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1 Introduction 

Methods of operations research, especially mathematical programming methods, are 
receiving broader acceptance in the economic and financial industry. The increasing 
complexities and inherent uncertainties in financial markets have led to the need for 
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mathematical models supporting decision-making process. This research intends to 
address the portfolio selection problem by applying stochastic programming. We 
construct a multi-stage stochastic mean absolute deviation (MAD) model that captures 
asset returns and risk due to uncertainty. 

The MAD model was first proposed by Konno and Yamazaki (1991), in deterministic 
form, as an alternative to the famous and widely used mean-variance model by 
Markowitz (1952). We have adopted stochastic programming as it has a number of 
advantages over other techniques. Firstly, stochastic programming models can 
accommodate general distributions by means of scenarios. We do not have to explicitly 
assume a specific stochastic process for the securities’ returns, but we can rely on the 
empirical distribution of these returns. Secondly, they can address practical issues  
such as transaction costs, turnover constraints, limits on securities and prohibition of 
short-selling. Regulatory and institutional or market-specific constraints can be 
accommodated. Thirdly, they can flexibly use different risk measures. This presents the 
choice to optimise the appropriate risk measure or utility function. 

MAD is a dispersion-type risk linear programming (LP) computable measure that 
may be considered as an approximation of the variance when the absolute values replace 
the squares. Konno and Yamazaki (1991) propose the MAD model as a risk measure to 
overcome the weaknesses of the variance. This MAD model is equivalent to the  
mean-variance model by Markowitz (1952) if the assets’ returns are multivariate 
normally distributed. However, the MAD model is a special case of piecewise linear risk 
model which is fast in optimising portfolios by means of LP unlike the mean-variance 
model that requires quadratic programming. The use of a linear model considerably 
reduces the time needed to reach a solution, thereby making it more appropriate for  
large-scale portfolio selection. It makes extensive calculations of the covariance matrix 
unnecessary, as opposed to the mean-variance model. The MAD model is also sensitive 
to outliers in historical data (Byrne and Lee, 2004). 

The MAD model has its short comings. Ignoring the covariance matrix can cause 
great estimation risk (Simaan, 1997). MAD also penalises not only the negative 
deviations, but also the positive deviations. Nevertheless, investors prefer higher positive 
deviations and avoid lower negative deviations in portfolio returns. Fama (1965) explains 
that making a distinction between positive and negative returns is necessary if portfolio 
returns are asymmetrically distributed and stock returns are skewed. Fishburn (1977) 
introduced downside-risk measures to deal with such problems. The advantage of 
downside-risk measures is that they only penalise returns below a given threshold level 
specified by the investor. Michalowski and Ogryczak (2001) extend the MAD model to 
incorporate downside-risk aversion. Hoe et al. (2010) make an empirical comparison of 
the mean-variance, MAD, minimax and mean-semi-variance models in portfolio 
optimisation. They compare the portfolio compositions and performance of different 
optimal portfolios by using data of monthly returns of 54 stocks included in the Kuala 
Lumpur Composite index from January 2004 to December 2007. They find the most risk 
portfolio to be that of the mean-variance model while the MAD model generated 
portfolio is the least risky. The minimax model shows the highest performance, followed 
by the MAD model, and the mean-variance gives the least performance. However, 
despite the good performance by the minimax model, it has its disadvantages. Because of 
its objective to minimise maximum loss, minimax is sensitive to outliers in historical data 
(Young, 1998). 
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Xiao and Tian (2012) estimate implicit transaction cost in Shenzhen A-stock market 
using the daily closing prices, and examine the variation of the cost of Shenzhen A-stock 
market from 1992 to 2010. They use the Bayesian Gibbs sampling method proposed by 
Hasbrouck (2009) to analyse implicit costs in the bull and bear markets. Hasbrouck 
(2009) incorporates the Gibbs estimates into asset pricing specifications over a historical 
sample and find that effective cost is positively related to stock returns. Kozmik (2012) 
discusses an asset allocation with transaction costs formulated as a multi-stage stochastic 
programming model. He considers transaction costs as proportional to the value of the 
assets sold or bought, but does not consider implicit trading costs in the model. He 
employs conditional-value-at-risk as a risk measure. Moallemi and Saglam (2011) study 
dynamic portfolio selection models with Gaussian uncertainty using linear decision 
models incorporating proportional transaction costs. They assume that trading costs such 
as bid-ask spread, broker commissions, and exchange fees are proportional to the trade 
size. However, as stock prices follow a random-walk process, this would result in trading 
costs fluctuating due to a number of factors that include liquidity of stocks, market 
impact and so on. Considering proportional transaction costs in an uncertain environment 
does not provide good estimate of trading costs, especially implicit transaction costs. 
Brown and Smith (2011) study the problem of dynamic portfolio optimisation in a 
discrete-time finite-horizon setting, and again, consider proportional trading costs. Lynch 
and Tan (2006) study portfolio selection problems with multiple risky assets. They 
develop analytic frameworks for the case with many assets taking proportional 
transaction costs. Korn (2011) studies continuous-time portfolio optimisation and 
considers proportional transaction costs. Cai et al. (2013) examine numerical solution of 
dynamic portfolio optimisation with transaction costs. While transaction costs are broad 
and includes explicit as well as implicit costs, they consider a case of proportional 
transaction costs. These proportional trading costs can be either explicit or implicit, 
whichever is greater. However, the study of transaction costs requires the identification of 
the type of cost to be estimated in order to explore effective ways of having a good 
estimate. Thus, in our study, we concentrate on implicit transaction costs as these are 
invisible and difficult to measure. These costs can turn high-quality investments into 
moderately profitable investments or low-quality investments into unprofitable 
investments (D’Hondt and Giraud, 2008). 

Most models presented in the literature are static models: a decision is made, then not 
further modified. They are essentially single-period models, since there is only one 
decision to be made, for the first period. Real-life decision processes are more 
complicated. Although we must make an initial decision now, there will be many 
opportunities to adjust down the road. We do not, today, have a complete decision basis 
for future decisions – the future is unknown. Stochastic programming models hence are 
dynamic, covering multiple time periods with associated separate decisions, and they 
account for the stochastic decision process. The main features of stochastic programming 
are scenarios and stages. The uncertainty about future events are captured by a set of 
scenarios, which is a representative and comprehensive set of possible realisations of the 
future. Stochastic programming recognises that future decisions happen in stages. A first 
decision now, then after a certain time period, a second decision is made which depends 
upon the first stage decision and the events that occurred during the time period. 

The purpose of this study is to construct a multi-stage stochastic MAD portfolio 
optimisation model with random transaction costs that captures assets’ returns and risk 
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due to uncertainty. The model employs stochastic programming with recourse by taking 
into account rebalancing of portfolio composition as the uncertainty of returns get 
realised. MAD models that are proposed in the literature do not take the uncertainty of 
the future into account. Of the models that account for transaction costs in portfolio 
selection, they do not consider random transaction costs. Konno and Wijayanayake 
(2001) proposed the deterministic MAD model with transaction costs modelled by a 
concave function. They use a linear cost function as an approximation to the concave cost 
function. Gulpinar et al. (2004) propose a multi-stage mean-variance portfolio analysis 
with non-random transaction costs. Yu et al. (2006) propose a multi-period portfolio 
selection with l∞ model. They employ the l∞ function to control the risk in every period. 
However, no transaction costs are considered in the model. Again, the model does not 
account for uncertainty of future events. 

This paper is organised as follows. In Section 2, we discuss the formulation of the 
stochastic MAD model with random transaction costs for multi-period optimal portfolio 
selection. Transaction costs and portfolio rebalancing constraints are explained. Section 3 
is devoted to discussing implicit transaction costs during trading and how they affect 
portfolio returns. Explicit transaction costs are not considered in this study as these can 
be known before execution of the trade. In Section 4, we demonstrate the application of 
the model to securities taken from the Johannesburg stock market, courtesy of INet 
Bridge. The merits of the model are clearly revealed in the application. We conclude, in 
Section 5, by giving a summary of our findings. 

2 Problem statement 

We determine a multi-period discrete-time optimal portfolio strategy over a given 
investment horizon. We shall achieve this by extending the MAD model to account for 
uncertainty in assets’ returns and random transaction costs incurred during portfolio 
rebalancing. To define the problem, we divide the entire investment horizon T into two 
discrete time intervals T1 and T2, where T1 = 0, 1, ···, τ and T2 = τ + 1, ···, T. The portfolio 
is structured over this period in terms of both assets’ returns and risk, where the risk is 
measured by the MAD of assets’ returns from expected portfolio return. Period τ defines 
the planning horizon. During T1, an investor makes decisions and adjustments to his 
portfolio at each time-stage as some return realisations unfold. Thus, after the initial 
investment at t = 0, the portfolio may be restructured at discrete times t = 1, 2, ···, τ; and 
after period τ, no further decisions are implemented until investment maturity at t = T. 
This restructuring of the portfolio brings with it transaction costs, as the investor sells or 
buys shares of some securities to balance his portfolio. A number of articles in the 
literature proposed models that do not account for these transaction costs. By ignoring 
such costs and considering only returns realised at time stages t = 1, 2, ···, τ, we are 
overvaluing the portfolio or the portfolio may not be optimal. 

2.1 Scenario generation 

We consider a set of securities I = {i: i = 1, 2, ···, n} for an investment. Let Rt = {R1, ···, 
Rτ} be stochastic events at t = 1, 2, ···, τ. The decision process is non-anticipative (i.e., a 
decision at a given stage does not depend on the future realisation of the random events). 
The decision at period t depends on the outcome at period t – 1. We define a scenario as a 
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possible realisation of the stochastic variables {R1, R2, ···, Rτ}. Hence, the set of scenarios 
corresponds to the set of paths followed from the root to the leaves of a tree, Sτ, and 
nodes of the tree at level t ≥ 1 corresponds to possible realisations of Rt. Each node at a 
level t corresponds to a decision which must be determined at time t, and depends in 
general on Rt, the initial wealth of the portfolio and past decisions. Given the event 
history up to time t, Rt, the uncertainty in the next period is characterised by finitely many 
possible outcomes for the next observations Rt+1. The branching process is represented by 
a scenario tree. An example of a scenario tree with two time periods and three-three 
branching structure is shown in Figure 1. 

Figure 1 Scenario tree 

 

The uncertain return of the portfolio at the end of the period t is R = R(xt, rt). This is a 
random variable with a distribution function, say F, given by 

{ }( , ) ( , )F x μ p R x τ μ= ≤  

We assume that the distribution F does not depend on the portfolio composition x. The 
expected return of the portfolio at the end of period t is 

( ) ( ), , .pt t t t tr E R x R r x R⎡ ⎤= =⎣ ⎦  

Suppose the uncertain returns of the assets, Rt, in period t are represented by a finite set of 
discrete scenarios Ω = {s: s = 1, 2, ···, S}, whereby the returns under a particular scenario 
s ∈ Ω take the values Rs = (R1s, R2s, ···, Rns)T with associated probability ps > 0, where 

1.ss
p

∈Ω
=∑  The mean return of assets in period t is 
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, 1, 2, , .t s sts
r p R t τ

∈Ω
= =∑  

The portfolio return under a particular realisation of asset return Rs of period t is denoted 
by rst = r(xt, Rst). The expected portfolio return of period t is now given by 

( ) ( ), ,pt t st s t sts
r E r x R p r x R

∈Ω
⎡ ⎤= =⎣ ⎦ ∑  

2.2 Capital allocation 

As the problem is dynamic in nature, the wealth to be invested varies with time. Since we 
assume that the investor joins the market at t = 0, with an initial wealth W0, Wt becomes 
the wealth at period t. The wealth can be re-allocated among the n-assets at the beginning 
of each of the τ consecutive time periods for portfolio rebalancing. The rate of asset’ 
return of security i of period t in scenario s within the planning horizon is denoted by  
Ri = (R1st, R2st, ···, Rnst), where Rist is the random return of security i of scenario s in period 
t. The return Rst has a mean defined by rst = E(Rst), t = 1, 2, ···, τ. 

Let xist be the proportion of the risky asset i of scenario s at the beginning of period t. 
An investor is seeking the best investment strategy, xt = [x1st, x2st, ···, xnst] for t = 1, 2, ···, τ, 
such that 

1 1
1, 1, 2, , .

n S
it isti s

x x t τ
= =

= = =∑ ∑  

Let aist and vist be respectively the buying and selling volumes so that xist + aist – vist is the 
volume invested in the ith asset of scenario s at the beginning of period t. Thus, we also 
have 

( )
1

1, 1, 2, , ; 1, 2, , .
S

ist ist ists
x a v i n t τ

=
+ − = = =∑  

Let kist and list be, respectively, the rate of buying and selling transaction costs of the 
volume of asset i of scenario s bought or sold for portfolio rebalancing at the beginning of 
period t. It must be noted that the following are consequences of transaction costs: 

a The fact that transactions have costs ensures that for the same asset, aist · vist = 0; that 
is, the buy and sell variables corresponding to the same asset can never be non-zero 
simultaneously. 

b The incorporation of transaction costs in the model provides essential ‘friction’ 
which without it the optimisation has complete freedom to re-allocate the portfolio 
every time period, which, (if implemented) can result in significantly poorer realised 
performance than forecast, due to excessive transaction costs. 

Hakansson (1971) explains that in the absence of transaction costs, myopic policies are 
sufficient to achieve optimality. In our model, money can only be added at t = 0, and not 
in subsequent periods. Thus, only the initial wealth, W0, is considered. 

2.3 Transaction costs and balance constraints 

In rebalancing the portfolio at any period t > 0, t = 1, 2, ···, τ, buying and selling of 
securities take place. The buying and selling of securities during initial trading and 
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rebalancing of the portfolio result in the investor incurring some explicit and implicit 
transaction costs. Explicit costs are directly observable, and they include market fees, 
clearing and settlement costs, brokerage commissions, and taxes and stamp duties. These 
costs do not rely on the trading strategy and can easily be determined before the 
execution of the trade. On the other hand, implicit costs are invisible. They depend 
mainly on the trade characteristics relative to the prevailing market conditions. They are 
strongly related to the trading strategy and provide opportunities to improve the quality of 
execution. In this study, we take transaction costs to mean implicit transaction costs, 
details of which are explained in Section 3. The impact of transaction costs on the  
mean-variance model have been studied by Konno and Yamazaki (1991), and Gulpinar  
et al. (2004). The decision made at period t depends on xist and the yield of the investment 
in asset i of scenario s as 

( ) , 1, , ; 1, , ; 1, , .it ist s ist ist istr r p x a v i n s S t τ= ⋅ ⋅ + − = = =  (2.1) 

and 

1,

0 ; 1, , ; 1, ,ist jst
i A j j i

b q i n s S
∈ = ≠

≤ = = =∑ ∑  (2.2) 

where bist = bist(aist) is the amount of money used for buying volume aist, and qist = qist(vist) 
is the money obtained from selling volume vist of asset i of scenario s in period t. Note 
here that A is the set containing all assets i for which volumes have been bought. Thus, 
constraint (2) justifies that the amount of money used to buy volumes of asset i should be 
the same as the amount obtained from selling volumes of asset j, (j ≠ i) of period t. 
Another constraint is given by 

0 , 1, , ; 1, , ; 1, , .ist istv x i n s S t τ≤ ≤ = = =  (2.3) 

This constraint explains that the volume of asset i of scenario s in period t sold for 
portfolio rebalancing should not exceed the volume of the asset in the portfolio. The third 
constraint is the one discussed above, that is, 

0ist ista v⋅ =  (2.4) 

It should be noted that the scenarios may reveal identical value for the uncertain 
quantities up to a certain period. These scenarios that share common information must 
yield the same decisions up to that period. Thus, we have the constraint 

,ist is tx x ′=  

for all scenarios s and s′ with identical past up to time t. 

2.4 Expected wealth 

Generally, the objective of an investor is to minimise portfolio risk while at the same time 
maximising expected portfolio return on investment, or achieving a prescribed expected 
return. Thus, the mean rate of return of the portfolio of period t is given by 
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( ) ( )

( )

1 1 1 1

1

, 1, , ; 1, , .

pt s st st st st s nst nst nst nst

n

s ist ist ist ist
i

r p r x a v p r x a v

p r x a v s S t τ
=

= ⋅ ⋅ + − + + ⋅ ⋅ + −

= ⋅ ⋅ + − = =∑
 

The wealth of period t, without transaction costs, is given by 

( ) 11 , 1, ,t pt tW r W t τ−= + ⋅ =  (2.5) 

Clearly, it can be said that the expected rate of return is a linear function of (xist + aist – 
vist). Taking transaction costs into consideration, we have the transaction cost of asset i in 
scenario s of period t to be 

ist ist ist istk a l v+  

where kistaist is the cost for buying volume a of asset i and listvist is the cost of selling 
volume v of asset i in period t. Since aist and vist cannot be non-zero simultaneously for 
each asset i (as is shown later in this section), we either have 

0 or 0ist ist ist istk a l v= =  

or both being zero if there is no buying or selling of asset i in scenario s of period t. 
Allowing co-movement of assets’ prices and corresponding implicit transaction costs 
during trading, we say that each scenario asset price is associated with it an implicit 
transaction cost. Thus, the expected transaction cost of asset i in period t is given by 

{ }
1

, 1, , ; 1, , .
S

s ist ist ist ists
p k a l v i n t τ

=
+ = =∑  

We therefore observe that the total portfolio transaction cost of period t becomes 

{ }
1 1

, 1, 2, , .
n S

s ist ist ist isti s
p k a l v t τ

= =
⎡ ⎤+ =⎢ ⎥⎣ ⎦∑ ∑  

Denoting the net expected portfolio return of period t by Npt, we get 

{ }
1 1

.
n S

pt pt s ist ist ist isti s
N r p k a l v

= =
⎡ ⎤= − +⎢ ⎥⎣ ⎦∑ ∑  

Thus, the wealth of period t taking transaction costs into account is given by 

( ) 11 , 1, , .t pt tW N W t τ−= + ⋅ =  (2.6) 

2.5 Expected risk 

The portfolio risk for any realisation of any period is measured by the MAD of the 
realised returns relative to the expected portfolio return, rpt. Konno and Yamazaki (1991) 
develop the deterministic MAD model in an attempt to improve on the famous 
Markowitz (1952) mean-variance model. Their MAD model has portfolio risk expressed 
as 

( )
1 1

1( )
T

T n
it i it i

H p r r x
= =

= −∑ ∑  
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where rit is the realised return of asset i of period t, ri is the expected return of asset i per 
period, and xi is the proportion of wealth invested in asset i. 

We therefore extend this formulation of portfolio risk by constructing a model that 
takes into account uncertainty of asset returns and randomness of transaction costs in 
portfolio rebalancing. Using the deterministic model as our basis, three key stochastic 
framework elements are incorporated to formulate the stochastic MAD model. The first 
element considered is the concept of scenarios. Since the deterministic model represents 
one particular scenario, the inclusion of multiple scenarios in capturing uncertainty result 
in the increase in the number of variable parameters. Thus, uncertainty is represented by a 
set of distinct realisations s ∈ Ω. We now consider the scenario parameter, along with 
other parameters of security and time period. Secondly, the stochastic MAD model 
allows for the implementation of recourse decisions as unfolding information on assets’ 
returns get realised. The third element is the probabilistic feature of the stochastic 
framework which assigns probabilities to scenarios. The parameter ps represents scenario 
probability. Scenarios may reveal identical value for the uncertain quantities up to a 
certain period. Scenarios that share common information must yield the same decisions 
up to that period. 

The stochastic MAD also incorporates transaction costs incurred during portfolio 
rebalancing at each time period. Thus, we obtain the following portfolio risk: 

( ) ( )
1 1

1 τ S

pt s st st st
t s

H r p R r x
τ = =

= −∑∑  (2.7) 

where Rst, rst and xst are as defined earlier. It should be noted that information revealed in 
the literature show transaction costs being approximated by a linear function or a step 
function. In some cases, they are considered to be proportional to volume of asset bought 
or sold. In either case, we argue that since returns are random, transaction costs can as 
well be random. Hence, in our model, we consider random transaction costs. Yu et al. 
(2003) considered symmetric transaction costs for buying and selling during portfolio 
rebalancing in their general mean-risk model they proposed. This makes computation 
easier although real-life situations may be more complex than this. Depending on the 
demand of the asset, transaction cost for buying asset i may be different from transaction 
cost for selling asset j, if asset i is on great demand and asset j is not. 

2.6 Lower and upper bounds of variables 

In portfolio optimisation, it is sometimes possible for an investor to sell an asset that one 
does not own. This is called short-selling or simply shorting. An investor borrows an 
asset which he then sells. Later, when the price of the asset falls on the market, the 
investor buys the asset and pays back to the lender. However, short-selling is only 
profitable if the asset price declines. It is very risky for investors as potential for loss is 
great. Thus, bounds Uist on decision variables are put to prevent short-selling and enforce 
further restrictions imposed by the investor. We have the following constraints: 

0 , 1, , ; 1, , ; 1, , .ist istx U i n s S t τ≤ ≤ = = =  (2.8) 

and 
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0 , 1, , ; 1, , ; 1, , .ist istv x i n s S t τ≤ ≤ = = =  (2.9) 

Constraint (8) ensures diversification of the portfolio. It restricts the investor from 
investing all his wealth in one security, which can be very risky. Constraint (9) prohibits 
the selling of more of an asset i than his portfolio has. 

2.7 Multi-stage stochastic MAD model 

We express the multi-stage portfolio selection problem as a minimisation of portfolio risk 
subject to constraints describing the growth of the portfolio in all scenarios, a 
performance constraint, and bounds on the variables. 

We constrain the final expected wealth to be a particular value α. The optimisation 
model intends to find the least risky investment strategy to achieve the expected specified 
wealth. Alternatively, we can achieve the same strategy by constraining the net expected 
return to be at least λ, or the gross expected portfolio return to be at least θ. Varying λ or 
θ and re-optimising generate a set of optimal portfolios, forming the efficient frontier. We 
now state the stochastic MAD model as follows: 

Minimise 

( ) ( )
1 1

1 τ S

pt s ist t ist
t s

H r p R r x
τ = =

= −∑∑  (2.10) 

subject to 

( ) 1

1,

1 , 1, , ,

0 , 1, , ; 1, ,

0 , 1, , ; 1, , ; 1, , ,
0 , 1, , ; 1, , ; 1, , ,
0 , 1, , ; 1, , ; 1, , ,

0, 0, 1, , ; 1,

pτ

t pt t

n

ist ist
i A j j i

ist ist

ist ist

ist ist

ist ist

N λ
W N W t τ

b q s S t τ

v x i n s S t τ
x U i n s S t τ
a v i n s S t τ

b q i n s

−

∈ = ≠

≥

= + =

≤ ≤ = =

≤ ≤ = = =
≤ ≤ = = =
= ⋅ = = =
≥ ≥ = =

∑ ∑

, ; 1, , ,
, 1, , ; 1, , ; 1, , ,ist is t

S t τ
x x i n s S t τ′

=
= = = =

 

In addition to constraining the final rate of return of the portfolio, constrains of the form 

, 1, , ,pt tN λ t τ≥ =  

can be added to ensure any desired intermediate expected performance. We assume that 
no borrowing is done and the portfolio is self-financing. It deserves mention that the 
existence of a riskless asset among the securities is regarded as a special case in the 
stochastic MAD formulation (10) above. 

It has been noted earlier that for each asset i, aist and vist cannot simultaneously be 
non-zero. We now prove the assertion. 

Theorem 1: 
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Assume that there are transaction costs of model (10), the complementary constraint  
aist · vist = 0 can be eliminated from the model. 

Proof: 

Without loss of generality, let us consider at · vt = 0. Let * * * * * *
1 1 1( , ; , , ; , , )n n τx x a a v v  

be an optimal solution of (10) without the complementary condition, and let us assume 
that at · vt > 0, t ∈ M ⊂ {1, ···, τ}: 

For t ∈ M, let 

* *

0
t t t

t

a a v
v

′ −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠
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1 1 1( , , ; , , ; , , )n τ τx x a a v v′ ′ ′ ′  satisfies all the constraints of (10). Also, it has 
the same objective as * * * * * *

1 1 1( , , ; , , ; , , ).n τ τx x a a v v  This completes the proof. 
Thus, we can now state problem (10) without the complementary constraint  

aist · vist = 0. Let us denote yst = (Rist – rit)xist, i = 1, ···, n; s = 1, ···, S; t = 1, ···, τ. Since  
Rist = Rist(xist + aist – vist) and rit = rit(xist + aist – vist), we have yst = yst(xist + aist – vist) as 
well. Thus, formulation (10) leads to the following minimisation problem: 
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which is equivalent to the linear programme: 
Minimise 
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where 
1

.
S

t s sts
Z p y

=
≥ ∑  The first two constraints ensure that the deviation is absolute. 

3 Transaction cost measurement 

From retail to more professional investors and practitioners, there is great concern on 
transaction costs as information gleaned from research reveal that lower transaction costs 
result in higher portfolio returns. Transaction costs include all costs associated with 
trading, which can be split into explicit and implicit costs. 

Explicit costs are directly observable, and they include market fees, clearing and 
settlement costs, brokerage commissions, and taxes and stamp duties. These costs do not 
rely on the trading strategy and can easily be determined before the execution of the 
trade. On the other hand, implicit costs are invisible. These can broadly be put into three 
categories, namely market impact, opportunity costs, and spread. These costs can turn 
high-quality investments into moderately profitable investments or low-quality 
investments into unprofitable investments (D’Hondt and Giraud, 2008). 

To provide investors with competitive portfolio returns, investment managers must 
manage transaction costs proactively. Perhaps the reason why managers find themselves 
in a difficult situation is that these implicit costs are ‘hidden’ in the stock price. They 
depend mainly on the trade characteristics relative to the prevailing market conditions. 
They are strongly related to the trading strategy and, as variable costs, provide 
opportunities to improve the quality of execution. Missed trading opportunity costs are 
incurred when investors fail to fulfil their orders. Price movements or unavailability of 
the security (lack of liquidity) can be cause of such investor behaviour. 
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The contribution of opportunity costs to total implicit costs cannot be underestimated. 
The effects of market impact costs and opportunity costs are inversely proportional. 
Minimising market impact and reducing opportunity costs form a set of conflicting 
objectives. When an investment decision is immediately executed without delay, implicit 
costs are largely a result of market impact or liquidity restrictions only, and defined as the 
deviation of the transaction price from the ‘unperturbed price’ that would have prevailed 
if the trade had not occurred. Thus, market impact can be explained as the additional 
costs incurred by the investor for immediate trade execution. This is the resultant change 
that occurs when the number of shares of stocks an investor wants to buy or sell exceeds 
the number other market participants are willing to buy or sell at that price. Although 
market impact cost tends to decrease with time, such a delay in execution would result in 
increasing opportunity costs. This gives rise to what is called the ‘trader’s dilemma’. 

In this study, we assume immediate trade execution, thus taking market impact to 
account for the total implicit costs. We shall use the spread mid-point benchmark and the 
transaction price. The transaction price shall be the last price of the month. We follow the 
implicit transaction calculation as given by Hau (2006). We calculate the effective spread 
as twice the distance from the midprice measured in basis points. For a transaction price 
PT and the mid-price PM, mid-point of the bid-ask spread, we obtain the effective spread 
(implicit transaction cost) as 

200 .
T M

Trade
M

P PSPREAD
P
−= ×  

We take the last price as the transaction price for every stock considered, and for each 
month. These are prices of assets traded on the Johannesburg Stock Exchange from  
1 January 2008 to 30 September 2012. These historical data have been obtained courtesy 
of INet Bridge. 

4 Model application and analysis 

In applying the model to analyse the historical data, we use GAMS software. The  
13 assets used in the analysis are selected from securities in the Johannesburg stock 
market. Selection is on the basis of mean asset returns over the entire duration 
considered, and those assets having the highest mean returns are chosen to comprise the 
initial portfolio. Since we are using historical data, we consider empirical distributions 
computed from past returns as equiprobable scenarios. Observations of returns over, say 
N, overlapping periods of length δt are considered as the Ns possible outcomes (or 
scenarios) of the future returns and a probability of 1

sN  is assigned to each of them. 

We assume that we have historical prices at each of the t periods, t = 1, ···, τ, of stocks 
under consideration. For each period t, we compute the realised vector over the previous 
period, say 1 month, which is further considered as one of the Ns scenarios for the future 
returns on the assets. Thus, for example, a scenario Rist for the return on asset i is obtained 
as 
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where 

• Rist is the rate of return of asset i of scenario s of period t 

• Vi,t–1 is the closing price per share of asset i in period t – 1 

• Vi,t is the closing price per share of asset i of period t. 

On the basis of selecting assets with the best mean returns for the period 1 January 2008 
to 30 September 2012, the 13 securities heading columns in Table 1 were chosen to 
comprise our initial portfolio. The assets mean returns are denoted by R1, R2, ···, R13. 

4.1 Scenario generation for stage 1 

We consider five scenarios in our demonstration and apply the model over two stages. 
This consideration is taken noting that in stochastic programming the scenario tree grows 
exponentially. We take the empirical distributions of the 13 securities comprising our 
initial portfolio. Since for each security we have 54 monthly returns, we number the 
months from 1 to 54 and use random numbers to select asset returns corresponding to a 
scenario of a security. As explained above, we consider implicit transaction costs, and in 
particular, the market impact costs, obtained from the effective bid-ask spread, the 
calculation of which is also given in the above section. The effective bid-ask spread 
corresponding to each selected asset return for each scenario is used to calculate the 
market impact cost corresponding to the asset’s return in that scenario. We consider these 
transaction costs as random since they are randomly selected together with corresponding 
returns. 

4.2 End-of-first-stage portfolio selection 

A GAMS software is used to execute the model. In identifying assets that should 
comprise the second stage portfolio, a condition is given in the model to show an 
expected value of each asset and assets with positive and higher expected values are 
chosen. It should be noted that each asset has five scenarios and each scenario is equally 
likely to occur and is given a probability of 1

5 .  The portfolio return rate at this stage is 
obtained by dividing the sum of the assets’ expected return rates by the number of assets 
in the optimal portfolio. The implicit cost for each of the 13 assets is taken into account 
as it is in the buying of each asset that the cost is incurred. The transaction cost is given 
as a rate. 

4.3 End-of-first-stage portfolio rebalancing 

At the end of the first stage, an investor decides on his first-stage optimal portfolio as 
given by the investor’s chosen diversification limit, the gross portfolio mean return or the 
net portfolio mean return as the case may be, and the associated risk given by the MAD. 
It should be noted that the new monetary values of the assets become known after 
running the model for the second stage. As in the first stage, the securities from the  
first-stage optimal portfolio are each having five scenarios, each with a probability of 
occurring of 1

5 .  Each scenario has, associated with it, a cost rate (buying or selling cost 
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rate). Each cost rate also has a probability of 1
5 .  After running the model, the new 

proportions of assets become known. This happens concurrently with the calculation of 
transaction cost of an asset when volume is bought or sold. These transaction costs are 
expected costs of the volume of an asset bought or sold. The product of asset proportion, 
asset cost rate and the associated probability gives the expected transaction cost of an 
asset during portfolio rebalancing. These transaction costs are known when the investor 
has decided on his or her optimal portfolio at the end of stage 2. 

4.4 Analysis of results 

4.4.1 Stage 1 

We consider an investor who has R10000 to spend on his initial portfolio. We find that as 
we diversify the investor’s portfolio by decreasing the diversification limit from 0.4 to 
0.1, the gross mean portfolio return remains fixed at 0.013 and the risk is very small in 
each case. However, the net mean portfolio return fluctuates between 0.008 and 0.011, 
reflecting fluctuating transaction costs. Table 1 has this information where the phrase 
‘div. lim’ means ‘diversification limit’. 
Table 1 First stage optimal portfolios 

Div. lim Gross mean No. of assets Net mean MAD Wealth 
0.100 0.013 11 0.011 2.1684 × 10–19 10,114.320 
0.125 0.013 12 0.011 2.40551 × 10–18 10,112.736 
0.150 0.013 10 0.011 1.5992 × 10–18 10,111.780 
0.175 0.013 10 0.011 2.6766 × 10–19 10,107.344 
0.200 0.013 6 0.008 4.3368 × 10–19 10,081.526 
0.225 0.013 6 0.008 1.0842 × 10–19 10,081.891 
0.250 0.013 8 0.009 2.3039 × 10–19 10,085.628 
0.275 0.013 10 0.008 0 10,081.730 
0.300 0.013 7 0.011 2.50722 × 10–19 10,105.436 
0.325 0.013 6 0.010 7.2844 × 10–20 10,098.718 
0.350 0.013 7 0.011 1.4 × 10–18 10,106.596 
0.375 0.013 4 0.011 2.710 × 10–19 10,108.360 
0.400 0.013 4 0.011 2.168 × 10–19 10,108.360 

We then fix each of the diversification limits and let the gross mean portfolio return 
increase from 0.013 to values when the portfolio becomes ‘saturated’, i.e., no more 
buying and selling of assets. Thus, creating a set of optimal portfolios for each 
diversification limit considered. We note that, regardless of the diversification limit 
chosen, the net mean portfolio return for each chosen gross mean portfolio return is the 
same for all diversification limits considered. Thus, transaction costs are the same for 
each gross mean portfolio return selected. Table A3 in Appendix has this information. It 
is also evident that even the risk assumes the same values for each gross mean portfolio 
return considered for all diversification limits, except at the portfolio saturation point. 
Thus, the efficient frontiers at the various diversification limits do not differ much. 
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However, we observe that the maximum wealth is achieved at the optimal portfolio 
saturation point for each diversification limit. This is also where the risk is highest. 
Efficient frontiers of net mean portfolio returns and gross mean portfolio returns reveal 
the impact of neglecting transaction costs in portfolio selection. The gap between the two 
frontiers is the exaggeration that results. It is therefore up to each investor to choose the 
wealth-risk-diversification limit combination he or she desires. 

4.4.2 Stage 2 

As in stage 1, we allow the diversification limit to vary from 0.2 to 0.4 as shown in  
Table 2. We consider a first-stage optimal portfolio with five securities. We find that 
optimal portfolios in stage 2 have the same gross mean portfolio return and the same net 
mean portfolio return, regardless of the diversification limit. Here, we note that 
transaction costs for the optimal portfolios are the same. It is also observed that the risk 
assumes the same value at each diversification limit. Small variations in the expected 
wealth of optimal portfolios is due to rounding error of the net mean portfolio return 
during execution of the programme. Similar results are observed with all stage 1 optimal 
portfolios. 
Table 2 Second stage optimal portfolios 

Div. lim Gross mean No. of assets Net mean MAD(risk) Wealth 
0.200 0.007 5 0.006 0.013 10,423.815 
0.225 0.007 5 0.006 0.013 10,424.277 
0.250 0.007 5 0.006 0.013 10,425.228 
0.275 0.007 5 0.006 0.013 10,424.843 
0.300 0.007 5 0.006 0.013 10,423.679 
0.325 0.007 5 0.006 0.013 10,424.327 
0.350 0.007 5 0.006 0.013 10,424.321 
0.375 0.007 5 0.006 0.013 10,424.290 
0.400 0.007 5 0.006 0.013 10,424.259 

It is evident from the table findings that each optimal portfolio at each diversification 
limit considered, incurs an overall implicit transaction cost of 1

7  of the returns on 
investment. Thus, implicit transaction costs amount to approximately 14.3% of the fund 
invested during initial trading. 

We again find optimal portfolios at each diversification limit, the results of which are 
shown in Table A4 in Appendix. For each gross mean portfolio return, the net mean 
portfolio returns are the same and also equal are the associated risks. Unlike in stage 1, 
expected portfolio wealth is almost invariant for each pair of gross mean portfolio return 
and risk, and for each diversification limit. Thus, efficient frontiers are almost the same 
regardless of diversification limit. 

4.4.3 Comparison of stage 1 and stage 2 optimal portfolios 

The in-sample analysis explains the advantages of portfolio rebalancing as depicted from 
the efficient frontiers of two sets of optimal portfolios in which diversification limit is the 
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same. Stage 2 portfolios are superior, hence the need for portfolio rebalancing. It is again 
clear that the transaction costs incurred when buying initial portfolio and during portfolio 
rebalancing have a bearable impact on portfolio returns. Hence, ignoring transaction costs 
results in exaggerated optimal portfolios. 

4.5 Conclusions 

In this study, we propose a multi-stage stochastic MAD model with random transaction 
costs in optimal portfolio selection. We view our contributions to include: 

1 the development of a strategy that captures uncertainty in stock prices and in 
corresponding implicit trading costs by way of scenarios 

2 the development of a stochastic MAD model that optimises portfolios in the presence 
of random implicit transaction costs, and which captures risk due to uncertainty. 

The methodology allows investors and investment managers to choose optimal portfolios 
realising the impact of associated implicit transaction costs. It is a LP model, and hence 
reduces considerably the time needed to reach a solution. It is therefore feasible for  
large-scale portfolio selection. It is left for future research to have a model that takes into 
account uncertainty of both stock prices and implicit transaction costs as well as explicit 
trading costs. The study also has some limitations. The calculation of asset rate-of-return 
using the asset’s closing price of the month may not be the most accurate measure of 
asset’s monthly rate-of-return. However, since all assets’ rates-of-returns are obtained in 
the same way, this does not prejudice the findings. 
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Appendix 

Table A1 (a) Mean asset returns 

Month AVI ASR APN CSB CLS CML MPC 

1 0.099 0.422 –0.028 0.067 0.124 0.127 0.045 
2 –0.102 –0.036 0.036 0.041 –0.057 –0.074 –0.078 
3 –0.051 0.297 –0.027 0.143 –0.017 0.056 –0.082 
4 –0.027 0.038 0.057 –0.021 0.014 –0.152 –0.042 
5 –0.112 –0.036 –0.031 –0.138 –0.122 –0.188 –0.063 
6 0.093 –0.125 0.32 0.036 0.062 0.099 0.304 
7 0.084 0.071 0.113 0 0.179 0.04 0.134 
8 –0.026 –0.193 –0.091 0.1 0 0.106 0.003 
9 0.029 –0.173 –0.2 –0.018 0.03 –0.13 0.079 
10 0.225 –0.2 0.101 –0.074 –0.048 0 –0.003 
11 0.116 0.213 –0.103 0.04 0.118 –0.076 0.034 
12 –0.074 –0.186 0.26 0.096 –0.029 –0.026 0.051 
13 0.026 –0.139 –0.02 –0.035 –0.106 –0.022 –0.085 
14 –0.136 0.294 –0.099 0.236 0.017 0.114 0.019 
15 –0.046 0.02 –0.053 –0.043 0.097 0.163 0.076 
16 0.061 0.069 0.111 0.022 0.064 –0.075 0.04 
17 –0.029 0 0.141 –0.038 0.049 0.159 0.035 
18 0.117 0.104 0.087 0.078 0.116 0.113 0.087 
19 0.001 0.102 –0.017 0.014 –0.009 0.118 0 
20 0 0.079 0.057 0.081 0.128 0.013 0.114 
21 0.097 0.029 0.07 -0.077 0.079 0.048 0.056 
22 –0.074 0.08 0.027 0.017 0.018 0.035 –0.092 
23 0.083 0.004 0.082 0.056 0.083 0.048 0.074 
24 0.012 –0.011 –0.084 –0.027 –0.028 0.017 0.005 
25 0.033 0.036 0.053 –0.014 0.042 –0.006 0.095 
26 0.089 0.069 0.12 0.034 0.074 0.101 0.032 
27 0.008 0.018 0.05 –0.011 0.044 0.176 0.053 
28 –0.031 –0.133 –0.052 –0.05 0.051 –0.07 0.069 
29 –0.049 0.015 –0.039 0.072 0.043 0.028 –0.001 
30 0.131 0.112 0.071 –0.027 0.065 0.16 0.128 
31 0 –0.091 0.032 –0.068 0.037 0.004 –0.022 
32 0.088 0.117 0.118 0.147 0.179 0.16 0.113 
33 0.029 0.077 –0.005 0.212 0.034 0.014 0.157 
34 0 0 –0.005 –0.049 –0.049 0.125 0.009 
35 0.076 0.125 –0.011 0.057 –0.003 0.111 0.036 
36 –0.005 0.055 –0.074 –0.048 –0.085 –0.069 –0.145 
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Table A1 (a) Mean asset returns (continued) 

Month AVI ASR APN CSB CLS CML MPC 

37 0.01 0.028 –0.043 –0.074 –0.029 –0.052 0.054 
38 –0.01 0.056 –0.031 0.116 0.105 0.076 0.022 
39 0.027 –0.012 0.025 –0.005 0.031 0.067 0.097 
40 –0.028 0.012 0.077 0.043 –0.025 0.034 –0.047 
41 0.042 0.014 –0.037 –0.023 –0.013 –0.018 0.065 
42 0.033 0.02 –0.008 –0.035 –0.053 0.037 0.081 
43 0.014 –0.018 0.014 0.011 0.043 –0.006 0.001 
44 –0.011 –0.105 0.08 0.113 –0.097 0.005 –0.088 
45 0.101 0.099 0.044 0.001 0.107 0.128 0.135 
46 0.049 0.012 0.023 0.086 0.068 0.007 0.047 
47 0.063 –0.041 –0.008 0.055 0.039 0 –0.003 
48 0.045 0.086 0.031 –0.005 –0.141 0.117 0.081 
49 0.057 0.106 0.09 –0.053 0.106 0.083 0.034 
50 0.057 –0.043 0.091 0.133 0.019 0.038 0.057 
51 0.039 0.098 0.061 0.04 0.046 0.025 0.115 
52 0.01 0.057 –0.065 –0.007 0 –0.099 –0.01 
53 0.027 0.068 0.07 0.054 0.149 0.051 0.074 
54 0.182 –0.01 0.153 0.102 0.016 0.064 0.101 
55 –0.009 0.007 –0.008 0.053 –0.003 0.02 0.049 

Table A1 (b) Mean asset returns 

Month PNC SPP TRU CPI IPL WHL 

1 0.136 –0.008 0.02 0.177 0.053 0.057 
2 0 –0.025 –0.038 –0.064 –0.009 –0.025 
3 –0.022 0.155 0.004 –0.096 –0.034 –0.013 
4 –0.068 –0.071 –0.105 –0.076 –0.308 –0.054 
5 –0.146 –0.048 0.002 –0.115 –0.005 –0.097 
6 –0.057 0.051 0.267 0.107 –0.165 0.155 
7 0.288 0.038 0.073 –0.013 0.226 0.067 
8 –0.141 –0.065 –0.064 0.085 0.094 –0.069 
9 –0.285 0.129 0.136 –0.156 –0.07 –0.034 
10 –0.272 –0.056 –0.043 0.037 –0.084 0.084 
11 –0.042 0.06 0.075 0.036 0.184 0.038 
12 0.049 –0.035 0.033 0.034 –0.137 0.058 
13 –0.063 –0.031 –0.117 0 –0.138 –0.115 
14 0.039 –0.026 0.032 0.081 0.207 –0.042 
15 0.022 0.026 0.058 0.202 0.02 0.053 
16 0.089 0.07 0.068 0.051 0.101 0.042 
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Table A1 (b) Mean asset returns (continued) 

Month PNC SPP TRU CPI IPL WHL 
17 0.097 –0.004 0.019 0.035 –0.028 0.036 
18 0 0.054 0.081 0.131 0.167 0.202 
19 –0.004 0.043 –0.016 0.146 0.09 0.012 
20 0.456 0.037 0.08 0.109 0.077 0.025 
21 –0.033 0.066 0.059 0.049 0.02 0.083 
22 –0.041 –0.041 –0.075 0.109 –0.006 –0.048 
23 –0.02 0.074 0.048 0.111 0.092 0.072 
24 0.1 –0.001 –0.028 –0.024 –0.092 0.024 
25 0.125 0.028 0.166 0.065 0.17 0.127 
26 0.078 0.021 0.058 0.153 0.07 0.093 
27 –0.023 0.029 0.017 0.076 –0.018 0.041 
28 0.103 0.019 0.022 –0.03 –0.025 –0.013 
29 –0.002 0.022 –0.013 0.197 –0.107 0.035 
30 0.131 0.071 0.087 0.093 0.124 0.085 
31 –0.021 –0.017 0.004 0.035 0.059 –0.053 
32 0.114 0.105 0.196 0.116 0.111 0.099 
33 0.068 0.025 –0.014 –0.021 0.007 0.015 
34 0.092 0.062 0.043 0.019 0.072 –0.038 
35 0.107 –0.033 –0.005 0.156 0.041 0.02 
36 –0.034 –0.071 –0.11 –0.109 –0.137 –0.128 
37 0.03 0.046 0 0.039 0.021 0.136 
38 0.029 0 0.106 0.057 0.016 0.047 
39 0.014 0.026 0.078 0.037 0.033 0.072 
40 0.099 –0.05 –0.047 0.085 –0.013 –0.007 
41 0.154 –0.026 0.012 –0.042 0.041 0 
42 0.022 0.02 –0.012 0.001 –0.052 0.061 
43 –0.076 0.035 0.071 0.04 0.007 0.155 
44 0.116 0.011 –0.091 0.019 –0.091 –0.04 
45 0.138 0.007 0.138 –0.052 0.116 0.154 
46 –0.029 0.16 –0.012 0.011 0.007 0.001 
47 0.044 –0.035 –0.068 –0.033 0.044 –0.035 
48 0.185 0.02 0.059 0.024 0.122 0.077 
49 0.059 0.041 0.034 0.015 0.063 0.074 
50 0.039 0.004 –0.001 0.108 0.052 0.067 
51 0.113 0.05 0.028 0.083 0.089 0.01 
52 –0.037 –0.097 –0.009 0.017 –0.021 0.003 
53 0.035 0.035 0.089 –0.058 0.04 0.031 
54 0.002 0.054 0.154 0.026 0.1 0.071 
55 0.061 0.011 0.003 –0.012 0.005 0.016 
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Table A2 (a) Asset transaction cost rates 

Month AVI ASR APN CSB CLS CML MPC 

1 0.0030 0.0023 0.0028 0.0036 0.0050 0.0119 0.0073 
2 0.0004 0.0009 0.0028 0.0029 0.0023 0.0061 0.0051 
3 0.0054 0.0008 0.0022 0.0052 0.0032 0.0425 0.0088 
4 0.0087 0.0064 0.0121 0.0040 0.0107 0.0011 0.0019 
5 0.0043 0.0062 0.0027 0.0080 0.0034 0.0004 0.0229 
6 0.0000 0.0140 0.0072 0.0386 0.0098 0.0067 0.0012 
7 0.0066 0.0048 0.0195 0.0214 0.0147 0.0018 0.0128 
8 0.0048 0.0044 0.0306 0.0171 0.0548 0.0137 0.0024 
9 0.0042 0.0061 0.0063 0.0078 0.0132 0.0018 0.0007 
10 0.0100 0.0220 0.0027 0.0018 0.0213 0.0025 0.0060 
11 0.0060 0.0003 0.0112 0.0258 0.0041 0.0085 0.0136 
12 0.0143 0.0045 0.0170 0.0049 0.0015 0.0258 0.0019 
13 0.0003 0.0126 0.0010 0.0055 0.0083 0.0135 0.0037 
14 0.0033 0.0051 0.0029 0.0041 0.0019 0.0015 0.0020 
15 0.0064 0.0023 0.0004 0.0001 0.0228 0.0026 0.0082 
16 0.0057 0.0114 0.0042 0.0054 0.0092 0.0139 0.0140 
17 0.0010 0.0087 0.0435 0.0165 0.0099 0.0073 0.0105 
18 0.0537 0.0047 0.0067 0.0212 0.0045 0.0109 0.0028 
19 0.0007 0.0052 0.0027 0.0474 0.0056 0.0053 0.0113 
20 0.0060 0.0117 0.0126 0.0856 0.0046 0.0295 0.0033 
21 0.0061 0.0303 0.0052 0.0532 0.0169 0.0033 0.0127 
22 0.0070 0.0003 0.0087 0.0194 0.0268 0.0149 0.0049 
23 0.0076 0.0029 0.0046 0.0074 0.0003 0.0008 0.0103 
24 0.0056 0.0473 0.0025 0.0069 0.0127 0.0055 0.0026 
25 0.0018 0.0058 0.0095 0.0070 0.0079 0.0046 0.0056 
26 0.0149 0.0074 0.0327 0.0072 0.0009 0.0019 0.0045 
27 0.0037 0.0208 0.0032 0.0233 0.0104 0.0035 0.0165 
28 0.0202 0.0065 0.0256 0.0301 0.0051 0.0021 0.0073 
29 0.0068 0.0225 0.0141 0.0061 0.0018 0.0056 0.0116 
30 0.0298 0.0000 0.0343 0.0068 0.0695 0.0253 0.0094 
31 0.0072 0.0197 0.0027 0.0408 0.0084 2.0000 0.0115 
32 0.0157 0.0153 0.0066 0.0679 0.0040 0.0749 0.0058 
33 0.0139 0.0238 0.0015 0.0019 0.0040 0.0286 0.0111 
34 0.0142 0.0024 0.0079 0.0073 0.0013 0.0105 0.0024 
35 0.0074 0.0186 0.0068 0.0326 0.0198 0.0066 0.0114 
36 0.0316 2.0000 0.0082 0.0146 0.0487 0.0074 0.0133 
37 0.0041 0.0083 0.0433 0.0155 0.0369 0.0082 0.0075 
38 0.0459 2.0000 0.0058 0.0014 0.0029 0.0354 0.0033 
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Table A2 (a) Asset transaction cost rates (continued) 

Month AVI ASR APN CSB CLS CML MPC 
39 0.0006 0.0386 0.0012 0.0046 0.0334 0.0177 0.0339 
40 0.0743 0.0225 0.0097 0.0044 0.0148 0.0202 0.0543 
41 0.0210 0.0290 0.0103 0.0952 0.0144 0.1277 0.0402 
42 0.0208 0.0022 0.0179 0.0222 0.0308 0.1053 0.0089 
43 0.0217 2.0000 0.0177 0.0396 0.0238 2.0000 0.0052 
44 0.0053 2.0000 0.0151 0.0619 0.0033 0.0942 0.0112 
45 0.0124 0.0942 0.0077 0.0759 0.0183 0.0408 0.0083 
46 0.0086 0.0083 0.0800 0.0352 0.0215 0.0258 0.0014 
47 0.0169 0.0645 0.0026 0.0829 0.0064 0.0077 0.0271 
48 0.0060 0.0072 0.0185 0.0769 0.0068 0.0198 0.0020 
49 0.0209 2.0000 0.0255 0.1452 0.0000 0.0217 0.0047 
50 0.0330 0.0108 0.0132 0.1125 0.0043 0.0089 0.0277 
51 0.0040 0.0189 0.0016 0.0894 0.0086 0.0308 0.0114 
52 0.0032 0.0028 0.0110 2.0000 0.0078 0.0048 0.0164 
53 0.0317 0.0237 0.0026 0.0734 0.0007 0.0543 0.0101 
54 0.0180 0.0220 0.0085 0.0112 0.0104 0.0151 0.0228 

Table A2 (b) Asset transaction cost rates 

Month PNC SPP TRU CPI IPL WHL 
1 0.0319 0.0019 0.0009 0.0063 0.0058 0.0062 
2 0.0323 0.0072 0.0033 0.0105 0.0132 0.0010 
3 0.0038 0.0044 0.0241 0.0061 0.0067 0.0018 
4 0.0049 0.0035 0.0028 0.0411 0.0040 0.0029 
5 0.0058 0.0021 0.0031 0.0031 0.0005 0.0013 
6 0.0046 0.0024 0.0056 0.0031 0.0050 0.0010 
7 0.0315 0.0029 0.0066 0.0056 0.0050 0.0008 
8 0.0086 0.0946 0.0540 0.0121 0.0542 0.0069 
9 0.0263 0.0009 0.0068 0.0003 0.0019 0.0027 
10 0.0148 0.0030 0.0128 0.0108 0.0052 0.0023 
11 0.0202 0.0019 0.0063 0.0459 0.0121 0.0689 
12 0.0043 0.0109 0.0029 0.0071 0.0078 0.0099 
13 0.0067 0.0007 0.0023 0.0028 0.0042 0.0044 
14 0.0127 0.0017 0.0033 0.0032 0.0043 0.0057 
15 0.0197 0.0041 0.0036 0.0191 0.0084 0.0020 
16 0.0072 0.0012 0.0177 0.0047 0.0100 0.0050 
17 0.0074 0.0001 0.0185 0.0050 0.0008 0.0004 
18 0.0122 0.0085 0.0077 0.0005 0.0002 0.0098 
19 0.0088 0.0007 0.0015 0.0054 0.0085 0.0015 
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Table A2 (b) Asset transaction cost rates (continued) 

Month PNC SPP TRU CPI IPL WHL 

20 0.0081 0.0078 0.0324 0.0030 0.0027 0.0046 
21 0.0179 0.0085 0.0022 0.0031 0.0037 0.0271 
22 0.0228 0.0022 0.0011 0.0101 0.0097 0.0234 
23 0.0106 0.0305 0.0077 0.0143 0.0010 0.0220 
24 0.0293 0.0053 0.0024 0.0039 0.0137 0.0073 
25 0.0212 0.0050 0.0127 0.0125 0.0205 0.0421 
26 0.0452 0.0019 0.0145 0.0145 0.0034 0.0121 
27 0.0178 0.0024 0.0137 0.0069 0.0047 0.0223 
28 0.0203 0.0093 0.0027 0.0053 0.0064 0.0071 
29 0.0526 0.0043 0.0026 0.0037 0.0040 0.0019 
30 0.0595 0.0113 0.0095 0.0065 0.0133 0.0016 
31 2.0000 0.0058 0.0069 0.0127 0.0096 0.0028 
32 0.0470 0.0020 0.0021 0.0140 0.0086 0.0300 
33 0.0287 0.0151 0.0018 0.0047 0.0047 0.0114 
34 0.0030 0.0023 0.0068 0.0149 0.0068 0.0025 
35 0.0545 0.0032 0.0261 0.0091 0.0125 0.0184 
36 0.0590 0.0017 0.0119 0.0092 0.0103 0.0032 
37 0.0874 0.0142 0.0117 0.0012 0.0022 0.0117 
38 0.0597 0.0039 0.0055 0.0241 0.0013 0.0080 
39 0.2246 0.0186 0.0064 0.0102 0.0215 0.0058 
40 0.0488 0.0107 0.0041 0.0015 0.0079 0.0302 
41 0.0845 0.0252 0.1433 0.0481 0.0299 0.1060 
42 0.0207 0.0077 0.0088 0.0236 0.0164 0.0105 
43 0.2118 0.0357 0.0239 2.0000 0.0077 0.0008 
44 0.0267 0.0080 0.0066 0.0142 0.0078 0.0123 
45 0.2449 0.0741 0.0075 0.0714 0.0082 0.0370 
46 0.2290 0.0050 0.0187 0.0546 0.0328 0.0481 
47 0.0047 0.0093 0.0123 0.0165 0.0110 0.0169 
48 0.0625 0.0012 0.0007 0.0479 0.0099 0.0273 
49 0.1374 0.0228 0.0110 0.0147 0.0042 0.0069 
50 0.0247 0.0179 0.0013 0.0165 0.0024 0.0608 
51 0.0114 0.0011 0.0155 0.0469 0.0007 0.0109 
52 0.0270 0.0062 0.0650 0.0408 0.0336 0.0198 
53 0.0110 0.0082 0.0633 0.0524 0.0507 0.0112 
54 0.0228 0.0445 0.0136 0.0202 0.0033 0.0347 
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Table A3 Stage 1 efficient frontiers at various diversification limits 

Div. lim Gross mean No. of assets Net mean MAD (risk) Wealth 
0.1 0.013 11 0.011 2.1684 × 10–19 10,114.320 

0.02 12 0.018 0.007 10,178.771 
0.03 11 0.025 0.017 10,253.167 
0.04 10 0.036 0.018 10,355.180 

0.125 0.013 12 0.011 2.4 × 10–18 10,112.736 
0.02 10 0.018 0.007 10,181.466 
0.03 10 0.028 0.017 10,276.063 
0.04 8 0.034 0.021 10,344.850 

0.15 0.013 10 0.011 1.599 × 10–18 10,111.780 
0.02 11 0.018 0.007 10,182.074 
0.03 11 0.025 0.017 10,248.470 
0.04 7 0.034 0.023 10,336.510 

0.2 0.013 6 0.008 4.33 × 10–19 10,081.526 
0.02 6 0.015 0.007 10,151.170 
0.03 7 0.026 0.017 10,255.143 
0.04 5 0.036 0.026 10,363.520 

0.25 0.013 8 0.009 2.3 × 10–19 10,085.628 
0.02 10 0.016 0.007 10,158.532 
0.03 7 0.026 0.017 10,256.967 
0.04 6 0.037 0.027 10,366.508 

0.3 0.013 7 0.011 2.5 × 10–19 10,105.436 
0.02 12 0.018 0.007 10,175.404 
0.03 7 0.028 0.017 10,282.641 
0.04 6 0.037 0.027 10,369.217 

Table A4 Stage 2 efficient frontiers at various diversification limits 

Div. lim Gross mean No. of assets Net mean MAD (risk) Wealth 
0.2 0.007 5 0.006 0.013 10,423.815 

0.010 5 0.009 0.015 10,460.266 
0.015 5 0.014 0.017 10,513.668 
0.020 5 0.019 0.020 10,562.684 
0.025 5 0.024 0.022 10,611.495 
0.030 5 0.029 0.025 10,664.308 
0.035 5 0.034 0.027 10,714.813 

0.225 0.007 5 0.006 0.013 10,424.277 
0.010 5 0.009 0.015 10,459.822 
0.015 5 0.014 0.017 10,513.566 
0.020 5 0.019 0.020 10,562.732 
0.025 5 0.024 0.022 10,611.730 
0.030 5 0.029 0.025 10,662.818 
0.035 5 0.034 0.027 10,715.476 
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Table A4 Stage 2 efficient frontiers at various diversification limits (continued) 

Div. lim Gross mean No. of assets Net mean MAD (risk) Wealth 

0.25 0.007 5 0.006 0.013 10,425.228 
0.010 5 0.009 0.015 10,461.394 
0.015 5 0.014 0.017 10,513.540 
0.020 5 0.019 0.020 10,562.598 
0.025 5 0.024 0.022 10,611.730 
0.030 5 0.029 0.025 10,660.993 
0.035 5 0.034 0.027 10,714.008 

0.275 0.007 5 0.006 0.013 10,424.843 
0.010 5 0.009 0.015 10,460.696 
0.015 5 0.014 0.017 10,513.540 
0.020 5 0.019 0.020 10,562.598 
0.025 5 0.024 0.022 10,611.730 
0.030 5 0.029 0.025 10,660.733 
0.035 5 0.034 0.027 10,712.199 

 


