurring within the system. Several roles that 

an agent can play are introduced as objects in the appropriate sequence diagram using the 

syntax: <name of the role> :< name of the agent>. An agent may appear in several 

scenarios playing distinct roles in each, and may even appear playing more than one role 

in the same sequence diagram. The message exchanged between different roles in the 

sequence diagram represents either an event generated by the external environment or 

system, or parts of communication between the roles of one or more agents. A message 

specifies what the role is to do and possibly the data to be provided or received. Data and 

tasks that are mentioned in the sequence diagram are specified in more detail later in the 

Domain Ontology Description (DOD) and Role description diagrams, respectively. 

Hence, for each message in a sequence diagram, a corresponding relationship should 

appear in the DOD diagram together with a description of knowledge exchanged or 

shared. 

Figure 4-6 and Figure 4-7 shows examples of scenarios and sequence diagrams used to 

identify the agent roles of the middleware system. 

Scenario 1: Query device operation status 

This scenario shown in Figure 4-6 illustrates how the system user interacts with the 

system agents playing different roles to query for the current operation status of the 

device. 
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Figure 4-6: The Role identification Diagram for the scenario in which the administrator 

wish to view the operation status of the device 

 

Scenario 2: Unsubscribe from receiving event report 

This scenario shown in Figure 4-7 illustrates how the system client interacts with the 

system agents playing different roles to unsubscribe from receiving event reports.  

 

Figure 4-7: The Role identification Diagram for the scenario in which the client wishes to 

unsubscribe from receive event reports 
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4.2.4 Task Specification 

In the task specification phase, the focus is on each individual agent’s behaviour by 

decomposing it into tasks that encapsulate some functionalities described in previous 

steps. Task specification diagram summarizes what an agent is capable of doing, ignoring 

information about the roles that an agent plays when doing particular tasks. The scope of 

the diagram is limited to capabilities of the single agent viewed as a social problem 

solver. Therefore, for each agent we develop an activity diagram containing all activities 

carried out by that agent and its interaction with other agent’s tasks to reach its goal.  

The relationship between activities signifies either messages between tasks and other 

interacting agents’ tasks or communication between tasks of the same agent. 

Communications between tasks of the same agent are not speech acts, but rather signals 

addressing the necessity of beginning an elaboration; that is, triggering a task execution 

or delegating another task to do something.  

Information needed to produce the agent’s task specification diagrams comes from role 

identification sequence diagrams. We examine all the agent’s role identification diagrams 

and explore all of the interactions and internal actions that the agent performs to 

accomplish a scenario’s purpose. From each role identification diagram we obtain a 

collection of related tasks, and grouping them together appropriately results in the task 

specification diagram. 

Figure 4-8 shows the task specification diagrams of the Event Report Generator agent. 

Each task specification diagram is divided into two sections by means of two swim-lanes: 

the right one contains the specific agent’s tasks, and the left one contains the tasks of the 

other interacting agents in order to represent relationships of this agent with the others. 

One listener task is introduced in every agent in order to pass incoming communications 

to appropriate tasks. A task is also introduced for each incoming and outgoing message in 

the Role identification sequence diagrams and is connected to a listener. Other tasks arise 

from the decomposition of agent’s functionalities to either facilitate reuse, perform 

calculations or access to external devices. 

For example, Figure 4-8 shows the tasks that constitute the Event Report Generator agent 

capabilities committed to the process of generating event reports. The 
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��	��_�_������
��_��dL��� task handles the incoming message from the %]����-�� .����S
	� agent that requests to receive the event report immediately, while 
the ��	��_�_�L^�	��^�_��dL��� tasks handles the request from %]����-�� .����S
	� 
agent requesting to subscribe to receive event reports after every certain period of time. 

The ��dL���_��
���_��_	�]]�	�_�
�
 task communicates with the Reader agent 

requesting it to collect tag data for a specific duration of time; this request is received by 

listener task of the Reader agent.  The Reader agent communicates with the physical 

reader and collects data for a specified duration of time and uses ��� ����_	�]]�	���_�
�
 task to send collected event data back to the Event Report 

Generator agent. The �����
��_������ task generates reports as specified in the �_������	 and the send-reports task sends the generated reports to the Report Delivery 

Handler agent for formatting and dispatching it to the appropriate %]����-�� agent. 
These tasks are used whether the event reports are requested immediately or by 

subscription. However, for subscription requests there are additional tasks required; for 

example, �����
]�e���_�L^�	�������_����
�_������ and 	b�	f_�L^�	�������_����
�_������ tasks, which are used to ensure that the process of 
event report generation repeats after every certain period of time. The 	b�	f_��
�L�_�S_�_������	 task is used to make sure that the process only repeats if 
the %]����-�� agent has not unsubscribed from receiving the reports. 
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Figure 4-8: Tasks of the Event Report Generator agent 
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The COD diagram has two types of classes: agent classes and communication classes as 

shown in Figure 4-10.  
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Figure 4-9: Domain Ontology Description Diagram  
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Figure 4-10:  Communication Ontology Description Diagram 
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The attribute compartment of the agent class contains the agent’s knowledge, which is 

obtained from the DOD diagram (Figure 4-9) with the same name as ontology’s entity 

class name from the DOD. Communication classes represent the association relationship 

between the two communicating agents. The association is drawn from the initiator of the 

conversation (i.e. agent starting the conversation, the sender) to the responder (i.e. agent 

engaged in conversation after being contacted by some agent, the receiver). 

Conversations between agents are based on speech act theory [78] which explains that 

messages are actions, or communicative acts, as they are intended to perform some action 

by virtue of being sent. Conversations often fall into typical patterns. In such cases, 

certain message sequences are expected, and, at some point in the conversation, other 

messages are expected to follow. These typical patterns of messages are known as 

interaction protocols [79]. In addition, in order for the receiver agent to be able to 

interpret the meaning of the message content, the ontology and language used need to be 

specified. So, if agents are to communicate in the way that makes sense to them, they 

must share the same language, ontology and protocol. Hence the communication class in 

the COD has three attributes; ontology, language and interaction protocol. For example, 

in Figure 4-10, the %]����-�� .����S
	� agent starts a conversation with $_���,����� g����
��� agent through the communication 

class %]����-�� .����S
	� 9 $_���,����� g����
���1. The communication class 
contains the $_������	 ontology, RDF language and Request protocol. As explained 

before, the PASSI methodology includes the use of ontology and communications with a 

FIPA compliant structure. All the interaction protocols used in our model are FIPA 

standard protocols [79]. 

The DOD is then further developed using Protégé ontology editor and the FIPA/JADE 

compliant ontology Java code is generated using Protégé ontology bean generator plug-

in. The bean generator automatically creates the ontology definition class and the agent 

actions and concepts classes. The ontology definition class describes the terminology of 

concepts and actions used by the agents in their space of communication, and the 

nomenclature of relationship between these concepts. The agent actions and concepts 

classes describe their semantics and structure. In terms of ontology classification, we can 

classify the DOD output as task ontology. 
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4.2.6 Role Description Phase 

In the role description phase the lifecycle of each agent was modelled, taking into 

consideration the roles it can play, the collaboration that it needs, and the 

communications in which it participates.   

In the Role Description diagram the roles are represented as classes grouped together in 

packages representing agents. Figure 4-11 shows the portion of role description diagram, 

illustrating the roles played by the reader agent. The information presented in the role 

classes are derived from the output of the Role Identification and Task Specification 

phases. In the Role Identification phase (section 4.2.3), information about the existing 

roles of an agent and changes in the roles were deduced, and in the Task Identification 

phase (section 4.2.4), the names of the tasks belonging to each role were obtained. The 

Role Description diagram, therefore, presents the information that is already in the 

design, but which is now assembled from a different point of view. The role is the focus 

and related data are: the agent class playing the role; the tasks involved in it (it is possible 

for the same task to be used in different roles of the same agent); the communication 

between the roles, some of them involving messages between different agents, and others 

messages within the same agent; and the dependencies between different roles. 

Dependencies are direct consequences of MAS cooperation. However, since agents are 

autonomous entities, they could refuse to provide a requested service, and as a result 

these dependences do not always hold when MAS runs. It is therefore important to 

analyze these dependences and if possible to provide alternative ways of achieving the 

goal. Two types of dependencies were considered, namely service dependency and 

resource dependency. The service dependency means that the role of the sender agent 

depend on the role of the receiver agent to achieve a goal or perform an activity, and the 

resource dependency means that the role of the sender agent depends on the role of the 

receiver agent for the availability of an entity. Each communication between roles of 

different agents is marked with dependency type stereotype. 

For example, in Figure 4-11 the ,�dL���3������� role of the Reader agent receives a 

communication from ,�����,�dL������	����� role of the $_���,����� g����
��� agent. The listener task of the ,�dL���3������� role passes 
the messages to an appropriate task, which is ,�	��_�%�]]�	�2
�
,�dL��� task.  The 
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,�	��_�%�]]�	�2
�
,�dL��� task triggers the agent role change to 2
�
%�]]�	��� role 
in which the 	�]]�	��
�
 task is executed to collect the data from the physical reader. 
The ,�����,�dL������	����� role of the $_���,����� g����
��� agent depends on ,�dL���3������� role of the Reader agent to perform an activity and hence the service 

dependency stereotype on its communication ($_���,�����g����
��� 9 ,�
���1). 
 

 

Figure 4-11: Role Description diagram for the Reader agent 

 

4.2.7 Agent structure Definition Phase 

In agent structure definition phase the focus is on the structure of the MAS, and it is 

composed of several class diagrams. The class diagrams are divided into two logical 

levels of abstraction: the multi-agent and the single-agent. In multi-agent the focus is on 

the general architecture of the system and therefore in it we find agents and their tasks. In 

the single-agent, each agent’s internal structure is considered, showing all attributes and 

methods of the agent class and of its internal task classes.  
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4.2.7.1 Multi-Agent Structure Definition (MASD)  

MASD diagram represents the designed multi-agent system as a whole, whereby one 

class is introduced for each agent identified during the agent identification phase.  

Figure 4-12 shows a portion of the modelled middleware MASD diagram. The attributes 

of the agent class represent the knowledge defined during the ontology description phase, 

and the methods of the agent class represent the tasks identified during the task 

identification phase. The relationship between two agents represented as association in 

the diagram represents the communication existing between the two agents and they are 

derived from the previous role description phase. 

 

 

Figure 4-12: Portion of the Multi-Agent Structure Definition (MASD) diagram 
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4.2.7.2 Single-Agent Structure Definition (SASD)  

In the SASD diagram the internal structure of each individual agent is addressed. We 

developed one diagram for each agent, in which we introduced one agent main class and 

the inner task classes. Figure 4-13 shows a single-agent structure definition diagram of 

the Device Monitor agent. The agent main class is inherited from the JADE agent class 

and it includes the attributes and the methods such as constructors, destructors and all 

methods required to register the agent in the white/yellow pages directories of the Jade 

environment. Each task of the agent is represented as a class inherited from the Jade 

behaviour class with methods needed specific to deal with series of activities and to 

handle communication events.  

 

 

Figure 4-13: Single-Agent Structure Definition diagram for the Device Monitor agent 

 

At this level of detail, the structure of the middleware software i.e. classes, methods and 

attributed had been described in sufficient detail to implement it. In the next chapter, the 

implementation of the ontology using Protégé editor together with implementation of the 

agent classes using the Jade platform and MySQL database will be discussed. 
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Chapter 5: Middleware System Implementation 

In Chapter 4, PASSI methodology was employed to analyze and design the middleware 

system. In this chapter, the artefacts produced in Chapter 4 are reviewed and employed to 

implement the system using JADE platform and MySQL database.   

Figure 4-5 in section 4.2.2  shows the designed multi-agent system whereby each class 

models a single agent in the system. When this diagram is reviewed, it can be seen that 

there are several agent classes (Logical Reader Manager, Client App Manage, Device 

Manager) with their main tasks being to interact with the database. These classes are 

merged together to form a database agent class. The Report Delivery handler and the 

Event Report Generator agent classes, which deal with event reports, are merged to form 

an event processing agent. Therefore, the implemented prototype system is comprised of 

the following agents: User Interface Agent; Client App Agent; Reader Agent; Database 

Agent; Event Processing Agent; Report Request Handler Agent; and Device monitor 

Agent. 

An ontology is an essential component of any multi-agent system; it is used as the content 

of the agent messages; in this way all the agents using the same ontology have a common 

understanding of the domain concepts. Section 5.1 presents in detail the implementation 

of the ontology used in this middleware prototype system. Persistence storage is 

discussed in section 5.2 while section 5.3 describes the implementation of the designed 

middleware prototype. 

5.1 Ontology Development 

In the Ontology Description Phase in section 4.2.5, the concepts within the domain under 

discussion and their relationship were modelled and two artefacts produced. These 

artefacts are the domain ontology description diagram (Figure 4-9) and the 

communication ontology description diagram (Figure 4-10), which are both UML class 

models.  These two artefacts are used as the basis for implementing the ontology 

discussed. They are considered to be the bases, because refinement was done on these 

initial designs whereby some concepts, predicates and actions were added, while others 

were removed or their attributes changed as the development process evolved.   
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One of the key functionality of the RFID middleware is to act as a device broker 

connecting applications to RFID devices through standardized interface. This allows 

applications to read data from many different types of readers even though they are made 

by different manufacturers and may have different interfaces themselves to access its 

functionalities. Another function is to manage the network of connected RFID devices in 

the deployment. To achieve these functionalities the RDDM middleware ontology 

contains the domain device ontology, whereby all the meta-information and knowledge 

about RFID devices and the types of devices are stored. In the RFID data modelling in 

Chapter 3, three types of devices were identified that are directly related to RFID in the 

RFID deployments, namely RFID tags, RFID readers and sensors. In the prototype 

implementation discussed here, sensors are not included and, hence, the ontology for two 

types of devices, RFID tags and RFID readers, are considered.  

The best point to start at when thinking of using an ontology in an application is to find 

out if the ontology in mind already exists so that one can use it, modify it or extend it to 

suit one’s application.  Finding ontologies is important in order to avoid the creation of 

new ontologies where serviceable ones already exist [80]. This reuse of the domain 

knowledge capability is one of the major benefits of the ontology.  The development of 

ontologies for the Web has led to the tremendous growth of services providing lists or 

directories of ontologies with search facilities. Such directories have been called ontology 

libraries [81]. The following are some of the main static libraries of ontologies: DAML 

Ontology Library [82] Schema Web [83] and Protégé Ontology Library [84]. Other 

ontology libraries have search engines that include crawlers searching the web for well-

formed ontologies.  The most popular ones are: Swoogle [85],   the OntoSelect Ontology 

Library [86] and the Ontaria [87]  Also, in mobile device domain the two most 

established databases for mobile device capabilities and features are UAProf – User 

Agent Profile [88]and WURLF – Wireless Universal Resource File [89].  

 

After going through the above ontology libraries and search engines, the researcher could 

not find the ontology that is specific to RFID readers or RFID tags. The available device 

ontologies did not fully capture the properties and capabilities of these RFID devices. For 

example, the device ontology described in [90] is too general, while the one proposed by 

FIPA in [91] is more suitable for mobile devices. A new RFID Device ontology, which 

defines in detail the properties and capabilities of these devices, was therefore developed 
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in this research study. This is not application-specific ontology; therefore, it can be 

imported and used in any other application that is interested in the device-specific 

features and hardware characteristics of the RFID readers and tags. The device ontology 

was thereafter also extended to include the other RDDM middleware domains’ concepts 

and actions, which are mainly application-specific to form RDDM middleware ontology. 

5.1.1 Device Ontology 

Like FIPA device ontology we chose to use frame-based ontology language together with 

Protégé platform to model our ontology. The Protégé platform can export the ontology to 

a variety of formats (such as OWL, RDF Schema, HTML or N-TRIPLE) if the ontology 

is required in other formats. The ontology is graphically visualized using Protégé’s 

OntoViz Tab [92].  

In frame-based knowledge representations the knowledge describing a particular concept 

is organized as a frame. A frame is a single place in which properties and axioms of a 

concept are specified. Frames usually contain properties called slots. In object oriented 

terms, frames can be related to classes and slots correspond to attributes. Relationships 

between frames are expressed by stating dependencies or restrictions between frames. 

Frames can have any number of slots assigned to it, and slots have some restrictions 

placed on them such as the data type, multiplicity, optionality, allowed values in case of 

enumerated data type and default values. The data type of a slot can be any of the 

primitive data types (Boolean, Integer, Float, or String), enumerated data type (predefined 

set of allowed values) or another frame (object data type). When a slot has an object data 

type it expresses the binary relationship between the two frames. 

All slot restriction features are well-defined in the ontology, although they are not shown 

in some of the presented figures because of the limited representation of the OntoViz. 

The OntoViz produced figures capture the slot’s data type, multiplicity and allowed 

values, but it does not show the optionality or default values of the slot.  

For the OntoViz frame figures which are presented in the table format (e.g. see 

Figure 5-4); the top row defines the name of the frame ontology and the following rows 

define the frame’s slots. The first column of the slots defines the slot’s name and other 

columns define the slot data type, multiplicity and allowed values.  A slot with two 
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columns defines a slot with primitive data types. A slot with three columns represent a 

slot with either object data type shown with “Instance” followed by their corresponding 

instance frame name or enumerated data type shown with “Symbol” followed by the 

allowed values. Multiplicity is represented by a symbol * whereas Instance defines a 

single instance while Instance*    defines a multiple instances.  

 

Figure 5-1 shows the hierarchical view of the frames used in RFID device ontology. The 

RFID Reader, RFID Antenna, and RFID Tag frames model the three main physical 

devices while other frames represent concepts describing properties of those devices.  

Figure 5-2 shows the ontology frames and their relationships. 

 

 

Figure 5-1: Frames in the RFID Device Ontology 
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Figure 5-2: Frames in the RFID Device Ontology and their relationships 
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5.1.1.1 RFID Device Concept frame  

This is the high-level frame of the RFID device ontology; it is an abstract frame with no 

slots assigned to it but encompasses all RFID device concepts. See Figure 5-2,where this 

frame is related to all other device concepts through “is a” hierarchical relationship. 

5.1.1.2 RFID Reader frame  

This frame represents the description that can be used to define most of the properties of 

the RFID reader. Figure 5-3 shows the description of RFID reader slots.  

• The Name column defines the name of the slot;  

• The Cardinality column defines the multiplicity of the slot as either “single” or 

“multiple”, it also defines the optionality of the slot whereby the mandatory slots 

are preceded with “required” keyword; otherwise the slot is considered optional;  

• The Type column defines the slot’s data type; and  

• Other Facets column defines other facets such as allowed values of the slot for 

enumerated data type and the slot’s default value.  

 

 

Figure 5-3: Description of the RFID Reader slots 

 

Figure 5-4 shows this frame and its slot’s definition as presented by OntoViz graph. 

Figure 5-5 shows this frame’s relationship with other frames. Relationships are shown by 

using a dotted line. For example, the antennas* relationship defines a relationship 

between RFID Reader frame and the RFID Antenna frame, stating that the reader can 

have multiple antennas associated with it.  
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Figure 5-4: Description of the RFID Reader frame using OntoViz 

 

 

Figure 5-5: Relationship between RFID Reader frame and other frames 

 

5.1.1.3 RFID Antenna frame  

This frame represents the description that can be used to define general properties of the 

RFID antenna. Figure 5-6(a) shows this frame and its slot’s definition and Figure 5-6(b) 

shows this frame’s relationship with other frames. 
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(a)                                                                         (b) 

Figure 5-6: Description of the RFID Antenna frame and its relationship with other frames 

 

5.1.1.4 RFID Tag frame  

This frame represents the description that can be used to define general properties of the 

RFID tag. Figure 5-7(a) shows this frame and its slots definition and Figure 5-7(b) shows 

this frame’s relationship with other frames.  

• Tag ID slot defines the RFID tag unique identification code  

• Tag Data slot defines the extra data encoded into the tag apart from its ID code 

• Tag Standard slot defines the RFID standard that this tag adheres to  

• Tag Count slot; this is an application-specific slot which describes the number of 

times in which the tag was read by the reader within a specific period. 

• Discovery Time slot; this is application-specific slot and it describes the time the 

tag was first seen by the reader 

• Last Seen Time slot; this is application-specific slot and it describes the time the 

tag was last seen by the reader. 
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(a)                                                                         (b) 

Figure 5-7: Description of the RFID Tag frame and its relationship with other frames 

5.1.1.5 Communication Interface frame  

An RFID reader uses a communication interface to interact with the host computer. This 

frame represents the description that can be used to define general information of the 

communication interface concept. This frame is a super class of four subclasses which are 

different types of communication interfaces. Subclasses inherit the slots of the super- 

class. Figure 5-8 shows this frame and its slot’s definition together with its subclasses. 

Figure 5-9 shows this frame’s relationship with other frames. The reader can have several 

types of communication interfaces; hence, the relationship 	���L��	
����.����S
	��, 
but at one particular time it uses one type of interface to connect with the host computer 

or network and hence the relationship 
�������%��.����S
	� h. 
 

 

Figure 5-8: Description of the Communication Interface frame and its subclasses 
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Figure 5-9: Relationship between communication interface frame and other frames 

 

5.1.1.6 Serial Interface frame  

This frame represents the description that can be used to define properties of the serial 

interface connection. Figure 5-10 shows this frame and its slots definition. In addition to 

its slots this frame also inherits all the slots of its superclass communication interface. 

 

Figure 5-10: Description of the Serial Interface frame 

5.1.1.7 USB Interface frame  

This frame represents the description that can be used to define properties of the USB 

interface. Figure 5-11 shows this frame and its slots definition. In addition to its slots, 

this frame also inherits all the slots of its superclass communication interface. 

 

Figure 5-11: Description of the USB Interface frame 
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5.1.1.8 Ethernet/Wireless Interface frame  

Ethernet interface and Wireless interface frames have similar slot definitions that define 

the properties of the network connection. Figure 5-12 shows the Ethernet interface frame 

and its slot definition. In addition to its slots, this frame also inherits all the slots of its 

superclass communication interface. 

 

 

Figure 5-12: Description of the Ethernet Interface frame 

 

5.1.1.9 Read range description frame  

This frame represents the description that can be used to define the amount and unit of the 

maximum read range between a reader and a tag. Figure 5-13(a) shows this frame and its 

slot’s definition and Figure 5-13(b) shows this frame’s relationship with other frames. 
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(a)                                                           (b) 

Figure 5-13: Description of the read range description frame and its relationship with 

other frames 

 

5.1.1.10       Memory capacity description frame  

This frame represents the description that can be used to define the amount and unit of the 

tag’s memory capacity. Figure 5-14(a) shows this frame and its slots definition and 

Figure 5-14(b) shows this frame’s relationship with other frames. 

 

 

     

(a)                                                           (b) 

Figure 5-14: Description of the memory capacity description frame and its relationship 

with other frames 
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5.1.1.11      Power supply description frame  

This frame represents the description that can be used to define the device’s power supply 

requirement related details. Figure 5-15(a) shows this frame and its slots definition and 

Figure 5-15(b) shows this frame’s relationship with other frames. 

 

  

(a)                                                           (b) 

Figure 5-15: Description of the power supply description frame and its relationship with 

other frames 

 

5.1.1.12      Tag Standard frame  

This frame represents the description that describes the main features defined in the RFID 

standards. RFID tags and readers adhere to specific RFID standards that describe how the 

reader and tag communicate with each other as well as specific uses of RFID technology. 

Figure 5-16(a) shows this frame and its slots definition and Figure 5-16(b) shows this 

frame’s relationship with other frames. 
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(a)                                                           (b) 

Figure 5-16: Description of the Tag Standard frame and its relationship with other frames 

 

5.1.2 RDDM Middleware Ontology 

JADE provides a basic ontology for agent communication. This basic ontology contains 

schemas for the primitive data types and the SL0 operators i.e. basic ontological elements 

required for minimal agent interaction. However, for RDDM middleware agents to work 

within the JADE platform we need to define our own application-specific vocabulary and 

semantic for the content of the messages that will be exchanged between its agents. JADE 

framework requires that application-specific ontologies should be implemented by 

extending its basic ontology. 

The JADE basic ontology consists of three generic interface classes: predicate class, 

concept class, and agent action class.  

• Predicates are expressions that say something about the status of the world and 

can either be true or false. Predicates can be used effectively as the content of an 

INFORM or QUERY-IF message, both of which express facts. 

• Concepts are expression identifying entities (abstract or concrete) that exist in the 

domain that agents may reason about. Concepts typically make no sense if used 

directly as the content of the message; they are generally referenced inside 

predicates and other concepts. 
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• Agent actions are special concepts that indicate actions that can be performed by 

some agent. Agent actions can be used effectively as the content of a REQUEST 

messages. 

For the agent deployed within the JADE framework to be able to fully exploit the JADE 

content language and ontology support offered by the platform, the agent developer is 

advised to follow the following steps [93]: 

1. Define the ontology including the schemas for the types of predicates, agent 

actions, and concepts that are pertaining to the addressed domain. 

2. Develop proper Java classes for all types of predicates, agent actions and concepts 

in the ontology implementing its corresponding interface. 

3. Select a suitable content language among those directly supported by JADE. 

4. Register the defined ontology and the selected content language with the agent. 

5. Create and handle message content as Java objects that are instances of the classes 

developed in step 2 and let JADE translate these Java objects to/from strings or 

sequence of bytes that fit the content slot of ACL Messages. 

Following these steps the RDDM middleware , which is an application-specific ontology 

that describes the elements that are used as the content of the agent messages in the 

RDDM middleware domain, were implemented. Like the device ontology, the RDDM 

ontology is also a frame-based ontology developed using Protégé ontology editor. The 

RDDM ontology is implemented by extending the JADE basic ontology and by 

implementing its three interface classes: concept, agent action, and predicate. The 

RDDM ontology’s agent actions, concepts and predicates are derived from the ontology 

descriptions and task specifications identified earlier in chapter 4 while taking into 

consideration the revised agent classes. The RDDM middleware domain concepts are 

classified into two groups: concepts related to the devices in the domain and concepts 

related to data event processing. The concepts related to device are the concepts 

previously defined in the RFID device Ontology. Figure 5-17 shows the root class 

frames of the actual designed RDDM ontology with a limited view of the ontology 

classes. Figure 5-18 shows the hierarchical view of the frames constituting the event 

processing concepts. 
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After the RDDM ontology was defined using Protégé, the Ontology Bean Generator 

plug-in of the Protégé editor was then used to automatically generate the JADE compliant 

ontology source code. The ontology bean generator generates the ontology definition 

class together with Java class for all predicates, concepts and agent actions defined in the 

ontology. The code in Figure 5-19 shows an abstract view of the RDDM ontology 

definition class.  

 

 

Figure 5-17: RDDM Ontology root class frames 
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Figure 5-18: Frames of the Event Processing Concepts and their relationships 

 

 

 

9
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// file: RDDMOntology.Java generated by ontology bean generator.   

package RFIDMiddlewareOntology; 

//IMPORTS 

import jade.content.onto.*; 

import jade.content.schema.*; 

... 

public class RDDMOntology extends jade.content.onto.Ontology  { 

  //NAME 

  public static final String ONTOLOGY_NAME = "RDDM"; 

  // The singleton instance of this ontology 

  private static ReflectiveIntrospector introspect = new ReflectiveIntrospector(); 

  private static Ontology theInstance = new RDDMOntology(); 

  public static Ontology getInstance() { 

     return theInstance; 

  } 

   // VOCABULARY 

public static final String RFIDREADER="RFIDReader"; 

public static final String RFIDREADER_NAME="name"; 

public static final String RFIDREADER_OPERATINGFREQUENCY =" operatingFrequency 

"; 

public static final String RFIDREADER_ANTENNAS =" antennas "; 

public static final String RFIDREADER_ ASSIGNEDCOMINTERFACE =" 

assignedComInterface "; 

 ... 

  /** 

   * Constructor 

  */ 

  private RDDMOntology(){  

    super(ONTOLOGY_NAME, BasicOntology.getInstance()); 

    try {  

    // adding Concept(s) 

    ConceptSchema rfidReaderSchema = new ConceptSchema(RFIDREADER); 

    add(rfidReaderSchema, RFIDMiddlewareOntology.RFIDReader.class); 

 ... 

    // adding AgentAction(s) 

   AgentActionSchema checkConnectionStatusSchema = new   

    AgentActionSchema(CHECKCONNECTIONSTATUS); 

  add(checkConnectionStatusSchema, RFIDMiddlewareOntology.CheckConnectionStatus.class); 

 ... 

    // adding AID(s) 

 ... 

// adding Predicate(s) 

    PredicateSchema isLocatedSchema = new PredicateSchema(ISLOCATED); 

    add(isLocatedSchema, RFIDMiddlewareOntology.IsLocated.class); 

... 

 

    // adding fields 

rfidReaderSchema.add(RFIDREADER_NAME,     

(TermSchema)getSchema(BasicOntology.STRING), ObjectSchema.MANDATORY ); 
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rfidReaderSchema.add(RFIDREADER_OPERATINGFREQUENCY, 

(TermSchema)getSchema(BasicOntology.STRING), ObjectSchema.OPTIONAL); 

 

rfidReaderSchema.add(RFIDREADER_ANTENNAS, rfidAntennaSchema, 0, ObjectSchema.UNLIMITED); 

 

rfidReaderSchema.add(RFIDREADER_ASSIGNEDCOMINTERFACE,communicationinterfaceSchema,   

ObjectSchema.OPTIONAL); 

... 

    // adding name mappings 

... 

    // adding inheritance 

    rfidReaderSchema.addSuperSchema(deviceSchema); 

... 

   }catch (Java.lang.Exception e) {e.printStackTrace();} 

  }// end constructor 

  }// end of RDDM Ontology class 

Figure 5-19: Abstract view of RDDM Ontology class 

 

Referring to the abstract ontology code presented in Figure 5-19, the ontology is 

characterized by the following features: 

1. One name 

 �L^]�	 ��
��	 S��
] ������ !'�!3!gi_'-7$ =  ",227"; 
2. One or more ontology that it extends ������ `
��. 	������. ����.h; 

  �L^]�	 	]
�� ,227!���]��T klmknop `
��. 	������. ����. !���]��T{… } 

3. Ontology vocabulary – this defines all the constants used for names of concepts, 

predicates, agent actions and their slots. They represent the terms that constitute 

the specific language of the agents. For example: �L^]�	 ��
��	 S��
] ������ ,r.2,$-2$, = ",r.2,�
���"; �L^]�	 ��
��	 S��
] ������ ,r.2,$-2$,_'-7$ = "�
��"; 
4. Set of element schemas - these are objects describing the structure of concepts, 

actions, and predicates defined in the ontology. For example; 

• This code creates the concept schema  %��	����	b��
 �S��,�
����	b��
 =  ��a %��	����	b��
C,r.2,$-2$,D; 
• This code adds the created schema in the ontology and associates it with 

its corresponding Java class. 
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��C�S��,�
����	b��
, ,r.27���]�a
��!���]��T. ,r.2,�
���. 	]
��D; 
• This code define the structure of the created concept schema �S��,�
����	b��
. 
��C,r.2,$-2$,_'-7$,     C�����	b��
D����	b��
C"
��	!���]��T. ��,.'gD,  !^`�	��	b��
. 7-'2-�!,i D; 

The 
��C. . . D method of the concept schema takes three arguments: the 
name of the slot to be added, the schema of this slot, and optionality of the 

slot. 

• Schemas that describe concepts support inheritance. This code defines the 

schema inheritance 

 �S��,�
����	b��
. 
���L����	b��
C��_�	��	b��
D; 

 

Once the RDDM ontology class and its corresponding Java classes generated by the 

ontology bean generator were established, it could be registered with the content manager 

of the middleware agents, and the ontology Java classes used as the content of the agent’s 

message within the JADE framework.  

5.1.3 Ontology Content Language 

According to the FIPA specification the value of the content slot of the agent’s message 

can either be a string or a raw sequence of bytes. When representing complex information 

such as abstract concepts, objects or structured data, it is necessary to adopt a well-

defined syntax so that the content of the message can be parsed by the receiver to extract 

each specific piece of information correctly. According to FIPA terminology this syntax 

is known as a content language. To enable a meaningful and consistent communication 

between software agents a common content language is required to be used by all the 

agents involved in the communication. JADE provides a support for three types of 

content languages: the SL language, the LEAP language and an XML–based content 

language. A codec for a content language is a Java code able to manage content 

expressions written in that language. SL codec and LEAP codec are directly included in 

the JADE while XML codec can be found as a JADE add-on.  

The SL content language is a human readable string encoded content language based on 

the S-Expression syntax [94]. It is one of the mostly used content languages in the 
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scientific community dealing with intelligent agents. It can be used in the open agent-

based applications where agents produced by different developers and running on 

different platforms must communicate. 

The LEAP content language is a non-human-readable byte-encoded content language 

defined specifically for JADE agents for use in the devices with limited memory capacity. 

The LEAP codec is lighter than SL codec, but only JADE agents can use this language.  

The XML content language uses XML syntax. It is a cross-platform, language-

independent representation which is also human-readable. This codec is particularly 

useful when a set of ontological entities has to be exported or imported to/from an 

external system. However, the developer is required to have additional skills with respect 

to pure Java programming. 

In the RDDM middleware, XML content language was chosen, because it is platform and 

language independent; it is human-readable - which is very useful when debugging and 

testing an application; and also, it provides a mechanism for middleware agents to 

communicate with other external applications.  

 

5.2 Persistence Storage 

Persistence storage is an essential part of any information system. Persistence storage is 

required in the middleware for storing the ontological information, including RFID static 

and dynamic data in a proper data model in order to provide an efficient querying and 

analysis of both recent and historical RFID events data. Persistence storage is any 

technology that can be used to permanently store objects for later update, retrieval, and/or 

deletion. Although there are different types of persistence mechanisms available such as 

file, hierarchical database, object oriented database, object-relational database, Network 

database, relational database (RDB) and  XML database, RDB and in particular MySQL 

database was chosen to persistently store this system prototype objects and data. Among 

the available data storage technologies, RDBs are the most generally used type of data 

persistence mechanism. Since the developed middleware is focused on integrating the 

RFID data with other legacy enterprise applications, an RDB - which is more likely to be 

used by many enterprises - was chosen.  MySQL is used because it is open-source, free 
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software and it is good enough for our prototype design, even though any type of RDB 

can be used.  

The RDDM middleware system is implemented using the Java-based JADE platform, 

which is an object oriented technology. So, while the software agent application is based 

on object-oriented technology, the data storage mechanism is based on relational 

technology.  Relational databases only store data and not objects; therefore, in order to 

store one’s objects in a RDB, one need to flatten one’s objects in order to create a data 

representation of one’s object. To retrieve an object, one would need to read the data 

from the database and then create the object, a process called restoring the object based 

on the data. This is not as straightforward as it sounds and can be a challenging task. 

Another vital difference is that in a RDB, relationships between entities are implemented 

via foreign keys, while in the object-oriented paradigm, relationships between objects are 

implemented through class-based references and inheritance hierarchies. 

5.2.1 RDDM Middleware System Persistence Class Model 

The ontology classes were reviewed and the concepts and the data that need to be stored 

were identified. Not all classes or class attributes are persistent because some are 

processing classes or attributes that are required for temporary usage only. For example, 

agent action and predicate classes are not persistent. Figure 5-20 shows a portion of our 

persistence class model diagram. This diagram also shows the relationships between the 

persistence classes.  

The persistent classes in the RDDM ontology were then revised to include the extra 

scaffolding attributes which are required for relationship implementation and for object to 

data model mapping. Figure 5-21 shows the portion of the RDDM class Model which 

includes the persistence attributes assigned with <<Persistence>> stereotype and extra 

scaffolding attributes to implement relationship between classes. Persistence attributes are 

extra attributes which have no business meaning, but they are required for the proper 

functioning of the database, and hence they are included in the object model to facilitate 

the object-database mapping process. This extra information typically includes primary 

key information, particularly when the primary key is a surrogate key that has no business 

meaning, and concurrent control marking such as timestamp or incremental counters. An 

example of extra scaffolding attribute is the inclusion of the following attributes in the 
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Event Spec class (see Figure 5-21): �_������	.2 attribute which is an object surrogate 
ID; last Update attribute which is the time stamp concurrent control mark showing the 

last time the object was updated in the database; and subscriptions collection attribute to 

represent a bidirectional relationship with Subscription class, which was not initially 

captured in the ontology class. 

 

Figure 5-20: Portion of the RDDM Middleware System persistence class model diagram 

showing relationships between classes 
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Figure 5-21: A portion of the persistence class model diagram which includes the class 

persistence attributes and scaffolding attributes required for implementing relationships 

5.2.2 Relational Database Model 

To develop the database schema based on object schema, the metadata between the two 

schemas were mapped. Classes are vertically mapped to database tables and class 

attributes are mapped into table columns while ensuring that the table columns have the 

same data types as their corresponding class attributes. Class names and table names can 

be different; column names and attribute names can also be different, but it is important 

that they have the same data types. The two schemas are then adjusted to ensure that they 

conform to temporal RFID data model which provides efficient querying of RFID events 

discussed in chapter 3.  

Relationships in relational databases are maintained through the use of foreign keys. In a 

one-to-one relationship, the unique foreign key is implemented in either one of the tables. 

For example, $_������	 and $_���,������ classes have a one-to-one unidirectional 
relationship with each other. Since one is interested in knowing from which specifications $_���,������ was generated, the $_������	 primary key �_������	.2 was included 
as the foreign key in the $_���,������ table and its index type set as unique to conform 
to a one-to-one relationship. 
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To implement a one-to-many relationship, a foreign key is implemented from the “one 

table” to the “many table”, i.e. by putting the foreign key into the “many table”. For 

example, inclusion of %]����-��.2 which is the primary key of the %]����-��]�	
���� table as a foreign key in the Subscription table (see Figure 5-22).  

To implement many-to-many relationship, the relationship is first converted into two one-

to-many relationships, both of which involves an associative table. Then the foreign key 

is implemented in the “many table” in each of the two relationships.  

The final relational database model schema was then implemented in the MySQL 

database using MySQL GUI editor.  

 

 

Figure 5-22: Portion of the RDDM Middleware System database model diagram using 

UML notation 

 

5.2.3 Data Binding Between Persistent Class Model and Database Model 

There are several strategies for implementing the object/relational mapping (also known 

as data binding) between object schema and the relational database schema. These 

strategies include embedding the Structured Query Language (SQL) statements into one’s 
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objects, using data access objects and persistence frameworks. More information about 

these strategies and their comparison can be found in [95]. 

In the prototype implementation discussed here, persistence framework strategy using a 

Java Persistent API also referred to as JPA [96] was adopted. JPA is a Java programming 

language framework for managing object relational mapping in applications using Java 

platforms.  A persistence framework, often refereed as a persistence layer, fully 

encapsulates database access from the application objects. It reduces coupling between 

the object schema and the data schema in such a manner that simple changes in data 

schema do not affect the application code. It provides the application objects with 

persistent services; the ability to read data from, write data to, and delete data from data 

sources without the application objects having to know anything about the data sources. 

The application objects only interact with the framework. Instead of writing code to 

implement the logic required to access the database, one rather defines the metadata that 

represent the mappings of one’s application objects together with associations between 

them.  Based on this metadata, the persistence framework generates the database access 

code required to make the application objects persistent. The whole process of flattening 

an object to create data representation and restoring an object based on data is taken care 

of by the persistent layer. 

JPA uses a Java Persistence Query Language (JPQL) to make both static and dynamic 

queries against business objects stored in relational database. JPQL queries resemble SQL 

queries in syntax, but operate against business objects rather than directly with database 

tables.  Instances of a business objects correspond to individual rows in the database 

table. Persistence business classes and their relationships are expressed through 

object/relational metadata and are specified in the business class files using annotations.  

Annotations are type-safe metadata about a field/method/class. Annotations in the code 

begin with @ symbol. Figure 5-23 shows the JPA annotations added to Logical Reader 

ontology class to make it persistent. 

After adding JPA annotations into all persistent classes we then defined a persistent unit 

(PU).  A persistent unit defines a group of entities that are associated with single 

application and that are stored in a single database.  A persistent unit is defined in the 

configuration file called persistence.xml. This file contains a list of the entity classes in 

the application; defines the name of the entity unit; and defines the database connection 
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properties. Database connection properties include the username and password for 

database connection, the database connection string, and the driver class name. A 

simplified portion of our prototype middleware PU, showing only few classes added into 

PU is shown in Figure 5-24. The provider element declares the class file that provides the 

initial factory for creating an Entity Manager instance. An Entity Manager provides 

methods to begin and end transactions, to persist and find entities, to merge and remove 

entities as well as to create and execute queries. The persistence provider knows which 

application classes to map to the relational database by reading entity names from the 

persistence.xml file.  

 

 

Figure 5-23: JPA annotations added to Logical Reader ontology class to make it 

persistent 
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Figure 5-24: Simplified portion of the middleware PU file with a few entity classes 

 

5.3 Middleware System Implementation 

The designed middleware agent classes are then coded by extending JADE library classes 

and then deployed in the JADE platform. 

JADE [41] is a framework that facilitates the development of the multi-agent systems. It 

includes: a runtime environment where JADE agents can “live” and that must be active 

on a host before one or more agents can be executed on that host; a suite of graphical 

tools that allows administrating and monitoring the activity of the running agents; and a 

library of classes that programmers use directly or by extending them to develop their 

agents. Jade also has a number of add-ons including 3
rd
 party. The only software 

requirement to execute the JADE platform is Java Runtime Environment (JRE). 

Each running instance of the JADE runtime environment is called a container as it 

contains several agents. A set of active containers is called a platform. Platform 

containers can be distributed over the network. Normally, one container is run on a host; 

however several containers can also run on the same host. A single special container 

called main container must always be active in the platform. Main container represents 

the bootstrap point of a platform, it is the first container to be launched and all other 

containers must join to a main container by registering with it. If another main container 

is started somewhere in the network it constitutes a different platform to which new 

normal containers can possibly register. As a bootstrap point, the main container has the 
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following responsibilities: it manages the registry of all container nodes composing the 

platform; manages the registry of all agents present in the platform including their current 

status and location; and hosting the Agent Management System (AMS) and the Directory 

Facilitator (DF) agents. When JADE platform is launched, the AMS and the DF are 

immediately created and the Agent Communication Channel (ACC) is set to allow agent 

communication. AMS exerts supervisory control over access to and use of the Agent 

platform. It provides a naming service ensuring that each agent in the platform has a 

unique name. DF provides a yellow page service by means of which agents can register 

and modify their services and also agents can find other agents providing services they 

require. ACC controls all the exchange of messages within the platform, including 

messages to/from remote platforms.  

Figure 5-25 shows some of the middleware agents deployed in the JADE agent platform 

distributed over several containers. At start-up, each agent registers to the common, 

shared middleware ontology and also registers its services with the DF.  

The middleware includes: low level RFID data cleaning filter called WSTD to reduce 

erroneous read data; persistence data model which facilitate efficient application level 

event generation and query capabilities; and graphical user interface used for specifying, 

managing and monitoring the deployed devices and for configuring the rules for 

generating application level events. The agents within the middleware use XML as their 

content language and hence messages with application clients can be handled using XML 

and TCP or HTTP message-transfer-binding. 

The WSTD is an adaptive, sliding-window cleaning method which was developed for 

cleaning captured erroneous RFID data streams in this study. The WSTD data filter is 

discussed in detail in Chapter 6. The RFID related object history containing all current 

and past object data and their relationships are implemented using relational database 

tables using the model in Figure 5-26 and stored in a MySQL database. The RFID data 

model and its support for event generation are discussed in detail in Chapter 3.  
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Figure 5-25: Middleware agents deployed in the JADE Agent Platform distributed over 

several containers 

 

 

Figure 5-26: Middleware data model 
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Figure 5-27 shows the reader manager GUI which is used for specifying, managing and 

monitoring the deployed RFID readers. The middle panel of the window shows the list of 

deployed readers grouped by their reader manufacturer. The bottom panel shows different 

navigation tabs to perform different tasks. In addition to registering the reader the user 

can start and stop a particular reader agent, check the operation status and connection 

status of the reader. Figure 5-28 shows the window for configuring more than one reader 

to a one logical reader. Logical reader represents the symbolic location model in the data 

model. 

The middleware supports the following kinds of queries: 

• Get all objects situated in a given location over a certain time 

• Get all locations of a given object over a certain time 

• Get the number of objects in a given location over a certain time grouped by the 

object type 

• Get the number of a particular object in a given location over a certain time. 

• Get all objects which are removed or added in a given location. This query 

compares the present list of the current scanned objects in a location with the 

previous last stored location objects 

• Get the number of objects which are removed or added in a given location 

grouped by the object type. This query compares the present list of the current 

scanned objects in a location with the previous last stored location objects 

 

 

Figure 5-27: Reader Manager GUI for registering, managing and monitoring registered 

devices 
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Figure 5-28: GUI for configuring new Logical reader 

 

Figure 5-29 shows a GUI for configuring an application level event generation rules. 

Event configuration (also known as event specification) involves specifying three main 

parameters: event boundary; the location to be scanned; and what type of data should be 

reported (also known as event report specification). Event boundary includes the two 

parameters event duration and event repeat period. Duration boundary is the interval of 

real time it takes to accumulate the data; for example, duration of 10 seconds will 

accumulate the tag reads for 10 seconds and combine them together as one event. Repeat 

period specify  the time interval for the event report to be reported e.g. repeat period of 10 

minutes will generate and report the event reports every 10 minutes. In the 

implementation discussed here, logical reader is synonymous with location in the data 

model. Logical reader is logical name given to the combination of one or more readers 

that are monitoring the same location. Event report specification defines the type of data 

to be reported from the collected event tag reads. Event specification can include one or 

more event report specifications. 
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Figure 5-29: GUI for configuring the event generation rules 

 

Figure 5-30 shows the GUI for configuring the event report specification. Event 

specification includes report name, set of reports to be included, output specification, 

filter patterns and group pattern. Set of reports specifies whether to report all the current 

identified objects in the location, added objects in the location, or removed objects from 

the location compared to the previous last known objects which were located in that 

location. The output specification includes the option of whether to report the objects 

Id’s, the number of objects, to report only on change or to send the report even if the 

generated report is empty. Filter patterns specify the type of object to include or exclude 

from the generated report and group pattern specify how the event data after filtering 

should be grouped. Figure 5-31 shows the low level event report generated by the 

middleware. The report includes the total number of objects and the list of objects Id’s 

and the name of the location where they are situated.  
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Figure 5-30: GUI for configuring the event report specification 

 

 

 

Figure 5-31: GUI showing the low level event report generated by the middleware 
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Chapter 6: RFID Data Stream Cleaning 

6.1 Factors Affecting the Performance of RFID Systems  

The main factors that affect the performance of RFID systems are the environment in 

which they are operating; the materials onto which the tags are attached; and the 

operating frequency.  

The medium through which the tags and the reader communicate is called the channel. 

The environment in which the system is deployed highly affects the communication 

channel between the tags and the reader due to effects such as attenuation, multi-path, and 

interference from other readers and RF devices.  

The physical objects to which the tags are attached also affect the tag’s performance. 

Many common materials that the tags are attached to such as metal, metalized/foil-lined 

packaging, carbon and graphite-impregnated plastics and water containing objects have 

considerable effects on the performance of the tags. Figure 6-1 shows how the radio 

frequency waves transmit through different types of materials. This Figure does not 

consider limitations of speed and distance. Materials that are lucent react very well in all 

frequency ranges. For non-lucent materials, the radio waves travel through the object with 

significant distortion in high frequency ranges. Changes in impedance bandwidth, 

detuning of the antennae, and the reduction in the efficiency of the antennae are some of 

the factors that change the amount of power being delivered from the antenna to the chip. 

The performance of RFID system is also frequency dependent. The ISM band in UHF 

frequencies varies among countries, for example the ISM band frequencies are 860 - 

868 MHz in Europe and Africa, 902 – 928 MHz in USA and Canada, and 950 – 956 MHz 

in some Asian countries. Thus if the tag has to be read globally, it should operate well 

across the spectrum. Although tags can operate across the entire ISM band spectrum, 

their performance across the spectrum is not the same.  

To provide a reliable, unbiased and independent source of information that end users can 

employ to make decision about which RFID tags are likely to perform best on particular 

product type, the RFID Alliance Lab [98], a not-for-profit facility, conducted more than 
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5,000 tests on the 10 commercially available UHF EPC tags. Their findings are published 

into two commercial reports [99], [100].   

Figure 6-1: Example of material characteristics [97] 

 

These reports were aimed at taking much of the hype out of advertisements and giving 

users better information for making tag purchase decisions. Although their performance 

analysis is for UHF RFID tags based on EPCglobal’s Class 0 and Class 1 specifications 

only, they still give good insights for understanding the performance characteristics of 

RFID tags in general. What follows is a summary of some of their noteworthy findings, 

which tie in with the subsequent discussion on the importance of cleaning RFID data 

streams and the best method to use for cleaning these data streams.   

a) Maximum distance 

Every tag-reader system has a maximum read range; however, tag performance 

deteriorates with distance. The tags within the maximum read range of the reader, do 

not respond to all the attempts from the reader to read the tag. There are three distinct 

regions of operations of passive RFID tags: strong-in-field, weak-in-field and out-of-

field.  

In the strong-in-field region, the tag responds to most of the attempts from the reader. 

Thus, the response rate in the strong-in-field region varies between 100% and 77%. 

The tag performance then degrades gradually with increasing distance in the weak- 

in-field region. In the out-of-field region, the response rate goes down to 0%. 
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Figure 6-2 shows a typical response rate vs. distance for commercial UHF RFID tag, 

and Figure 6-3 shows the read rate vs. distance for different types of commercial 

UHF RFID tags. The figures provide two scales along the X axis. The first, along the 

bottom of the graphs, is attenuation in dB. The second, along the top, is an 

approximate translation of attenuation in dB into distance in feet, based on a standard 

formula for how a signal attenuates over distance using the Friis transmission 

Equation [101].  To better control the condition of the tests, the tag was placed at 

fixed distance (3 feet above the reader antenna in free air) and the change in distance 

simulated by varying the signal attenuation. Increasing signal attenuation simulates 

the increasing read distance.  

Response rate/Read Rate is the ratio of the number of times a tag is read successfully 

to the number of times the reader attempts to read the tag. Response rates are 

measured for increasing attenuation levels, and attenuations are increased until the 

response rate drops to 0%. 

 

 

Figure 6-2: Typical response rate versus distance for a passive RFID tag [99] 
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Figure 6-3: Read rate vs. distance for different types of commercial UHF RFID tags [99] 

 

b) Tag Orientation sensitivity 

The radiation pattern of The RFID tag antenna determines the ability to read the tag 

in any orientation. UHF passive tags can be classified into two categories: the tags 
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which are based on a single dipole or slot antennae, and tags which are based on dual 

dipole antennae. The single dipole tags are typically long and thin tags and the dual 

dipole tags are squarer in shape.  

Dipole antennae receive and emit radiation at best when perpendicular to its axis and 

not along its axis. Typical dipole designs have a null reading zone on their antenna 

tips which means there is a read angle in which one cannot read the tag (dead spots). 

Figure 6-4 shows the radiation pattern of Alien ALN-9640 Squiggle inlay tag with a 

dipole antenna. 

A dual dipole tag has two dipoles oriented in perpendicular directions so that if we 

are looking at the null of one antenna, the second antenna is at the best receiving 

orientation eliminating the null zones [102]. Figure 6-5 shows the radiation pattern of 

Avery Dennison AD-833 inlay tag with dual dipole antenna.  

 

 

Figure 6-4: Angular sensitivity of Alien ALN-9640 UHF tag using dipole antenna [103] 
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Figure 6-5: Angular sensitivity of Avery Dennison AD-833 UHF RFID tag using dual 

dipole antenna [104] 

 

c) Variance in performance  

Tags within the same model are expected to give similar performance. However, it is 

an unfortunate reality that there are considerable variations in performance from one 

tag to another, even among tags of the same manufacturer and model. For example, 

Alien Squiggle tag model ALL-9238 was found to have a difference of 3.5 dB 

between the worst and the best tags, which means that the worst-performing tag 

requires more than twice the amount of RF power from the reader to be read, or can 

be read at only 60 percent of the distance of the best-performing tag. Inconsistencies 

in tag performance increases complexity in designing RFID-enabled applications. 

 

d) Distance of tags in front of metal /water  

Aqueous products absorb RF energy and reduced the RF signal that reaches a tag, 

while dielectric and metal materials detune and reflect RF signals, which lead to a 

reduced read range, phantom reads or no read signal at all. All tested commercial tag 

models were unreadable within 2.5 cm of separation from metal and water (see 

Figure 6-6). 
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Figure 6-6: Tag performance in front of metal [100] 

 

e) Frequency response of tags in front of the metal/dielectric materials 

The presence of metal and dielectric materials near a tag affects its frequency 

response. Some of the tags are unreadable at certain ISM bands when the tags are near 

metal, even though they are readable at all ISM bands in free air.  Figure 6-7 shows a 

frequency dependent response of two tags. Tag1 shows a normal typical frequency 

variation response in which it performs better at lower frequencies and moderately 

degrades with increasing frequency. Tag2 shows an extreme behaviour in which it 

performs better than Tag1 in lower frequencies less than 928 MHz but it is unreadable 

at the higher frequency of 955 MHz. 
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Figure 6-7: Frequency-dependent performance of the tag in front of a metal material 

[100] 

Other factors which also affect tag-reader system performance is the number of tags in 

the reader’s range and the speed in which the tagged object moves as it passes through the 

detection zone. 

6.2 Errors in RFID Data Streams 

As can be observed from section 6.1, the tag-reader system performance is highly 

dependent on the environment in which the system is deployed, materials in which the tag 

is attached to, the orientation sensitivity of the tag, and the distance between the tag and 

the reader. In addition, inconsistencies in tag performance even for the same tags’ model 

from the same manufacturer make the tag performance unpredictable.  

These performance limitations cause the data streams produced by these systems to be 

extremely unreliable and essentially useless in many application areas. There are three 

typical undesired scenarios: false negative readings, false positive readings and duplicate 

readings. 

• False negative readings 

RFID tags while present in the reader’s detection range might not be read by the 

reader at all. This can be caused by a number of reasons. 

i) RF collision in the presence of multiple tags placed too close to each other. 

When tags are placed too close together, tag antennas can detune each other, 

thereby reducing the chance of reading by minimizing their chances of being 

activated.  
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ii)  The material and the environment in which the tag is deployed such as 

presence of water, metal or RF interference from other RF devices. 

iii) The distance between the tag and the reader, as has been discussed in the 

previous section. The detection rate deteriorates with distance and the tags in 

the weak-in-field region (far end of detection range) have a smaller chance 

of being read compared to the strong-in-field region (near the reader 

antenna). 

iv) The tag orientation in the dipole antenna tags. When the tag is aligned with 

its null reading zone, the tag will not be read, and when it is not properly 

vertically aligned, its chances of being read decreases. 

• False positive readings 

In addition to the normal RFID tag reads, unexpected readings are generated. This 

can be caused by the following reasons: 

i) RFID tags outside the normal reading scope of the reader are captured by the 

reader. For example, while reading items inside the office, a reader may read 

the tag carried by the person walking by the door.  

ii) For unknown reasons from the reader or environment, a reader may send a 

wrong or phantom identification code. 

• Duplicate readings 

RFID naturally generate a large number of duplicate readings. This can be caused by 

the following reasons:  

i) To enhance reading accuracy, some readers perform several interrogation 

cycles during one read cycle and as a result the tag with the same id can be 

read more than once. 

ii) Also, to enhance reading accuracy multiple tags with the same id can be 

attached to the same object. 

iii) Multiple readers installed to cover large area may lead to multiple reading of 

the same tag by different readers in the overlapping areas. 

iv) Tags in the scope of the reader for a long time are read by the reader multiple 

times. 
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Although the performance of UHF passive RFID based systems improved significantly 

by introduction of EPC Class-1 Generation-2 protocol (C1G2) [105], several studies on 

the performance of the C1G2 RFID systems indicate that the overall performance of the 

system is still implementation dependent [106]-[108], [109]. The empirical study of UHF 

RFID performance by Buettner et al. [107] shows that physical effects such as errors and 

multipath are significant factors that degrade the overall performance of commercial 

readers. These effects increase both the duration of each reader cycle and the number of 

cycles to read all tags in a tag set. They argue that the error rates are highly location 

dependent and the level of degradation is implementation specific. The work by Kawakita 

et al. [109] shows that the bit errors, due to erroneous communication links, significantly 

degrade C1G2 performance. In actual UHF passive RFID deployment, the RFID’s 

usually shares the frequency band with other UHF wireless devices as well as neighbour 

RFIDs. While some interference is predictable and controllable some are unpredictable 

and uncontrollable - such as mobile wireless devices. Therefore, despite the 

improvements on tag detection rates by using C1G2 protocol, factors such as tag-reader 

configurations, multipath and unpredictable interferences in the deployment environment 

still contribute to degradation of the performance and reliability of the RFID system 

leading to noisy and incomplete data. RFID data cleaning is, therefore, essential in order 

to correct the reading errors, and to allow these data streams to be used to make correct 

interpretations and analysis of the physical world they are representing.  

 

6.3 RFID Data Cleaning Approaches 

Methodologies for improving reliability of RFID data proposed in the literature can be 

divided into three main categories: physical solutions, middleware solutions and deferred 

solutions [110]. Physical solutions include improvement of hardware performance to 

improve the reliability of the data such as [111] and use of redundant techniques by using 

multiple tags and readers to identify the same object [112], [113]. Middleware solutions 

include algorithms to correct the incoming sensor data streams before the data is passed 

into the database [10], [114], [115]. The deferred solutions incorporate intelligent 

techniques, which correct the data in the later stages within the data storage [110], [116]. 

The research presented here falls in the category of middleware-based solutions; 
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specifically window-based smoothing methods. Temporal based smoothing-window 

filters are the most commonly used RFID data cleaning mechanisms, [4], [10], [16] [117]. 

It was decided to use the window-based method because of its simplicity and this piece of 

work extends the work proposed by Jeffrey et al. [10]. 

In temporal based smoothing filters a time based sliding-window is used to interpolate for 

the lost readings from each tag within the time window. The goal is to reduce or eliminate 

false negative (dropped) readings by giving each tag more opportunities to be read within 

the smoothing window. Due to the factors which limit the readability of the tags 

discussed in section 6.1, setting a proper window size is a challenging task, especially 

when tags are mobile. While bigger windows are necessary to ensure that even the poor 

performing tag is read, the bigger window can introduce false positive errors caused by 

inability to capture tag movements. In the large window, the tag can be mistaken as being 

present while they have already exited the detection range.  

The experimental results presented here show that, firstly the window size is application 

dependent.  Bigger windows can be efficient in static tag applications but they are not 

ideal in dynamic tag applications. This is due to the fact that the lack of reading from the 

tag may be due to the tag having moved out of the detection field rather than the missed 

reading. Applications with higher degrees of mobility require small smoothing windows 

in order to capture rapid changes in measurement data; but at the same time smaller 

windows are unable to compensate for the missed reading. In such situations, increasing 

the window size to combat missed reading will not be efficient since the tag dynamics 

will be lost through aggregation. Secondly, a small change in the operating environment 

may render the initial window setting unable to clean the data. This raises an important 

requirement for an adaptive variable window size which changes as the environment 

changes. Thirdly, due to variation in tag performance as mentioned earlier, we need to 

have a per tag cleaning mechanism. A per tag cleaning mechanism considers each tag 

individually and sets its cleaning window accordingly. Fourthly, even in the static tag 

applications knowing when a window is big enough to clean the data while optimizing 

performance and efficiency is a non-trivial task for an application to handle. Therefore, 

taking into consideration all these requirements for setting the optimal window size, this 

task should be included and automatically be carried out by the middleware instead of 

being left to the application programs to set the cleaning window size. 
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6.3.1 Fixed Window Filters 

There are many different types of windows, but we may basically categorize them all 

according to two axes of references: 

a) The window policy, which configures the way the window expires. There are 

basically two main policies: sliding and tumbling, as well as a small variation of 

the tumbling window, which are called landmark windows. 

b) The window size, which defines the size of a filter window according to some 

metric. There are two types of sizes: time-based and tuple-based. 

These two axes are orthogonal to each other; for example, one can create a time-based 

sliding window, or a tuple-based tumbling window. 

 

Sliding window 

A sliding window contains the events received within a fixed-size interval. This interval 

can be temporal or tuple-based. For example, a time-based sliding window with an 

interval equal to three minutes will contain only the events received during the past three 

minutes. As soon as the event becomes older than this threshold, it is expired from the 

window. The window continuously moves forward as the time advances and its size 

never changes. Figure 6-8 illustrates the sliding window with the size of three minutes. 

When the new tuple arrives in the tuple-based sliding window, the oldest of the three 

expires and the new tuple is appended to the window. Every insertion corresponds to a 

deletion of the oldest element. In a time-based sliding window there is no restriction on 

the number of insertions and deletions, typically each element is associated with a 

timestamp, and the window contains all elements with active timestamps. 

 

 

Figure 6-8: Time-based sliding window 

Tumbling windows 

Unlike sliding windows, tumbling windows expire all events at once, once they reach 

their predetermined size. Afterwards, they refill again and the cycle repeats itself. For 
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example, in a time-based tumbling window of three minutes, the window will expire 

every three minutes and the count will reset to zero no matter how many elements are 

actually inside it. Figure 6-9 shows an illustration of a time-based tumbling window. 

Tumbling windows are particularly useful if the value at the time the window expires is 

the priority (that is, if one wants to sample the value using periodic interval) and not all 

the values produced between those intervals. 

 

 

Figure 6-9: Time-based tumbling window 

 

Landmark windows 

Landmark windows are similar to time-based tumbling windows, except that one can 

control the exact moment the window will expire. The motivation behind this is that 

sometimes you want the window to expire at well-defined moments, not just ten minutes 

after the application starts. For example, you may want the window to expire at the end of 

the day, to collect daily statistics, or at the 30
th
 minute every hour. To set-up a landmark 

window, one needs to schedule its expiration. 

 

In fixed window filters, the reader data stream is collected for the duration of the window 

time and then the data is analysed. In the fixed tumbling window, if there is at least one 

occurrence of the tag during the window period, the tag is considered present during the 

whole window period. In the fixed sliding window, the output of the window corresponds 

to the time the window expires. If there is more than one reading of the same tag, the 

readings are aggregated into a single tag reading such as the tuple C�
�.2, ���	�_��T����, ]
����������, �
�%�L��D. 
 

6.3.2 Variable Window Filter 

Variable window filters are filters which continuously adopt the size of the smoothing 

window accordingly in order to improve data accuracy. Adaptive variable window data 
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cleaning for RFID data streams was initially proposed by Jeffery et al. [10]. Their 

proposed method is known as SMURF (Statistical sMoothing for Unreliable RFid data).  

SMURF models the unreliability of RFID readings by viewing RFID streams as a 

statistical sample of tags in the physical world, and exploits techniques grounded in 

sampling theory to drive its cleaning processes.  SMURF contains two primary cleaning 

mechanisms aimed at firstly, to produce accurate data streams for individual tag-ID 

readings (per tag cleaning), and secondly to provide accurate aggregate (e.g. count) 

estimates over large populations (multi-tag cleaning). It uses the binomial sampling and π 

estimators to continuously adapt the smoothing window size.  This variable sampling-

based data cleaning method shows some similarities with the fixed sliding-window 

method. Like the fixed sliding window method, its window slides by a single epoch. The 

tag is said to be present if there exist at least one reading for that tag within that window 

and the output corresponds to the midpoint epoch of the window. The mid-window 

concept is the intuitive concept of smoothing; it makes it possible to predict the presence 

of the tag based on the closest previous and future readings of that particular tag. For 

example, if the tag was present at time � 9 1 and � M 1, it is mostly likely to be present at 
time �. In addition to these features, it includes two processing modules which make it 
different from other window-based methods. The first module is a sliding window 

processor, which dynamically adjusts the window size based on statistical properties of 

the data. The second module is an optimization mechanism for improving cleaning 

effectiveness by detecting movement of tags.  

Based on the evaluation of the performance of RFID described in section 6.1, and the 

results of our experiments in which we compare the fixed and variable window 

smoothing algorithms, we concluded that adaptive window based smoothing algorithm is 

the best way to clean the RFID data streams.  Adopting and extending the statistical 

approaches proposed in SMURF, we developed our own adaptive cleaning scheme for 

RFID data streams, called WSTD, with a more efficient transition detection mechanism. 

WSTD is able to automatically and continuously adapt its window size to cope with 

fluctuations of the tag-reader performance due to changes in the environment while 

relatively accurately detecting the transition points. The following subsection describes in 

detail our adaptive sliding-window cleaning mechanism, WSTD. 
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6.4    RFID Data Stream as a Statistical Sample 

Readers interrogate nearby tags by sending out RF signals and the tags which are within 

the reader’s interrogation zone (reader read range) responds to these signals with their 

unique identification code. An interrogation cycle is a single iteration through the 

reader’s protocol that attempts to determine all tags in the reader’s vicinity. The result of 

multiple interrogation cycles are grouped together into one read cycle. A read cycle is the 

smallest interaction between RFID reader and the middleware. Read cycle is typically 

specified in time units or in terms of number of interrogation cycles. The result of each 

read cycle is the list of detected tags, together with additional information such as the 

number of times that the tag responded, the time at which the tag was first read, the last 

time the tag was read, or the antenna that read the tag. Additional information differs 

from one reader to another. Table 6.1 shows an example of a typical read cycle output 

using Alien Reader ALR-8800 scanned for 10 interrogation cycles. In the discussion here  

an atomic unit of time used by one read cycle will be referred to as an epoch and in the 

implementation an epoch corresponds to 1 second. A smoothing window is therefore 

made up of a sequence of consecutive epochs. 

 

Table 6.1: Example of reader tag list 

ID:E200 3411 B802 0111 6519 5246, Discovered: Tue Sep 13 15:18:07, Last Seen: Tue Sep 13 15:18:07, Reads:4 

ID:E200 3411 B802 0111 6519 5256, Discovered: Tue Sep 13 15:18:07, Last Seen: Tue Sep 13 15:18:07, Reads:1 

ID:E200 3411 B802 0111 6519 5255, Discovered: Tue Sep 13 15:18:07, Last Seen: Tue Sep 13 15:18:08, Reads:10 

According to the RFID reader-tag performance analysis presented in section 6.1, it is an 

undeniable fact that, the raw RFID data streams do not provide a correct representation of 

the physical world that they are representing. A significant number of tags which are 

within the reader’s read range are not read by the reader due to either tag orientation, tag 

distance from the reader antenna, presence of metal, dielectric or water material close to 

the tag and other factors discussed in section 6.1.  These missing tags imply that typically 

only a subset of the tag population is actually observed. Therefore, the observed RFID 

readings can be viewed as a random sample of the population of tags in the physical 

world. The key insight is viewing each epoch output as a sampling trial and the 

smoothing window readings as repeated random sampling trials. 
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Let  't denote the unknown size of the underlying tag population at epoch � and let �t u  {1, … , 't} denote the subset of the tags observed (“sampled”) during that epoch.  �t  
can be viewed as, unequal probability of a random sample of the tag population. 

Probability �v,t of selecting tag � at epoch � can be calculated from the epoch � output 
information (Table 6.1) using the number of reads (tag responses) for tag � in 
combination with the known number of interrogation cycles (number of requests) 

Equation (1). 

    �v,t = wxyz{| }~ |{��}w�{�wxyz{| }~ |{�x{�t�    (1) 

For example, for the epoch output in Table 6.1, in which each epoch accumulates data for 

10 interrogation cycles, the sampling probabilities for the first, second and third tags are 

0.4, 0.1 and 1 respectively. These probabilities vary across the tags and can also vary over 

time as the observed tags move within the reader’s detection range as well as due to the 

changes in the operating environment.  

 

6.5      Adaptive Individual Tag Cleaning  

6.5.1 Completeness Requirement  

Each epoch is viewed as an independent Bernoulli trial (i.e. a sample draw for �
� �) with 
success probability �v,t using Equation (1). This implies that the number of successful 
observations of  �
� � in the window �v with av epochs (i.e.�v = C� 9 av , ��) is a 
random variable with a binomial distribution "�av , �v,t�. In the general case, assume that �
� �  is seen only in subset �v u �v of all epochs in the window �v .  Assuming that, the 
tag probabilities within an approximately sized window calculated using Equation (1), are 

relatively homogeneous, taking their average will give a valid estimate of the actual �v,t 
of �
� � during window �v [10]. Therefore, the average empirical read rate �v���

over the 

observation epochs is given is given by Equation (2).  

 �v��� = C1 |�v|⁄ D · ∑ �v,tt���  (2)  
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Also �v can be seen as a binomial sample of epochs in �v i.e. a Bernoulli trial with 
probability �v���

 for success and |�v|  as a binomial random variable with binomial 
distribution "�av , �v����. Hence, from standard probability theory the expected value and 
variance of |�v|  is given as Equation (3) and Equation (4) respectively. 
  $�|�v|� = av � �v���

  (3) 

 &
��|�v|� = av � �v��� � �1 9 �v���� (4) 

The derived binomial sampling model is then used to set the window size to ensure that 

there is enough epochs in the window �v such that �
� � is read if it does exist in the 
reader’s range. Setting the number of epochs within the smoothing window according to 

Equation (5) ensures that �
� � is observed within the window �v with probability >1 9 � [10].  
  av �  ��1 �v���⁄ �]�C1 �⁄ D� 

(5)  

6.5.2 Individual Tag Adaptive Window Size Adjustment 

WSTD uses binomial sampling concepts to calculate the appropriate window size and π-

estimator to estimate the number of tags as proposed by SMURF. WSTD then uses the 

comparison of the two window sub-range observations or estimated tag counts and some 

rules to detect when transition occurs within the window, and then adjust the window size 

appropriately. We first present how WSTD cleans individual tag data and then present 

how it cleans tag aggregates in the applications which only need to know the number of 

tags available. 

In order to balance between guaranteeing completeness and capturing tag dynamics the 

WSTD algorithm uses simple rules together with statistical analysis of the underlying 

data stream to adaptively adjust the cleaning window size. 

Assume �v =  �C� 9 av , ��� is �
� � current window, and let    ��v′ =  �C� 9 av , � 9 av 2⁄ �� 
denote the first half of window �v and ��v′ =  �� 9 av 2⁄ , �� denote the second half of the 
window �v. Let  |��v| and |��v| denote the binomial sample size during ��v′  and ��v′  
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respectively. Note that the mid-epoch (i.e. epoch at � 9 av 2⁄ ) is inclusive on both ranges 

as shown in Figure 6-10.  

 

 

Rule 1:  

Similar to SMURF, variation within the window is detected if the number of observed 

readings is less than the expected number of readings (Equation (6)) and there is 

statistically significant variation in the tag observations using the Central Limit 

Theorem (CLT) according to Equation (7). 

  

  |�v| � av � �v���
 (6)  

 �|�v| 9 av�v���� > 2 · �av�v����1 9 �v���� .   (7) 

However, we noted that this variation within the window can also be caused by 

missing tags and not necessarily only due to transition.  Hence, to reduce the number 

of false positives due to transition and the number of false negative readings which 

will be further introduced in case of wrong transition detection, the window size is 

reduced additively by reducing the window size by two epochs. 

To improve the transition detection mechanism for the mobile tags we combine the 

mobile detection mechanism together with the observations of the second half of the 

window |��v| to estimate when the tag is exiting the detection range. The slope of the 
best-fit line using the least squares fitting with the observed probabilities in the window 

(
∆��,�{�}���) is used to determine if the tag is moving out. If the tag is detected with 

consistently falling �v,t, within the window it is inferred as that the tag is moving out. 
Hence, the negative slope of the best-fit line indicates that the tag is moving out.  

��v  , |��v| 
� 9 a � � 9 a/2 

�,   |�v|
��v  , |��v| 

Figure 6-10: Illustration of the sub-ranges in the smoothing window 
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Rule 2:  

If the tag is moving out and it was not detected in the second half of the window 

(i.e. |��v| = 0) the tag is assumed to have exited or is exiting the detection range. In 
this case the window size is halved to reduce the false positive readings.  

One weakness of this rule is that premature exit transition detection will also lead to 

false negative reading due to a small window size. 

Rule 3:  

The window size is increased if the computed window size using Equation (5) is 

greater than the current window size and the expected number of observation samples 

is less than the actual number of observed samples (i.e. |�v|  > av�v���
 ).  

Low expected observation samples indicates that the probability of detection �v���
 is 

low, in this case we need to grow the window size to give more opportunity for the 

poor performing tag to be detected. Otherwise, if the expected observation sample is 

equal or greater than the actual sample size it means that, the  �v���   is good enough 
and we do not have to increase the window size. This rule ensures that the window 

size is increased only when the read rate is poor.  

Figure 6-11 shows a pseudo-code description of the WSTD adaptive per tag cleaning 

algorithm. Each individual tag is cleaned in its own window. The rules described above 

are used to adjust the tag’s cleaning window size adaptively based on the statistical 

analysis of the underlying tag observations. Initially, all newly detected tags’ windows 

are set to 1 epoch, the window sizes are then adjusted according to their detection rates 

with minimum window size set to 3 epochs. Setting the minimum window size to 

3 epochs strikes a balance between maintaining the smoothing effect of the algorithm and 

reducing the false positive errors. In a way similar to SMURF, WSTD also slides its 

window per single epoch (read cycle) and produces output readings corresponding to the 

midpoint of the window after the entire window has been read. 
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Input:  T = set of all observed tag IDs 

δ  = required completeness confidence 

Output:  t = set of all present tag IDs 

Initialize:  ¡� � �, av ¢ 1 
while(���'�£�$��	b) do 
 for (� in T)  
  ���	��������aC�vD  ¤ �v,t, �v���, |�v|  
  if  ( �
�$£���C|�v|D  
   output � 
  end if 

  avh ¢ ��dL���������a��e���v���, �� 
  �
�$£����� ¢ ��^�]�2���	������v,t�, � 
  if C�
�$£����� ¥  |��v| = 0D  
   av ¢ �
£ C���{av 2 ,⁄ avh}, 3D 
  else if §����	���
��������|�v|, av , �v����¨ 
   av ¢ �
£ C���{av 9 2, avh}, 3D  
  else if �avh > av ¥ |�v| � av�v����  
   av ¢ ���{av M 2, avh} 
  else  

   av ¢ ���{av , avh} 
  end if 

 end for 

end while 

Figure 6-11: WSTD individual tag cleaning algorithm 

 

During each epoch and for each observed tag, the algorithm starts by processing the 

readings inside the window �v (���	��������aC�vD). This processing includes 
estimating the required model parameters for �
� � (i.e.  �v,t’s, �v���, |�v|) using tag list 
information. By using the estimated tag parameters, the algorithm checks if there exits at 

least one reading within the window (i.e. |�v| © 0 ) and outputs the detected �
� �. The 
algorithm then uses the mobile detection module to check if the tag is moving out. If the 

slope is negative (i.e. the tag is exiting) and there is no tag detected in the second half of 

the window (|��v| = 0) this means that there is higher probability that the tag has already 
exited the window. In this case the window size is aggressively reduced multiplicatively 

to half its size to alleviate the false positive readings which might arise due to large 

window size.  

If the tag has not exited the detection region, the algorithm then tries to check if transition 

occurred during the window §����	���
��������|�v|, av , �v����¨ based on Equation (6) 
and Equation (7). If transition is detected the window size is reduced by two epochs.  

If transition is not detected the algorithm uses conditions in rule 3 to decide whether to 

increase the window size and set the window size appropriately. Since a midpoint sliding 
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window is used here, in order to advance the slide point by one epoch, the window must 

be increased by two epochs (i.e.av ¢ av M 2). Because of this condition, the window size 
should be an odd number.  

If the tag is not exiting, and if no transition is detected, and also the current window is 

large enough to ensure detection with high probability, the tag continues with the same 

smoothing window size. 

6.6     Adaptive Multi-tag Aggregate Cleaning  

Some applications do not require information for each individual tags, but only need to 

track the number of tags in the detection region. These types of applications typically 

track large populations of tags. For instance, a retail store monitoring application may 

only need to know when the count of items on the shelf or store drop below a certain 

threshold level. 

The per tag cleaning method could be used to clean tags in such scenarios, whereby each 

tag in the population is individually cleaned and their result is aggregated across 

individual smoothing filters for each epoch. However, this solution can be highly affected 

by poor performing tags especially in the static environment. The per tag cleaning 

algorithm adapts the window size for each individual tag and because window sizes for 

individual tags might be different, based on their detection rates, the decision on whether 

the tag is present or not is taken at different epochs. Therefore, due to different window 

sizes, the tags that are not ready for processing (i.e. the readings for all epochs in its 

window have not be accumulated) will delay the output. To avoid this limitation caused 

by low performing tags, the multi-tag cleaning algorithm uses the same smoothing 

window for all the tags together with a statistical estimation technique to accurately 

estimate the tags population count without cleaning on a per-tag basis.  

6.6.1 Completeness Requirement for tag aggregates cleaning 

As with individual tag observation, the smoothing window size plays a critical role in 

capturing the underlying tag’s population aggregate. A large window ensures that the tags 

are observed and aggregated with high probability, but a small window is also desired to 

ensure that variability in the population count is adequately captured.  
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The multi-tag cleaning mechanism uses some of the concepts proposed in SMURF 

whereby the Horvitz-Thompson estimator [119] also known as the π-estimator together 

with unequal-probability random sampling model is used to approximate the population 

aggregates. As with the per-tag cleaning method, the multi-tag cleaning mechanism also 

views each epoch as an independent Bernoulli trial with probability �v���
 for success. 

Where �v���
 denotes the average empirical sampling probability for �
� � during window  � derived from the readers tag list information using Equation (2).   

Let �ª denote the sample of distinct tags read over the current smoothing window and let ���� in Equation (8) denote the average per-epoch sampling probability over all observed 
tags. 

 ���� =  ∑ ��«¬��®¯|�¯|   (8) 

Following the similar rationale used in the per-tag cleaning, to ensure that the underlying 

tag population is read with high probability ( � 1 9  �) we set the upper bound of the 
smoothing window size for multi-tag aggregate at: 

  

 a =  °±w§²³¨�«¬ ´ (9) 

 

According to the binomial distribution, the probability of reading �
� � at least once 
during window  a =  |�| is estimated as one minus probability of not detecting �
� � in 
all the trials: 

 µv = 1 9 �1 9 �v����¶
  (10)  

 

Let  �ª u {1, … , 'ª} denote the subset of distinct observed (i.e. sampled) RFID tags 
over the window � and 'ª denote the true tags count. The π-estimator for the 
population count based on the sample �ª is defined as: 
   '·ª  =  ∑ �̧�v��¯ . (11) 

The π-estimator uses the sampling probability µv to weigh the responses in estimating the 
population total. The poor performing tags with lower response probability are given 

higher weights while higher probability responses are given lower weights. The 
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π-estimator gives unbiased estimation of tag population '¹ª with its estimated mean and 
variance given by Equation (12) and Equation (13) respectively. 

 $�'¹ª� = 'ª  (12)  

 &º
��'¹ª� =  ∑ �»¸�¸�¼  v��¯  (13) 

6.6.2  Adaptive window size adjustment for tag aggregates cleaning 

The WSTD cleaning algorithm employs the random-sampling model and π-estimator 

concepts proposed in SMURF together with comparison of the two window sub-range 

estimated tag counts to dynamically adapt its smoothing window size. Transitions are 

detected as statistically significant changes in aggregate estimates over sub-ranges of its 

current smoothing window. The transition detection model used is the main difference 

between our multi-tag cleaning algorithm and the SMURF multi-tag cleaning algorithm.   

Assume � =  �C� 9 a, ��� is current window, and let ��′ =  �C� 9 a, � 9 a 2⁄ �� denote the 
first half of window � and ��′ =  �� 9 a 2⁄ , �� denote the second half of the window �. 

Let '¹ª²′  and '¹ª¼′  denote the π-estimators for tag population counts during ��′ and ��′  
respectively. Note that the mid epoch (i.e. epoch at � 9 a 2⁄ ) is inclusive in both ranges. 

The mid-point divides the window such that the numbers of epochs are equally spaced on 

either side of the window and this requires the use of an odd number window size. The 

transition is detected if there is significant change in tag counts between these two ranges. 

In the SMURF multi-tag cleaning algorithm the transition is detected as a statistically 

significant transition in population count that has occurred in the second half of the 

window compared to the whole window population count by using CLT condition in 

Equation (14). 

 �'¹ª 9 '¹ª¼′ �  > 2 ½�&
��'¹ª� M �&
� §'¹ª¼′ ¨¾  (14)  

However, in our model the transition is detected as a significant change in the population 

count by comparing the count estimates in the first half and the second half of the 

window by using Equation (15). 
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 �'¹ª²′ 9 '¹ª¼′ �  > 2 ½�&
� §'¹ª²′ ¨ M �&
� §'¹ª¼′ ¨¾ (15) 

Our experimental results verified that using the comparison of the sub-range population 

count estimates to detect population count variation within the window, gives a more 

accurate transition detection technique than comparison between full window count and 

the sub-range count estimates used by SMURF. The SMURF detection condition detects 

any significant variation within the window. However, for a transition detection 

mechanism we are more interested in detecting significant changes on the edge of the 

window, which signals that the tag is either entering or leaving the detection range and 

respond accordingly.  

By comparing the population count of the two window sub ranges, it is possible to 

determine when the tag is exiting and entering the detection range, eliminating the need 

to use a mobile detection algorithm as proposed by SMURF. In the environment where 

tags are mobile, there are two scenarios; one is tags exiting the detection range, and the 

second is tags entering the detection range.  

Simple rules are used to detect when these transitions occur by comparing the estimated 

tag counts in the two window sub-ranges.  

Rule 1: 

The tags are said to be exiting the detection range if the transition is detected 

according to Equation (15) and there is more estimated tag counts in the first half of 

the window than in the second half of the window (i.e.   '·ª²′ >  '¹ª¼′ ).   
 �£����
������� ¢  ��
�������2���	��� ¥  '¹ª²′ >  '¹ª¼′  
In this case, the window size is reduced multiplicatively (i.e. divided in half) to 

circumvent false positive readings.  

Rule2: 

The tag is said to be entering the detection region if transition is detected according to 

Equation (15) and there is more estimated tag count in the second half of the window 

than in the first half of the window (i.e.  '¹ª¼′ > '¹ª²′ ) 
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 �������
������� ¢  ��
�������2���	��� ¥  '¹ª¼′ >  '¹ª²′  
In this case, if the required window size is greater than twice the current window size, 

the window size is increased multiplicatively (i.e. doubled) if not, the window size is 

additively increased by two epochs. This is because as the tag enters the detection 

range it is assumed to be on the far end of a reader’s detection ranges, i.e. long 

distance from the reader’s antenna. Increasing the window size gives more opportunity 

even for the weak performing tags to de detected. 

When the tags are leaving and entering the detection range, false positive readings will be 

produced regardless of the window size because the readings are interpolated throughout 

the window. Bigger windows are prone to this problem. To reduce false positive readings 

under these scenarios, we made two estimation assumptions. These approximation 

assumptions are used to detect when the tag(s) completely exit(s) the detection range and 

when the tag(s) just entered the detection region as illustrated in Figure 6-12.  

 

Rule 3: 

The tag(s) are said to have exited the reader’s detection range if the overall 

window tag count is not zero, but the second half of the tag population count is 

zero (i.e. '¹ª > 0 ¥   '¹ª¼′ = 0). This means that there was no tag observed in the 
second half of the window  C � 9 a 2, �⁄ D.  
 �£�� ¢ '¹ª > 0 ¥ '¹ª¼′ == 0 
Similarly, the tag(s) are said to have just entered the reader’s detection range if the 

overall window tag count is not zero, but the first half of tag population count is 

zero (i.e. '·ª > 0 ¥   '¹ª²′ = 0). This means that there was no tag observed in the 
first half of the window C� 9 a, � 9 a 2⁄ D.  
 ����� ¢ '¹ª > 0 ¥ '¹ª²′ == 0 
Considering that the cleaning window size slides by the midpoint, we assume that 

the observed tags under these scenarios are more likely to be a false positive 

readings caused by a bigger window size.  Therefore, tag(s) observed in these 

scenarios are dropped and the window size is reduced for an exiting scenario and 

increased appropriately for an entering scenario.  
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By taking advantage of the π-estimator, which scales-up the reading in the window to 

estimate the underlying tag population we can reduce the window sizes to enhance 

transition detection, hence the minimum window size can be reduced to 1 epoch. We 

introduce another estimation condition, which we call strong region detection.  The aim 

of strong region detection is to detect when the tags within the window are observed with 

high probability of detection and when there is no significant variation in tag population 

within the two window sub-ranges.  

Let �v be a binomial sample of epochs in the current window � in which a single tag is 

observed and �v���
 be the average read rate as defined in the per-tag cleaning approach. 

Let �ª denote the sample of distinct tags read over the current smoothing window and ���� denote the average sampling probability over all observed tags given be 
Equation (8),  and ���� given by Equation (16) denote the average sample of epochs in 
the window in which the tags where observed.  

 ���� = ∑ ����®¯|�¯|  (16) 

Rule 4: 

The tags are then said to be observed in the strong detection region if the following 

condition holds: 

 §���� > �«¬ª ¨ ¥  §�'¹ª²′ 9 '¹ª¼′ � � ¿0.05 · ��� §'¹ª²′ ,  '¹ª¼′ ¨Á¨ (17) 

The second portion of the logical condition tests if the two window sub-range 

estimates have a relatively small difference of less than 5% of the lowest estimated tag 

counts. If the condition holds, the window size is reduced by two epochs. 

Figure 6-13 shows a pseudo-code description of the adaptive multi-tag cleaning 

algorithm. All the tags are cleaned using the same window. Similar to per-tag cleaning, 

� 9 a � � 9 a/2 
(a) Tags exiting  

� 9 a � � 9 a/2 
(b) Tags entering 

Figure 6-12: Illustration of mobile tag window sub-range as tags enters and exits the 

detection range 



139 

 

the smoothing-window size is systematically adjusted based on the analysis of the 

observed tags binomial-sampling data and the transition is detected by comparing the 

window sub-range estimated population counts.   

 

Input::  T = set of all observed tag IDs 

Input: T = set of all observed tag IDs 

δ  = required completeness confidence 

Output: t = tags count 

Initialize: a ¢ 1                                                       
while(���'�£�$��	b) do  
 for (� in T)  
    ���	��������aC�D ¤ �v,t , |�v|, �v���,  ����,  ����,   'ª· , 'ª²Â· , 'ª¼Â·   
 end for 

  �h ¢ ��dL���������a��e�C����, �D 
  ��
������� ¢  �'ª²Â· 9 'ª¼Â· �  > 2 ½�&
�§'ª²Â· ¨ M �&
�§'ª¼Â· ¨¾ 
 �£����
������� ¢  ��
����������� ¥  'ª²Â· >  'ª¼Â·  

 �������
������� ¢  ��
����������� ¥  'ª¼Â· >  'ª²Â·  

 �£�� ¢ 'ª· > 0 ¥ 'ª¼Â· == 0 
 ����� ¢ 'ª· > 0 ¥ 'ª²Â· == 0 
  ������2���	���� ¢ �  ���� > C���� �⁄ D� ¥  §�'ª²Â· 9 'ª¼Â· � � ¿0.05 · ���§'ª²Â· , 'ª¼Â· ¨Á¨ 
 if C�£�� Ã  �£����
������� Ã  ������2���	����D 
  if ( �£��) 
   t = 0 

  else 

   t = 'ª·  

  end if 

  if C ������2���	����D  
   � ¢ max CminC� 9 2, �hD , 1D 
  Else 

   � ¢ max Cmin §ª� , �h¨ , 1D 
  end if 

 else if CCavh > av D  ¥  C|����| � a · ���� DD 
  if ( �����) 
   t = 0 

  else 

   t = 'ª·  

  end if 

  if C�h > 2 h � ¥ C����� Ã  �������
�������DD  
   � ¢ min C� h 2, �hD 
  else 

   � ¢ min C� M 2,  �hD  
  end if 

 else 

  t = 'ª·  

  � ¢ min C�, �hD 
 end if 

 output (t) 

end while 

 

Figure 6-13: WSTD-π Multi-tag cleaning algorithm 
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6.7 Summary 

The unreliability of the data streams generated by RFID readers is among the primary 

factors limiting the potential widespread adoption of RFID technology. RFID data 

cleaning is therefore an essential task in the RFID middleware systems in order to reduce 

reading errors, and to allow these data streams to be used to make correct interpretations 

and analysis of the physical world they are representing.  

This chapter opened with an investigation of the factors that affect RFID system 

performance and the need for low level RFID data to be cleaned before being used in any 

applications. Specifically, the focus was on RFID missing readings problem and the 

sliding-window based approaches which are used to address this problem. Two categories 

of sliding-window based cleaning methods were considered, namely fixed, static window 

cleaning methods and variable window cleaning methods.  

The RFID data cleaning scheme called SMURF proposed by Jeffery et al. [10] has been 

extended, and a new scheme with a more efficient transition detection mechanism was 

developed. The transition detection mechanism referred to as the Window Sub-range 

Transition Detection (WSTD) uses the comparison of the two window sub-range 

observations or estimated tag counts to detect when transitions occur within the window. 

A distinction was also drawn between detecting an individual tag and detecting the 

number of tags which are available for application which are only interested knowing the 

number of available tags. Performance evaluation of the proposed WSTD cleaning 

scheme is next presented in chapter 7. 
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Chapter 7: Experimental Evaluation of WSTD cleaning 

Scheme 

In this chapter the experimental evaluation of the proposed WSTD cleaning algorithms is 

presented.  The data sets for the experiments were generated by a synthetic data generator 

that simulates the operation of RFID readers under a wide variety of conditions using 

MATLAB. The generator is composed of two components. The first component 

simulates the movement of tags and the second component simulates tag detection by an 

RFID reader.  

7.1 Reader Detection Model 

The reader detection model is based on the RFID reader detections regions. As was 

discussed in section 6.1, there are three distinct regions of operations of a passive RFID 

reader tag system: strong-in-field, weak-in-field and out-of-field as shown in Figure 6-2 

and Figure 6-3. In the strong-in-field region, the tag responds to most of the read attempts 

from the reader. Thus, the response rate in the strong-in-field region varies between 77% 

and 100%. The tag performance then degrades gradually with increasing distance in the 

weak-in-field region. In the out-of-field region, the response rate goes down to 0%.  

Based on these observations, a simplified reader detection model shown in Figure 7-1 

was derived. 

The model uses the following parameters to capture a wide range of reader behaviour in 

different conditions: 

• 7
£2���	����,
��� – is the distance in meters from the reader’s antenna to the 
edge of the reader’s detection range. 

• ���������	���
�� – is the percentage of the reader’s overall detection range 
that is in the strong detection region. According to the reader performance 

analysis in section 6.1, this percentage decreases with the increase in the 

environment noise or the presence or close proximity of an RF unfriendly material 

such metal, metalized/foil-lined packaging, carbon and graphite-impregnated 

plastics and water. Therefore, varying this percentage simulates varying the 

environment conditions in which the system operates. 
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• 7
£,�
�,
�� – is the read rate (i.e. the probability of detection) of a tag within 
the strong detection region. The read rate in the weak detection region drops 

linearly to the end of the reader’s detection range. 

 

 

Figure 7-1:  Reader detection model for RFID data generator 

 

7.1.1 Tag Movement Behaviours 

The tag movement component simulates the tag’s movements. We looked at three tag 

movement behaviours. The first behaviour is that of static tag(s). This is simulated by 

randomly placing tags uniformly within the reader’s detection region. This simulates 

static tagged items which are constantly monitored by the RFID system (i.e. both tags and 

readers are static). The second behaviour is that of tags moving with the same velocity. 

This simulates grouped tags, such as tagged items on a trolley or conveyor belt. The third 

behaviour is that of tags moving with different velocity. This behaviour simulates 

tracking environments, such as a digital work place where each tag displays independent 

random behaviour.        

Tag movements are simulated by moving the tags in and out of the reader detection range 

between 0 and 6 m. We set the maximum detection range to be 4.6 m (~15 feet) between 

4.6 and 6 m the tag is out of the detection range.  To simulate movement with different 

velocities, each tag selects a random initial velocity between 0 and 0.9 m/epoch. After 
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every 100 epochs on average (i.e. 80 – 120 epochs), each tag switches from moving state 

to resting state and vice versa. Figure 7-2 illustrate the constant velocity movement trace 

for 400 epochs at a speed of 0.6 m/epoch, and Figure 7-3 illustrates a variable velocity 

movement trace for 400 epochs for a single tag. 

 

Figure 7-2: Tag Movement behaviour with constant velocity of 0.6 m/epoch 

 

 

Figure 7-3: Tag movement behaviour with variable speed 

7.1.2 Tag Detection 

The tag detection component uses the reader detection model (Figure 7-1) to determine 

which tags are detected based on the read rate (probability of detection �v,t ) of each tag’s 
location relative to the reader. The corresponding mathematical model of the reader 

detection is given in Equation (18). 

 

�v,tC£D = Ä 7
£,�
�,
��,                                                                                   £ � ���������	���
��Å�ÆÇ{�ÈÇ�t{CÆ»Å�ÆÉ{t{�tv}wÇ�w�{D�t|}w�Ê{|�{wt��{» Å�ÆÉ{t{�tv}wÇ�w�{ ,   ���������	���
�� Ë £ Ë 7
£2���	����,
���0,                                                                                                          £ > 7
£2���	����,
��� �         (18) 
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The output of the tag movement generator is then sent to the tag detection component for 

detection. At each epoch the detection component produces a set of readings containing 

an epoch number, tag ID, and the tag  �v,t (read rate at which the reader read the tag). The 
set of all tags within the reader’s detection region from the data movement generator is 

also produced and saved as reference values for comparing with the output of each 

cleaning mechanism. 

The data produced by the tag detection component was then cleaned using the developed 

cleaning method discussed in Chapter 6, which is denoted as WSTD as well as the 

implementation of SMURF, and various sized static smoothing-window methods. We 

denote each fixed window method as Fxd£, where £ is the size of static cleaning 
windows in epochs. Table 7.1 summarizes the experimental parameters used to produce 

our synthetic RFID data traces.  

Table 7.1: Experimental Parameters 

Parameter Value 7
£2���	����,
��� 4.6 m 7
£,�
�,
�� 0.8 

 ���������	���
��   Varied 'L��
�� (number of tags) 25(per-tag), 100(multi-tag) _�]�	��T varied 'L�$��	b�  (number of epochs) 2000 epochs 

 

7.2 Individual Tag Cleaning 

The cleaning techniques which report individual tag ID readings are examined first.  The 

performances of different cleaning schemes are compared as the tag movement and 

reliability of the environment are changed. Tag movement is changed from either static 

motionless, constant velocity or variable velocity. The reliability of the environment is 

changed by changing the ���������	���
�� parameter. 
 

The evaluation metric for individual tag cleaning is the average number of errors per 

epoch. An error is a reading that indicates a tag exists when it does not exist (a false 
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positive), or a lack of reading where the tag exists (false negative). The average number 

of errors per epoch is calculated using Equation (19). 

 $��������$��	b =  ∑ CÍ�±�{Ê}�vtv�{�ÎÍ�±�{Ï{��tv�{� DÐÑÒÓÔÕÖ×Ø�Ù² ÏxyÚ�}���  (19) 

 

7.2.1 Experiment 1: Environment Reliability with randomly moving tags  

In this experiment we determine how each technique reacts to different levels of 

environment unreliability with the randomly moving tags. Each tag moves at its own 

random velocity of between 0 to 90 cm/epoch and after every 100 epochs on average the 

tag changes its state from moving to rest state and vice versa as shown in Figure 7-3.  The 

strong-in-field region percentage is varied between 0 and 100%. The lower ���������	���
�� corresponds to an unreliable environment and higher values of ���������	���
�� corresponds to a more controlled environment. At each ���������	���
�� we measure the average number of errors produced by each scheme.  
Figure 7-4 shows the result of this experiment, the poor performing traces ‘raw’ and 

‘Fxd2’ are truncated to a enable clear view of other traces. 

 

Figure 7-4: Average errors per epoch as strong-in-field region percentage is varied 
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In general, all schemes have the same pattern; that is, their performance improves as the 

environment noise decreases and the reader produces more reliable data. Looking at the 

fixed window schemes, there is no single fixed window scheme which performs 

consistently better than other schemes in all the environments. In the noisy environment 

large windows (‘Fxd25’ and ‘Fxd10’) perform well than small windows (‘Fxd5’ and 

‘Fxd2’) while in controlled environment (���������	���
�� > 60%) small windows 
perform better than large windows. This can be explained by looking at the positive and 

negative error contributions in these schemes as shown in Figure 7-5. This Figure verifies 

that large window schemes ‘Fxd25’ and ‘Fxd10’ errors are highly contributed by the false 

positive errors due to interpolations of readings within the large window. In the small 

windows the errors are highly contributed by the false negative readings due to their 

inability to compensate for missed readings. As the strong-in-field percentage increases 

and the reader produce more reliable data, the false negative errors decreases while the 

false positive errors increase. 

On the other hand, variable window schemes SMURF and WSTD perform consistently 

well across the entire range of environments. Its performance efficiency is attributed to its 

per tag cleaning concept whereby each tag’s smoothing window is adjusted 

independently based on its individual random behaviour. The WSTD scheme performs 

better than SMURF producing an improvement of approximately 17% less overall error 

in comparison to that produced by SMURF. This performance is attributed to its 

improved transition detection mechanism as shown in Figure 7-6. Comparing the two 

variable cleaning-window sizes, WSTD uses a smaller window size in comparison to that 

used by SMURF, as shown in Figure 7-7.  Because of its small window size, WSTD is 

more efficient in detecting transition than SMURF; however, it also produces slightly 

more negative errors than SMURF as shown in Figure 7-8. The increase in false negative 

errors in the noisy environment by WSTD can be associated with the premature transition 

detection by rule2 of the WSTD algorithm. As the noise decreases, their performances in 

compensating for missed readings become competitive and their difference decrease. 
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Figure 7-5: Fixed window schemes false positive and false negative error contributions as 

the environment noise is varied 

 

 

Figure 7-6: Comparison of WSTD and SMURF schemes transition detection mechanisms 

as a tag moves at random velocity 
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Figure 7-7: Comparison of WSTD and SMURF schemes cleaning window sizes as the 

environmental noise is varied 

 

 

Figure 7-8: WSTD and SMURF schemes false positive and false negative error 

contributions as the environmental noise is varied 

 

Figure 7-9 shows a comparison of all cleaning schemes transition detection capabilities as 

the tags move in and out of the detection range at variable speeds. The focus is on the 

readings produced from a single tag in a noisy environment (i.e. ���������	���
�� = 0) over 350 epochs. The readings produced by the tag in this scenario are particularly 
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challenging to clean as data are highly unreliable and the tag intermittently moves at high 

speed. The cleaning scheme must be able to differentiate between periods of dropped 

readings and periods when tags are transiently absent, and act accordingly.   

The top subsection of Figure 7-9 shows the tag movement trace. The tag moves in and 

out of detection range with a speed of 0.47 m/epoch; it stops at point A  143 cm from the 

reader for a period of time (108 epochs) and resumes movement at point B (1422 epoch). 

From point B the tag moves with the speed of 0.67 m/epoch until point C (epoch 1512) 

and stops again 43cm from the reader for 82 epochs before resuming the movement. The 

following subsection of the Figure shows the output produced by the reader (i.e. raw), 

followed the reality based on the tag movement. The following subsections are the output 

generated by different static window cleaning schemes followed by a variable SMURF 

and WSTD per tag cleaning schemes. The last subsection shows the WSTD per tag 

window sizes over the course of the trace. 

The main observation from this trace is that large windows are completely unable to 

detect transition. While small windows are better at detecting transition, they are unable 

to compensate for false negative readings. This trend can also be observed on the last 

subsection of the Figure which shows the WSTD window sizes over the course of the 

trace. When there is a transition with a bigger WSTD window size, WSTD is unable to 

detect transition and when the WSTD window is small and the tag is missing, WSTD is 

also unable to compensate for it. ‘Fxd5’ fixed window scheme perform competitively 

well with variable window schemes. Comparing the variable window schemes, WSTD 

performs better than SMURF. 
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Figure 7-9: Cleaning schemes cleaning the readings from a single tag moving with 

different velocities over 350 epochs 

 

7.2.2 Experiment 2: Effect of tag speed  

The effectiveness of the individual tag cleaning schemes is then compared as the tag 

velocity is varied. The  ���������	���
�� parameter is fixed at 70% to represent the 
controlled environment and the tags are moved in and out of the detection range at the 

same constant velocity. The velocity is varied from 0 to 90 cm/epoch and the average 

numbers of errors produced by each scheme were measured. Figure 7-10 shows the result 

of this experiment and Figure 7-11 and Figure 7-12 shows the positive and negative 

errors of fixed and variable window schemes respectively as the tag velocities are varied. 

In the mobile environment, the larger the window size, the higher the number of false 

positive errors. At one particular fixed window size, the false positive errors increase with 

the increase in tag speed until it reaches a saturation speed beyond which no transition is 

detected. Beyond the saturation speed in the worst case scenario, the scheme continuously 

reports all tags as being present with no false negatives. The saturation speed increases 

with the decrease in window size; that is, the higher the window size the lower the 

saturation speed e.g. in Figure 7-10, schemes: ‘Fxd25’, ‘Fxd10’ and ‘Fxd5’ have 

saturation speeds of 0.2, 0.4 and 0.8 m/epoch respectively. When the number of positive 

errors is less than the number of negative errors, the fixed window schemes perform 
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competitively well compared with the variable window schemes (compare Figure 7-10 

and Figure 7-11).  

The small window scheme (‘Fxd2’) has a relatively consistent performance, irrespective 

of the change in velocity. This is because small windows are able to detect transitions 

caused by varying velocities, although they are unable to compensate for the missing 

tags. On the other hand, variable window schemes SMURF and WSTD perform 

consistently well and also outperform the ‘Fxd2’ scheme. This is because in addition to 

being able to detect transitions, they are also able to compensate for missed readings. The 

WSTD scheme performs better than SMURF, producing an improvement of 

approximately 30% less overall errors in comparison to that produced by SMURF. This 

performance improvement is attributed to its improved transition detection, as shown in 

Figure 7-13. WSTD uses smaller window sizes than SMURF (see Figure 7-14); as a 

result it produces fewer positive errors but slightly higher false negative errors in 

comparison to that produced by SMURF, as shown in Figure 7-12. In the controlled 

environment, their performance in compensating for missed readings become competitive 

and their differences decrease (see Figure 7-12). 

The reduction in environmental noise has the effect of reducing false negative readings 

and, hence, has a more positive effect on smaller cleaning window size schemes 

compared to big window size schemes. 

 

Figure 7-10:  Average errors per epoch as tag velocity varies 
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Figure 7-11: Fixed window schemes’ false positive and false negative error contributions 

as the tag velocity is varied 

 

 

Figure 7-12: WSTD and SMURF schemes false positive and false negative error 

contributions as the tag velocity is varied 
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Figure 7-13: Comparison of WSTD and SMURF schemes’ transition detection 

mechanisms as a tag moves at constant velocity 

 

 

Figure 7-14: Comparison of WSTD and SMURF schemes’ cleaning window sizes as the 

velocity is varied 

 

What was also evaluated is how cleaning schemes perform when tag velocities are varied 

in different environments. Figure 7-15 shows the result of the two extreme environments. 

The noisy environment ������,��Ý (with ���������	���
�� parameter set to 0%) and 
the controlled environment ������,��� (with ���������	���
�� parameter set to 
100%).  Figure 7-16 shows the error contribution of the fixed window schemes and 

Figure 7-17 shows the error contributions of the variable window schemes in these two 

extreme environments. 
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Figure 7-15: Average errors per epoch as tag velocities are varied from 10 to 90 

cm/epoch in different environments 

 

 

Figure 7-16: Fixed window schemes error contributions as tag velocities are varied in 

different environmental conditions 
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Figure 7-17: Variable window schemes error contributions as tag velocities are varied in 

different environmental conditions 

 

These results show that reducing the environmental noise has the effect of reducing the 

false negative errors as the reader produces more reliable results. Likewise, as the data 

becomes more reliable, the false positive errors introduced by the cleaning schemes also 

increase. The results also show that the rate of increase of the positive errors depends on 

the window size and the speed of the tag. The false positive errors introduced increase 

with the increase in window size as well as with the increase in tag velocity. At one 

particular fixed window size, the false positive errors increase linearly with the increase 

in tag speed until it reaches a saturation speed beyond which no transition is detected. The 

more reliable the data, the higher the rate of increase of positive errors as the tag speed 

increases and the lower the saturation speed of the window. 

7.2.3 Experiment 3: Environment Reliability with Static Tags  

Also evaluated was the performance of different cleaning schemes in the environment 

where tags are stationary. To simulate this scenario, 25 tags were randomly distribute 

uniformly within the detection range and the  ���������	���
�� parameter varied and 
the average errors produced by each scheme measured. Figure 7-18 shows 25 tags 
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randomly distributed within the reader’s detection range (0 to 4.6 m).  Figure 7-19 shows 

the result of this experiment and Figure 7-20 shows the average cleaning-window sizes 

for the variable schemes SMURF and WSTD as the environmental noise is varied. 

 

Figure 7-18: 25 Static tags randomly distributed within the readers detection range  

 

 

Figure 7-19:  Average errors per epoch as strong-in-field region percentage is varied in 

the static tag environment 
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Figure 7-20: Comparison of WSTD and SMURF schemes’ cleaning-window sizes as the 

environmental noise is varied 

 

All static window schemes have the same pattern, which is that the errors decrease as the 

strong-in-field percentage increases. Since all the tags were within the detection region 

and at the same position throughout the simulation time, all the errors are false negative 

readings. Large static windows perform better than small windows throughout the trace. 

Hence, in general, in the static environment bigger windows perform better than small 

windows. The variable window schemes SMURF and WSTD have a consistent 

performance irrespective of the environment changes.  

In a noisy environment (with ���������	���
�� � 60%) the variable window schemes 
outperform all the static window schemes producing less than 1 tag out of 25 tags per 

epoch on average. In a controlled environment, large static windows perform 

competitively with variable window schemes compensating for all missing tags or 

producing very few false negative readings. In the static environment, variable window 

schemes WSTD and SMURF exhibit closely matching performances, which can be 

attributed to their use of similar cleaning window sizes as shown in Figure 7-20. From 

this observation we can conclude that the main difference between WSTD and SMURF is 

in the transition detection mechanism, and WSTD performs better than SMURF in the 

mobile environment. 

In summary, across different speeds and environments, there is no single static window 

that works uniformly well. Smaller window schemes like ‘Fxd2’ work very well at high 

speeds in the controlled environment, but their performances deteriorate in the static tag 
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environment, slower speeds and in a noisy environment due to their inability to 

compensate for missed readings. On other hand, large window schemes like ‘Fxd25’ 

work very well in static tag environments but they perform poorly in mobile 

environments due to their inability to detect tag transitions. Hence, when dealing with 

static schemes, it is challenging to know the exact size of the optimum cleaning window. 

In addition, the RFID tag-reader system performance is very sensitive to the environment, 

and through the analysis of these few fixed window schemes we have shown that there is 

no one optimum window size which can work best in all the environments.  

This calls for the need to use variable cleaning window schemes for low level cleaning of 

RFID tag data streams. It relieves the system user from the calibration work in trying to 

set the optimum fixed window size which might not be efficient in cases where small 

changes occur in the environment or the tags’ speed change. We have proposed a variable 

sliding window scheme based on the concepts proposed in SMURF scheme with an 

improved transition detection mechanism. Our experiment result shows that the WSTD 

scheme provides 30% performance improvement over SMURF in mobile environments.   

7.3 Analysis of WSTD per- tag variable window size 

This section presents an analysis of how the WSTD scheme cleaning window size varies 

as it cleans the data in different conditions. Firstly, the window sizes as it cleans the static 

tags in the scenario depicted in Figure 7-18 are considered.  Figure 7-20 shows that the 

overall average cleaning window size decreases linearly with the decrease in the 

environmental noise. 

Secondly, how the size of the window is affected by the position of the tag from the 

reader is scrutinized. To achieve this, the window size of one tag as it gets to be cleaned 

over 2000 epochs is analysed. Three positions of the tag relative to the reader’s antenna is 

analysed: a tag number 20 on the Figure 7-18 located on the far edge of detection range at 

436cm; a tag number 16 located at middle of the detection range at about 213 cm; and tag 

number 24 located closer to the reader at about 80 cm. The results of this analysis are 

shown in Figure 7-21, Figure 7-22 and Figure 7-23 respectively. In the figures,  ������,��Ý refers to the noisy environment and ������,��� refers to the controlled 
environment. 
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Figure 7-21: WSTD per tag window sizes as a single static tag placed on the far edge of 

detection range is cleaned in different environmental conditions 

 

 

Figure 7-22: WSTD per tag window sizes as a single static tag placed on the middle of 

detection range is cleaned in different environmental conditions 
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Figure 7-23: WSTD per tag window sizes as a single static tag placed closer to the reader 

is cleaned in different environmental conditions    

 

As it can be observed from these figures, the cleaning window size depends on the two 

factors, the distance of the tag relative to the reader, and the environment. When the tag is 

closer to the reader, as in the case of Figure 7-23, the tag(s) have a high detection range 

and its window size is not affected by the environment noise. As the tag(s) are poisoned 

further away from the reader, its detection rate decreases and the cleaning window size 

becomes sensitive to the environment noise. Figure 7-22 shows the cleaning window size 

for the tag placed in the middle of the detection range. It can be observed that in a 

controlled environment (������,���) the average cleaning window is about 7 epochs, 
and at a high noisy environment (������,��Ý) the average cleaning window size grows 
to 11 epochs.  

Figure 7-21 shows the cleaning window size for a tag placed on the far edge of the 

detection range. In this case a tag has a very low detection rate causing the cleaning 

window to be very sensitive to the environment noise. In a controlled environment 

(������,���) the average cleaning window is about 7 epochs, and it grows linearly as 
the noise increases. In a high noise environment (������,��Ý), the average cleaning 
window size grows to an average of 111 epochs. 
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In a highly controlled environment (���������	���
�� = 1) even the static window 
scheme ‘Fxd5’ with window size of 5 epochs outperforms the WSTD variable scheme 

while using the smaller window size than the average window size used by WSTD (i.e. 

7 epochs). This is because the per tag cleaning window increases from 1 epoch linearly in 

steps of 2 epochs and when the window sizes are still smaller it fails to compensate for 

the missed readings.  

Using the same procedure we also analyzed the WSTD per tag window sizes used to 

clean mobile tags exhibiting random behaviours under different environmental 

conditions. The data generated from the previous experiment were used to compare the 

effectiveness of cleaning schemes whose results are shown in Figure 7-4. In this case,  

one tag was randomly selected to study its cleaning window sizes as the environment 

changes.  The results of this analysis are shown on Figure 7-24. The top graph of the 

figures shows the tag movement as it moves in and out of the detection range within the 

distance of 0 to 6 m.  

The maximum reader detection range is 4.6 m and beyond this distance the tag is out of 

the detection range. The tag moves with a constant speed for an average of 100 epochs, it 

stops for duration of about 100 epochs and then starts moving with a different constant 

speed again. This movement simulates the tracking environment, such as digital office 

where each tag displays independent random behaviour. The other three graphs in the 

Figure are the cleaning window size traces used to clean the tag readings under different 

environmental conditions where ������,��Ý  refers to a noisy environment and ������,��� refers to a controlled environment.  
There are two main observations from these figures. The first one is that the cleaning 

window size is sensitive to the environmental noise level.  As the noise in the 

environment increases, the average cleaning window size also increases. For example in 

Figure 7-24, the average cleaning window size in the noise environment (������,��Ý) is 
about 9 epochs and the size decreases as the noise decreases. In a controlled environment 

(������,���) the average cleaning window size decreased to 5 epochs. 
The second observation is related to the type of tag movement. This movement involves a 

tag stopping at a random location relative to the reader for some duration of time. The 

distance of the position where the tag stops relative to the reader’s antenna has a 
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significant effect on the cleaning window size as it was observed in the static tag analysis 

discussed before. It can be deduced from the window size graphs that all the large 

window spikes in the window size traces correspond to a tag that has stopped during the 

tag movement trace. It is also interesting to note the correlation between the tag large 

window spike size and its corresponding tag distance from the reader.  When the tag stops 

on the far edge of the detection range (see epoch 900 on Figure 7-24), it causes the 

window size to increase dramatically.  

In this experiment, the cleaning window size increased to 47 epochs while the average 

window size at around 1200 epochs, is only 9 epochs. This window size increase is 

caused by the fact that a tag at this position is continuously detected with low detection 

rates causing a large window size. The situation is more severe in the noisy environment 

where a tag at this location is more likely to be missed and hence the average probability 

of detection becomes even smaller causing a much bigger window size according to 

Equation (5).  As in the case of static tag the large window size spikes caused by tags 

stopping far away from the reader (but within the detection range) decreases as the 

environmental noise decreases as it can be observed in Figure 7-24. 
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Figure 7-24: WSTD per tag window sizes as a single mobile tag is cleaned under 

different environment conditions.  

 

The last analysis for the WSTD individual tag variable window size is to check how the 

cleaning window size varies as the tag speed varies in different environments. 

Figure 7-25 shows the result of this analysis. The first row graphs shows the tag 

movement at different velocities, the first column is the results of the tag moving at a 

velocity of 10 cm/epoch, the second columns shows the results of the tag moving at a 

velocity of 40 cm/epoch and the third column shows the results of the tag moving with a 

velocity of 90 cm/epoch. Only few epochs trace i.e. 600 epochs for the slower velocity 

10 cm/epoch and 300 epochs for faster velocities are shown for clarity purpose. The 

second to the fourth row figures shows the variable window size traces at different 

velocities and different environmental noise levels. The second row graphs 

(������,��Ý) shows the noisy environment with the ���������	���
�� parameter set 
to 0%, the third row graphs (������,��Ý.Þ) shows the controlled environment with the 
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���������	���
�� parameter set to 70%, and last row graphs (������,���) shows a 
controlled environment with its ���������	���
�� parameter set to 100%.  
There are two main observations in this Figure that can be made by looking at its 

dimensions. The first one is along the vertical dimension, which is the variation of 

window size when a tag moves at a constant speed while the environment is varied. In 

general, at a constant speed, the average cleaning window size decreases as the 

environmental noise decreases. This is because as the noise decreases the reader produces 

more reliable data and the window size becomes less sensitive to the environment.  

The second observation is along the horizontal dimension of the figure, which is the 

variation of window size when the tag is operating in the same environment while the tag 

velocity is varied. In general, it can be observed that the window size decreases as the tag 

speed increases in all the environments except for the highly controlled environment (the 

last row graphs) where the average window size seems to be almost constant.  

Consider the window size trace graph in the second row and first column (i.e. window 

size trace for the tag moving at 10 cm/epoch and operating in a noisy 

environment ������,��Ý). As the tag moves away from the reader, its window size 
increases and when transition is detected the window size is reduced. The window size is 

specifically increased when a tag approaches the further edge of the detection region, a 

similar concept to a static tag scenario. Hence, when a tag is moving with a slow velocity 

it takes a longer time moving out of the detection region and during that time the reader 

continuously detect tags with decreasing, lower detection rates leading to a continuous 

increase of the cleaning window size. On the other hand, as the speed increases a tag 

takes shorter time to move out of the detection region, which means the reader detects a 

tag with low detection rate fewer times and hence the cleaning window size is increased 

fewer times.  
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Figure 7-25: WSTD per tag window sizes as a single mobile tag in different velocities is 

cleaned under different environmental conditions. 

 

In summary, if one defines efficiency in terms of the time it takes to clean the data, the 

WSTD per tag variable window scheme works more efficiently in high speed 

environments. Its efficiency deteriorates in low speed and static environments. In static 

environments - especially when a tag is placed on the far edge of the detection range - the 

window size grows too big. For example, in Figure 7-21, the average window size for 

cleaning the tag placed on the far edge of the detection region in the noisy environment is 

about 111 epochs, while the overall average cleaning window for all tags in the same 

environment is about 19 epochs. If we assume an epoch to be 1 second, this is 

approximately to 2 minutes cleaning window.  This type of cleaning window can be too 

long and unacceptable for low level cleaning of data streams and can result in delays in 

application processing. However, the experiment data shows that this window size can be 

the optimized window size to clean that data. This fact can be observed in the static 

experiment in Figure 7-19 at 50% controlled environment in which the WSTD per tag 

scheme has the same performance as the static window ‘Fxd25’ scheme. On this 

particular point, while the ‘Fxd25’ uses the window size with 25 epochs, WSTD uses an 

overall average cleaning window size of 11.3 epochs (see Figure 7-19), which is half of 

that of fixed window size. In the same figure, at 80% controlled environment WSTD has 

the same performance with the ‘Fxd10’ scheme, which uses a 10 epoch’s window while 

WSTD uses an overall average of about 7.6 epochs to produce the same result.  
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7.4 Tags Aggregate Cleaning  

The cleaning techniques, which report the number of tags in the detection region instead 

of individual tag Id, were then examined. The performances of different multi-tag 

aggregate cleaning schemes are compared as the tag movement and reliability of the 

environment are varied. Tag movement is changed by varying the tag’s velocity and the 

reliability of the environment is changed by changing the ���������	���
�� parameter.  
The static window schemes (Fxd25, Fxd10, Fxd5 and Fxd2) count the distinct number of 

tags within their window, and the variable window method used here detects transitions 

by comparing the window sub-range population count and uses the π-estimator to 

estimate the number of distinct tags within the window. This cleaning scheme is denoted 

as “WSTD-π”. The result of SMURF and WSTD population count, which reports the 

number of distinct tags in each epoch, is also included. 

The evaluation metric used for multi-tag cleaning is the root mean square (RMS) error of 

the count of reported tags compared to the actual tag count. The RMS error is calculated 

using Equation (20).  

 ,7� $���� =  ß∑ CÇ{�}|t{Èà}xwt� » á�tx�±à}xwt� D¼ÐÑÒÓÔÕÖ×Ø�Ù² ÏxyÚ�}���  (20)  

The mean error of the estimated tag count was also compared to see the contribution of 

the overestimate and underestimate tag count using Equation (21) and (22) respectively. 

 !_��$����
��$����� =  ∑ Ç{�}|t{Èà}xwt� » á�tx�±à}xwt�ÐÑÒÓÔÕÖ×Ø�Ù² ÏxyÚ�}���  
(21)  

 

 â����$����
��$����� =  ∑ -	�L
]%�L��v  9  ,�������%�L��vÏxyÚ�}���vã� 'L�$��	b�  (22)  

7.4.1 Experiment 4: Effect of Tag Speed on Tags Aggregate Cleaning  

The tag count accuracy of the cleaning schemes is evaluated as the tags’ velocity is 

varied. The ���������	���
�� parameter is fixed at 25% to represent the noisy 
environment and the tags are moved in and out of the detection range at the same 
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velocity. The velocity is varied from 0 to 90 cm/epoch and we measured the RMS errors 

produced by each scheme. Figure 7-26 shows the result of this experiment.  

This result reveals the same fact; that large static windows are not ideal in cleaning data 

in the mobile tags environment. The large fixed window schemes beyond saturation 

speed are unable to detect transition and constantly report all the tags as being present 

leading to a high number of overestimated tag count. Smaller fixed windows are unable 

to compensate for missed readings and constantly produce under count results. On the 

other hand, variable window schemes; SMURF, WSTD and WSTD-π perform better than 

the fixed window schemes. WSTD-π outperforms all the other schemes, producing 

relatively stable and lower errors than all the other schemes compared. Its performance is 

contributed to its ability to detect transition and adjust the window accordingly and the 

use of π-estimator to estimate the number of tags. 

 

Figure 7-26:  The RMS error of different cleaning schemes counting 100 tags as their 

velocities varies from 0 to 0.9 m/epoch in the noisy environment with the  ���������	���
�� parameter set to 25% 
 

Figure 7-27 shows the average number of overestimate and underestimate tag counts for 

the variable window schemes and Figure 7-28 shows their average cleaning-window sizes 

as the tags’ velocity is varied. The WSTD-π scheme has the smallest number of 

underestimate and overestimate errors and it also uses the smallest average cleaning-

window sizes compared to other variable window schemes. The WSTD-π small 
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overestimate errors are attributed to its smaller window size while its small underestimate 

errors are attributed to its use of π-estimator to estimate the number of tags. 

 

Figure 7-27: Variable window schemes overestimate and underestimate error 

contributions as the tags’ velocity is varied 

 

 

Figure 7-28: Comparison of variable window schemes cleaning windows as the tags’ 

velocity is varied 
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Although an average number of overestimate and underestimate tag count per epoch as a 

metric to compare the performance of these schemes was used, it was noticed that most of 

the undercounting errors occur during the transition periods. This is caused by the nature 

of algorithms whereby the window size is reduced when an exit transition is detected. 

While this measure limits the false positive errors, it also leads to false negative errors 

due to a resulting small window size in case of premature exit transition detection. In 

addition, when the tags are entering the detection region on the far edge of the detection 

range, the small window size and a weak read rate leads to a high number of 

undercounting errors. Figure 7-29 shows the comparison of the reported estimated tags 

count and that of the actual tag count for the three variable window schemes SMURF, 

WSTD and WSTD-π with the tags moving at a velocity of 0.4 m/epoch. WSTD-π 

provides close accurate tag-count estimation compared to other schemes. 

 

Figure 7-29: Comparison of variable window-cleaning schemes’ reported tags count with 

the actual tag count. All the tags move with the same velocity of 0.4 m/epoch 
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7.4.2 Experiment 5: Effect of Environment Reliability with randomly 

moving tags  

In this experiment it is determined how each multi-tag cleaning technique reacts to 

different levels of the environment’s unreliability with the randomly moving tags. The 

experimental parameters are the same as the ones used for the individual tag cleaning 

experiment, except that in this experiment we used 100 moving tags instead of 25 tags. 

The strong-in-field region percentage is varied between 0 and 100% and at each ���������	���
�� we measure the RMS errors produced by each scheme.  Figure 7-30 
shows the result of this experiment, poor performing traces ‘raw’ and ‘Fxd2’ are 

truncated to enable a clear view of other traces. Figure 7-31 shows the average number of 

overestimate and underestimate tag counts for fixed window schemes as the environment 

noise is varied.  

 

Figure 7-30: RMS errors of the tags count for different cleaning schemes as the ���������	���
�� parameter is varied with each tag moving with its own velocity 
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Figure 7-31: Fixed window schemes average overestimate and underestimate error 

contributions as the ���������	���
�� parameter is varied with each tag moving with 
its own velocity 

 

For the static window schemes (see Figure 7-31), the large window schemes (‘Fxd25’ and 

‘Fxd10’) errors are highly contributed by overestimate errors due to interpolations of 

readings within the large window. Small window schemes (‘Fxd5’ and ‘Fxd2’) errors are 

highly contributed by undercount errors due to their inability to compensate for missed 

readings. As the strong-in-field percentage increases and the reader produce more reliable 

data, the underestimate errors decreases while the overestimate errors increase. Since the 

small fixed window scheme ‘Fxd2’ has negligible overestimate errors its performance 

increases consistently as the noise level decreases. The performance of the ‘Fxd5’ scheme 

increases up to the 70% strong percent region and then starts decreasing due to an 

increase in the overestimate errors as the data becomes more reliable.   

Both variable window schemes demonstrate a relatively consistent performance 

throughout the environment range compared to static window schemes. Figure 7-32 

shows the average number of overestimate and underestimate tag counts, and Figure 7-33 

shows the average cleaning window size of the variable window schemes as the 

environmental noise is varied.  
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Figure 7-32: Variable window schemes’ average overestimate and underestimate error 

contributions as the ���������	���
�� parameter is varied with each tag moving with 
its own velocity 

 

 

Figure 7-33: Comparison of variable window schemes’ cleaning window sizes as the ���������	���
�� parameter is varied 
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From Figure 7-32, comparing the per-tag cleaning schemes; SMURF has consistently 

more overestimated errors than WSTD, while in a noisy environment, WSTD has more 

underestimated errors than SMURF. However, as the noise decreases and the reader 

produces more reliable data, the WSTD-undercount errors also decrease and at a highly 

controlled environment, its performance outperforms that of SMURF. WSTD-π, on the 

other hand, consistently produces relatively stable overestimated errors, irrespective of 

the environmental conditions; however, its underestimated errors decrease with the 

decrease of the environmental noise (see Figure 7-32). These constant overestimate errors 

might be caused by the fact that WSTD-π uses the same window size to clean all the tags. 

In this scenario, each tag moves randomly in and out of detection range with random 

velocities. The WSTD-π transition mechanism is not able to effectively detect transitions 

in this scenario; as a result, the π-estimator overestimates the tags’ count.  

The per-tag variable window-cleaning schemes SMURF and WSTD outperform a single 

variable window scheme WSTD-π because they clean and adjust their window size for 

each single tag independently, depending on its individual tag behaviour and how the 

environment is affecting that particular tag. Figure 7-34 shows the comparison of the 

reported estimated tags’ count and that of the actual tag count for these three variable 

window schemes. The tags are operating in the semi-controlled environment with ���������	���
�� parameter set to 50%. Hence, these experimental results 
demonstrate that in the environment where each tag displays its own independent random 

behaviour, the best result is obtained by adjusting each individual tag cleaning window 

independently.  On the other hand, comparing WSTD-π and the best performing per-tag 

cleaning scheme, in this scenario SMURF; while WSTD-π produces an average of 43% 

more overestimate errors than SMURF, SMURF uses an average  of 43% more 

processing time (i.e. larger cleaning window sizes) than WSTD-π.  
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Figure 7-34: Comparison of variable window cleaning schemes’ tags count with the 

actual tag count. Each tag moves with its own velocity 

 

7.4.3 Experiment 6: Effect of Environment Reliability with static tags  

The performance of different sliding-window based multi-tag cleaning schemes in the 

environment where tag(s) are stationary was also evaluated. To simulate this scenario, 

100 tags were randomly distributed uniformly within the detection range and the  ���������	���
�� parameter varied and the root mean square error produced by each 
scheme measured. Figure 7-35shows 100 tags randomly distributed within the reader’s 

detection range (0 to 4.6 m). Figure 7-36 shows the result of this experiment; the poor 

performing traces ‘raw’ and ‘Fxd2’ are truncated to enable a clear view of other traces. 

All fixed window schemes have the same pattern. Their performance increases with the 

decrease in environmental noise and their performance also increases with the increase in 

window size. Since our synthetic data generator does not generate any false positive 

readings and also because all the tags are static within the detection region, all fixed 



175 

 

window schemes produce zero overestimate errors. Their underestimate err ors decrease 

as the environmental noise decreases and the reader produces more reliable data. 

 

Figure 7-35: 100 static tags randomly distributed within the readers detection range 

 

 

Figure 7-36: The RMS error of different cleaning schemes as the ���������	���
�� 
parameter varies in the static tags environment 
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Similar to the per-tag cleaning in the static environment scenario, SMURF and WSTD 

have the same performance in cleaning the tag aggregations in the static environment as 

shown in Figure 7-36. Since they both count the distinct tags available within each tag’s 

cleaning window they have no overestimate errors and their underestimate decrease with 

the decrease in noise as shown in Figure 7-38.  

 

In a very noisy environment the performance of per tag cleaning schemes are highly 

affected by the poor performing tags on the far edge of the detection region. In the noisy 

environment the far edge static tags cleaning window grows linearly with distance and 

becomes very large (results not shown). For example, in this experiment �
�Æ which was 
located at 437cm from the reader at ���������	���
�� of 30% its average cleaning 
window size grows to 81 epochs while the average cleaning window size in same 

environment is 21 epochs. In the controlled environment with ���������	���
��  of 
80%, the cleaning window size for �
�Æ drops to 25 epochs while the average cleaning 
window size for all the tags in the same environment dropped to 9 epochs. Because the 

cleaning window sizes for individual tags might be different based on their detection 

rates, the decision on whether the tag is present or not is taken at different epochs. 

Therefore, the tags which are not ready for processing (i.e. the readings for all epochs in 

its window have not being accumulated) will delay the output and affect the performance 

of the scheme considerably. This situation is similar to the blocking complication in the 

data stream aggregation explained by Abadi et al. in [120], which means waiting for lost 

or late tuples to arrive in order to finish window calculation.  

Abadi et al. [120], proposed that given the real time requirements of many stream 

applications, it is essential to make it possible to “time out” aggregate computations, even 

if this happens at the expense of accuracy. When an Aggregate is declared with a 

timeout �, each window’s computation is time stamped with the local time when the 
computation begins. A windows’ computation then times out if a result tuple for that 

window has not been emitted by the time that the local time exceeds the window’s initial 

time +t. As a result of a timeout, a result tuple for that window gets emitted early and all 

tuples that arrive afterwards and that would have contributed to the computation had it 

not timed out are ignored. Therefore, using the same principle the WSTD per tag cleaning 

algorithm performance efficiency can also be improved by allowing the application user 

to specify tolerable imprecision in terms of range of acceptable window size as a time out 
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parameter. This can be very useful especially when dealing with aggregation with poor 

performing tags. 

On the other hand, the WSTD-π scheme, which estimates the tag count based on tag 

detections and π-estimator, produces both underestimate and overestimate errors as 

shown in Figure 7-38. Its performance increases with the reduction of environmental 

noise, with both its overestimate and underestimate errors decreasing. In general, WSTD-

π performs competitively well with large fixed window schemes.  In the noisy 

environment with a ���������	���
�� � 20%, WSTD-π has a relatively close 
performance with that of the ‘Fxd25’ scheme which uses a window size of 25 epochs, 

while WSTD-π according to the results in Figure 7-37 in same environment uses an 

average cleaning window of less than 12 epochs.  

In addition,  in the 60% strong detection region WSTD-π has the same performance with 

‘Fxd10’ scheme, which uses 10 epochs window size while WSTD-π in the same 

environment uses an average cleaning window size of about 7 epochs. In the highly 

controlled environment from 90% to 100% strong detection region WSTD-π has the same 

performance as ‘Fxd5’ scheme using a slightly higher average window size of 5.5 epochs. 

We can conclude that the performance of WSTD-π strikes a balance between accuracy 

and processing speed, by providing a considerably good estimate in a much shorter time. 

 

Figure 7-37: Comparison of variable window schemes’ cleaning-window sizes as the ���������	���
�� parameter is varied in the static tag environment 
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Figure 7-38: Variable window schemes average overestimate and underestimate error 

contributions as the ���������	���
�� parameter is varied in the static tags’ 
environment 

7.5 Summary  

In this chapter the performance evaluation of the WSTD algorithms in comparison with 

that of SMURF and other fixed window-based cleaning methods using the generated 

synthetic data sets was presented. The challenges associated with setting the appropriate 

cleaning window size were also discussed. 

In general, our experimental results show that there is no single static window size which 

can perform consistently well in all the environments. Large static window sizes perform 

well in static environment as they are able to compensate for the missed readings but their 

performance deteriorates in the mobile environment as they consistently introduce false 

positive readings due to interpolation of readings within the window. The false positive 

errors increase as the window size and tags speed increases. Small static window sizes are 

good in detecting transition and they introduce less false positive errors, however, they 

are unable to compensate for missed readings. Adaptive variable sliding window filters 

provides an alternative solution to cope with the tag-reader performance environment 

sensitivity and tag dynamics. Adaptive variable sliding window schemes automatically 

adjusts the cleaning window size based on the characteristic of the underlying data 
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stream. Experimental results show that variable window schemes have proven to provide 

consistent and good performance in all the environmental conditions. 

In the mobile environment with variable environmental noise level, the WSTD scheme 

performs better in comparison to the SMURF scheme producing an improvement of 

approximately 30% less overall error compared to that produced by SMURF. This 

performance improvement is attributed to its improved transition-detection mechanism. 

The WSTD scheme uses smaller window sizes compared to SMURF, which means that 

WSTD also takes shorter processing time compared to SMURF.  

The WSTD-π scheme which uses its π-estimator to estimate, the number of tags performs 

more efficiently in static and mobile environments in which all the tags are moving with 

the same speed. In the mobile environment where every tag exhibits its own random 

behaviour, the WSTD-π scheme is unable to handle transitions caused by randomly 

moving tags and consistently overestimate the tag population. In randomly moving tag 

environments, the per-tag cleaning schemes outperform the single variable window 

scheme WSTD-π, because they clean and adjust their window size for each single tag 

independently depending on its individual tag behaviour and how the environment is 

affecting that particular tag. However, the WSTD-π uses much smaller cleaning window 

sizes compared to those used by per-tag cleaning schemes. Hence, depending on the type 

of application selection of cleaning method can be a trade-off between efficiency and 

accuracy. 

The developed middleware implements the described variable window cleaning 

techniques, WSTD and the WSTD-π, to clean the low level RFID data streams. Instead of 

the application setting the cleaning window size, the applications only configures the type 

of application scenario and whether it requires the actual tags or the tags count. Based on 

this information the middleware then chooses the best cleaning scheme to use and 

automatically adjust its window size according to the characteristics of the underlying 

data streams. For all applications which require the actual RFID data together with 

applications which involves mobile tags exhibiting random behaviours, the middleware 

uses the WSTD per-tag cleaning scheme. The WSTD scheme is used in applications 

which require the tags count in the environment where all the tags exhibit the same 

behaviour such as static tags environments, or all tags moving with the same velocity. If 

the application requires both actual RFID data and the tag count the WSTD per-tag 

cleaning scheme is used to produce both results.  
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Chapter 8: Conclusion 

In conclusion, the contributions of this research are summarized and some important 

observations are noted. Areas of possible future work that would extend the present work 

beyond the limitations and constraints given are also suggested. 

8.1 Contributions 

The contributions of this research work can be summarized as follows: 

1. Temporal-based RFID data model 

The development of the temporal-based RFID data model which provides an efficient 

support for the RFID event processing within the middleware. The data model 

developed considers both applications’ temporal and spatial granules in the data 

model itself and extends the conventional Entity-Relationship constructs by adding a 

time attribute to the model. By maintaining the history of events and state changes, 

the data model captures the fundamental RFID application logic within the data 

model. Hence, this data model supports efficient generation of application level 

events; updating, querying and analysis of both recent and historical events. 

 

2. New Adaptive Sliding-Window data cleaning Scheme (WSTD) 

The development of a new adaptive sliding-window based data cleaning scheme for 

reducing missed readings from RFID data streams called WSTD. The WSTD scheme 

models the unreliability of the RFID readings by viewing RFID streams as a 

statistical sample of tags in the physical world, and exploits techniques grounded in 

sampling theory to drive its cleaning processes. The WSTD scheme is capable of 

efficiently coping with both environmental variation and tag dynamics by 

automatically and continuously adapting its cleaning window size based on observed 

readings. 

 

3. RFID based on multi-agent system 

The development of a multi-agent based RFID middleware which addresses some of 

the RFID data and device management challenges. The middleware developed 

abstracts the auto-identification applications from physical RFID device specific 
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details and provides necessary services such as device management, data cleaning, 

event generation, query capabilities and events persistence. The use of software agent 

technology offers a more scalable and distributed system architecture for our 

middleware. 

 

4. An Ontology for RFID Domain Devices 

The development of the RFID device ontology.  In addition to task ontologies, which 

describe the entities relevant to problem solving tasks and methods within the 

middleware, the RFID domain device ontology was also developed. The device 

ontology developed is an application independent ontology and it can, hence, be used 

or extended in any application interested in the RFID domain ontology.  

 

8.2 Conclusions 

The widespread adoption of RFID with ultimate performance requires not only low cost 

tags and readers, but also appropriate software and architectural design. In addition, a 

justifiable return from RFID technology investments will only come from intelligent use 

of the data harvested from RFID systems. RFID middleware is the tool that helps to make 

sense of RFID tag reads; it cleans the unreliable RFID data streams, translates the simple 

read data into useful information and propagates it to the appropriate enterprise 

information systems. In this thesis, some common, fundamental characteristics of RFID 

data and devices, which pose significant challenges in the design of RFID middleware 

system, were discussed. A multi-agent based RFID middleware which addresses some of 

the data and device management challenges was also developed. The developed 

middleware abstracts the auto-identification applications from physical RFID device 

specific details and provides necessary services such as device management, data 

cleaning, event generation, query capabilities and event persistence. 

8.2.1 Temporal-based RFID data model 

One of the challenges in RFID middleware design addressed in this thesis is RFID event 

processing. Raw data generated from an RFID system carries implicit information about 

business processes such as changes of states, locations, and containment relationships 

among objects.  Extracting this implicit information from the incoming simple raw data 
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(i.e. a tuples containing reader ID, tag ID, and the timestamp) is the most interesting and 

challenging issue in an RFID middleware system. To address event processing within the 

middleware, in Chapter 3, a temporal-based RFID data model which considers both 

applications’ temporal and spatial granules in the data model itself for efficient event 

processing was developed.  

This data model extends the conventional ER construct by adding a time attribute to the 

model. The ordinary relationship types are given temporal semantics, making their 

instances record variation over time, rather than just single states.  By maintaining the 

history of events and state changes, the data model captures the fundamental RFID 

application logic into the data model itself. Although state changes information can be 

derived from events data, explicit modelling of the state changes information into the data 

model provides a better support for complex queries. Most of the RFID queries are time 

based queries with temporal constraints such as history, temporal snapshot, temporal 

slicing, temporal joins and temporal aggregates. History queries retrieve the history 

information of an object, for example location history, temperature measurements history, 

or object transaction. Snapshot queries retrieve the snapshot information of an object, for 

example location at time t, temperature at time t, etc. Temporal slicing queries retrieve 

the information of the object during the time interval (t1, t2). Temporal join queries find 

information by joining multiple relations on a certain constraint. Temporal aggregation 

queries summarize aggregation information at certain snapshot or interval. Hence, the 

data model supports efficient generation of application level events, updating, querying 

and analysis of both recent and historical events. 

8.2.2 New Adaptive Sliding-Window based data cleaning Scheme (WSTD) 

Another challenge in RFID middleware design addressed in this thesis is cleaning of 

unreliable data streams generated by RFID readers. Like any other sensor device, RFID 

readers produces data that are unreliable, low-level and seldom able-to be used directly 

by applications.  The RFID tag-reader performance is highly sensitive to the operating 

environment. Therefore, despite the improvements on tag detection rates of passive UHF 

RFID systems by using of EPC Class 1 Generation-2 protocol, factors such as tag-reader 

configurations, multipath and unpredictable interferences in the deployment environment 

still contributes to degradation of the performance and reliability of the RFID system 

leading to noisy and incomplete data.  
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RFID data cleaning is, therefore, essential in order to correct the reading errors, and to 

allow these data streams to be used to make correct interpretations and analysis of the 

physical world they are representing. One of the general methods used in many 

commercial RFID-middleware solutions to clean the RFID data streams is the use of a 

fixed temporal-based sliding window data-smoothing filter, and applications are required 

to set the window size. The goal is to reduce or eliminate dropped readings by giving 

each tag more opportunity to be read within the smoothing window. The main 

disadvantage of this method is that setting the smoothing-window size is a non-trivial 

task, especially in the mobile environment. It requires a careful balance between the two 

opposing application requirements, which are (1) to ensure completeness for the set of tag 

readings due to tag-reader system unreliability, and (2) to capture tag dynamic due to tag 

movement in and out of the reader’s detection region.  

Large window sizes are good in ensuring completeness by smoothing out the missed 

readings, but they are not efficient in detecting tag transitions. On the other hand, small 

window sizes are able to detect transitions, but they are not capable of compensating for 

the missed readings. Small windows lead to false negative errors in which the tag is 

mistakenly assumed to be absent while it is actually present. In the mobile tag 

environment big window sizes, while trying to compensate for the missed readings, 

introduce other errors which are known as false positive errors. Our experimental results 

in chapter seven show that there is no single window size that can perform consistently 

well in variable environmental and dynamic conditions. Taking into consideration the 

sensitivity of the tag-reader performance on the deployment environment, this means that 

a small change in the environment can render the initially optimised cleaning window 

unable to smooth the data.  

In Chapter 6, the adaptive sliding-window based data cleaning scheme for reducing 

missed readings from RFID data streams called WSTD was presented. Adopting and 

extending the concepts proposed in SMURF, the WSTD models the unreliability of the 

RFID readings by viewing RFID streams as a statistical sample of tags in the physical 

world, and exploits techniques grounded in sampling theory to drive its cleaning 

processes. The WSTD scheme is capable of efficiently coping with both environmental 

variation and tag dynamics by automatically and continuously adapting its cleaning 

window size based on observed readings. Compared to SMURF, WSTD provides the 
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same performance in the static environment but performs better than SMURF in the 

mobile environment.  

The experimental results show that, in the mobile environment in variable environmental 

noise levels, the WSTD scheme performs better than SMURF; producing an 

improvement of approximately 30% less overall errors than that produced by SMURF. 

This performance improvement is attributed to its improved transition detection 

mechanism. The WSTD scheme uses smaller window sizes compared to SMURF, which 

means that WSTD also requires shorter processing time than SMURF. 

8.2.3 RFID middleware based on multi-agent system 

Taking into consideration the deployment nature of most of RFID systems, and all the 

complex processes that are supposed to take place within the RFID middleware system  

(data capturing, cleaning, event processing and integrating RFID events with client 

applications) the middleware prototype was developed using multi-agent system (MAS) 

methodologies.  There is a strong correlation between RFID system deployments and the 

types of applications supported by multi-agent systems. Most of RFID system 

deployments are distributed in nature; RFID devices installed in different strategic 

locations within the organizations are linked together creating a distributed network of 

devices.  MAS, on the other hand, is characterized by the ability to solve problems in 

which data, expertise or control is distributed and it also allows for an easy integration of 

the new system with the existing legacy system. MAS offers system scalability and load 

balancing, which are the features desired in RFID systems. Therefore, by the use of 

software agent technology, the developed middleware offers a more scalable and 

distributed system architecture. 

8.2.4 An Ontology for RFID Domain 

Ontologies play a vital role in the development of multi-agent systems. For the agents to 

interoperate, cooperate or coordinate, they need a shared understanding of the domain 

they inhabit. That common representation of the objects, concepts, entities and 

relationships within the domain is referred to as an Ontology. All the information to be 

exchanged between the agents must conform to a common ontology. In addition to task 

ontologies, which describe the entities relevant to problem-solving tasks and methods 
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within the middleware, an RFID device ontology which is application-independent 

ontology was also developed. This ontology can be used or extended in any application 

interested with RFID domain ontology. 

8.3 Recommendations for Future Research 

In section 1.6 of Chapter 1, the limitations of this study were mentioned. In order to 

address these limitations and other potential extensions to this research work identified, 

the following are suggested as future research areas. 

8.3.1 Reducing False Positive Readings 

There is a need to investigate possible cleaning methods for reducing false positive 

readings from RFID data streams to be incorporated within the middleware. As explained 

in section 6.2, false positive readings are readings in which the tag is mistakenly present 

within a certain location while it is not. This can be caused by the RFID tags outside the 

normal reading scope of the reader being captured by the reader, and it can also be 

produced as a by-product of the cleaning scheme. Window-based cleaning schemes when 

used in mobile environment tend to produce false positive readings, by interpolation of 

readings within the big cleaning-window sizes. It will be an interesting study to try to 

minimize the false positive readings produced by both RFID reader and the cleaning 

methods.  

8.3.2 Integrating the RFID Middleware with legacy Systems 

Different ways in which the middleware system can be integrated with the legacy 

application systems and security measures to prevent access of the middleware resources 

and services by unauthorized applications could also be an area of possible future 

research work. The current, implemented prototype is limited and incomplete in the sense 

that it uses a graphical user interface in which a user can configure the desired type of 

data and the rules for generating the data from the RFID system. However, for the 

middleware to be efficient, it should be automatically integrated into other legacy 

enterprise applications, which require RFID data for further analysis and decision-making 

processes. The agents within the middleware use XML as their content language, hence 

one of the ways in which messages with application clients can be handled is by using 
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XML and TCP or HTTP message-transfer-binding. Another approach that could be 

explored is the use of web services and service-oriented architectures. 

8.3.3 Support for other Sensor Types 

To enable automations, RFID system should be integrated with other types of sensors and 

actuators. In this case, RFID facilitates detection and identification of objects that are not 

easily detectable or distinguishable by sensor technologies while sensors provide 

information about the condition of objects as well as the environment, which are not 

provided by RFID technology. In addition to sensors, applications often have to interact 

with the physical world quickly using different kinds of actuators such as locks, buzzer or 

even simple traffic lights to signal an application state to an operator. Therefore, the 

current prototype middleware should be extended to provide a support for other types of 

sensors and actuators, and test the middleware with different pervasive computing 

applications. 

8.3.4 Dynamic Load management 

Exploring the load balancing benefit offered by the use of multi-agent technology within 

the middleware is another possible area for future work. In many applications, RFID 

generated data are considered to be asynchronous in nature. The asynchronous incoming 

data can cause the system to handle a large amount of data over a particular interval of 

time while the system is under-loaded in a different time window. An RFID middleware 

must be able to dynamically manage unexpected data load to make sure the applications 

are not affected. Multi-agent technology by using mobile agents can be exploited to offer 

a resource migration based dynamic load management by balancing assignment of load 

from heavily loaded components to lightly loaded components for processing. 
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