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Current views in the teaching and learning of data handling suggest that learners should 
create graphs of data they collect themselves and not just use textbook data. It is presumed 
real-world data creates an ideal environment for learners to tap from their pool of stored 
knowledge and demonstrate their meta-representational competences. Although prior 
knowledge is acknowledged as a critical resource out of which expertise is constructed, 
empirical evidence shows that new levels of mathematical thinking do not always build 
logically and consistently on previous experience. This suggests that researchers should 
analyse this resource in more detail in order to understand where prior knowledge could 
be supportive and where it could be problematic in the process of learning. This article 
analyses Grade 11 learners’ meta-representational competences when constructing bar 
graphs. The basic premise was that by examining the process of graph construction and 
how learners respond to a variety of stages thereof, it was possible to create a description of 
a graphical frame or a knowledge representation structure that was stored in the learner’s 
memory. Errors could then be described and explained in terms of the inadequacies 
of the frame, that is: ‘Is the learner making good use of the stored prior knowledge?’  
A total of 43 learners were observed over a week in a classroom environment whilst they 
attempted to draw graphs for data they had collected for a mathematics project. Four units 
of analysis are used to focus on how learners created a frequency table, axes, bars and 
the overall representativeness of the graph vis-à-vis the data. Results show that learners 
had an inadequate graphical frame as they drew a graph that had elements of a value bar 
graph, distribution bar graph and a histogram all representing the same data set. This 
inability to distinguish between these graphs and the types of data they represent implies 
that learners were likely to face difficulties with measures of centre and variability which 
are interpreted differently across these three graphs but are foundational in all statistical 
thinking. 
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Introduction
Traditionally instructional focus in the statistics classroom has been on learners’ construction of 
various graphs with the instruction being didactic in nature but with little attention being given 
to the analysis of reasons why the graphs were constructed that way in the first place (Friel, 
Curcio & Bright, 2001). Similar concerns have been expressed by diSessa, Hammer, Sherin and 
Kolpakowski (1991, p. 157), who have suggested:

One of the difficulties with conventional instruction … is that students’ meta-knowledge is often not 
engaged, and so they come to know ‘how to graph’ without understanding what graphs are for or why 
the conventions make sense. 

Watson and Fitzallen (2010) suggest that little is likely to be achieved by providing a collection 
of data (found in the textbooks) and having children practise drawing graphs in isolation. A 
recommendation that is consistent with current views of ‘data handling’ that goes beyond 
‘statistics’ is put forth by Shah and Hoeffner (2002), who suggest that research on learners’ 
abilities to construct graphs, and how this relates to their ability to comprehend graphs, was 
particularly relevant for project-based activities in which learners create graphs of data that they 
collect for themselves. Due to the fact that collected data are grounded in real-world contexts, 
diSessa (2004) argues that an ideal environment is usually created for learners to demonstrate 
their meta-representational competence. Such competence includes learners’ abilities to invent 
or design a variety of new representations, explain their creations, understand the role they play 
and critique and compare the adequacy of such representations. Learners’ meta-representational 
competence is the very resource out of which expertise is constructed (diSessa & Sherin, 2000) and 
a number of researchers have used other terms such as phenomenological primitives (p-prims) 
(diSessa, 1993, 2004), cues (Davis, 1984) or ‘met befores’ (Tall, 2008) in support of the existence of 
such a pool of knowledge. 
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Although previously activated knowledge structures 
(diSessa, 1993) are acknowledged as critical resources, 
Tall (2008) cautions that it should not be taken for granted 
that new levels of mathematical thinking are necessarily 
built logically and consistently on previous experience. 
Empirical evidence has shown that the existence of prior 
knowledge can also lead to negative outcomes in the form 
of ‘misconceptions’ (English, 2012). Given this dichotomous 
nature of prior knowledge, diSessa and Sherin (2000) 
suggest that we should understand this resource in more 
detail for its theoretical and practical import in learning. 
We should raise questions about the nature and content of 
these intuitive ideas, where they come from and how they 
are involved, both productively and unproductively, in 
learning. These are the questions that steered this analysis of 
Grade 11 learners’ instructional activities during the process 
of constructing bar graphs. The learners worked with data 
that they had collected for themselves for a mathematics 
project that was part of their curriculum requirement. The 
article aims more specifically to tease out evidence of the 
knowledge representation structures that were stored in 
the learners’ memory and the extent to which this pool of 
knowledge was (in)adequate as a resource for bar graph 
construction.

Basic-level constituents of a graph
Given this objective, it is doubtful whether one could discuss 
adequacy, productivity or effectiveness in graph construction 
without making references to conventions that guide us in 
validating our concept of adequate, truth, correctness and 
accuracy in such mathematical activities. With this in mind 
it seems appropriate to develop an understanding of the 
way graphs are structured to appreciate the way in which 
they communicate information. In doing so I acknowledge 
Watson and Fitzallen (2010), who point out that due to the 
more recent emergence of the field of statistics there is more 
flexibility on what the conventions should be, unlike algebra 
and other areas of mathematics where conventions are more 
fixed.

Despite this variability in nomenclature and conventions, 
especially in statistical graphs, researchers warn that writing 
realistic assessment items and resources to mark them would 
not be easy if there was no movement towards convergence 
on conventions (Kosslyn, 1989; Shah & Hoeffner, 2002; 
Watson & Fitzallen, 2010). Consistent with this need to move 
towards convergence on conventions, this article borrows 
from Kosslyn (1989) who suggests a schema for the analysis of 
graphs that can be used to communicate information clearly 
and concisely. Kosslyn argues that even though there are 
many types of graphs they are all made up of the same basic-
level constituents. The elements include the ‘background’, 
the ‘framework’, the ‘specifier’ and the ‘labels’ (Kosslyn, 
1989, p. 188). Figure 1 illustrates the basic-level constituents 
of a typical graph.

The background is the pattern over which the other 
component parts of a graph are presented. In most 
instances the background is blank as it is not necessary 
to include a pattern or picture. The framework represents 
the kinds of entities being related, in this case weight on 
the x-axis and speed on the y-axis. The specifier conveys 
specific information about the entities represented by the 
framework by mapping parts of the framework (in this 
example weight) to other parts of the framework (speed). 
The specifier may be a point, line or bar and is often 
based on a pair of values (x and y values). The labels of a 
graph are an interpretation of a line or region. They may 
be letters, words or pictures that provide information 
about the framework or the specifier. To analyse graphs 
it is necessary to understand the interrelated connections 
amongst these constituents of a graph. So how do these 
basic-level constituents help us to distinguish between the 
different types of bar-like graphs?

The constituent parts of bar-like graphs
Although there is variability in naming these bar-like graphs 
in this article I adopt terminology used by Cooper and 
Shore (2010) as well as Watson and Fitzallen (2010). The 
decision was guided by what I viewed as (1) the consistency 
with which their work builds on Kosslyn’s (1989) work, (2) 
their long-standing history of contribution to making sense 
with graphs, (3) clarity in the way they exemplified the 
links between these graphs and (4) the need to maintain 
consistency in the discussion. Watson and Fitzallen (2010) 
posit that bar-like representations are of three major types 
(value bar graphs, distribution bar graphs and histograms), 
which are presented as historically developing from one 
into the other in that order. This article does not intend to 
dwell much on the historical development of these graphs 
but suffice it to say that, especially at primary and secondary 
school level, these bar-like representations are often simply 
referred to as bar graphs, so that their distinction is unclear. 
This is despite the fact that the differences between these bar-
like representations merit an entirely different interpretation 
of centre and spread. According to Cooper and Shore (2010), 
it is only recently that more attention has been given to 
distinguishing between these graphs.

Source: Kosslyn, S.M. (1989). Understanding charts and graphs. Applied Cognitive Psychology, 
3, 185–226.http://dx.doi.org/10.1002/acp.2350030302

FIGURE 1: The basic-level constituent parts of a graph.
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Watson and Fitzallen (2010) use the following example 
to show the links and differences between these bar-like 
representations: ‘In a class of 12 children a survey was 
taken to find out how many books each child read. The 
results of the survey then generated the … data [shown in 
Table 1]’.

Value bar graph
Cooper and Shore (2010) argue that the simplest and perhaps 
the most popular way in media and research articles would 
be to represent such data as shown in Figure 2. 

Such a representation is often encountered by learners as 
early as preschool and is typical of the way in which data 
is represented in elementary and middle school curricula. 
Without discrediting other terms that have been used 
elsewhere, in this article I will refer to it as a value bar graph 
consistent with Cooper and Shore’s (2010) terminology. 
Similarly, records of rainfall throughout the year are 
usually presented in such value bar graphs with the vertical 
axis showing the amount in centimetres or inches and the 
horizontal axis showing the months of the year from January 
right through to December as in Figure 3. 

The critical distinguishing features in both cases (Figure 2 
and Figure 3) are that bars represent values of single cases 
(number of books read by each child or the amount of rainfall 
that fell in each month) and in both cases the mean can be 
interpreted as the height at which all bars would be level as 
shown with the superimposed horizontal line in Figure 3. 
One might notice that even the most rudimentary measure 
of variability (the range) is also perceived on the vertical 
axis (difference between the highest and lowest bars). Other 
measures of variability in the data are also perceived through 
the vertical axis and would then be judged by deviations from 
the mean – the superimposed horizontal line in Figure 3. 
Notice that this superimposed horizontal could also have 

been drawn in Figure 2 to enable visualisation of variability 
from the mean number of books read. Admittedly such a 
representation would only be useful when dealing with a 
small number of cases or data, hence such ‘value bar graphs’ 
are suitable in elementary and middle school work. Cooper 
and Shore (2010) warn of misconceptions that manifest when 
this correct perception in a value bar graph is juxtaposed 
onto other more complex bar-like representations, resulting 
in learners incorrectly interpreting such measures. In order 
to appreciate this difference in perceiving variability in data, 
let us look at how the distribution bar graph is developed 
from such a value bar graph. 

Distribution bar graph
Let me point out here that, historically, bar-like representations 
are rooted in geographical analysis of population statistics 
where a large amount of information was gathered 
(Cooper & Shore, 2010). Despite the fact that different data 
representation techniques have been developed over the 
years the goal in data handling remains focused on analysis 
of large multivariate data sets; hence, learners should develop 
the skills of dealing with summaries (not cases) of large 
amounts of information. The same example of the number of 
books read by 12 children is used to show the transition from 
a value bar graph to a more complex distribution bar graph 
which aggregates data. Looking across the data in Table 1, 
there are five possible values the data could take: 0, 1, 2, 3 
and 4. It is important to note that just like we could write 
the children’s names in any order so we could also write the 
values in any order because in this context these are mere 
labels. The frequencies for each value are determined by 
the counts of children who read that number of books, as in 
Figure 4. 

The resultant graph is an aggregation of data (distribution 
bar graph) as opposed to single cases that characterise 
a value bar graph. We immediately notice how in the 
distribution bar graph, the individual cases are lost as we 
can no longer tell how many books were read by each of the 
children. According to Cooper and Shore (2010), these two 
types of graphs (value bar graph and distribution bar graph) 
may superficially look the same. Both have qualitative 
values (categories or case names) usually on the horizontal 
axis and numerical scale on the vertical axis. In each case 
the height (or length) of the bars represents the value of 
the data counts. However, the difference between the two 
graphs is that each ‘bar’ for a value bar graph represents 
data associated with an individual (number of books read 
by each child) whereas a distribution bar graph collects 
together number of books read and reports their total 
frequency. They also differ in that, visually, the method to 
judge variability is exactly the opposite. For example, the 
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FIGURE 2: Number of books read by each of the 12 children.

TABLE 1: The number of books read by 12 students.

Name of child Mary Anne George Barb Tom Jerry Dan Laura Carol Fred Ken Pat

No. of books read 2 4 4 4 3 0 2 3 4 2 1 1

Source: Watson, J., & Fitzallen, N. (2010). The development of graph understanding in the mathematics curriculum: Report for the NSW Department of Education and Training. Sydney: NSW 
Department of Education and Training. Available from http://www.curriculumsupport.education.nsw.gov.au/primary/mathematics/assets/pdf/dev_graph_undstdmaths.pdf
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highest bar in a value bar graph measures the maximum 
score (highest number of books read by a learner) whereas 
the highest bar in a distribution bar graph measures the 
mode (the number of books read by most learners). These 
are clearly different measures, the former being a measure 
of variability and the latter being a measure of centre.  

To elaborate further on this point, if we superimposed 
a horizontal line for the mean (the height at which all 
bars would be level) in the value bar graph (Figure 2 and  
Figure 3),variability in the data (how far above and below the 
mean) is perceived through variation in the bar heights. On 
the other hand the centre for a distribution bar graph implies 
a typical categorical value (modal) found on the horizontal 
axis. Furthermore, in the case of the distribution bar graphs, 
bars of approximately equal height indicate great variability, 
whereas for value bar graphs, the same visual display of 
approximately equal bar heights indicates little variability. 
So in summary, we notice immediately that in distribution 
bar graphs, measures of centre and variability are no longer 
perceived from the vertical axis as in the case of the value 
bar graph. For data sets that have a typical value (mode), the 
greater the frequency of that modal category compared to 
frequencies of other categories, the more alike the data are 
and thus the less variable the data. The more the data differ 
from the modal category, to the extreme point that there is no 
longer a concentration of values, the more variable the data. 
The extent to which the modal category’s frequency stands 
apart from the frequencies of other categories therefore 
determines the appropriateness to refer to the mode as a 
typical value (Cooper & Shore, 2010). 

The histogram
Within the group of bar-like representations, the histogram 
is an innovation developed from the distribution bar 
graph. According to Cooper and Shore (2010), its use of 
bars makes the histogram visually similar to the two 
other types of graphs (value bar graphs and distribution 
bar graphs) discussed earlier and thus it can potentially 
be confused with them. Categorical scales come in three 
fundamental types: nominal, ordinal and interval. Whilst 
value bar graphs and distribution bar graphs usually plot 
nominal and ordinal data respectively, in a histogram, each 
bar represents the frequency of intervals of continuous 
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FIGURE 3: Rainfall for Beijing and Toronto
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FIGURE 4: Distribution bar graph for the number of books read by 12 children.
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FIGURE 5: A histogram showing the distribution of ages of people in a region.

data. I will use an example to illustrate how histograms 
represent continuous data. 

Let us say we want to count the number of people in a 
region who are aged 50 years and older. However, we might 
not want to report a separate count for every individual 
case of the 1000 people that fall within this age range  
(a value bar graph) and neither do we want to report on an 
individual age from 50 to 100 (a distribution bar graph). This 
age range (50–100) could then be converted into interval 
scale by subdividing the full range into smaller ranges, for 
example, ranges labelled 50–59, 60–69, 70–79, 80–89, and 
90–99. According to Few (2005), an interval scale starts 
out as a quantitative scale that is then converted into a 
categorical scale by subdividing the range of values into a 
sequential series of smaller ranges of equal size (intervals) 
and by giving each range a categorical label. Age is a typical 
example of a continuous variable and in Figure 5 we see how 
the histogram summarises the data. 

Histograms are best used with data where non-integers 
are actually possible; hence the bars are drawn adjacent to 
each other as they represent intervals of continuous data. 
The numbers on the horizontal axis correspond to the 
midpoints of the intervals (e.g. 55 in the first interval of 
50–60), which determine where a particular data point gets 
counted on the histogram. Due to the use of the midpoint 
value the raw data values are no longer accessible in a 
histogram. The reader therefore is less likely to calculate a 
measure of variability and even when an attempt is made, 
accuracy is lost in measures of centre such as the mean as 
they become more estimates. In a histogram the counting 
of a particular data point at the midpoint of intervals is 
supported by Cooper and Shore (2010), who argue that at 
times we may want to read the trend of the distribution. 
We can achieve this by creating a histograph or frequency 
polygon from a histogram. A frequency polygon displays 
data by using line segments connecting points plotted 
for the frequencies at the midpoint of each class interval. 
A histograph is used only when depicting data from the 
continuous variables shown on a histogram. Given these 
conventions, the analysis then focused on the extent to 
which learners’ representations were consistent with or in 
violation of these conventions. 

Methodology
Participants
This article works with archived data collected from 
four experienced (over seven years on average) Grade 11 
teachers, two male and two female (Mhlolo & Schäfer, 2012). 
Twenty lessons on number, algebra and data handling 
topics were video recorded and transcribed, generating a 
300-page database. This article focuses on the lessons from 
one male Grade 11 teacher who was observed teaching 
data handling to a class of 43 learners. Prior to the lessons, 
the learners had been tasked by this teacher to collect 
data on the number of children in different households 
around the school. This was for a Mathematics project 
which formed part of their curriculum requirements. 
The lessons from which this article draws data could be 
described as learner-centred in that the teacher took more 
of a back seat and wanted to see how the learners would 
handle the data they had collected. This presented an 
ideal environment for the researcher to understand how 
the learners assimilated their prior knowledge in a typical 
problem-solving situation. The lessons were demarcated 
into four units of analysis and the criteria for demarcation 
are briefly discussed. 

Units of analysis
There is general consensus on the view that learners’ 
meta-representational competence is the very resource 
out of which expertise is constructed (diSessa & Sherin, 
2000) and a number of researchers have used other terms 
such as phenomenological primitives (p-prims) (diSessa, 
1993, 2004), cues (Davis, 1984) or ‘met befores’ (Tall, 2008) 
in support of the existence of such a pool of knowledge. 
Kosslyn (1989) suggests that in order to analyse 
learners’ meta-representational competence for graphs 
it is necessary to examine their understanding of the 
interrelated connections amongst three broad constituents 
of a graph: a frequency distribution table, a framework 
and a specifier. Consistent with this suggestion, in this 
article, Analysis Unit 1 focuses on how learners created 
the table for the graph, Unit 2 on how they drew the axes 
and Unit 3 on construction of the bars. Unit 4 was added to 
focus on the final bar-like representation that was drawn 
by learners. Whilst connections between these interrelated 
constituents of a graph are necessary, an observation made 
by Few (2005) was that most people walk through these 
choices as if they were sleepwalking, with only a vague 
sense of what works or why one choice is better than 
another. 

Data
We pick up the conversation after the learners had drawn 
a frequency table on the board showing the results of the 
survey of the number of children in different households. 
Initially the table had been drawn without the tally column. 
In the extracts below, ‘T’ stands for teacher, ‘L’ for learner 
and ‘Chorus’ indicates a group response.

http://www.pythagoras.org.za
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Unit 1: Construction of a table
T:  So what do we do next after you have drawn the 

frequency table?

Chorus:  We make tallies. We make a pie chart. We make a 
graph. [After a while it is agreed that the table should have 
tallies.] 

L1:  [Comes to the board and makes a tally of the number 8 as 
requested by the teacher.]

T: Have you ever seen something like this?

Chorus: Yes

T: Where?

Chorus:   Last year. Last of last year. The previous maths 
teacher.

T:  So the previous maths teacher showed you how to 
tally? OK, can you complete the table then. [The table 
is then completed as shown in Figure 6.]

Unit 2: Drawing the axes
T:  Now after this information, how can you display this 

information? What it is like here, the information has been 
collected and now it has been organised. OK now how are 
you going to display this information?

L2: In a graph.

T:  Graph, we have different types of graphs and also  
we have different types of data. It’s grouped and 
ungrouped. The way you display grouped data is not the 
same way as you display ungrouped data. So what type 
of a graph?

L3: Bar graph.

T: Can somebody show us how to go about it?

L4:  [Comes to the board and draws two axes labelled as in Figure 7.]

T:  OK what do you call this line? [Points to the horizontal axis.]

L5:  The x-axis.

T:  Now on the horizontal or the vertical OK you need to  
have either the number of children in each family and 
on the other you need to have maybe type of frequency 
whatever. 

L6:   [Comes to the board and labels the horizontal axis as ‘number of 
children in different families’. The vertical axis is labelled as the 
frequency axis.]

Unit 3: Construction of the bars

T:  Now how are you going to display your data? 
Where, OK here it is number of children [pointing to 
the horizontal axis]. We start with what? Now because 
it’s a bar graph, how would you put it here? Like this 
is the bar [teacher drawing examples of horizontal and 
vertical rectangular blocks]. Now how are you going to 
display your 0 and 8? 

L7:  [Comes to the board and draws the first bar in between 0 
and 1 on the horizontal axis in Figure 8.]

T: Is he correct?

Chorus: Somehow, almost, maybe.

L8: That bar shows a quarter and eight, Ma’am.

T: OK so the zero was supposed to be where? Here?

L9:  [Goes to the board and places a second 0 at the point where 
the bar intersected with the horizontal axis making the first 
bar sit between the two zeros as shown in Figure 7 and 
Figure 8.]  

T: So if the 0 was here he would be correct.

L10: Maybe it’s incorrect.

L11: It’s incorrect.  

T:  Let’s see if you can put the bar for 1 and 14. Let’s see. 
Let’s try.

L12:  [Comes to the board and places the second bar showing a 
frequency of 14 as shown in Figure 8 and Figure 9.]
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FIGURE 6: Frequency table for the number of children in different households.
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FIGURE 8: Graph showing the number of children in different households.

http://www.pythagoras.org.za


 http://www.pythagoras.org.za doi:10.4102/pythagoras.v36i1.259

Page 7 of 10 Original Research

L13:  [Commenting after the second bar had been drawn] It’s 
wrong.

T:  [Asks yet another learner to draw the bar showing 2 and 
20. An interesting observation made is that whilst the first 
two bars had been drawn adjacent to each other, this third 
bar was disjointed as shown in Figure 8. The graph was 
re-drawn for clarity (Figure 9).]

  [After some long discussions on whether or not the graph 
was representing the data accurately, it was erased.] 

L14:  [Comes to the board and draws another new set of axes. 
The zero which was at the intersection of the horizontal 
and vertical axes is then removed leaving the second zero 
and the other values as they were on the abandoned axes.]

Chorus:  [Learners take turns to draw the bars on this new set of 
axes as shown in Figure 10.]

Unit 4: The final bar-like representation

T:  If you were to display something like this to a person 
who doesn’t know mathematics will that person be 
in a position to read? OK remember that you have 
organised your data and now you are displaying 
your data, can a person be able to read this?

L15:  I think maybe you have to label whether which 
side is talking about number of children and the 
households. [This comment came because the axes had 
not been labelled.]

T:  Ok now turn to the notice board. Look at the graph 
of inflation. This type of graph is called a bar graph. 
Look at it and the one we have just drawn. What 
is the difference? [There was a graph in class showing 
inflation rates from 1999 to 2009.] 

Chorus:  The spaces, it’s decorated, it’s neatly displayed. 
[Lesson ends] 

Discussion
The questions steering this analysis were:

1. What is the nature of learners’ prior knowledge for 
graphs?

2. Where do these ideas come from?
3. How are they involved both productively and 

unproductively in the process of constructing bar graphs?

Each unit of analysis attempts to answer these three 
questions.

Unit 1: Constructing the frequency table
From the discussion that took place during the process of 
making a frequency table for the collected data, it is evident 
the learners brought the knowledge of tallying from the 
‘previous teacher’. It can be argued that the knowledge of 
tallying was neither supportive nor problematic since with 
or without the tally column the students would still have 
been able to construct a correct bar graph. However, the 
agreement by learners that frequencies should be ‘tallied’ 
opened up a number of questions about their procedural and 
conceptual understanding of tallying. Let us recall that a tally 
is a mark used in recording a number of acts or objects, most 
often consisting of four vertical lines cancelled diagonally 
or horizontally by a fifth line. Tallying or counting is the act 
of finding the number of elements of a finite set of objects 
through a one-to-one correspondence. It is meant to avoid 
visiting the same element more than once. After tallying the 
value of the final object gives the desired number of elements 
(cardinality) in that set. So if the learners’ frequency table had 
a column of frequencies, by implication tallying had already 
been done. Therefore from the learners’ wanting to tally the 
number 8 or 14 or 20 (frequencies) it can be concluded that 
the purpose of tallying and when it should be done were not 
clear to them. This suggests that learners had a superficial 
understanding of the concept.

Unit 2: Drawing the axes
When prompted to show the information on a bar graph, what 
is evident is that learners brought their prior knowledge of a 
framework of a graph with an x-axis and a y-axis intersecting 
at 0 and scaled on both axes as shown in Figure 7. Students 
meet this type of framework more often when solving 
equations graphically. Was this prior knowledge supportive? 
To a certain extent this prior knowledge was supportive for, 
according to Friel et al. (2001), graphs share similar structural 
components. The framework of a graph as discussed earlier 
gives information about the kinds of measurements being 
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FIGURE 9: Learners’ bar-like graph of survey data.

FIGURE 10: Bar-like graph of the number of children in different households.
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used and the data being measured. The simplest framework 
has this L-shape that learners drew, with one leg (x-axis) 
standing for the data being measured and the other leg 
(y-axis) providing information about the measurements that 
are being used. This was important for the learners to be able 
to represent their data on a bar graph. 

However, to a larger extent, it is evident that their prior 
knowledge of axes was not very productive as they later 
struggled to draw the bars for their data. When both the 
x-axis and the y-axis have numerical information, as was 
the case in this task, learners needed to have a deeper 
knowledge of numbers in order to figure out which 
numerical information goes onto which axis. Curcio 
(1987) reports that the mathematical contents of a graph, 
that is, number concept, relationships and fundamental 
operations contained in it, were factors in which prior 
knowledge seemed necessary for graph comprehension. 
The recommendation was that the relationship between the 
subject matter of number and choice of graph form should 
be further investigated.

It is evident that learners did not have a clear understanding 
of this relationship. By drawing a framework of a graph with 
an x-axis and a y-axis intersecting at 0 and scaled on both 
axes learners implied a functional relationship between the 
variables depicted on the axes. Yet bar graphs by convention 
are not used to convey functional relationships (Follettie, 
1980) because such a graph of categorical data displays 
the relative magnitudes without implying a functional 
relationship. Therefore, conventionally a bar graph of 
categorical data would have a scale only on its frequency 
axis. In a similar study on high school and college students, 
delMas, Garfield, Ooms and Chance (2007) also speculate 
that learners do not actually understand what the axes 
represent. Friel and Bright (1995) caution that interpreting 
graphs that utilise two axes may present difficulties if the 
nature of data that they represent across different graphs 
is not explicitly recognised. When considering graphs with 
any of these frameworks as tools for data reduction, one 
should note the differences in the nature of data that are 
represented on these axes. In the case of a value bar graph, 
distribution bar graph or histograms, the major difference 
is in what is represented on the x-axis. For example, in a 
value bar graph drawn with vertical columns, the columns 
are positioned over a label on the x-axis that represents a 
nominal measure. A nominal measure refers to data that 
consist of names or categories so that the data cannot be 
arranged in any specific ordering scheme. The nominal level 
of measurement occurs when the observations do not have 
a meaningful numeric value, for example numbers assigned 
to soccer players. The values of nominal variables cannot be 
meaningfully compared to see if one is larger than another, 
cannot be added, subtracted, multiplied or divided nor can 
the mean be calculated (what most people call the average). 
So in this case, the x-axis does not have a low end or a high 
end, because the labels on the x-axis are categorical and not 
quantitative. Learners get experience of such categorical 

bar graphs much earlier than functional graphs. They draw 
graphs of weather in a week where the horizontal axis is 
labelled with the days of the week as early as Grade 1. So 
one can argue that learners’ pre-knowledge of symbolic 
functional graphs where the numbers on the x-axis 
represent a scale like on a number line was a stumbling 
block to understand how to represent categorical data as 
labels without a scale or order. 

Unit 3: Constructing the bars
After drawing the axes, it was evident that learners did 
bring their prior knowledge of matching the height of bars 
with the frequencies (see Figure 8 and Figure 10). Generally 
a bar graph plots the number of times a particular value 
or category occurs in a data set, with the height of the bar 
representing the number of observations of that score or 
that category. It is evident from Figure 8 and Figure 10 
(see marks placed between 5 and 10 and 10 and 15 on the 
vertical axis) that this knowledge was productive in terms 
of matching precisely the height of bars for 8, 14 and 20 with 
the frequencies. 

The problem however surfaced in terms of where these bars 
sit. By placing the 0 at the origin the class struggled to draw 
the first bar showing 8 families with 0 children each and 
the subsequent bars were also problematic. This suggests 
that learners were unable to distinguish the data set that 
they were dealing with. Distinguishing between sets of data 
as discrete cases, discrete categories or grouped numerical 
data along some scale is a critical factor for constructing 
appropriate representations of the data. In all the three 
representations of categorical data, that is, value bar 
graphs, distribution bar graphs and histograms, categories 
of the variable are typically marked at the midpoints of the 
category on that particular axis (horizontal if it is a column 
graph and vertical if it is a bar graph). From the way learners 
drew their bars, it is evident that this convention was 
not recognised as their bars were sitting on two different 
numbers at the same time. 

Another evident failure to recognise a convention was that at 
times learners drew joint bars as in the histogram and at 
times disjoint bars as in a bar graph, yet conventionally 
histograms must have joint bars and bar graphs must have 
disjoint bars. A study on learners’ conceptual understanding 
of statistics by delMas et al. (2007) identified learners’ inability 
to recognise critical differences between histograms and 
other graph types that use bars. This would have been 
expected given that empirical evidence shows that at school 
level these graphs are usually referred to as bar graphs and 
only recently has more attention been given to distinguishing 
between these graphs (Cooper & Shore, 2010). 

Unit 4: The final representation
Let us recall that the learners wanted to represent their 
own collected data on a bar graph. The question then is: 
to what extent did they achieve this objective? We notice 
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from the basic-level constituents discussed earlier that the 
learners’ representation is neither a value bar graph, nor a 
distribution bar graph nor a histogram. Whilst the heights of 
bars matched with the frequencies, they were joint bars and 
were sitting on two different values on the horizontal axis 
in violation of the midpoint convention that guides where 
bars should be located in value bar graphs, distribution 
bar graphs and histograms. The overall mathematical 
outcome here was something close to a histogram but did 
not represent the original data set particularly well, either 
in terms of mathematical structure and convention or with 
reference to the real-world situation being represented. This 
suggests that learners’ meta-representational competences 
were inadequate for bar graph construction.

When numbers are used in bar graphs, the axis that assumes 
a categorical scale could represent three fundamental 
types: nominal, ordinal and interval data. These categorical 
contexts of number are problematic even with adults given 
that the majority of time spent on number and operations in 
the earlier grades focuses on numbers in their quantitative 
contexts, with learners usually encountering the categorical 
contexts of number only when dealing with data handling 
tasks. This suggests that to communicate effectively using 
graphs, one has to understand the nature of the data, 
graphing conventions and a bit about visual perception. 
Without guiding principles rooted in a clear understanding 
of graph design, choices are arbitrary and the resulting 
communication fails to represent the information effectively, 
as was the case in this class.

Implications
This article has both theoretical and practical implications. In 
terms of theory, this article has shown that due to the more 
recent emergence of the field of statistics, there is much more 
flexibility in nomenclature and lack of convergence on what 
the conventions should be. Watson and Fitzallen (2010) show 
how for example at both primary and high school levels, 
these bar-like representations are often simply referred to as 
bar graphs so that their distinction is unclear. Yet from this 
article it has been shown that the methods of judging both 
centre and variability are clearly different across such bar-
like representations. Cooper and Shore (2010) show how an 
understanding of measures of centre and variability was the 
single most important foundational concept in all statistical 
thinking. So in order to teach these concepts effectively, 
curricula need to be constructed and implemented carefully; 
writing realistic assessment items plus having the resources 
to mark them is not easy if graphs continue to be referred to 
loosely as bar graphs. All this points to the need to converge 
on some specific naming of these bar-like representations 
and this article suggests that Cooper and Shore’s way of 
distinguishing between value bar graphs, distribution bar 
graphs and histograms guides us towards such convergence 
in nomenclature.

In terms of concept formation, as long as these bar-like 
representations are referred to loosely as bar graphs, learners 

will not make connections between the different graphical 
representations of quantitative data and their corresponding 
ways of conveying information on measures of centre and 
variability for that data. Research indicates that learners 
entering college may have only a superficial understanding 
of centre and variability and are likely to have particular 
difficulty extracting information about those measures when 
data are presented in graphical form (Cooper & Shore, 2010). 
Yet Franklin et al. (2007) maintain that an understanding of 
variability in data is the single most important foundational 
concept in all of statistical thinking. A solution to this problem 
might be addressed by this convergence in conventions as 
suggested in this article.

In terms of practice, this study argues that knowing the ways 
in which these types of bar-like graphs (value bar graphs, 
distribution bar graphs and histograms) represent certain 
types of data may help teachers make decisions about the 
level of complexity for instruction. Whilst the so called ‘bar 
graph’ is often encountered by students as early as preschool, 
this article argues that the level of complexity of categorical 
data that is handled by learners at that early stage is low. 
This is the kind of data that is best represented in what has 
been defined in this article as the value bar graph. Friel et al. 
(2001) show that the transition from these case value bar 
graphs to distribution bar graphs may be confusing if this 
transition is not carefully considered and explored because 
the axes must be redefined. This confusion is evident in this 
article: learners wanted to draw a bar graph but they ended 
up with something close to a histogram, suggesting that 
they could not distinguish between these types of bar-like 
graphs. The view is that teachers should create a gradual 
transition from drawing graphs with objects themselves 
(value bar graphs) to the more abstract distribution bar 
graph (Rangecroft, 1994). A similar suggestion put forth by 
Franklin et al. (2007) was that both primary and secondary 
learners engage in tasks that require them to integrate 
deep understanding of graphical representation along with 
measures of centre and spread through a steady progression 
from value bar graphs, through distribution bar graphs to 
histograms.
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