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Abstract 

The creation of scientific weather forecasts is troubled by many technological challenges (Stern 

& Easterling, 1999) while their utilization is generally dismal. Consequently, the majority of 

small-scale farmers in Africa continue to consult some forms of weather lore to reach various 

cropping decisions (Baliscan, 2001). Weather lore is a body of informal folklore (Enock, 2013), 

associated with the prediction of the weather, and based on indigenous knowledge and human 

observation of the environment.  As such, it tends to be more holistic, and more localized to the 

farmers’ context. However, weather lore has limitations; for instance, it has an inability to offer 

forecasts beyond a season. Different types of weather lore exist, utilizing almost all available 

human senses (feel, smell, sight and hearing). Out of all the types of weather lore in existence, it 

is the visual or observed weather lore that is mostly used by indigenous societies, to come up 

with weather predictions.  

On the other hand, meteorologists continue to treat this knowledge as superstition, partly because 

there is no means to scientifically evaluate and validate it. The visualization and characterization 

of visual sky objects (such as moon, clouds, stars, and rainbows) in forecasting weather are 

significant subjects of research. To realize the integration of visual weather lore in modern 

weather forecasting systems, there is a need to represent and scientifically substantiate this form 

of knowledge.   

This research was aimed at developing a method for verifying visual weather lore that is used by 

traditional communities to predict weather conditions. To realize this verification, fuzzy 

cognitive mapping was used to model and represent causal relationships between selected visual 

weather lore concepts and weather conditions. The traditional knowledge used to produce these 

maps was attained through case studies of two communities (in Kenya and South Africa).These 

case studies were aimed at understanding the weather lore domain as well as the causal effects 

between metrological and visual weather lore. In this study, common astronomical weather lore 

factors related to cloud physics were identified as: bright stars, dispersed clouds, dry weather, 

dull stars, feathery clouds, gathering clouds, grey clouds, high clouds, layered clouds, low 

clouds, stars, medium clouds, and rounded clouds. Relationships between the concepts were also 

identified and formally represented using fuzzy cognitive maps.   
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On implementing the verification tool, machine vision was used to recognize sky objects 

captured using a sky camera, while pattern recognition was employed in benchmarking and 

scoring the objects. A wireless weather station was used to capture real-time weather parameters. 

The visualization tool was then designed and realized in a form of software artefact, which 

integrated both computer vision and fuzzy cognitive mapping for experimenting visual weather 

lore, and verification using various statistical forecast skills and metrics. The tool consists of four 

main sub-components: (1) Machine vision that recognizes sky objects using support vector 

machine classifiers using shape-based feature descriptors; (2) Pattern recognition–to benchmark 

and score objects using pixel orientations, Euclidean distance, canny and grey-level concurrence 

matrix; (3) Fuzzy cognitive mapping that was used to represent knowledge (i.e. active hebbian 

learning algorithm was used to learn until convergence); and (4) A statistical computing 

component was used for verifications and forecast skills including brier score and contingency 

tables for deterministic forecasts. 

Rigorous evaluation of the verification tool was carried out using independent (not used in the 

training and testing phases) real-time images from Bloemfontein, South Africa, and Voi-Kenya. 

The real-time images were captured using a sky camera with GPS location services. The results 

of the implementation were tested for the selected weather conditions (for example, rain, heat, 

cold, and dry conditions), and found to be acceptable (the verified prediction accuracies were 

over 80%). The recommendation in this study is to apply the implemented method for processing 

tasks, towards verifying all other types of visual weather lore. In addition, the use of the method 

developed also requires the implementation of modules for processing and verifying other types 

of weather lore, such as sounds, and symbols of nature. 
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Extended Abstract 

Since time immemorial, from Australia to Asia, Africa to Latin America, local communities have 

continued to rely on weather lore observations to predict seasonal weather as well as its effects 

on their livelihoods (Alcock, 2014). This is mainly based on many years of personal experiences 

in observing weather conditions. However, when it comes to predictions for longer lead-times 

(i.e. over a season), weather lore is uncertain (Hornidge & Antweiler, 2012). This uncertainty has 

partly contributed to the current status where meteorologists and other scientists continue to treat 

weather lore as superstition (United-Nations, 2004), and not capable of predicting weather.  

One of the problems in testing the confidence in weather lore in predicting weather is due to  

wide varieties of weather lore that are found in the details of indigenous sayings, which are 

tightly coupled to locality and pattern variations(Oviedo et al., 2008). This traditional knowledge 

is entrenched within the day-to-day socio-economic activities of the communities using it and is 

not globally available for comparison and validation (Huntington, Callaghan, Fox, & Krupnik, 

2004). Further, this knowledge is based on local experience that lacks benchmarking techniques; 

so that harmonizing and integrating it within the science-based weather forecasting systems is a 

daunting task (Hornidge & Antweiler, 2012). It is partly for this reason that the question of 

validation of weather lore has not yet been substantially investigated. Sufficient expanded 

processes of gathering weather observations, combined with comparison and validation, can 

produce some useful information. Since forecasting weather accurately is a challenge even with 

the latest supercomputers (BBC News Magazine, 2013), validated weather lore can be useful if it 

is incorporated into modern weather prediction systems.  

Validation of traditional knowledge is a necessary step in the management of building integrated 

knowledge-based systems. Traditional knowledge incorporated into knowledge-based systems 

has to be verified for enhancing systems’ reliability. Weather lore knowledge exists in different 

forms as identified by traditional communities; hence it needs to be tied together for comparison 

and validation. The development of a weather lore validation tool that can integrate a framework 

for acquiring weather data and methods of representing the weather lore in verifiable forms can 

be a significant step in the validation of weather lore against actual weather records using 

conventional weather-observing instruments. The success of validating weather lore could 

stimulate the opportunity for integrating acceptable weather lore with modern systems of weather 
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prediction to improve actionable information for decision making that relies on seasonal weather 

prediction. 

In this study a hybrid method is developed that includes computer vision and fuzzy cognitive 

mapping techniques for verifying visual weather lore. The verification tool was designed with 

forecasting based on mimicking visual perception, and fuzzy thinking based on the cognitive 

knowledge of humans. The method provides meaning to humanly perceivable sky objects so that 

computers can understand, interpret, and approximate visual weather outcomes. 

Questionnaires were administered in two case study locations (KwaZulu-Natal province in South 

Africa, and Taita-Taveta County in Kenya), between the months of March and July 2015. The 

two case studies were conducted by interviewing respondents on how visual astronomical and 

meteorological weather concepts cause weather outcomes. The two case studies were used to 

identify causal effects of visual astronomical and meteorological objects to weather conditions. 

This was followed by finding variations and comparisons, between the visual weather lore 

knowledge in the two case studies. The results from the two case studies were aggregated in 

terms of seasonal knowledge. The causal links between visual weather concepts were 

investigated using these two case studies; results were compared and aggregated to build up 

common knowledge. The joint averages of the majority of responses from the case studies were 

determined for each set of interacting concepts. 

The modelling of the weather lore verification tool consists of input, processing components and 

output. The input data to the system are sky image scenes and actual weather observations from 

wireless weather sensors. The image recognition component performs three sub-tasks, including: 

detection of objects (concepts) from image scenes, extraction of detected objects, and 

approximation of the presence of the concepts by comparing extracted objects to ideal objects. 

The prediction process involves the use of approximated concepts generated in the recognition 

component to simulate scenarios using the knowledge represented in the fuzzy cognitive maps. 

The verification component evaluates the variation between the predictions and actual weather 

observations to determine prediction errors and accuracy. 

To evaluate the tool, daily system simulations were run to predict and record probabilities of 

weather outcomes (i.e. rain, heat index/hotness, dry, cold index). Weather observations were 

captured periodically using a wireless weather station. This process was repeated several times 
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until there was sufficient data to use for the verification process. To match the range of the 

predicted weather outcomes, the actual weather observations (measurement) were transformed 

and normalized to a range [0, 1].In the verification process, comparisons were made between the 

actual observations and weather outcome prediction values by computing residuals (error values) 

from the observations. The error values and the squared error were used to compute the Mean 

Squared Error (MSE), and the Root Mean Squared Error (RMSE), for each predicted weather 

outcome. 

Finally, the validity of the visual weather lore verification model was assessed using data from a 

different geographical location. Actual data in the form of daily sky scenes and weather 

parameters were acquired from Voi, Kenya, from December 2015 to January 2016.The results on 

the use of hybrid techniques for verification of weather lore is expected to provide an incentive 

in integrating indigenous knowledge on weather with modern numerical weather prediction 

systems for accurate and downscaled weather forecasts. 
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1.Chapter One: Introduction and Background Information 

1.1 Introduction 

In the older lifestyles of the past, the scientific (especially Seasonal Climate Forecasts (SCFs)) 

weather forecasting methodologies in use today were not available (Anandaraja & 

Rathakrishnan, 2008; Chagonda et al., 2015); people observed their environment to determine 

weather patterns (Alcock, 2014; Cannell, 1933). Clues to future weather patterns were realized 

by looking at the skies, using the behaviour of animals, birds as well as plants; it was also based 

on beliefs (Anandaraja & Rathakrishnan, 2008) and myths (Suter, 2013). Among these 

indicators, it is the observation of the sky (Narasimhan & Nayar, 2002) that played the greatest 

role as a weather prediction method. For example, a red sky at sunset indicated dry weather 

conditions while red sky at sunrise meant moisture/rain was expected. It has been demonstrated 

that cloud patterns can be used as accurate weather predictors (Calbo & Sabburg, 2008). 

Rainbows have also been an indicator of weather, as it refracts the light and breaks it down into 

colours; for instance, a rainbow in the morning to the west usually indicates approaching rains. 

The visualization of weather lore is made possible by the human visual cognitive system 

(Hullman, Krupka, & Adar, 2015) that has an extraordinary capability of distinguishing a wide 

variety of visual objects in different appearances. The visual recognition process occurs with 

little effort due to the brilliant structure of the human brain (Xue, 2014) and its capacity for quick 

parallel processing. In the modern world, computer vision researchers aim to understand human 

perception and model automatic visual recognition systems.  

Weather lore can be defined as the body of informal folklore, associated with the prediction of 

the weather based on indigenous knowledge (IK) and human observation of the environment. A 

great number of researchers have been directing efforts towards promoting weather lore 

especially on disaster management and how to integrate them to the SCFs (Baliscan, 2001; 

Goodchild & Glennon, 2010; Okonya & Kroschel, 2013). This is driven by the realization that 

SCFs and weather lore complement each other and that the rich weather lore could help in 

making the forecasts more relevant to the local people’s context. Though having generated 

promising results, such integration initiatives still face many challenges (Nakashima & McLean, 

2012). For instance, the initiatives tend to take the approach of using the weather lore to enrich 

the SCFs and hence losing most of the weather lore’s richness especially the more sustainable 
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indigenous drought mitigation strategies (Mwagha, Waiganjo, Moturi, & Masinde, 2014; Oviedo 

et al., 2008). Weather lore is holistic (Enock, 2013); it describes the effects of the forecast on the 

people’s way of life. It gives the details of the rainy season in terms of its onset, cessation, 

general distribution (for instance, determining if there are dry spells in-between), and suitability 

for different crops, among other effects. The weather forecast further gives decision support 

information such as when to start and stop planting, how many times planting should be done, 

what to plant, how to plant and even where to plant. Weather lore is very dynamic (Warren, 

1998). For example, in the short-term (up to 24 hours), it gives very accurate information on 

rainfall timings, including the nature (such as hail) and direction of the rain. Trying to represent 

these aspects using conventional systems would yield an incomprehensibly complex system 

(Mwagha & Masinde, 2015).   

On the other hand, fuzzy cognitive mapping (FCM), which is a combination of fuzzy logic and 

cognitive mapping, can be used to model imprecise data and nonlinear functions of arbitrary 

complexity; this makes it an appropriate vessel for modelling and representation of weather lore 

knowledge as used in weather forecasting. Knowledge in systems that are characterized by 

uncertainty and complex (Obiedat, 1994) processes can be represented using fuzzy cognitive 

mapping. Fuzzy logic (Aguilar, 2004) is derived from fuzzy set theory dealing with reasoning 

that is approximate rather than precisely deducible from classical predicated logic. A cognitive 

map (Nasserzadeh, Jafarzadeh, Mansouri, & Sohrabi, 2008) is a representation and reasoning 

model on causal knowledge in the form of a directed, labelled and cyclic graph whose nodes 

represent causes or effects and whose arcs represent causal relations between these nodes. 

Cognitive maps represent beliefs (knowledge), which are laid out about a given domain of 

interest and are useful as a means of decision support. Fuzzy cognitive mapping has proven 

efficient for solving problems comprising a number of decisions involving uncontrollable 

variables that are causally interrelated. FCM is a ‘powerful tool in decision making’ (Gulati, 

2014) which aims at capturing the functioning of a complex system based on human 

understanding. FCMs are made up of signed diagraphs with feedback that describes the causal 

links between concepts (Dissanayake & AbouRizk, 2007; Maitra & Banerjee, 2014). To come up 

with common FCM, knowledge from different experts can be accumulated through combining 

several FCMs into a big FCM by merging same concepts (Stach, Kurgan, & Pedrycz, 2007). 

© Central University of Technology, Free State



3 
 

Fuzzy cognitive maps can be used to represent the causal knowledge (Hossein, Zarandi, 

Khademian, & Minaei-bidgoli, 2012) and experience, accumulated over a certain period on a 

complex phenomenon; this makes them a good candidate for modelling and representing weather 

lore. In this case, an FCM can be developed using human IK experts who know the operation of 

system and its behaviour in different circumstances. Weather lore is scarcely documented; 

however, it is orally passed on from one generation to the next. In the face of events such as 

industrialization and modernization, much weather lore has been lost.  The ability of FCMs to 

work efficiently with missing data; in modelling systems with nonlinearities and surrounding 

uncertainty can help represent traditional knowledge. The ability of FCMs can be facilitated by 

the use of artificial neural networks techniques that incorporate ideas from fuzzy logic to 

integrate the information into decision support systems. 

1.2 Statement of the Problem 

As a consequence lack of confidence by traditional people in scientific weather prediction 

systems and many years’ experience in observation of weather conditions, many traditional 

communities have been using visual weather lore observations in predicting weather and its 

effect on their livelihoods (Boven & Morohashi, 2002). With the need to make longer lead-times 

(over a season) for weather predictions, visual weather lore is at most considered to be doubtful 

(Nakashima & McLean, 2012). Meteorologists using modern instruments, such as satellites and 

weather-observing stations (Goswami, 1997), to predict weather still dispute whether any type of 

weather lore can be applied in predicting weather or should be considered as superstition 

(United-Nations, 2004). One aspect of the problem is that, even though there is some predictive 

quality (Zuma-netshiukhwi, Stigter, & Walker, 2013) in visual weather lore, there is no 

established technique yet that can be applied to verify and evaluate its validity. This is because 

validation is the basis of scientific process – but not all forms of weather lore can meet scientific 

thresholds (Nakashima & McLean, 2012). In addition, most of the different types of weather lore 

are identified and used in traditional communities to support livelihoods and therefore are not 

globally available for comparison and validation. Further, the weather lore knowledge applied in 

predictions is based on local experience (Okonya & Kroschel, 2013) and therefore lacks 

benchmarking techniques. This poses a significant challenge in the efforts towards harmonizing 

and integrating valuable visual weather lore knowledge into the conventional forecasting 

systems.  
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1.3 Motivation and Justification 

Weather lore data may be available in different forms (Hornidge & Antweiler, 2012) as 

identified by traditional communities and needs to be harnessed, compared and validated. One 

possible practical approach is the use of actual weather data for matching weather images and 

conditions related to visual weather lore. For this approach, a considerable investigation of visual 

weather lore is required to compare and validate (Friederichs & Thorarinsdottir, 2012). Sufficient 

expanded process of analyzing traditional weather observations, combined with comparison and 

validation, can produce useful information (Oviedo et al., 2008). Since forecasting weather 

accurately is a challenge (BBC News Magazine, 2013), even with the latest supercomputers 

(Simeonov, Kilifarev, & Ilarionov, 2006), validating weather lore can help to integrate it into 

modern weather prediction systems.  

Computer modelling has been applied to model and simulate complex phenomenon such as the 

visual weather lore (Mwagha & Masinde, 2015). After modelling, the resulting model outputs 

can further be verified with real-world knowledge. A computational model (Jones, 2010) can 

help in the integration of visual cognition methods together with knowledge representation and 

statistical methods to allow experimentation and verification. In this study, computer vision 

(Zhang J, 2006) techniques can be employed to detect and recognize sky weather images. The 

output of this can be passed through the fuzzy cognitive mapping system to predict weather 

outcomes which can further be scientifically verified using actual weather records. 

1.4 Research Questions and Objectives 

This research aimed at answering the following overarching research question: 

Can weather lore be scientifically verified to provide useful climate information and be 

integrated with modern forecasting techniques to improve prediction and help in decision 

making? 

This was answered through the following sub-questions: 

a) Which astronomical and meteorological visual aspects and techniques are commonly used in 

the context of traditional weather forecasting? 

b) What are the causal effects between visual astronomical and metrological phenomena for 

weather outcomes? 
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c) Can computer vision techniques and fuzzy cognitive mapping be useful in representing visual 

weather lore in identifying weather concepts and verifying them? 

d) Can the development of a tool combining the methods in sub-questions (a) and (b) listed 

above be useful in predicting weather outcomes based on visual weather lore? 

e) To what degree of accuracy can the application of the tool in sub-question (d) above be 

useful in verifying visual weather lore? 

By addressing the above research questions, the main objective of this research was to develop a 

visual weather lore verification tool that combines the techniques of computer vision and fuzzy 

cognitive mapping. The sub-objectives in this research include: 

a) identifying astronomical and meteorological visual aspects and techniques commonly used 

for weather forecasting in traditional communities; 

b) determining the existence of causal effects between visual astronomical and metrological 

aspects and weather outcomes; 

c) applying the techniques of fuzzy cognitive mapping for efficient representation of the 

relationships between visual astronomical and meteorological aspects to weather outcomes; 

d) using computer vision techniques to recognize visual weather concepts that symbolize human 

visualized weather lore concepts; 

e) developing a tool combining the two methods listed in (c) and (d) above (i.e. fuzzy cognitive 

mapping and computer vision techniques) for predicting weather outcomes based on 

symbolized visual weather lore; and 

f) verifying the weather predictions from the combined tool (listed in (e) above) using observed 

weather to compute its forecast skills. 

1.5 Research Hypothesis 

The design of a visual weather lore verification tool (with forecast skill verification metrics) 

integrating computer vision (for visual sky objects recognition), fuzzy cognitive mapping 

techniques (for representing and predicting visual weather lore knowledge), and wireless sensor 

weather station (for acquiring actual weather observations) can efficiently be used to validate 

visual weather lore. 
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1.6 The Solution Approach 

The research problem was addressed by using case study approach (Sunny, Mike, Bing, & 

Daying, 2012) to investigate the visual weather lore domain. This was followed by the design of 

a visual weather lore verification model that had three sub-components for handling detection, 

prediction and verification. The detection component was realized, using computer vision 

methods (Elissa, Mariya, Abhinav, Xinlei, & Ishan, 2015) of object recognition and 

approximation of the presence of visual objects in sky scenes. The second component was based 

on fuzzy cognitive mapping techniques (Steven et al., 2015), that was used to represent tacit 

knowledge on visual weather and to predict weather outcomes based on visual concepts. The 

third component is a verification module that compares system predictions to actual weather 

observations from a wireless weather station (Xiaojun Wang, Pan, & Weihong, 2015).  The 

verification component is used in computing various forecast skills metrics (Hamill, 2006).  The 

solution was tested and validated using actual weather data acquired from both South Africa and 

Kenya. 

1.7 Scope and Limitation of the Research 

This research reveals a method of successfully verifying traditional visual knowledge that is 

useful for weather prediction. Experts could refine the seasonal knowledge matrices to fill in 

gaps using new knowledge from their indigenous locations before simulating weather outcomes. 

The model was verified using the identified concepts with the recommendation that detectors for 

additional visual concepts be trained and tested before introducing additional concepts in the 

connection matrices. 

This research assumed that not all visual weather lore can be acquired, hence making it 

impossible to characterize all forms of visual weather lore. Another assumption was that it was 

not possible to incorporate visual weather lore from all communities within the time frame of 

this study. Thus, only two communities (one in Kenya and one in South Africa) were 

investigated as case studies. 

Image processing techniques were applied to pre-process weather images and conditions for 

characterization of visual weather lore, hence significant quantities of subsets of weather images 

to identify weather conditions were pre-processed for investigation in this research.  
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The pre-processing procedure guaranteed a sufficiently representative subset of characterized 

visual weather lore for testing performance of the visual weather lore verification tool. 

The process of acquiring visual sky images from various formats could lead to incompatibility of 

the input images. Such incompatibility constraints were overcome by performing transformations 

of the images from the various formats independently and then to a jpeg image format. 

Furthermore, constraints for image data sources to use variable file format such as in jpg and 

jpeg images were implemented. In the case studies, modes of traditional knowledge estimates 

were used to handle missing data and hence could influence visual weather lore knowledge 

representation and prediction results. A substantial number of sky images were used to train and 

test the visual sky objects detectors, hence minimal discrepancies were assumed. To address the 

issue of weather complexity, the relationships between weather lore to weather images and 

weather data were confined to common and more general weather outcomes (rain/wet 

conditions, cold conditions, heat levels, dry conditions). 

A considerable variety of weather lore (such as observation of clouds and visual astronomical 

signs of nature) was not incorporated in this research. This was because the research aimed at 

recognizing the scientific insight on using visual weather lore for weather prediction. The 

unverified weather lore such as behaviour of animals and signs of nature (Acharya, 2011b; 

Okonya & Kroschel, 2013) can be considered where methods to verify specific weather lore 

categories need to be developed. 

1.8 Significance, Achievements and Contribution 

Successful validation of weather lore stimulates the opportunity for integrating consistent visual 

weather lore with modern systems of weather prediction to enhance their applications in 

providing climate information for decision support systems. This research has made a significant 

contribution to the scientific community (and the society in general) because of its unique 

attempt to scientifically verify weather lore and integrate it with modern forecasting systems. 

Specifically, this research is unique since it involves hybrid technique that combines computer 

vision (Aguilar, 2005) and fuzzy cognitive mapping to verify visual weather lore. In addition, 

this study used fuzzy cognitive mapping techniques in establishing relationships between visual 

weather lore and weather outcomes as well as predicting and verifying visual weather lore 

against actual (observed) weather records. The examination of computational applicability in 
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mimicking human sense and decision-makingby understanding the relations between visual 

weather concepts and actual weather phenomena was achieved. 

Information from literature and case studies was combined; to statistically explore knowledge in 

the visual weather lore domain, to develop a visual weather lore verification tool. A formulation 

was achieved for the definition of requirements, outputs and definition of mathematical logic that 

entails the design of a visual weather lore verification tool.In summary, this research uniquely 

contributed to the information technology and environmental science domains in the following 

ways: 

a) Through utilization of hybrid techniques that integrated computer vision, wireless weather 

sensors and fuzzy cognitive mapping to verify visual weather lore. Case studies were used 

to characterize visual weather lore to associated weather conditions. This also contributed 

to environmental-science research through integrating case study methods to investigate 

causal effects of traditional weather knowledge and computational methods to verify visual 

weather lore phenomenon.  

b) Applying computer vision methods to detect multiple sky objects in sky scenes that are 

observed by humans as traditional visual weather concepts. The sky objects detection 

component used input from sky scenes, and detected sky objects by successively extracting 

and representing them as sky concepts.The detected sky objects were symbolically 

represented as visual weather concepts. 

c) By effectively using fuzzy cognitive mapping techniques for representing links between 

visual weather lore and weather outcomes. In this, an investigation of the causal links 

between visual weather concepts was achieved using two case studies in which results were 

compared and aggregated to build up common knowledge. The results of statistical 

knowledge were used to represent seasonal weather knowledge using fuzzy cognitive maps 

in the form of connection matrices.   

d) A network of wireless weather stations was used for gathering actual weather observations. 

The sensors were setup to log weather parameters that were used to represent the verifiable 

weather observations. A statistical evaluation of the visual weather lore-based weather 

predictions was achieved by comparing the predicted weather outcomes to wireless weather 

sensor observations. Statistical evaluation was undertaken using daily inputs of weather 

outcomes predicted against the observed meteorological parameters. The results of 
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verification experiments revealed that the visual weather lore-based predicted outcomes 

were close to the actual weather outcomes observed using the wireless weather stations 

(over 80% accuracy).  

e) The designed visual weather lore verification tool automatically analyzes visual weather 

data that could complement modern satellite data and weather models. The links between 

the visual weather lore and modern scientific weather models were used to determine the 

accuracy of traditional weather knowledge. 

1.9 Evaluation Criteria 

To evaluate this research, each objective was tested against the research outcomes. Two case 

studies were used to come up with comparative studies and to ensure conformance of results 

from different study locations. Case studies were used to identify astronomical and 

meteorological visual aspects and techniques commonly used for weather forecasting in 

traditional communities. Statistical techniques were used to identify the existence of causal 

effects between visual astronomical and metrological aspects and weather outcomes. A hybrid 

tool combining computer vision and fuzzy cognitive mapping for predicting weather outcomes 

based on symbolized visual weather lore was designed and tested. The computer vision 

components (for representation of visual sky objects) were tested using various features and the 

best features selected. The fuzzy cognitive mapping component was tested against various 

seasons and various dynamics of the seasonal FCMs represented. The prediction of weather 

outcomes was tested against actual observations of weather records.  

1.10 Structure of Thesis 

The thesis is divided into six chapters. In Chapter One, an overview of the weather lore domain 

and its significance on human life is provided, followed by the explanation of the implication of 

computing methods in addressing the weather lore verification problem. An overview of study 

approach and methods for verifying weather lore, as well as research evaluation criteria are 

briefly described.  

Chapter Two explains the concept of weather lore and its role in adapting climate variability 

across the traditional communities. The use of visual astronomical and meteorological weather 

indicators by traditional communities for adapting climate change is discussed. This is followed 

by a discussion of the concept of weather forecasting and the role of seasonal climate forecasts in 
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comparison to traditional forecasts. Fuzzy cognitive mapping as a means of representing 

knowledge is explained in terms of the modelling, applications, designing and fuzzy inference 

mechanisms. The concept of using computer vision for visual object recognition is discussed in 

detail as a means of modelling the human way of observing the weather to make forecasts. A 

review on the strategies of verifying weather forecasts together with crowdsourcing as a method 

of gathering ground truth using human computation and mobile sensing is discussed. The chapter 

concludes by discussing some of the strategies that can be used to assess the accuracy of weather 

forecast skills through statistical and diagnostic approaches. 

Chapter Three presents the procedures undertaken and techniques used for verification of visual 

weather lore. The main aim of this chapter is to explain the methodologies and how they have 

been applied. In the first section the methods for preliminary studies and understanding of the 

weather lore domain are explained. The use of case study methods to determine the existence of 

causal effects between meteorological and visual weather lore are presented. This is followed by 

the methods for analyzing case study results to come up with knowledge representations in the 

form of fuzzy cognitive maps. Finally, the methods used for implementing the software artefact 

for experimenting visual weather lore verification using hybrid techniques and metrics are 

presented. The research design and specific methodologies used in this research to examine the 

application of visual weather lore by traditional communities for predicting weather outcomes 

are also presented. 

Chapter Four investigates knowledge in the visual weather lore domain followed by a description 

of a visual weather lore verification tool. The preliminary task was to recognize the visual 

weather lore domain through statistical analysis of interview responses of traditional knowledge 

on visual weather aspects. After identifying the domain, the next steps were to formulate the 

definition of requirements, outputs and definition of mathematical logic that comprise the visual 

weather lore verification tool.  

Chapter Five presents the operation and results of the visual weather lore verification tool that is 

realized through experiments in a series of sub-components and presenting of results. 

Chapter Six presents an evaluation of this research. In this chapter, a discussion of the 

verification of the results from the weather lore verification tool is presented, followed by 
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evaluation of the objectives of this research. Finally, the contributions of this research and 

recommendations for future work and conclusions are discussed. 
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2.Chapter Two: Literature Review and Background Work 

2.1 Introduction 

This chapter provides the concept of weather lore and its role in adapting to climate variability in 

the traditional communities; in particular, the use of visual astronomical and meteorological 

weather indicators by traditional communities for adapting to climate change is discussed. This is 

followed by a discussion of the concept of weather forecasting and the role of seasonal climate 

forecasts (SCFs) in comparison to traditional forecasts. Fuzzy cognitive mapping as a means of 

representing knowledge is explained in terms of the modelling, applications, designing and fuzzy 

inference mechanisms. The concept of using computer vision for visual object recognition is 

discussed in detail as a means of modelling the human way of observing the weather to make 

forecasts. A review on the strategies of verifying weather forecasts together with crowdsourcing 

as a method of gathering ground truth using human computation and mobile sensing is discussed. 

The chapter ends by discussing some of the strategies that can be used to assess the accuracy of 

weather forecast skills through statistical and diagnostic approaches. 

2.2 Comparison between Weather Lore and Science 

Traditional ways of weather forecasting existed before modern science, as weather changes have 

affected traditional peoples’ livelihood since time immemorial (Baliscan, 2001; Enock, 2013). 

Traditional farmers, for instance, observed environment as guidance for timing agricultural 

activities (Baliscan, 2001; Zuma-netshiukhwi, Stigter, & Walker, 2013). Research indicates the 

need to document, integrate and validate traditional methods used for forecasting weather 

(Abdulrashid, 2013; Acharya, 2011b; Enock, 2013), but a major challenge is that the world’s 

socio-political and cultural dimensions makes grave disputes to traditional beliefs and practices 

universally (Chiwanza, Musingafi, & Mupa, 2013; Ngara & Mangizvo, 2013). Further, the 

documentation and validation of traditional knowledge is facing vulnerabilities from climate 

change, population growth and urbanization (Masinde & Bagula, 2012).  

The natural value of traditional knowledge (Huntington, Callaghan, Fox, & Krupnik, 2004) 

makes it a useful complement to conventional and scientific research (Abdulrashid, 2013; 

Huntington, Callaghan, Fox, & Krupnik, 2004; Muguti & Maposa, 2012). A major 

correspondence between traditional knowledge and science is the idea of observation and 
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replication (Huntington, Callaghan, Fox, & Krupnik, 2004). As science ventures in testing results 

with variable data, traditional knowledge is preserved to allow humans to thrive in changing 

environment (Huntington, Callaghan, Fox, & Krupnik, 2004).  Current research aims at 

observing and testing knowledge to allow human survival in changing environments (Zuma-

netshiukhwi, Stigter, & Walker, 2013). The disparity between traditional knowledge and 

scientific knowledge is that the former is very localized and adapted to the immediate 

environment (Masinde & Bagula, 2012).  To reduce dissimilarities, simulation results from 

scientific weather experiments can be tested against traditional knowledge to increase confidence 

in scientific weather forecasts to traditional people (Green, Billy, & Tapim, 2010). 

 “Traditional knowledge is a systematic body of knowledge acquired by local people through the 

accumulation of experiences, informal experiments and a close understanding of the environment 

in a given culture” (Anandaraja & Rathakrishnan, 2008). Traditional knowledge systems are 

dynamic and change after human innovation and interaction with other knowledge systems 

(Anandaraja & Rathakrishnan, 2008; Warren, 1998). Research recommends that for sustainable 

development, integration of traditional knowledge with modern thoughts knowledge is essential 

(Warren, 1998). 

Some research claims that traditional knowledge is vulnerable to modern technology (Chiwanza, 

Musingafi, & Mupa, 2013), but by supplementing modern weather forecasts the impact of 

traditional knowledge can be leveraged using modern technologies (Baliscan, 2001; United-

Nations, 2004; Warren, 1998). 

2.1 Informal Representations of Weather Lore 

In a traditional way of life, the ability to observe and interpret traditional weather indicators is 

based on learning from the elders and daily interaction with the environment (Abdulrashid, 2013; 

Zuma-netshiukhwi, Stigter, & Walker, 2013). Traditional knowledge is passed between 

generations in the form of stories, songs, folklore, proverbs, cultural values, norms, beliefs, 

rituals, local languages, and cultural practices (Alcock, 2014; Anyira & Onoriode, 2010; Green, 

Billy, & Tapim, 2010; Mapara, 2009; Warren, 1998). Traditional elders coach young people 

about historical experiences that they should imitate, emulate or evade (Mapara, 2009). Unlike in 

science that relies on instrumentation, in traditional knowledge local language and terminologies 
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are important as they are used in conversations, stories, and oral histories (Huntington, 

Callaghan, Fox, & Krupnik, 2004). Despite challenges in the representation and patenting of 

traditional knowledge (United-Nations, 2004), research recommends that it needs to be 

recognized, and standardized after validation (Chinlampianga, 2011).  

2.2 The Use of Visual Weather Lore in Traditional Communities 

Visual weather lore entails predicting weather from astronomical and meteorological 

observations (Pasztor, 2010). Traditional experts, for instance farmers, make short-term 

observations of atmosphere and astronomical conditions before making decisions (Baliscan, 

2001; Okonya & Kroschel, 2013; Shoko, 2012). Modern meteorologists also observe 

atmospheric and astronomically observable facts (such as the sky and clouds) to model weather 

forecasts (Baliscan, 2001; Mansoor, Bhargavi, & Rahima, 2012).  

The challenge in using visual weather lore is the visibility which is determined by geographical 

location and the actual weather at the location (Pasztor, 2010). High costs associated with human 

observers have prompted meteorologists to use modern technology to detect and quantify visual 

weather indicators (Calbo & Sabburg, 2008), but human input is still valuable in clarifying the 

patterns of visual weather indicators (Mansoor, Bhargavi, & Rahima, 2012). 

The appearance concepts such as clouds and moon are usually followed to make judgement on 

an approaching bad or good weather (Mansoor, Bhargavi, & Rahima, 2012) – for instance when 

the moon is tipped, then it can be a dry moon; if straight it can be a wet moon (Cannell, 1933). 

An observed new moon with horns pointing towards the earth signifies that the weather will be 

rainy until the moon changes (Cannell, 1933; Kidd, 1984). Thick cloud cover indicates that the 

rain is near (Mansoor, Bhargavi, & Rahima, 2012).  

The following are examples of some of astronomical and meteorological weather lore sayings.  

“A misty sun early in the morning indicates rain; a clear sun, fair weather”;  

“They say a red sun has water in its eye”;  

“A deep-blue sky is always an indication of beautiful weather for the rest of the day”.  
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A comprehensive list of some traditional meteorological and astronomical visual indicators and 

their characteristics can be found in Hyatt, (2002); Johansson & Achola(2013). 

2.3 The Concept of Weather Forecasting 

Modern weather forecasting is a scientific process that estimates weather prospects to concepts 

such as heat and rainfall (Risiro, Mashoko, Tshuma, & Rurinda, 2012). Some modern methods 

predict daily weather based on fuzzy concepts and testing of meteorological premises (Xue, 

2014). Reliable predictions of daily (or the next few days’) and seasonal (or the next few 

months’) weather forecasts can be useful in economic sectors such as agriculture (Baliscan, 

2001).  

In both traditional and modern human lifestyle, scheduling of activities is influenced by weather 

conditions (Yi Zhang & Hanby, 2007).  This is evident by research on subjective and numerical 

methods (Risiro, Mashoko, Tshuma, & Rurinda, 2012) used to seek clues to upcoming weather 

(Acharya, 2011b). Subjective methods that infer daily observations to future weather are simple 

and cheap compared to numerical methods that require modern technology such as radar to 

simulate long-term weather conditions (Risiro, Mashoko, Tshuma, & Rurinda, 2012).  

The vast varieties of weather concepts are dynamic, making the weather forecasting process a 

challenge (Mansoor, Bhargavi, & Rahima, 2012). Climate variability creates challenges in the 

weather forecast process, leading to reliance on weather forecasts using probabilities (Xue, 

2014). Modern weather forecasting relies on empirical, statistical, dynamical or a combination of 

these methods (Enock, 2013; Lo & Pielke, 2008; Mansoor, Bhargavi, & Rahima, 2012; Masinde, 

Bagula, & Muthama, 2013). In situations where there is sufficient data, the empirical methods 

are useful for predicting short-term weather (Rahul & Khurana, 2012). The dynamical 

approaches are useful for simulating long-term weather phenomena, therefore may not provide 

efficient short-term weather forecasts (Rahul & Khurana, 2012).  

2.3.1 Measure of Climate and Change Using Seasonal Climate Forecasts 

Previous researchers have advocated for seasonal climate forecasts as a measure to represent the 

impact of climate change (Ziervogel & Downing, 2004) by providing indicators of how climate 

might be compared to historical climate observations. Seasonal climate forecasts can help to 
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prepare for and adapt to climate variability and change. Seasonal climate forecasts can also be 

used to refer to seasonal weather forecasts. Modern meteorologists observe sea surface 

temperatures as boundary conditions to predict the probability of climate outcomes (Ziervogel & 

Downing, 2004).  

When planning for activities such as crop management strategies, seasonal climate forecasts can 

aid deciding for short-term decisions as well as long-term decisions (Chagonda et al., 2015; 

Ziervogel & Downing, 2004). Seasonal climate forecasts for developing adaptation policies for 

climate change exist in both the modern scientific world and the traditional ways of life 

(Chagonda et al., 2015). Seasonal climate forecasts can benefit communities by allowing them to 

anticipate varying climates and to come up with adaptations that will reduce their sensitivity to 

negative climate outcomes (Stern & Easterling, 1999).  

In the traditional way of life, seasonal climate forecasts are conserved in the cultures and passed 

from generation to generation. Traditional farmers, for instance, used their knowledge of 

traditional seasonal forecasting to decide on cropping variety, planting dates, and mitigation 

measures, so as to realize crop yields that could sustain them in the coming seasons (Wetterhall, 

Winsemius, Dutra, Werner, & Pappenberger, 2014; Zuma-netshiukhwi, Stigter, & Walker, 

2013). The integration of scientific seasonal climate forecasts with traditional short-term climate 

forecasts can be handy in supplementing and improving human activity planning and decision-

making strategies (Zuma-netshiukhwi, Stigter, & Walker, 2013). The integration can further be 

improved by embedding adaptation strategies in communities’ traditional knowledge on climate 

variability (Chagonda et al., 2015).  

Modern meteorologists and researchers can play an ideal role in enhancing existing responses of 

traditional seasonal climate forecasts by investigating traditional responses to seasonal climate 

variability (Chagonda et al., 2015).  Seasonal climate forecasts can be applicable in coming up 

with several human decisions.  For example, rainfall and temperature forecast information can be 

used to influence the decision on cropping strategies, drought anticipation or developing 

response plan to food shortages (Weisheimer & Palmer, 2014). 

© Central University of Technology, Free State



17 
 

2.3.2 Contrast between Weather Lore and Seasonal Climate Forecasts 

Applying traditional knowledge in seasonal climate forecasting could be useful in decision- 

making at community levels through exploiting the seasonal variation of weather in order to 

increase adaptation (Okonya & Kroschel, 2013; Oviedo et al., 2008). Even with lack of means to 

count months, weeks, years as used in the modern world, traditional communities rely on 

traditional knowledge to understand, conserve and adapt to their changing environment. The 

documentation and integration of traditional knowledge in seasonal climate forecasting is a 

hopeful method that is still under exploration so that it could be used in timing of human 

activities such as cropping decisions (Enock, 2013). With exploration the traditional 

communities could use traditional knowledge for determining short-term and long-term seasonal 

climate forecasts (Risiro, Mashoko, Tshuma, & Rurinda, 2012) which will further enhance their 

adaptation.  

While traditional communities rely on biophysical indicators of the environment as well as 

spiritual methods to forecast weather, the scientific method relies on weather and climate models 

of measurable meteorological data. Unlike the widely researched scientific knowledge, there is a 

rare documentation of traditional knowledge on seasonal weather forecasts (Masinde & Bagula, 

2012). Research reveals that scientific weather forecasts are readily available and accessible but 

not enough for use in adaptation strategies such as cropping decisions since they are difficult to 

be interpreted and understood locally (Zuma-netshiukhwi, Stigter, & Walker, 2013). The lack of 

interpretation is partly because scientific seasonal forecasts are not location-specific and cannot 

be downscaled. Scientific seasonal climate forecasts representing wide geographical areas cannot 

be useful for people in rural or remote areas.  

Communities in rural or remote areas rely mostly on traditional weather forecasting systems to 

obtain daily and seasonal weather forecasts with indicators derived from the environment and 

differing from place to place (Baliscan, 2001; Shoko, 2012). Like scientific methods, the 

traditional communities gather information on traditional seasonal weather forecasts before the 

start of the season and use the information to come up with a seasonal forecast (Shoko, 2012). 

Since time immemorial, traditional communities have been using weather lore (Nakashima & 

McLean, 2012)for making seasonal climate forecasts that guided their activities (for instance, the 

regular movement of the sun in the year with changes in sunrise and sunset times could be handy 
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in determining seasonal climate forecasts). Traditional communities also realized daily weather 

forecasts by observing phenomena such as clouds and moon phases (Kidd, 1984). Unlike 

scientific seasonal climate forecasts, traditional knowledge focuses on elements of significance 

for local livelihoods and as a result, is essential for climate change adaptation (Nakashima & 

McLean, 2012).  

Traditional knowledge systems are complex in nature (Chiwanza, Musingafi, & Mupa, 2013; 

Narasimhan & Nayar, 2002) and require some modelling to make them useful in the modern 

research world. The use of fuzzy cognitive mapping can be handy in formally representing 

traditional knowledge on weather forecasting. 

2.4 Fuzzy Cognitive Maps Methods for Human Knowledge Representation 

Fuzzy cognitive mapping (a combination of fuzzy logic and cognitive mapping) is a way to 

represent knowledge in systems that are characterized by uncertainty and complex processes 

(Kosko, 1986). Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is 

approximate rather than precisely deducible from classical predicated logic (Jones, 2010). A 

cognitive map is a representation and reasoning model on causal knowledge (Guerram, Maamri, 

& Sahnoun, 2010) in the form of a directed, labelled and cyclic graph whose nodes represent 

causes or effects and whose arcs represent causal relations between these nodes. Cognitive maps 

represent beliefs (knowledge) which are laid out about a given domain of interest and are useful 

as a means of decision support (Din & Cretan, 2014; Maitra & Banerjee, 2014; Yousef, 2014).  

Fuzzy cognitive mapping (FCM) has proven efficient for solving problems in which a number of 

decisions and uncontrollable variables are causally interrelated (Maitra & Banerjee, 2014). 

FCMs are fuzzy-signed diagraphs with feedback that describes the causal links between concepts 

(Dissanayake & AbouRizk, 2007). FCMs can be used to exploit the causal knowledge and 

experience accumulated over a certain period on a complex phenomenon (Chinlampianga, 2011; 

Guerram, Maamri, & Sahnoun, 2010; Mago et al., 2013; Prigent, Fontenelle, Rochet, & Trenkel, 

2008; Xirogiannis & Glykas, 2004). A Fuzzy Cognitive Map is developed using human 

knowledge experts that know the operation of system and its behaviour in different 

circumstances (Chrysostomos & Peter, 1999). FCM is a powerful tool in decision-making which 
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aims at capturing the functioning of a complex system based on human understanding (Pramod 

& Abhishek, 2013).  

FCMs work efficiently with missing data to model systems with nonlinearities and surrounding 

uncertainty (Karagiannis & Groumpos, 2013). FCMs use artificial neural networks techniques 

that incorporate ideas from fuzzy logic, to create decision support systems (Carvalho, 2010; 

Chrysafiadi & Virvou, 2013; Karagiannis & Peter P Groumpos, 2013; Chrysostomos D Stylios, 

Georgopoulos, & Manis, 2013). To come up with a universal FCM, knowledge from different 

experts can be accumulated through combining several FCMs into a big FCM by merging same 

concepts (Din & Cretan, 2014; Maitra & Banerjee, 2014; Yousef, 2014). 

2.4.1 Models of Fuzzy Cognitive Maps 

Cognitive maps aim at representing causal relationships among concepts that could be assigned 

values (Nasserzadeh, Jafarzadeh, Mansouri, & Sohrabi, 2008). Causal relationships between two 

concepts can be –categorized as positive, negative or neutral (Calais, 2008; Kanagasabhapathy & 

Kumaravel, 2014; Pramod & Abhishek, 2013). Increase in the value of a concept yields a 

corresponding positive or negative increase at the concepts connected to it (Mago et al., 2013). 

Bart Kosko (Kosko, 1986) introduced the notion of fuzziness to cognitive maps and created the 

theory of FCMs. FCMs consist of factor-concepts as inputs and decision-concepts as outputs 

(Chrysafiadi & Virvou, 2013). The relationship between two concepts in FCMs can take a value 

in an interval (-1 to 1) called weight (Din & Cretan, 2014; Kanagasabhapathy & Kumaravel, 

2014; Maitra & Banerjee, 2014).  

An FCM is represented as a directed graph where each node represents a concept (Din & Cretan, 

2014; Gulati, 2014; Kanagasabhapathy & Kumaravel, 2014; Maitra & Banerjee, 2014). The 

characteristic of a system representing events, actions, goals, values and trends can be modelled 

by an FCM (Din & Cretan, 2014; Gulati, 2014; Maitra & Banerjee, 2014; Wei & Linzhi, 2014; 

Yousef, 2014). In an FCM each arc (Ci, Cj) is directed as well as weighted, and represents a 

causal link between concepts (Din & Cretan, 2014), showing how concept Ci causes concept Cj. 

In Figure 1, nodes Ci represent concepts while arcs (Ci, Cj) to represent causal links.  
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Figure 2-1 : Depiction of an FCM 

An example of an FCM based on Indigenous Knowledge (IK) and Weather Lore (WL) that can 

be used to depict that the number of boys born and quantity of wild fruits influences rain is 

shown below. 

 

Figure 2-2: An FCM showing influence between IK concepts 

FCMs are fuzzy signed directed graphs with feedback (Maitra & Banerjee, 2014). A directed 

edge Eij from causal concept Ci to concept Cj measures how much Ci causes Cj, with edges Eij 

taking values in a fuzzy causal interval [0,1] or [-1, 1] based on system specifics (Aguilar, 2005).  

Eij = 0 indicates no causality. 

Eij> 0 indicates causal increase i.e. Cj increases as Ci increases (or Cj decreases as Ci decreases).  

Eij< 0 indicates causal decrease or negative causality i.e. Cj decreases as Ci increases (and or Cj 

increases as Ci decreases).  

 

Good 
Rain Quantity 

of Wild 
Fruits  

Number of 
boys born  
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FCMs consist of concepts (also called vertices, nodes, factors or elements) and arrows 

representing either positive or negative. The direction of arrows represents causal relations 

between two concepts while the weights characterize the strength of the causal relations (Din & 

Cretan, 2014; Yousef, 2014). In an FCM, the state of a node Ci is determined by the sum of its 

inputs modified by causal link weights (Din & Cretan, 2014; Maitra & Banerjee, 2014) , and a 

nonlinear transfer function S (Equation 1) (Carvalho, 2010).  

1

0
( 1) ( ( ) )..................

n

i j ij
j

c t S c t w




   Equation 2-1 

Updating the states of an FCM includes feeding the FCM with a stimulus state vector until it 

converges (Aguilar, 2005; Uygar & Stacy, 2004) with one of the three possibilities: state vector 

remains unchanged; a sequence of state vectors keep repeating; or the state vector keeps 

changing indefinitely . The evolved states of an FCM can be useful in decision support (Din & 

Cretan, 2014; Kanagasabhapathy & Kumaravel, 2014; Maitra & Banerjee, 2014; Yousef, 2014). 

FCMs can be used in problem domain analysis (Din & Cretan, 2014; Gulati, 2014; 

Kanagasabhapathy & Kumaravel, 2014; Maitra & Banerjee, 2014; Wei & Linzhi, 2014) by 

determining concepts significance; degree of influence on other concepts; impact of a change in 

a concept on other concepts and the evolution of a system with time given a set of values for all 

concepts at a point in time. 

When the nodes of the FCM are fuzzy sets, then they are called fuzzy nodes (Maitra & Banerjee, 

2014). FCMs with edge weights or causalities from the set {-1, 0, 1} are called simple FCMs 

(Cai, 2011; Hossein, Zarandi, Khademian, & Minaei-bidgoli, 2012). An FCM with cycles is said 

to have a feedback, which is called a dynamical system (Carvalho, 2010; Rad, Akbari, & Taher, 

2012; Rangarajan et al., 2012; Zaghdoud & Al-kahtani, 2013).  

A finite number of FCMs can be combined together to produce the joint effect of all the FCMs 

(Praveena et al., 2012; Stylios, Georgopoulos, & Manis, 2013). If {E1, E2,E3 up to Ep} are the 

adjacency matrices of the FCMs with nodes {C1, C2, ., Cn}, then the combined FCM is found 

by adding all the adjacency matrices {E1, E2, ., Ep}.  

The combined FCM adjacency matrix is denoted by E = {E1 + E2 + ...+ Ep}. 
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2.4.2 Applications of Fuzzy Cognitive Mapping 

In decision-making systems, FCMs have been useful in cases where important information is 

missing, unreliable, conflicting or difficult to integrate with other information (Guerram, 

Maamri, & Sahnoun, 2010; Karagiannis & Groumpos, 2013; Luo, 2010; Sperry & Jetter, 2012; 

Stylios, Georgopoulos, & Manis, 2013; Uygar & Stacy, 2004). To predict forecasts (Zaghdoud & 

Al-kahtani, 2013), the concept of fuzzy logic can be combined with fuzzy cognitive maps (FCM) 

to determine the relation between various input factors.  

Modelling and controlling of complex problems qualitatively can make use of FCMs as a tool for 

answering ‘what if’ questions during the solution-planning stage (Din & Cretan, 2014; Gulati, 

2014; Maitra & Banerjee, 2014; Wei & Linzhi, 2014; Yousef, 2014). To facilitate reasoning in 

complex systems (Din & Cretan, 2014; Kanagasabhapathy & Kumaravel, 2014; Wei & Linzhi, 

2014; Yousef, 2014), fuzzy logic and FCMs can model complex social problems (Din & Cretan, 

2014; Maitra & Banerjee, 2014; Wei & Linzhi, 2014; Yousef, 2014) and the dynamic causal 

relationships of the context variables in a virtual world where the variables update their states 

with respect to different update times.  

FCMs are simple graphical representation (Din & Cretan, 2014; Gulati, 2014; Maitra & 

Banerjee, 2014; Yousef, 2014) that can be used to make knowledge widely available through 

computer systems. FCMs are able to incorporate experts’ knowledge and represent knowledge in 

a symbolic manner to relate states, processes, policies, events, values and inputs (Din & Cretan, 

2014; Maitra & Banerjee, 2014).   

FCMs have also been used effectively in medical fields for decision-making, diagnosis and 

predictive classification (Stylios, Georgopoulos, & Manis, 2013), with the experience of many 

experts and knowledge from historical data combined to form the FCMs.  

In addition, FCMs can be used to represent individual mental models or group knowledge and 

beliefs such that individual FCMs can be aggregated together, compared across individuals 

within the context of group interaction, or created collectively by individuals within a group 

context (Chrysafiadi & Virvou, 2013; Kwon & Mustapha, 2013). FCMs can also be drawn 

across multiple locations, where each location has its own system of practice (Pramod & 

Abhishek, 2013). Through characterizing the diversity in human perceptions, FCMs can help 
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visualize data by showing how variables relate to one another in a causal web (Aguilar, 2004) 

with the FCMs matrices summed up to give a combined FCMs for multiple knowledge sources.  

Fuzzy cognitive mapping is a simple procedure through which input from participants of diverse 

backgrounds may be structured and synthesized (Chia-chien, 2007). Further, the net causal 

effects can be calculated from the transitive closure of the FCMs which can then be used to 

identify key determinants within an individual perspective, and the degree of consensus, or 

controversy, among FCMs representing different perspectives. FCMs can allow a structured 

process of identifying areas of conflicting perceptions and also areas where stakeholders with 

different interests might be able to gain common ground (Din & Cretan, 2014).  

FCMs can also help scenario planners to integrate the qualitative and partial knowledge of 

multiple individuals and overcome information-processing limitations (Din & Cretan, 2014). A 

mental model is a mix of images and propositions that consists of both qualitative and spatial 

relationships (Elpiniki Papageorgiou & Groumpos, 2007; Guerram, Maamri, & Sahnoun, 2010; 

Najafi & Afrazeh, 2008). Through combining conceptual mapping tools with fuzzy logic and 

techniques for neural networks applications (Din & Cretan, 2014; Kanagasabhapathy & 

Kumaravel, 2014; Yousef, 2014), FCMs can be designed for the representation and formalization 

of soft knowledge domains (such as politics and education).  

FCMs have been used to capture dependencies between assets, and then FCM-based reasoning 

performed to calculate risks (Pramod & Abhishek, 2013). An important feature of FCMs is the 

capability of addressing uncertainty (Karagiannis & Groumpos, 2013; Pang, 2013; Pramod & 

Abhishek, 2013; H. Singh, G. Singh, & Bhatia, 2013; Yousef, 2014) and as prediction tool with 

application based on forward chaining analysis to predict future behaviour (Din & Cretan, 2014; 

Maitra & Banerjee, 2014; Wei & Linzhi, 2014). It is, however, worth noting that, in order to 

perform tests and optimize the use of FCMs, an effort should be made at sufficient data 

collection (Pramod & Abhishek, 2013; H. Singh, G. Singh, & Bhatia, 2013; Stylios, 

Georgopoulos, & Manis, 2013). Some studies (Carvalho, 2010; Elpiniki, 2011; Najafi & 

Afrazeh, 2008; Pang, 2013; Rad, Akbari, & Taher, 2012; Stylios, Georgopoulos, & Manis, 2013) 

generated FCM models from input historical data, without any human intervention based on 

genetic algorithms and supervised learning(Mwagha & Masinde, 2014).  
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FCMs are more applicable when the data is unsupervised and is based on the opinion of experts 

(Din & Cretan, 2014; Pang, 2013; H. Singh, G. Singh, & Bhatia, 2013; Stylios, Georgopoulos, & 

Manis, 2013). FCMs can combine as many diverse knowledge sources as possible from different 

degrees of expertise into one FCM without restricting on the number of experts or the number of 

concepts (Elpiniki, 2011; Uygar & Stacy, 2004). FCMs for the forecasting of concept states can 

be validated using data from real world concepts (Elpiniki, 2011; Papageorgiou, 2008).  

2.4.3 The Process of Designing Fuzzy Cognitive Maps 

FCMs constructed by experts using prior knowledge do not acquire the implicit knowledge 

directly from the data store of systems.  In a dynamical system, the behaviour is controlled by 

representing knowledge and reasoning based on FCMs (Din & Cretan, 2014; Kanagasabhapathy 

& Kumaravel, 2014; Yousef, 2014). In designing an FCM, a prediction and control model  based 

on a fuzzy cognitive map can be developed, followed by constructing an algorithm for finding 

the connection matrix of the FCM (Chrysostomos & Peter, 1999; Chun-mei, 2009; Hossein, 

Zarandi, Khademian, & Minaei-bidgoli, 2012).  

Fuzzy cognitive map models can be tested dynamically though simulations where scenarios are 

introduced and predictions made by viewing dynamically the consequences of the corresponding 

actions (Din & Cretan, 2014; Karagiannis & Groumpos, 2013; Mago et al., 2013; Pramod & 

Abhishek, 2013; Văidianu, 2013). To get complex personal knowledge concerning concepts, 

controlled interviews can be used and information transcriptions from recorded interviews to the 

concept maps formalized. Fuzzy cognitive maps are recorded in the form of matrices of relations 

between concepts (Din & Cretan, 2014; Kwon & Mustapha, 2013; Pramod & Abhishek, 2013; 

Văidianu, 2013).  

Learning methods can be employed to improve the speed of the learning process and the quality 

of learning FCMs with more nodes to construct causal graph based on historical data (Pang, 

2013). FCMs can be constructed using a systematic approach where concepts are gathered from 

survey respondents followed by taking into account the expert judgment in causal relationships 

between the concepts (Chia-chien, 2007; Fairweather et al., 2006; Kwon & Mustapha, 2013; 

Pramod & Abhishek, 2013; Sperry & Jetter, 2012).  
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Prediction algorithms can be constructed in fuzzy cognitive maps using fuzzy c-means clustering 

algorithms where a genetic algorithm is applied to learn weights of the FCM. This way, a fully 

learned fuzzy cognitive map can be used to represent, store fuzzy logic relationships of fuzzy 

time series and realize predictions. Fuzzy cognitive maps can be designed using crisp decision 

trees (well-known intelligent techniques that extract rules from both symbolic and numeric data) 

that have been fuzzified (Maitra & Banerjee, 2014; Rangarajan et al., 2012; Yousef, 2014). 

Fuzzy rules can be combined and used to express non-monotonic causality in fuzzy cognitive 

maps along with aggregation operators for combining multiple causal influences. In situations 

where domain experts are not able to express the causal relationships data-driven methods for 

learning FCMs can be used.  

FCM construction can be accomplished in the following steps: (a) identification of concepts and 

its interconnections determining the nature (positive, negative or null) of the causal relationships 

between concepts; (b) initial data acquisition by the expert opinions and/or by an equation 

analysis when the mathematical system model is known; (c) submitting the data from the expert 

opinions to a fuzzy system, in which the output represents the weights of the FCM; (d) weight 

adaptation and optimization of the initially proposed FCM, adjusting its response to the desired 

output; and (e) validation of the adjusted FCM. The process of gathering and integrating 

knowledge from experts in the form of fuzzy cognitive maps can be enhanced with choices of 

graph-based learning methods in order to the improve effectiveness of the final digraphs 

(Nasserzadeh, Jafarzadeh, Mansouri, & Sohrabi, 2008).  

2.4.4 Procedures in Fuzzy Cognitive Mapping 

Developing a fuzzy cognitive map involves the selection of the FCM factors or concepts which 

have impact on some phenomenon of interest (Calais, 2008; Din & Cretan, 2014; Mago et al., 

2013). To identify the FCM concepts a group of experts can be provided with questionnaires or 

brain-storming sessions (Din & Cretan, 2014; Maitra & Banerjee, 2014; Yousef, 2014).  

Causal relationships (positive, negative, or neutral) amongst the various concepts are established 

using analysis the values of concepts change with time (Calais, 2008; Din & Cretan, 2014; 

Kanagasabhapathy & Kumaravel, 2014; Wei & Linzhi, 2014; Yousef, 2014). 
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The concepts’ linguistic variables are fuzzified using fuzzy membership functions (Fuzzy Logic 

can be used to convert the concepts relations into values between 0 and 1) before input into the 

fuzzy cognitive system (Mago et al., 2013; Maitra & Banerjee, 2014). 

Utilization of appropriate learning algorithms can be used to overcome the potential convergence 

of FCMs to some undesired states by recalculating the weights when new strategies are adopted, 

increasing the efficiency and robustness of FCMs. This process modifies the FCM weight matrix 

(Papageorgiou, 2008; Rangarajan et al., 2012).  

The learning algorithm assigns each concept an activation level having an initial value ranging in 

the interval [0, 1]. The learning algorithm gives FCMs the ability to learn arbitrary nonlinear 

mappings, and the capability to generalize situations, adaptively. (Calais, 2008; Papageorgiou, 

2008) 

The concepts interact, resulting in the concepts’ values changing during iterations. The quantity 

of concepts and the quantity and complexity of relationships necessitates the system to undergo 

several cycles before it reaches equilibrium (Calais, 2008; Mago et al., 2013). After several 

iterations the values of the concept must be recorded. 

To compare and visualize the FCM concepts’ influence, plots can be made in groupings, against 

the concepts being investigated (Mago et al., 2013; Văidianu, 2013). Increasing the value of 

concepts with a positive effect should increase the value of investigated concepts gradually 

converging to a positive value while increasing the value of concepts with a negative effect, 

should decrease the value of investigated concepts (Karagiannis & Groumpos, 2013; Mago et al., 

2013). 

Network analysis is used to compare the degree of impact each of the concepts exerts on the 

FCM. During network analysis, the initial value of a single concept is varied (from 0 to 1) while 

keeping the initial values of all other concepts fixed, except maybe for the concepts under 

investigation (Mago et al., 2013).  

To conduct the network analysis the initial values for all concepts are set at a constant level to 

monitor the investigated concepts after a number of iterations. Measures of centrality such as 

degree centrality and closeness centrality can also be used to analyze the most influential factors. 

© Central University of Technology, Free State



27 
 

Degree centrality of each concept (node), in a given weighted and directed graph, is defined as 

the sum of the absolute values of the weights of the outgoing and incoming edges. Closeness 

centrality of a concept is the inverse of the sum of the lengths of the shortest paths between that 

node and all other nodes (Karagiannis & Groumpos, 2013; Mago et al., 2013). 

During a simulation run, each factor’s level evolves simultaneously with all other factors (Calais, 

2008; Carvalho, 2010). The system improves if the new equilibrium state is better than the old 

equilibrium state. (for example, “In a hypothetical fuzzy cognitive map, the system improves 

when it produces a lower level of drug availability and drug usage related problems in 

America”(Calais, 2008)). 

In FCM inference the multi-rule process and multi-variable fuzzy reasoning can be used 

(Carvalho, 2010; Gulati, 2014; Rad, Akbari, & Taher, 2012). The inference of FCM includes 

“forward evolved inference” and “backward evolved Inference.” The backward evolved 

inference uses the transposing of the FCM matrix, yielding a specific concept node value that 

should be accompanied with a given consequence (Chun-mei, 2009). The forward inference 

process of FCM starts with a stimulus vector as input into the FCM. The procedure multiplies the 

stimulus vector to the FCM matrix nonlinearly, transforming the result vector in each iteration 

until it yields fixed state (the state vector remains unchanged for successive iterations) or a limit 

cycle with a state vector repeating patterns  (Chun-mei, 2009).  

2.4.5 Inference Mechanisms in Fuzzy Knowledge 

Fuzzy inference is a means of decision-making that uses fuzzy logic in mapping given inputs to 

outputs (Mathworks, 2015). Fuzzy logic has been used for the classification of data sets (Venkat, 

2015). Fuzzy inference mechanisms have been applied in weather prediction  (Ramesh, 

Kesarkar, Bhate, Ratnam, & Jayaraman, 2015), speech recognition systems (Nereveettil, 

Kalamani, & Valarmathy, 2014), air traffic and vehicle control modelling (Hossain, Rahman, 

Hossen, Iqbal, & Hasan, 2011; Subbulakshmi, 2014), among other fields.  

Designing fuzzy inference systems requires the application of human knowledge and experience 

(Jignesh et al., 2014). In fuzzy sets, input variables can have partial or full (crisp) membership 

(Jignesh et al., 2014; Perić, 2015). The fuzzy inference process consists of four sub-processes, 

including: the fuzzifier, rule sets, inference engine, and defuzzifier (Singhala, 2014). In fuzzy 
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inference process rule sets are defined which can consist of linguistic variables as inputs and 

outputs (Xue, 2014). Fuzzy inference processes take inputs and determine appropriate fuzzy sets 

where it belongs via membership functions. In fuzzy inference systems decisions are based on 

the testing of every rule, then aggregating outputs to arrive at decisions (Mathworks, 2015). The 

input for the defuzzification process is a fuzzy set (the aggregate output fuzzy set) and the output 

is a single value (Mathworks, 2015). An advantage of fuzzy inference systems is that they can 

work with inaccurate data (Mathworks, 2015).  

 

Figure 2-3: Fuzzy Inference process (source: Mathworks, 2015) 

To represent traditional human forms of visualizing weather, a means is required to mimic the 

human visual perception for use as input to fuzzy cognitive mapping models. The reality of such 

a mechanism relies on the image recognition that is discussed in the next section. 

2.5 Computer Vision for Mimicking Human Visual Perception 

Computer vision allows computer applications to make decisions based on visual input 

(Clemons, Jones, Perricone, Savarese, & Austin, 2011; Setayesh, M. Zhang, & Johnston, 2008). 

Computer vision involves a big class of problems and techniques including: image mining, 

feature extraction, pattern recognition, visual action analysis and machine learning (Hema, 2013; 

Clemons, Jones, Perricone, Savarese, & Austin, 2011; Lang, 2009; Xiaojun Wang, Pan, & 

Weihong, 2015).  

This field has been of interest for many computer scientists in recent years (Kobayashi, 2013; 

Pooja, Sonam, & Sonu, 2013) with image recognition and classification an emphasis in solutions 

of computer vision applications (Dilipsinh, Mahasweta, & Vikram, 2014; Eldib & Onsi, 2011; 
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Elissa, Mariya, Abhinav, Xinlei, & Ishan, 2015; Karel Lenc & Mishkin, 2014; Lowe, 2004; 

Chong Wang & Huang, 2014). Considerable attempts have been made to improve the efficiency 

of computer vision algorithms (Karel Lenc & Mishkin, 2014) and the design of algorithms with 

different characteristics and features. 

Current computer vision applications are developed with the ability to perceive the real world in 

the same way as it is visualized by humans (Elissa, Mariya, Abhinav, Xinlei, & Ishan, 2015; 

Nixon & Aguado, 2002; Xiaolan & Afzal, 2010), but it is still a challenging process for the 

computer to recognize complicated scenes (Law, Thome, & Cord, 2014). Computer scientists 

partly clarify the scene recognition difficulties as attributed to image features, choice of image 

training sets, and also choice of classification algorithms (Vondrick, Khosla, Pirsiavash, 

Malisiewicz, & Torralba, 2015). An important image feature that is challenging to recognize is 

texture, particularly in situations where there is change of scale variation and scene cluttering 

(Zhang J, 2006).  

Image content retrieval (Mishra & Silakari, 2012; Paresh, 2011)  and segmentation (Soma & 

Dhandra, 2015) are some of the processing tasks done to images before detecting image features 

for extraction (Adel & Elmogy, 2014; Dhawan & Dogra, 2012; Khatib, Karajeh, Mohammad, & 

Rajab, 2015; Mandloi, 2014; Mavrantza & Argialas, 1997) over regions of interest (Boureau, 

2012) and performing image classification tasks ( Stanchev, 2003).  

2.5.1 Challenges in Computer Vision Systems 

The computer vision image analysis approach is quite different from human vision.  It is 

challenging for the computer to perform image perception in real dimensional space and employ 

background knowledge as in the case with human beings (Yang, 2009). The recognition and 

extraction of features that fully reveal the content of images is current research in computer 

vision (Kamavisdar, Saluja, &Agrawal, 2013; Tian, 2013) for it is critical to find dependable 

correspondence between sets of images (Babu & Shankar, 2015).  

Image feature recognition and retrieval has been highly studied (Lavoué, 2011; Sukhpreet, 

2013). A number of algorithms have been tested (Wadhe, Mohod, & Khalsa, 2015) but still not 

found to be perfect when working with shadowed and low-contrasted images (Nagaraju, Srinu, 

& Rao, 2013). Clutter in image background horizon (Calbo & Sabburg, 2008;Khatib, Karajeh, 
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Mohammad, & Rajab, 2015), increases dimensionality which passes a challenge in the process of 

feature extraction when there are fewer training samples (Xudong, Bappaditya, & Alex, 2009). 

Image recognition in varying appearance and illumination is also problematic (Appati, Fosu, & 

Gogovi, 2014; Wong, Lam, & Siu, 2004). The mentioned challenges bring visual ambiguity 

(Rahat, Cécile, Damien, & Ducottet, 2015) leading to ineffective representations in image 

categorization (Nowak, Jurie, & Triggs, 2006) which lead to producing approximate 

classification results. In some image-processing tasks, low-level visual image features retrieved 

may not correspond to high-level image semantics (Deng, Manjunath, Kenney, Moore, & Shin, 

2001). 

There are many image data complexity issues (Benco, Hudec, Kamencay, Zachariasova, & 

Matuska, 2014), prompting computer vision researchers to propose de-noising before image 

processing (Soma & Dhandra, 2015). Research suggests a need to make image colours be 

constant to ensure that the supposed colour of images stands out with changes in lighting (Z. Jun 

& Youssef, 2012). Other research reveals that working with only one classifier cannot deal 

efficiently with the complete task of image classification (Lorca et al., 2007). There is also a 

need to select suitable feature spaces for use in the construction of image classification models 

(Yuan, Minjing, & Menglu, 2013).  

2.5.2 Applications of Image Recognition 

Computer vision has been applied in remote sensing to forest developing management 

applications (Benz, Hofmann, Willhauck, Lingenfelder, & Heynen, 2004; Hermosilla, 2005; 

Subba & Naga, 2011). Applying computer vision in the detection and recognition of remotely 

sensed images such as clouds is still an open research area (Benqin et al., 2014; Yuan, Minjing, 

& Menglu, 2013). In some research attempts image feature extraction and classification have 

been used for cloud cover analysis and air traffic applications (Calbo & Sabburg, 2008; Heinle, 

Macke, & Srivastav, 2010; Kuril & Saini, 2013). Image classification techniques have been 

applied in rapid retrieval of information after natural disasters (Martha & Kerle, 2012; Mavrantza 

& Argialas, 1997). Image recognition has also been applied in the testing of computer-aided 

design and manufacturing applications (Xiaolan & Afzal, 2010). The applications of computer 

vision in the fields mentioned, including that of weather forecasting (Bajwa, Naweed, Asif, & 
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Hyder, 2009), require fast access and a sufficient quantity of images (Nikolaou & Papamarkos, 

2002).  

Some studies have applied computer vision in pedestrian protection in open environments (Lorca 

et al., 2007), place recognition by identifying mobile devices (Lowe, 2004), communications and 

access control applications (Mohamed, Heshmat, Girgis, & Elaw, 2013), social applications that 

can evaluate environmental damage, monitoring of land use, radiation monitoring, urban 

planning and growth regulation (Perumal & Bhaskaran, 2010).  Other fields where computer 

vision has been applied include military services, criminology, entertainment, education, robot 

navigation assistive driving applications (Thepade, Das, & Ghosh, 2015). In domains such as 

sports, image segmentation has been used in extracting features of interest for post-event scene 

investigations (Campos et al., 2011).  

Another interesting domain where computer vision is useful is person identification by the 

recognition, matching and extraction of features such as human faces, palm prints and 

fingerprints (P. Bhowmik, K. Bhowmik, Azam, & Rony, 2012; Chora, 2007; Feifei, Lijian, & 

Zhe-ming, 2015; Mandloi, 2014; Nagaraju, Srinu, & Rao, 2013; Pachouri, 2015). This has been 

extended to recognizing people’s positions and actions in crowd detections (Biglari, Ahsan, & 

Rahi, 2014; Rajan & Mole, 2015). Person identification has enabled the development of 

commercial applications for biometrics, criminal identification, airport security systems and film 

processing (Kakarwal & Deshmukh, 2012; Mohanaiah, Sathyanarayana, & Gurukumar, 2013; 

Rouhi, Amiri, & Irannejad, 2012; Vijayarani & Priyatharsini, 2015).  

In the medical fields, computer vision has been employed to classify medical images for disease 

type diagnose lung tissue classification (Yang, 2013), detecting and quantifying breast cancers 

(Singh Laxman et al., 2012), and counting cell types based on contained features (Ponuchamy, 

2012).  

Image recognition has also been applied in content-based image retrieval (Wengert, Douze, & 

Herve, 2011), image search (Anurag, Raffay, Robinson, & Neel, 2013; Dhawan & Dogra, 2012), 

handwriting recognition applications (Pradeep, 2011), font recognition (Solli, 2011), logo 

recognition (Soma & Dhandra, 2015),  and  retrieving images in huge databases (Deng, 

Manjunath, Kenney, Moore, & Shin, 2001; Wasim, Shiv, Neetesh, & Nilofar, 2011). 
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2.5.3 The Process and Techniques Image Acquisition 

The object recognition system requires scanned images as an input in some specified format. The 

current advances of multimedia and hardware technologies allow easy capture and processing of 

images (Zhao & Zhai, 2015). The process of image recognition requires sufficient sets of images 

acquired by high-resolution satellite sensors (Benz, Hofmann, Willhauck, Lingenfelder, & 

Heynen, 2004; Ruiz, Recio, Fernández-Sarría, & Hermosilla, 2009), through scanners, digital 

cameras and other digital input devices (Adel & Elmogy, 2014; Verhoeven, Karel, Doneus, 

Trinks, & Pfeifer, 2015). Some computer vision systems encompass graphical user interfaces for 

capturing images using built-in camera modules (Sukhpreet, 2013). These systems process the 

images acquired in real time. Other systems access images that are stored in databases for 

processing. With the advance in hardware technologies and fast internet links, it has become 

relatively easier for researchers to acquire, store and exchange images (Tirilly, Claveau, & Gros, 

2009). Some researchers combine images from digital cameras and images from internet sources 

to create large-image classifier training sets. In the medical field sectional and 3D images are 

acquired using a process of X-Ray tomography (Nejad, Motekhases, Zakeri, & Mehrabi, 2015).  

In order to obtain sequential images, sky cameras can be programmed to capture scenes at 

specific time intervals and in appropriate formats (Heinle, Macke, & Srivastav, 2010). In 

effectively acquiring specific type of images such as clouds, a series of dynamic continuous 

images has to be acquired (Viazzi et al., 2014; Yuan, Minjing, & Menglu, 2013). Acquiring 

dynamic continuous images of the same scene necessitate that image capture positions should be 

consistent to minimize the variation of noise (Dilipsinh, Mahasweta, & Vikram, 2014). Multiple 

camera setups can be employed for various image position orientations (Biglari, Ahsan, & Rahi, 

2014; Campos et al., 2011; Rajan & Mole, 2015) . A more promising low-cost approach of 

acquiring sky images is the deployment of drones to acquire scenes at regular time intervals 

(Dworkin, 2008; UNEP, 2013).  

2.5.4 Techniques of Image Pre-Processing 

Image pre-processing is the term given to handling images at the basic level. Images that are 

corrupted by some distortion such as noise, bad illumination or blurring require pre-

processing(Nikolaou & Papamarkos, 2002), a regular procedure for reducing the dimension of 
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feature vectors to optimize image classification (Hema, 2013; Pandit, Kolhar, & Patil, 2015; 

Piera et al., 2005). The image pre-processing procedures enhance the image content quality by 

suppressing undesired distortions (Rajendran & Madheswaran, 2010; Soma& Dhandra, 2015).  

Image pre-processing tasks include principal component analysis, noise reduction, filtering, 

resizing, normalization, colour transformation as well as segmentation (Chary, Lakshmi, & 

Sunitha, 2012; Chora, 2007; Kamavisdar, Saluja, & Agrawal, 2013; Nikolaou & Papamarkos, 

2002). Noise introduced during the image acquisition process can be reduced using noise 

reduction filters such as median, mean, adaptive, linear and predefined filters. Image noise 

reduction process sets each image pixel to the mean or median of the pixel values in the 

neighbourhood of the corresponding input pixels (Sindhu, 2015; Pandit, Kolhar, & Patil, 2015; 

Rajendran & Madheswaran, 2010; Vijayarani &Priyatharsini, 2015). A more simple and efficient 

process of image noise reduction can be achieved by applying order statistics filters that combine 

both median and mean filtering to remove noise from images by determining the pixel value in 

the noiseless images (Sindhu, 2015).  

To make an object sharp and with outstanding edges the image intensity is normalized by 

computing an average image intensity histogram (Rajendran & Madheswaran, 2010; Sindhu, 

2015). During image pre-processing task images are resized into pre-defined image sizes 

(Nikolaou & Papamarkos, 2002), aligned and region of interest selected (Feifei, Lijian, & Zhe-

ming, 2015). Other image pre-processing tasks include: colour reduction by converting from 

Red, Green and Blue (RGB) colour model into greyscale, and removing shadows or light spots 

(Khatib, Karajeh, Mohammad, & Rajab, 2015).  

2.5.5 Clustering and Classification of Images 

Advances in imaging technologies have led to the formation of a huge number of various images 

requiring methods of image indexing and retrieval. Image clustering is a process used to 

efficiently organize and extract images for classification tasks (Bhateja, Sehrawat, & Bhardawaj, 

2013). The image clustering process is also called unsupervised image classification since 

images in a dataset are identified as a member of one category of image collection without using 

any prior knowledge (Mishra & Silakari, 2012; Olaode, Naghdy, &Todd, 2014; Saritha & 

Parthasarathy, 2014). The image clustering process partitions the images data set into several 
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clusters so that the correspondence within a single cluster is larger than that of whole data set 

(Rajan& Mole, 2015).  

Image clustering is done using dimension reduction and unsupervised classification algorithms to 

come up with compact image representations (Olaode, Naghdy, & Todd, 2014; Rahat, Cécile, 

Damien, & Ducottet, 2015). During image clustering feature descriptors are grouped 

corresponding to visual words whose quality depends on the choice of a clustering algorithm 

(Jiang, Y. Jun, & Chongwah, 2007; Tian, 2013; Tirilly, Claveau, & Gros, 2009). 

Image clustering builds a visual dictionary by grouping a large set of feature descriptors which 

then associates each image to a histogram of occurrences of the visual words (Lavoué, 2011). 

Since image clustering algorithms do not determine the best possible number of clusters, the 

vocabulary size must be fixed to a specific number of clusters (Tirilly, Claveau, & Gros, 2009). 

Having a small vocabulary reduces image discrimination power as different images may be 

assigned into the same cluster. A large vocabulary is less general and has additional processing 

overhead (Jiang, Y. Jun, & Chongwah, 2007; Tirilly, Claveau, & Gros, 2009). Research reveals 

that larger vocabularies prove to be superior in image clustering but can discriminate irrelevant 

variations including image noise (Toldo, Castellani, & Fusiello, 2009).  

Image clustering can be achieved using either parametric or non-parametric techniques. 

Theparametric technique involves defining a measure of dissimilarity between image samples for 

assessing the degree of difference between images (Manjunath, 2014; Olaode, Naghdy, & Todd, 

2014). Some image clustering techniques use partitioning methods, density-based methods, grid-

based methods, model-based methods, k-means algorithm, graph-based model, hierarchical 

clustering, mixture resolving, mode-seeking algorithms, nearest neighbour clustering, fuzzy 

clustering, evolutionary clustering and spectral clustering (Manjunath, 2014; Olaode, Naghdy, & 

Todd, 2014; Saritha & Parthasarathy, 2014; Sridhar, 2012). Non-parametric techniques are 

simple but not very suitable for clustering high dimensional images (Olaode, Naghdy, & Todd, 

2014). Fuzzy C- means (FCM) image clustering uses fuzzy logic where each image has a 

possibility of being grouped into different specific clusters (N, A, & V, 2010). Image 

segmentation uses the means clustering to partition an input image into foreground and 

background regions (Pandit, Kolhar, & Patil, 2015). Some current research used a clustering 
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technique based on unsupervised neural nets and self-organizing maps (Manjunath, 2014). A 

multi-clustering approach can be achieved by applying different clustering techniques to sets of 

images to obtain several visual words (Toldo, Castellani, & Fusiello, 2009). Support vector 

machines algorithms can also be used for image clustering (Pachouri, 2015). 

2.5.6 Extraction and Representation of Image Features 

Image features extraction (the process of locating specific points in an image) is an essential step 

before image recognition (Jain & Salankar; Ruiz, Recio, Fernández-Sarría, & Hermosilla, 2009; 

Tian, 2013; Vijayarani & Priyatharsini, 2015). In video applications, feature extraction is used to 

estimate the trajectory of an object in the image plane (Kamavisdar, Saluja, & Agrawal, 2013). 

Current research in image recognition and retrieval has been focused extracting different visual 

features of an object in order to identify the object from the image (Kuril & Saini, 2013; Olaode, 

Naghdy, & Todd, 2014; Thakur & Dhole, 2013) with the intention of allowing computer 

applications and users to search or recognize specific objects in an image (Kuril & Saini, 2013; 

Pachouri, 2015; Saritha & Parthasarathy, 2014; Thakur & Dhole, 2013). Image features are also 

known as the signatures of the image (Jain & Salankar; Nikolaou & Papamarkos, 2002).  

The task of image feature extraction can only be complete when objects have been identified and 

recognized by the machine (Saritha & Parthasarathy, 2014). The purpose of image feature 

extraction is to represent an image in compact and unique form of single values or matrix vectors 

(Kuril & Saini, 2013; Ponuchamy, 2012; Soma & Dhandra, 2015). In this process the visual 

content of the images is mapped into a new feature vector (Chora, 2007; Kakarwal & Deshmukh, 

2012; Nikolaou & Papamarkos, 2002). To improve performance and memory management after 

image extraction, only appropriate features are selected to reduce the number of features used in 

the image classification task (Chora, 2007; Pradeep, 2011; Rahat, Cécile, Damien, & Ducottet, 

2015). 

The human eye perceives images with a combination of features including: colour, texture, and 

shape (Benčo & Hudec, 2007). The key to a working computer vision system is the choice of 

features extracted to represent an image (Nikolaou & Papamarkos, 2002; Sridhar, 2012). Visual 

object distinguishable features that can be extracted include:colour, texture and shape (Chora, 

2007; Mohanaiah, Sathyanarayana, & Gurukumar, 2013; Olaode, Naghdy, & Todd, 2014; 
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Saritha & Parthasarathy, 2014; Thakur & Dhole, 2013; Vijayarani & Priyatharsini, 2015; Wasim, 

Shiv, Neetesh, & Nilofar, 2011). Once these visual image features have been extracted, the 

image retrieval and recognition process reduces to measuring the similarities between the 

features (Thakur & Dhole, 2013). Other basic features that can be used to recognize visual 

objects include contour, diameter, length, width, area, perimeter, size, shape, composition and 

location (Chary, Lakshmi, & Sunitha, 2012; Faizal, Jabal, Hamid, Shuib, & Ahmad, 2013; Piera 

et al., 2005; Sindhu, 2015). 

The techniques of geometry-based feature extraction (Gabor wavelet transform), appearance- 

based techniques, colour segmentation-based techniques, template-based feature colour 

histograms, colour moments and edge histogram descriptors are used to extract image features 

(Dhawan & Dogra, 2012; Dubey, Choubey, & Bhattacharjee, 2010). The choice of a technique 

relies on factors such as image scale, illumination variation, variation noise and orientation 

(Dhawan & Dogra, 2012; Olaode, Naghdy, & Todd, 2014). The feature extraction techniques 

chosen must enhance the discriminative power of feature descriptors, making the classification 

task less difficult (Vamvakas, Gatos, & Perantonis, 2009; Yang, 2013). An extraction technique 

that is able to retain the neighbourhood associations among image pixels is advantageous 

(Nikolaou & Papamarkos, 2002). Programming tools are available for image feature extraction 

with a diversity of methods to describe the properties of visual objects (Ruiz, Recio, Fernández-

Sarría, & Hermosilla, 2009).  

2.5.6.1 Colour Descriptors 
Colour is an important and widely used feature for visual object representation (Alamdar & 

Keyvanpour, 2011; Mandloi, 2014; Sridhar, 2012; Zhao & Zhai, 2015). The human vision 

system uses colour for recognition and discrimination of objects (Bhardwaj, Di, R. Hamid, 

Piramuthu, & Sundaresan, 2013; Nikolaou & Papamarkos, 2002; Tian, 2013; Jun Zhang, 

Barhomi, & Serre, 2012). Extracting colour visual information is useful in content-based image 

retrieval (Chora, 2007; Jain & Salankar; Mandloi, 2014; Nikolaou & Papamarkos, 2002; Sridhar, 

2012; Wasim, Shiv, Neetesh, & Nilofar, 2011). Compared to shape and texture features, colour is 

more constant, making it insensitive to image transformation such as scaling, translations, 

lighting, rotations and zooming (Mandloi, 2014; Sridhar, 2012). The detection of dark colours 

indicates that the object is high-density (Lang, 2009). 
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Colours in digital images are represented as sets of matrices which define pixel values of the 

images such as grey scale values in black and white images and RGB values in colour images 

(Agarwal & Bedi, 2015). In a true colour image, a pixel can have an RGB value from a 

combination of 16777216 different colours (Paresh, 2011). Colour features are extracted based 

on colour spaces that are mathematical representations of a sets of colours (Biglari, Ahsan, & 

Rahi, 2014; Paresh, 2011). The commonly used colour models are Red, Green, Blue (RGB),Hue, 

Value, Saturation (HSV) or Cyan, Magenta, Yellow, and Key (CMYK) (Biglari, Ahsan, & Rahi, 

2014; Jain & Salankar; Sridhar, 2012; Tian, 2013; Vijayarani & Priyatharsini, 2015). The colour 

spaces can be derived from the common RGB format while retaining compatibility with display 

devices (Biglari, Ahsan, & Rahi, 2014). The RGB colour space is mostly used in computer 

graphics. The red, green, and blue are three primary additive colours represented by a three-

dimensional, Cartesian coordinate system with varying amounts of each primary component, 

representing various grey levels (Biglari, Ahsan, & Rahi, 2014). 

Image colour distribution can be described using colour moments, colour histograms, and colour 

coherence vectors(Alamdar & Keyvanpour, 2011; Pachouri, 2015; Sridhar, 2012). The choice of 

colour representation method used is significant for extracting colour distribution (Anurag, 

Raffay, Robinson, & Neel, 2013). In colour histograms bar graphs are used to depict the amount 

of colour in an image (Chora, 2007; Dubey, Choubey, & Bhattacharjee, 2010; Jain & Salankar; 

Mishra & Silakari, 2012; N. Sharma, Rawat, & J. Singh, 2011). Colour histograms are easy to 

compute, requiring low storage, and are robust to image viewpoints (Chora, 2007; Deng, 

Manjunath, Kenney, Moore, & Shin, 2001; Jain & Salankar; Wasim, Shiv, Neetesh, & Nilofar, 

2011). The use of the three colour moments including first order (mean), second order (variance) 

and third order (skewness) have been proved to be efficient and effective in representing colour 

distributions of images (Chora, 2007; Mishra & Silakari, 2012; Thakur & Dhole, 2013). During 

image analysis the Euclidean distance is determined to measure the similarity of two colour 

moments (Thakur & Dhole, 2013). A colour correlogram characterizes the colour distributions of 

pixels and spatial correlation of pairs of colours (Chora, 2007; Mishra & Silakari, 2012).  

Approaches to colour extraction for object recognition involve applying shape-based image 

descriptors on individual colour channels, for example, HSVSIFT, OpponentSIFT and CSIFT 

descriptors (Z. Jun & Youssef, 2012). The Colour SIFT method extracts colour feature points 
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from HSV image (Babu & P. R. Shankar, 2015). The Grid-Based-Colour-Moments (GBCM) 

function can be used to extract the colour moments of an image (Thakur & Dhole, 2013). 

2.5.6.2 Texture Descriptors 
Texture is a very important feature in the analysis and classification of images (Al-momen, 

George, & Naji, 2015; Benco, Hudec, Kamencay, Zachariasova, & Matuska, 2014; Ramana, 

Mani, & Kumar, 2009; Wasim, Shiv, Neetesh, & Nilofar, 2011). Texture relates to visual 

patterns with properties of homogeneity and can be said to be fine, uniform, dense, coarse, or 

smooth; rippled, molled, irregular, or lineated (Haralick & Shanmugam, 1973; Sridhar, 2012). In 

texture visual patterns can also be described in terms of granularity, directionality, and 

repetitiveness (Mishra & Silakari, 2012). In the presence of clutter it is challenging to recognize 

objects using texture (Zhang J, 2006). 

Statistical-based texture descriptors explore the grey-level spatial dependence while structural or 

transform-based texture descriptors rely on some transform such as DWT (Mishra & Silakari, 

2012; Sridhar, 2012). Entropy (a statistical measure of randomness), local range and standard 

deviation measures are used to measure texture features (Mishra & Silakari, 2012). Statistical-

based methods such as co-occurrence matrices, Law’s texture energy measures, Fourier 

transform domain, Markov random field models, local linear transforms, Gabor and wavelet 

transform can be used to extract textures in images (Mishra & Silakari, 2012; Ramana, Mani, & 

Kumar, 2009).  

Texture features can be extracted by exploiting the high redundancy depicted by high-intensity 

similarities among various pixels. Structural methods describe texture by identifying structural 

primaries and their rules (Mishra & Silakari, 2012). The Cubic Spline, Haar wavelet transform 

and Discrete Wavelet Transform (Al-momen, George, & Naji, 2015; Kuril & Saini, 2013) can be 

used to measure texture of an image individually or in combination. 

Grey relations exist between two pixels within the specific positions of the 2-Dimensional image 

plane (Shuang, 2015). The GLCM (grey-level co-occurrence matrix) extracts the second order 

statistical texture features by describing a co-occurrence matrix relating neighbouring grey levels 

in pixels of an image (Benco, Hudec, Kamencay, Zachariasova, & Matuska, 2014; Benčo & 

Hudec, 2007; Mohanaiah, Sathyanarayana, & Gurukumar, 2013; Shuang, 2015; Uddin, Islam, & 
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J.-myon Kim, 2014). GLCM computes four statistical features (energy, entropy, contrast, and 

homogeneity) of the image (Ruiz, Recio, Fernández-Sarría, & Hermosilla, 2009; Sridhar, 2012; 

Yuan, Minjing, & Menglu, 2013). Gabor filters can be used to extract discernible texture features 

from a filtered image corresponding to a specific scale and orientation (Benčo & Hudec, 2007; 

Uddin, Islam, & J.-myon Kim, 2014) . The Differential Box Counting (DBC) method has 

successfully been used to calculate the fractal dimension distinguishing texture by image 

roughness (Al-momen, George, & Naji, 2015). Gabor filters and GLCM methods have been 

proved as efficient in image retrieval using texture features (Benco, Hudec, Kamencay, 

Zachariasova, & Matuska, 2014).  

2.5.6.3 Shape Descriptors 
Shape is an important low-level feature that can be used to recognize images for indexing and 

retrieval (Calbo & Sabburg, 2008; Mathew & Balas, 2015; Mohanaiah, Sathyanarayana, & 

Gurukumar, 2013; Toldo, Castellani, & Fusiello, 2009; Xiaolan, Afzal, & Asim, 2008). The 

human eye exploits shapes to identify and recognize real-world objects (Tian, 2013). In shape-

based image retrieval the similarity between shapes represented by their features is measured 

(Chora, 2007; Hermosilla, 2005). The features that can be used to define an object shape include 

length, width and area (Faizal, Jabal, Hamid, Shuib, & Ahmad, 2013). Advanced features such as 

polygons and object skeletons can also be derived from the basic features (Benz, Hofmann, 

Willhauck, Lingenfelder, & Heynen, 2004).  

Shape feature extraction techniques are classified based on contour and region (Kamavisdar, 

Saluja, & Agrawal, 2013; Mathew & Balas, 2015; Medjahed, 2015; Tian, 2013). The contour 

method, such as the Fourier descriptor and skeleton description, calculates shape features only 

from the boundary of the shape (Mathew & Balas, 2015). The region-based method extracts 

features from the entire image region such as invariant moments and the region area. Shape 

features can also be extracted from the limits of the objects (Ruiz, Recio, Fernández-Sarría, & 

Hermosilla, 2009). Region-based methods use Geometrical moments, Zernike moments and 

Legendre moments descriptors (Mathew & Balas, 2015). Region-based shape descriptors, such 

as statistical moments, are used when shapes have complex boundaries (Mathew & Balas, 2015). 

Contour-based shape descriptors, such as Fourier descriptors, are not appropriate for describing 

shapes consisting of several disjoint regions (Mathew & Balas, 2015). The choice of a shape 
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representation descriptor should be invariant to translation, rotation and scaling (Mishra & 

Silakari, 2012).  

In the current image recognition research, shape descriptors are replaced by using descriptors 

such as interest points and corner points (Solli, 2011). (Solli, 2011) showed that colour 

descriptors outperform shape-based approaches in image classification.  

 

Figure 2-4: Approaches for shape representation. (Source: D. Zhang, G. Lu, 2004) 

2.5.6.4 Region Descriptors 
Region descriptors based on a similarity measure between neighbouring pixels and an object of 

interest have been considered as an effective and most frequently used technique in image 

processing (Singh Laxman et al., 2012; Yaxin, Zhihua, & Yubo, 2015). Extracting features based 

on focused regions can help improve the performance by integrating image regions which are 

relevant and not exhibiting uniform visual characteristics (Sindhu, 2015; Yaxin, Zhihua, & 

Yubo, 2015). Before image feature extraction begins, regions of interest (ROI) have to be 

specified (Faizal, Jabal, Hamid, Shuib, & Ahmad, 2013; Sindhu, 2015).  
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2.5.7 Techniques of Image Features Extraction 

2.5.7.1 The GIST (Global Image Spatial Features) 
Many researches on image recognition have focused on using the GIST descriptor (Douze, 

Amsaleg, & Schmid, 2009). The GIST descriptor uses low-dimensional feature vectors to 

describe the shape of an object (Sikiric & Brkic, 2013) without requiring image segmentation 

(Douze, Amsaleg, & Schmid, 2009). In GIST the perceptual properties of human vision – such 

as naturalness, openness, roughness, expansion and ruggedness – are used to represent the 

structure object (Douze, Amsaleg, & Schmid, 2009; Oliva, 2005; Sikiric & Brkic, 2013). The 

GIST focuses on the shape and the relationship between the outlines of the object (Sikiric & 

Brkic, 2013).  Compared to the BoW, model the GIST descriptor has a drawback due to is its 

fixed spatial layout that does not recognize images from a variation of viewpoints (Douze, 

Amsaleg, & Schmid, 2009). 

 

Figure 2-5: GIST feature extraction. (Source Li-Jia L, etal., 2009) 

2.5.7.2 The Gabor Filters  
A Gabor filter is a linear filter used for edge detection. Gabor filters’ frequency and orientation 

representations are similar to those of the human visual system. Gabor filters can be applied to an 

entire image or to selected regions of interest so that regions near a pixel are described by the 

responses to different frequencies and orientations centred at that pixel position (Andrysiak & 

Choras, 2005). Gabor filters have been used for different computer vision and pattern recognition 

applications relying on texture segmentation and texture feature extraction (Andrysiak & Choras, 

2005). Gabor filters are noise-efficient and can aid in reducing image redundancy (Andrysiak & 

Choras, 2005). Before processing, images can be decomposed into components corresponding to 
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different scales and orientations using Gabor filters (Andrysiak & Choras, 2005). The Gabor 

filtering process can also be used to extract grey-scale histograms from images (Sikiric & Brkic, 

2013). Gabor feature vectors extracted from an image can be transformed or input directly into 

classification algorithms (Grigorescu, Petkov, & Kruizinga, 2002). An advantage of Gabor filters 

is that they can work in invariant image conditions but are computationally expensive than 

GLCM (Jagdish, Sunil, & Ankit, 2013). 

 

Figure 2-6; Extracted feature from Zebra Image using Gabor filter. (Source: V. Shiv Naga Prasad, 2005) 

2.5.7.3 Grey Level Co-Occurrence Matrix 
The Grey Level Co-occurrence Matrix (GLCM) can be used to extract spatial distribution 

properties of the grey levels in texture images (Deepak, 2014; Jagdish, Sunil, & Ankit, 2013). 

GLCM indicates how often a pixel with the intensity value i occurs in a specific spatial 

relationship to a pixel with the value j. GLCM texture features commonly exploited include: 

Energy, Contrast, Correlation, and Homogeneity (Deepak, 2014). Some research reveals that the 

use of the GLCM descriptor in image recognition provides better results than Gabor filters 

(Jagdish, Sunil, & Ankit, 2013). 

 

Figure 2-7; Grey Level Co-Occurrence Matrix (GLCM) feature extraction process 
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2.5.7.4 Principal Component Analysis  
Principal Component Analysis (PCA) is a technique used to identify variations in a dataset. It has 

been used to identify unknown trends in image data (Vipul, 2014) decreasing image noise and 

reducing image dimensionality. PCA can also work with the SIFT descriptors (Lisin, 2006; 

Manisha & Neeraj, 2014; J. Wang et al., 2007; Xu, Jonathan Li, Shu, & Peng, 2014). PCA can 

be used to extract specific features in images, for instance eyes in faces (Dagher, Sallak, & 

Hazim, 2014) and in image and video compression (Griefahn, Wollnack, & Hintze, 2014; 

Olubunmi, Olusayo, Bola, & Ayodeji, 2015). To achieve compression, de-correlation and 

dimensionality reduction the representation of an image is obtained by projecting it to the 

coordinate system defined by the principal component subspace (Olubunmi, Olusayo, Bola, & 

Ayodeji, 2015). Principal component analysis using locally learned features has been able to 

represent structural features, for example image edges and texture (Xu, Jonathan Li, Shu, & 

Peng, 2014) 

2.5.7.5 Linear Discriminant Analysis  
Linear Discriminant Analysis (LDA) is a popular method used for image dimensionality 

reduction and pattern recognition for image feature extraction (Dagher, Sallak, & Hazim, 2014; 

Olubunmi, Olusayo, Bola, & Ayodeji, 2015). Features recognition using LDA works by 

projecting an input image to the same feature-space for classification (Dagher, Sallak, & Hazim, 

2014; Manisha & Neeraj, 2014). LDA methods have a drawback in that their optimality criteria 

are not directly related to the classification ability of the obtained feature representation 

(Manisha & Neeraj, 2014). LDA is also not flexible when working with complex datasets and 

relies on models containing the exact number of components (Siddiqi et al., 2014). 

2.5.7.6 The Scale Invariant Feature Transform 
The Scale Invariant Feature Transform (SIFT) extracts descriptors from an image with 

invariance to translation, rotation or scaling. SIFT descriptors are also robust to image 

transformations such as viewpoints, noise, blur, contrast changes and scene deformation (Hyun-

Woong Jang, 2014; Rey-otero & Delbracio, 2014) and in such are widely used in matching pairs 

of images, object recognition and video stabilization (Hyun-Woong Jang, 2014; Khan, Mccane, 

& Wyvill, 2011). The SIFT algorithm relies on the detection of interesting points (i.e. keypoints) 

and the extraction of a descriptor associated to each keypoint (Khan, Mccane, & Wyvill, 2011; 

Panchal, 2013). The keypoints are also called visual words that characterize an image (Hyun-
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Woong Jang, 2014). The SIFT technique has an advantage of high accuracy of matching image 

features but is slower compared to SURF (Hyun-Woong Jang, 2014).  

 

Figure 2-8: Image matching using Scale Invariant Feature Transform (SIFT) (David Lowe, 2004) 

2.5.7.7 Speeded Up Robust Features 
Speeded Up Robust Features (SURF) is sometimes called approximate SIFT (Khan, Mccane, & 

Wyvill, 2011). Detecting image features using SURF detectors based on the approximated 

Hessian Matrix is more efficient than using SIFT (Pandya, Chitaliya, & Sandip, 2013). The low 

dimensionality SURF descriptor determines a distribution of Haar-wavelet responses within the 

image regions of interest (Pandya, Chitaliya, & Sandip, 2013). SURF employs keypoint 

detection and keypoint description. Keypoint detection uses integral images to compute 

approximate Laplacian of Gaussian images using a box filter, rather than using DoGs as in SIFT. 

Determinants of the Hessian Matrix are then used to detect the keypoints (Khan, Mccane, & 

Wyvill, 2011). The SURF descriptors are computed by constructing a square window centred on 

the keypoints (Khan, Mccane, & Wyvill, 2011). SURF builds its scale space by keeping the 

image size constant while varying the filter size (Khan, Mccane, & Wyvill, 2011).  SURF is fast 

compared to SIFT but less accurate.  
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Figure 2-9: Speeded Up Robust Features (SURF) features on an image (source: Mathworks, 2015) 

2.5.7.8 Histogram of Oriented Gradients 
Histogram of Oriented Gradients (HOG) is an image feature descriptor that characterizes objects 

through their shapes (Prates, Schwartz, & Menotti, 2013). The aim of the HOG method is to 

describe an image by a set of local histograms. These histograms count occurrences of gradient 

orientation in a local part of the image (Suard, Rakotomamonjy, & Bensrhair, 2006). To obtain 

such discriminant information, the image is divided into cells and for each cell is computed a 

histogram of oriented gradients. Each pixel within the cell contributes with a weighted vote for 

an oriented histogram based on the values of the computed gradients(Prates, Schwartz, & 

Menotti, 2013). HOG, like SIFT descriptors, captures edge and gradient structure that is very 

characteristic of object local shape with invariance to local geometric and photometric 

transformations (Dalal & Triggs, 2005). The histograms of oriented gradients are also called 

Dense-SIFT extracts that describes local image features from each of the uniformly spaced cells 

on an image (Olaode, Naghdy, & Todd, 2014). 
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Figure 2-10: Histogram of Oriented Gradients (HOG) image features (source: Mathworks, 2015) 

2.5.7.9 Bag of Words  
The Bag of Words (BoW) – also called Bag of Features (BoF) or Bag of Keypoints (BoP) –  

segments an image into grids and extracts visual features from each grid to form feature vectors 

(Jinho Kim, B.-S. Kim, & Savarese, 2011; Solli, 2011; Yaxin, Zhihua, & Yubo, 2015). The BoW 

technique extracts the image features by using the threshold method (Faizal, Jabal, Hamid, 

Shuib, & Ahmad, 2013). After extraction of the feature vectors a vocabulary of visual words is 

constructed by clustering the feature vectors which represent images as histograms of visual 

words (Jinho Kim, B.-S. Kim, & Savarese, 2011; Yaxin, Zhihua, & Yubo, 2015). The BoW 

model has become an important image content representation method and is widely used in 

image annotation and retrieval (Yaxin, Zhihua, & Yubo, 2015).  

 

Figure 2-11: Bag of Visual Words (source: Mathworks, 2015) 
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The BoW has two key concepts: local features and a codebook. The essential aspect of the BoW 

concept is to extract global image descriptors and represent images as a collection of local 

properties calculated from a set of small sub-images called patches. Codebook is a way that an 

image can be represented by a set of local features. The idea is to cluster the feature descriptors 

of all patches based on a given cluster number and each cluster represents a visual word that will 

be used to form the codebook.  After obtaining the codebook, each image can be represented by 

the BoW frequency histograms of the visual vocabulary of the codebook. The similarity of 

images can be measured by comparing between the BoF histograms (Douze, Amsaleg, & 

Schmid, 2009; Xiaoli, Jing, Zengchang, & Tao, 2011). Local features extractors that utilize BoW 

image representation technique include: SIFT; SURF; and HOG (Anurag, Raffay, Robinson, & 

Neel, 2013). Using BoW to extract features from locations covering the entire area of an image 

rather than few selected locations provides additional information which may improve the 

accuracy of an image classifier. The SIFT (Xiaolan, Afzal, & Asim, 2008) and SURF feature are 

sparse feature extraction algorithms because they only detect and describe features at chosen 

locations on an image (Olaode, Naghdy, & Todd, 2014). The HOG descriptor operates on 

localized cells, and is also invariant to geometric transformation of an image (Olaode, Naghdy, 

& Todd, 2014). 

The output from image recognition techniques can be transformed to represent visual concepts 

mimicking human perceptions and used as input to fuzzy cognitive mapping and predictions 

process. The quality of results after running of fuzzy cognitive mapping scenarios can be 

evaluated against reality. The process of verification relying on results from fuzzy cognitive 

mapping scenarios is discussed in the next section.  

2.6 The Role of Computing in Traditional Weather Forecasts Verification 

Assessing the output quality of weather forecasting systems has been challenging in 

meteorological research (Casati et al., 2008; Mailier, Jolliffe, & S. David, 2006). The advent of 

modern technologies and ICT allow forecast users (such as farmers and other decision-makers) 

to seek weather forecasts from various sources with varying qualities of forecast information 

(Mailier, Jolliffe, & S. David, 2006).  
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Traditional knowledge is widely used in rural communities despite the fact that it has not been 

documented and verified, making it inaccessible to the outside world (Owiny & Maretzki, 2014). 

Some studies revealed that the most common weather lore could have scientific bases (Baliscan, 

2001). The correctness of forecasts derived from weather lore needs to be scientifically verified 

to enable traditional weather forecasts to be applied on the same level as conventional weather 

forecasts (Shoko, 2012). Verifying traditional knowledge will lead to increased adaptation 

(Chiwanza, Musingafi, & Mupa, 2013; Nakashima & McLean, 2012) while effectively meeting 

the needs of scientists and researchers (Casati et al., 2008). Recognizing and building traditional 

knowledge for production and representation of scientific forecasts must be employed in ways 

that do not devalue the cultural notions in relationship to communities (Roncoli, Ingram, & 

Kirshen, 2002).  

Scientific verification is significant for standardizing traditional knowledge (such as for use in 

healthcare), as the process must include sound scientific authentication and verification (United-

Nations, 2004). The United Nations recognizes traditional knowledge as a resource from the 

scientific point of view. With the wealth of useful information embedded in traditional 

knowledge many researchers have recognized the need of integrating the scientific and 

traditional systems of knowledge (United-Nations, 2004). However, the process requires the 

extraction of relevant traditional knowledge through a process of scientific verification 

(Chinlampianga, 2011; United-Nations, 2004).   

2.6.1 The Process of Verification Using Forecast Skills 

Weather forecast skill verification is a process of assessing the quality of forecast information 

(Fajman, 2011). Sometimes forecast verification is used to imply the measure of quality between 

forecasts and actual weather observations (Mailier, Jolliffe, & S. David, 2006; Mariani & 

Casaioli, 2008; Oberkampf & Trucano, 2002; Oreskes, Shrader-frechette, & Belitz, 2010; Tressa, 

Tara, & Barbara, 2012; Ziervogel & Downing, 2004). The term ‘verification’ is also regarded as 

a method of testing model forecasts during the validation process (Abramova & Kovriga, 2008; 

Lo & Pielke, 2008). 

The process of verifying output from a forecast model aims at demonstrating the truth which will 

imply the reliability of the forecast model in for decision-making (Green, Billy, & Tapim, 2010; 
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Mariani & Casaioli, 2008; Oreskes, Shrader-frechette, & Belitz, 2010; Pinson, 2013). As a 

technique of determining the validity of a computational model’s predicted values relative to 

actual data and not the internal working of the model, the verification process is also known as 

external validation (Carley, 1996). In some verification processes forecasts are compared to the 

observations recorded at various weather stations (Huntington, Callaghan, Fox, & Krupnik, 

2004; Savvidou, Lagouvardos, Michaelides, Kotroni, & Constantinides, 2010; Xue, 2014). 

Sometimes a scientific verification process is conducted in the lack of sufficient data (Johansson 

& Achola, 2013), hence conducting a forecast verification process may not prove output 

accuracy for all possible scenarios but  provide evidence that the forecast tool forecasts with 

sufficient accuracy and reliability (Oberkampf & Trucano, 2002; Oreskes, Shrader-frechette, & 

Belitz, 2010; Thacker et al., 2004). The verification process also can provide some tests on 

forecast model ability to represent unpredictable and dynamical weather systems (Randall & 

Wood, 2007). 

2.6.2 Preparing Weather Data for Verification 

Different data crowdsourcing methods (such as mobile sensors, social networks and human 

computation) can be used to obtain actual (or ground) truth for use in running scenarios to verify 

weather forecast models (Calais, 2008; Steven et al., 2015). 

Crowdsourcing is a method of utilizing a variety of techniques and strategies (such as human 

computation, sensor networks, mobile technologies etc) for performing tasks (such as data 

gathering) to consequently reduce the effort of solving problems (Yuen, King, & Leung, 2011). 

The process of crowdsourcing information using more than one technique and from two or more 

independent sources with different forms of data such as text and images can clearly confirm and 

verify knowledge in near real-time (Habibi & Popescu-belis, 2012; Krause & Smeddinck, 2011).  

2.6.2.1 Acquiring Verification Data Using Human computation 
Crowdsourcing systems can employ human input and computation where there is incomplete 

knowledge, and where subjective comparisons of knowledge are needed (Castelein, Grus, 

Crompvoets, & Bregt, 2010; Franklin, Kossmann, Kraska, S. Ramesh, & Xin, 2011; Kuo & Hsu, 

2010; Little, 2011). In human crowdsourcing strategy, data quality is a major concern since 

volunteered information is a claim and carries no assurance that can lead to trust in legitimately 
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created data (Chengjin LI, 2012; Goodchild & Glennon, 2010; Morris & Mcduff, 2012), hence 

motivating factors such as pay per result and incentives can be employed to increase data 

collection and performance of crowd workers (Goodchild, 2006; Kuhn, 2007; Pipek, Landgren, 

& Palen, 2012) where generation of solutions can be performed by paid workers rather than ad-

hoc volunteers (Ahn, 2005; Goodchild & Glennon, 2010; Pipek, Landgren, & Palen, 2012).  

Previous studies reveal that crowd workers are willing to put their solutions forward in exchange 

for a chance to win compensation (Massung, Coyle, Cater, Jay, & Preist, 2013; Morris & 

Mcduff, 2012; Sunny, Mike, Bing, & Daying, 2012). Crowdsourcing techniques and strategies 

can be used to enhance classification of information (Haoqi et al., 2012; Mccall, Martinez, & 

Verplanke, 2013; Preist, Massung, & Coyle, 2014) as well as in evaluation of data in information 

systems (Goodchild, 2006; Haoqi et al., 2012; Kuhn, 2007; Quinn & Bederson, 2010).  

2.6.2.2 Acquisition of Verification Data Using Wireless Sensors 
Wireless sensors are now embedded in most of modern communication devices such as drones 

(Dworkin, 2008; Molnar, Mansour, Saulnier, Thompson, et al., 2014; Richard, 2013; UNEP, 

2013), phones and digital assistants and also attached to most movable objects such as robots, 

vehicles and animals (Gekas, 2012; Lane et al., 2010; Xiuchao, Kenneth, & Cormac, 2014). 

Most of the modern communication devices can be programmed (Franklin, Kossmann, Kraska, 

S. Ramesh, & Xin, 2011; Lane et al., 2010) and are coming up with advanced  categories of 

cheap and powerful embedded sensors (such as an accelerometer, digital compass, GPS, 

microphone, and cameras) which are now making it possible for the emergence of personal, 

group, and society-level sensing applications (Abbasi, 2010; Chengjin LI, 2012; Franklin, 

Kossmann, Kraska, S. Ramesh, & Xin, 2011; Goodchild, 2006). Sensor-equipped mobile phones 

have revolutionized many sectors of the economy, including business, healthcare, social 

networks, environmental monitoring and prediction (Kuhn, 2007; Lane et al., 2010; Mccall, 

Martinez, & Verplanke, 2013; Sunny, Mike, Bing, & Daying, 2012). In the application of mobile 

sensing technology the technical limitations are mostly encountered when performing resource- 

sensitive reasoning with noisy data (Abbasi, 2010; Habibi & Popescu-Belis, 2014; Hoefler, 

Schneider, & Lumsdaine, 2010; Kuo & Hsu, 2010; Yuen, King, & Leung, 2011). The use of 

information-sensing networks can facilitate effective data gathering by providing an efficient and 

continuous collaborated flow of information (Massung, Coyle, Cater, Jay, & Preist, 2013; Pipek, 

Landgren, & Palen, 2012; Preist, Massung, & Coyle, 2014; Xiuchao, Kenneth, & Cormac, 2014).  
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2.6.3 Strategies in Weather Forecast Verification 

With sufficient pairs of actual data and weather forecasts a variety of statistical confirmation 

techniques can be applied to verify forecasts (Lo & Pielke, 2008). The key in verification is to 

test the accuracy of predictions against the ground truth (Ahmad K, 2012; Messager & Faure, 

2012; Stern & Easterling, 1999). Forecast skill verification can either be objective – statistical 

comparison of forecast and observed values with no human interpretation; or subjective –   

involve human verification of forecasts and observations (World-Meteorological-Organization, 

2000).  

Different choices of methods (such as using spatial verification plots, the summary of measures, 

forecast skill scores and diagnostic techniques) are used for forecast verification (Casati et al., 

2008; Maini, 2008; Mariani & Casaioli, 2008). Uncertainty in making forecasts is a major issue 

in forecast verification models (Bougeault, 2003; Djam, 2013; Stern & Easterling, 1999)  calling 

for adequate manual verification by human experts for quality checks (Uygar & Stacy, 2004). 

The process of forecast verification follows a  sequence of steps including: gathering actual 

observations; choice of strategies to use in verification; the aggregation of results pairs; choice of 

appropriate statistics for summarizing verifications; and interpretation of the statistical 

significance of the skill scores (Bougeault, 2003). The choice of strategies relies on the type and 

quality of actual observations, which can be estimates containing information in varying time 

and space scales.  

© Central University of Technology, Free State



52 
 

 

Figure 2-12: Forecast Skill Scores as Measure of Forecasts Quality (Source: Christoph Frei, 2014) 

With a series of weather forecasts and actual observations in duration of times, metrics such as 

Mean Error (ME) and Root Mean Squared Error (RMSE) can be employed to evaluate the 

accuracy of weather forecasts against ground truth (Atger, 2001; Chai & Draxler, 2014). The ME 

highlights the biases in forecast models while the RSME evaluates the overall accuracy of 

forecasts (Ahmad K, 2012; Atger, 2001; Mailier, Jolliffe, & S. David, 2006).  

Given forecast, F , and observations, O , in a time frame ni :1 , then the error margin, ie , can 

be calculated as iii OFe  . The values of ME and RSME can be calculated using the following 

equations. 
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Qualitative forecasts (for instance, “likely to have moderate winds”) are difficult to verify since 

they can be interpreted differently by forecast users and researchers (Mailier, Jolliffe, & S. 

David, 2006). These non-quantitative forecasts can be made definite by introducing thresholds 

(for instance, “likely to have moderate winds” can be defined as having probability not 

exceeding 0.5 or a categorical value). To verify descriptive forecasts suitable strategies can be 
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employed depending on the definitions. In fuzzy cognitive mapping models domain experts as 

well as cross-validation strategies have been combined and used as a verification method (Djam, 

2013; 2010; Pang, 2013).   
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3.Chapter Three: Research Methodology 

3.1 Introduction 

This chapter presents the procedures undertaken and techniques used for verification of visual 

weather lore. The main aim of this chapter is to explain the methodologies and how they have 

been applied. First are the methods for preliminary studies and understanding of the weather lore 

domain. The research design and specific methodologies used to examine the application of 

visual weather lore by traditional communities for predicting weather outcomes are then 

discussed. The use of case study methods to determine if some causal effects exist between 

metrological and visual weather lore is also highlighted. This is followed by the methods for 

analyzing case study results to come up with combined knowledge representations in the form of 

fuzzy cognitive maps. Finally, the methods used for implementing the software model for 

experimenting visual weather lore verification using a mixture of techniques and metrics are 

discussed.  

The procedures used in this research are organized into seven sections: section 3.1 introduces 

this chapter and highlights the sections and methodologies used in this research; section 3.2 

provides a description of the research design; section 3.3 describes the case study method as 

applied in understanding the visual weather lore domain; section 3.4 describes the procedures 

and methods in developing a visual weather lore verification tool; section 3.5 describes the 

experiments and tests of methods for predicting weather outcomes using visual weather lore; 

section 3.6 describes the procedures for verification of predicted weather outcomes; finally 

section 3.7 describes the procedures used in evaluating the objectives of this research.  

The case study research process was qualitative, with its major interest being to inquire into the 

experience of individual humans and how they comprehend the subjective phenomenon of 

complex weather prediction in a traditional context. The case study method focused on 

understanding the deliberate behaviours and actions of humans as they shared their experience of 

visual weather phenomenon.  

The following are definition of some of the terms used in this research: 
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Case study:–  in this research a case study is an in-depth study of an event in a selected area 

using selected individuals 

Data analysis –  the interrogation of acquired data to come up with summaries and trends in the 

study variables 

Ethics –  the standards held to guard the research participants from risks and exploitation 

Structured interview –  a set of predefined questions to guide the researcher and respondents in 

the answering of questions 

Judgmental sampling (also called purposive sampling) –  the use of prior knowledge to select 

respondents to research questions 

Open-ended questions: questions to which respondents are free to give their own responses 

Pilot/Pre-test study – a trial study to gauge the adequacy of research tools and redefine 

questionnaires 

Population –  the set of all people in the communities’ studies 

Qualitative research –  research focusing on descriptive data and responses 

Quantitative research – research focusing on number of responses 

Questionnaire –  a set of questions to aid respondents in providing answer to questions 

Reliability –  the ability to replicate consistent results when used in different case studies 

Research design –  a plan for conducting research 

Sample –  a subset of a population 

Validity – the degree of a result to reflect the meaning of a tested variable 
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3.2 Research Design 

This research is based on mixed research design (Duan & Hoagwood, 2013) where both 

qualitative and quantitative techniques were combined to suit specific objectives of this research. 

The qualitative approach (Nakashima & McLean, 2012) was noteworthy in investigating human 

understanding and use of visual weather lore for weather prediction. The quantitative methods 

(Ahmad K, 2012) were substantial in investigating means of representing visual weather lore 

knowledge and applying the knowledge to predict weather outcomes.  

3.2.1 Data Sources   

There is limited documented information on weather lore validation. In addition, the weather lore 

concept is complicated (Mwagha & Masinde, 2015) to explain analytically. Thus, most of the 

literature reviewed in this research (refer to Chapter Two) are focussed mainly on the available 

weather lore, fuzzy cognitive mapping, weather sensing, visual recognition processes and 

forecast verification. This literature review was useful in directing the design of verification 

methods and platform as well as choice of software tools used. Literature reviewed was also used 

to enhance and align research objectives to research the methodology.  

The sources of data considered for investigating the weather lore domain were both primary 

(acquired using questionnaire-based interviews and case studies) as well as secondary data 

through literature review.  The scope of this investigation was to identify astronomical (Kunkle 

& Ristvet, 2013) and meteorological (Ziervogel et al., 2014) aspects as used in the context of 

traditional weather forecasts (Baliscan, 2001). The intention of acquiring data from both the 

primary and secondary sources was to extract facts for comparison, scientific validation and 

preservation of the essential information to integrate into modern weather prediction systems.  

3.2.2Data Collection Techniques  

A series of three structured interviews were adopted from (Duan & Hoagwood, 2013; Preist, 

Massung, & Coyle, 2014) for use in these two phases. The first phase was carried out in a South 

African community in KwaZulu- Natal while the second phase was carried out both in Kenya 

(Taita-Taveta) and repeated in South Africa (KwaZulu-Natal).  
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During the first phase of the interview, sample astronomical and meteorological images were 

presented to informants for identification and description of associated weather. Phase II 

interviews involved the capturing of astronomical and meteorological images, identification of 

the images and description of associated weather. In each of the case study locations, social 

places were used as venues for interview sessions. 

The people interviewed were members of the studied communities. The purposive sampling 

method (Risiro, Mashoko, Tshuma, & Rurinda, 2012) was used to select 50 respondents 

(perceived knowledgeable persons) comprising both traditional farmers and herdsmen and local 

residents. Data was collected with the help of research assistants (university students on vacation 

and volunteers) from the communities selected with the help of the University (Central 

University of Technology, Free State – CUT) research supervisor. The research assistants were 

trained with regard to interpretation of the questionnaire, interviewing guidelines and research 

ethics. An introductory letter from CUT was used to introduce the researchers.  

The collected data was digitized for storing in a computer and for transferring to the main 

researcher. A spreadsheet was used for easy storage and retrieval of data. For safety and recovery 

of information, back-up copies of the data were made and stored separately.  

Structured interviews (Stern & Easterling, 1999) using questionnaires proved satisfactory to 

gather qualitative information. The data collection method permitted the respondents enough 

time and capacity to question their opinions on the visual weather lore domain. The focus points 

of the interviews were decided by the researcher since there were aspects in the weather lore 

domain the researcher was interested in exploring (visual astronomical and meteorological). The 

main objective of using structured interviews was to understand the respondent/s’ point of view 

so that individual opinions about the visual weather lore could be analyzed. 

Qualitative research (Duan & Hoagwood, 2013) was used to describe the causal links between 

visual weather lore and weather outcomes. Quantitative methods were used to establish 

statistically significant conclusions about the populations in the case study locations by analyzing 

the collected data from the representative sample of the population.  
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3.2.4Sampling Techniques  

This research used purposive sampling (Meier, 2011) to target a particular category of 

respondents. The study targeted respondents in the rural communities of KwaZulu-Natal (South 

Africa) and Taita-Taveta (Kenya) where farmers and people that rely on weather for their 

activities were located. The research incorporated other categories of people, such as teachers, 

since most farmers and herdsmen are difficult to contact during daytime working hours. All 

categories of adult respondents who were residents in the case study locations were considered 

no matter of professions. 

3.2.5 Data Analysis and Interpretation  

The data analysis involved identifying key indicators of causal effects between visual weather 

lore and weather outcomes (also referred to as ‘concepts’ in this research).  These indicators 

were recorded by scales of magnitude of effects (see Data Collection Instrument in the 

Appendices section) between the concepts (strong negative, negative, none, positive and strong 

positive).   

The collected data was set up in a Statistical Package for Social Sciences (SPSS) codebook with 

some scales of semi-informal transformations. In order to derive common knowledge, the data 

was analyzed using both quantitative (such as percentage or number of respondents) and 

descriptive statistics (such as mode and mean of categorical responses). The analyzed data was 

represented as group knowledge (on visual astronomical and meteorological weather concepts 

and the causal effects on short term weather) using statistical summaries.  

The responses for all the respondents in the case study locations were collected, analyzed, and 

summarized to answer the research questions.  The analysis was categorized in terms of the 

following sections that provided answers to specific research objectives: 

(a) Study area and demographic information of the respondents – the interest at this point was 

to understand the way of life and economic activities of the people. This was also reflected 

in the experience and length of stay in the communities; 

(b) Impact of weather on daily activities of the respondents – the interest of this was to 

determine if weather affects the daily activities of the people in the communities. The 
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answers to this section provided a clue as to whether or not the communities relied on 

weather and therefore they used some means of predicting weather; 

(c) Means of forecasting weather as used by respondents – the interest at this point was to 

determine the frequently used methods of predicting weather outcomes. Since some 

communities in rural areas do not rely on modern technology, answers to this provided a 

clue as to whether the people relied on traditional visual weather indictors; 

(d) Respondent/s’ knowledge of visual (meteorological and astronomical) weather indicators – 

the interest in this was to determine if the people had knowledge of visual (astronomical or 

meteorological) weather indicators. The knowledge of this indicator provided an indication 

of whether or not they used visual weather lore to predict weather outcomes; 

(e) Causal links and effects between the visual weather indicators and weather outcomes – the 

interest of this was to determine if people could recognise links between visual weather 

indicators and weather outcomes. The analysis results of this section gave a judgement on 

whether links exist between visual weather indicators and weather outcomes; and 

(f) Identification of weather seasons’ characteristics – the interest at this point was to 

determine the pattern in weather seasons between the case studies and to come up with a 

general trend in the weather seasons. 

3.2.6  Ethical Considerations  

The respondents/participants were informed that the rights of ownership of the information 

remained with them as the knowledge holders and would be protected. During the interviews, 

consent were obtained from the respondents through completion of a ‘Consent form’ (see Data 

Collection Instruments in Appendices section) that identified the specifics of this research 

including the purpose and how the collected data would be used. The information collected from 

the respondents is the intellectual property of the knowledge holders and is held in trust by the 

researcher. The gathered knowledge was reviewed before reporting. The confidentiality and 

safety of participants was protected; therefore, the informants were allowed to make a voluntary 

decision about whether to take part in the research. 

3.2.7 Pilot Study  

Informants from the KwaZulu-Natal province of South Africa were recruited for a pilot study. A 

test questionnaire was designed (with various visual astronomical and meteorological concepts 
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identified from literature including weather outcomes and open-ended questions) and 

administered to respondents from the Zulu community (working at the Central University of 

Technology, Free State) to provide feedback. The respondents described causal relationships 

between visual astronomical and meteorological traditional weather concepts (indicators) to 

expected weather outcomes. The opinions of the Zulu people were considered  valuable because 

they mostly rely on weather outcomes for success of their activities such as early farming and 

planting. The feedback allowed for the revision of the questions as well as for improving the 

understandability of the questions. The preliminary questionnaire-based data collection tools are 

found in the Appendix: Phase 1 Data Collection Instruments. 

3.3 Use of Case Studies 

The case study methodology (Hammersley, Foster, & Gomm, 2000) was used to recruit 

informants from KwaZulu-Natal province of South Africa for a pilot study. Since weather affects 

every person’s daily activities, the preliminary study considered the general categories of local 

people (not only farmers) that include people in formal employment and students. The opinions 

of local people such as farmers and teachers were considered relevant and valuable. A test 

questionnaire was designed (various visual astronomical and meteorological concepts identified 

from literature including weather outcomes with open-ended questions) and administered at the 

pilot location between the months of March and April 2015. The informants described causal 

relationships between visual astronomical and meteorological traditional weather concepts 

(indicators) and expected weather conditions. The preliminary questionnaire-based data 

collection tools are found in the Appendix: Phase I Data Collection Instruments.  

3.3.1 Data Collection Procedures 

The second phase of visual weather lore domain understanding consisted of conducting two case 

studies using restructured questionnaires with a reduced number of concepts. The questionnaires 

were administered in two locations (KwaZulu-Natal province in South Africa and Taita-Taveta 

County in Kenya) between the months of May and July 2015. As in the preliminary study, 

consent forms and guidelines of conducting the interviews were provided in each set of 

questionnaires (see Appendix: Phase II Data Collection Instruments). The two case studies were 

conducted by interviewing respondents about how visual astronomical and meteorological 

weather concepts cause weather outcomes.  
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3.3.2 Data Analysis Procedures 

In each case study the data collected was set up in a codebook with some scales of semi-informal 

transformations. In order to derive common knowledge, the data was analyzed using both 

quantitative (percentage of respondents) and descriptive statistics (mean and mode of categorical 

responses). The analyzed data was represented as group knowledge (on visual astronomical and 

meteorological weather concepts and the causal effects on short-term weather outcomes) using 

statistical summaries. The final analysis involved cross-unit comparisons between the case 

studies followed by overall aggregation and group knowledge representation. 

The research of visual weather lore was a complex phenomenon that occurs within some 

complex weather lore and complex weather phenomena. Case study research (Randall & Wood, 

2007) proved significant in empirical inquiries that could investigate contemporary phenomena 

within some real-life context when the boundaries between phenomena and context are not 

clearly obvious.  

The advantage of the generalization benefit of the case study methodology was considered to 

employ its purposive sampling technique to recruit representatives from the selected 

communities. Selected members from the representative communities were asked to gain insights 

into the communities’ perceptions of weather lore. The representatives were also instrumental in 

describing weather lore (in the form of Fuzzy Cognitive Mapping) based on weather images and 

conditions respective to their geographic locations. After the case studies, weather lore 

representations from individual respondents’ beliefs were aggregated to FCMs representing 

group knowledge. 

Since weather affects every person’s daily activities (Enock, 2013), the case study considered the 

general categories of local people (not just farmers), people in formal employment, students 

among others (this was aimed at countering the challenges of contacting the informal categories 

of people such as herders). Conducting two case studies was preferred so that the results attained 

from one case could be confirmed with the other case study. The two case studies also permitted 

replication of data collection and analysis procedures so that results could be confirmed. The 

replication allowed the research to draw a more general picture of the visual weather lore domain 

before coming up with aggregate visual weather lore-based knowledge representations. 
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The case study method was suitable since there was little knowledge in the weather lore domain 

and specifically in the context of how it is applied for weather prediction in developing countries. 

In this research, it was envisaged that similar trends in the use of visual weather lore would be 

given by the majority of respondents. Some previous researchers (Meier, 2011; Ziervogel et al., 

2014) have used multiple case studies approaches to confirm or contradict commonalities 

between research outcomes. 

The use of the case studies approach also provided an opportunity for detailed information 

exploration on the visual weather lore domain. The looser format of case studies allowed the 

interview process to begin with general questions and then narrowed the focus to more specific 

aspects of the weather lore domain. To reduce bias during the case studies, this research used 

pilot interview (test) to come up with preliminary results. 

3.4 Solution Design Process 

An integrated design for validation of visual weather lore was developed using Unified 

Modelling Language (UML) tools (Kennedy, 2010). The design integrated together weather 

sensors for real-time weather data gathering, fuzzy cognitive maps for weather lore mapping, 

computer vision for detecting visual weather concepts from sky scenes, and verification 

procedures for checking concurrences between visual weather lore-based predicted weather 

outcomes to actual weather observations. 

 

Figure 3-1: Soultion Design Process 

3.4.1 Seasonal Knowledge Representation  

A fuzzy cognitive mapping (FCM)-based prediction scenario process consisting of six steps 

(described in section 2.4), was used. This process has been used by previous researchers to come 

up with fuzzy cognitive maps-based scenario prediction systems (Jetter, 2011).  

weather sensing weather lore 
mapping sky objects detection verification process
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The first FCM step was the clarification of information requirements (Jones, 2010). This step 

was achieved by using the literature review together with preliminary studies that were aimed at 

understanding the visual weather lore domain. In this step, the scope of the visual weather lore 

domain to be investigated was defined. The second step was to define a plan for gathering 

relevant weather lore-related information. This step allowed the identification of the sources of 

visual weather lore knowledge as well as selection of appropriate methods for gathering visual 

weather lore knowledge. The third step involved gathering of knowledge that was achieved 

through two case studies. In this step, the final output was data that was organized with causal 

relations between visual weather lore and weather outcomes. In the fourth step conceptual 

seasonal fuzzy cognitive maps were designed. The fifth step was the design of detailed fuzzy 

cognitive maps that had represented weather lore causal effects between the combined case 

studies. In this step the selection of input variables and functions for fuzzy cognitive maps were 

designated. The final step involved testing the fuzzy cognitive maps, interpretation of resulting 

predicted weather outcomes (outputs) as well as validation of the resultant outcomes. 

First a plan for information gathering was realized by identifying relevant information target 

sources such farmers, herdsmen, teachers, students, and published research, as well as the means 

by which the knowledge should be captured. The researcher used preliminary studies and 

personal discussions with the supervisor at CUT, Free State, as well as the analysis of sources of 

indigenous knowledge publications. The sources of weather lore information and gathering 

techniques were chosen with considerations of balancing the domain and human bias as well as  

circumventing cognitive limitations of respondents from the different case study locations. 

In the second step, two case two studies were conducted. The questionnaires (see Appendix: 

Data Collection Tools) were split into three separate sections to acquire substantial information 

from the individual respondents. In the first section the knowledge of weather lore of the 

participant was sought using well-known visual weather lore concepts. This was to enable the 

respondents to understand the requirements of the study and to prepare for the next section. The 

second section gauged the participants’ use of visual weather lore during their daily activities. 

This was to stimulate the participants’ minds to recognize any possible visual weather scenarios 

that can lead to weather outcomes. The final section anticipated capturing relationships between 

visual weather objects and weather outcomes. Various scales of magnitude such as strong, very 
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strong and none were used to capture categorical responses. The magnitudes of relationships 

provided by the participants were aimed at representing the interaction between the visual 

weather concepts (visual weather cognitive maps). This process was repeated for each of the four 

weather seasons.  

The knowledge from individual respondents was coded in a common spreadsheet for analysis. 

The analysis aimed at coming up with common representations of the interactions between visual 

weather objects and for each of the weather seasons.  

The causal links between visual weather concepts were investigated using the combined case 

studies in which results were aggregated to build up common knowledge (Strickert, 

Samarasinghe, & Davies, 2009). The joint averages of the majority of responses from the case 

studies were determined for each set of interacting concepts. The results of statistical knowledge 

were used to formally represent seasonal weather knowledge using fuzzy cognitive maps in the 

form of connection matrices (Din & Cretan, 2014).  

In step threes the represented knowledge was investigated for consistency. Some of the 

relationships which proved to be biased were eliminated and other causal links streamlined using 

knowledge trends from the four weather seasons. The dynamics of the represented knowledge 

were investigated (Rangarajan et al., 2012), so as to understand the significance of visual 

weather concepts with high dynamics. 

In step four simulation input was used to investigate scenarios in the different weather seasons 

with different combination of input states (Papageorgiou, 2008). The aim was to investigate the 

combination of inputs which can produce the desired state (Steven et al., 2015) of predicted 

weather outcomes.  

In step five the simulation scenarios’ results (Sperry & Jetter, 2012) were used to refine the 

causal strengths in the seasonal fuzzy cognitive maps so as to represent the knowledge better to 

realize optimal outputs. 

Additional knowledge from literature and discussions with the research supervisor was used for 

modification of the represented seasonal fuzzy cognitive maps. This was to take care of possible 

weather scenarios that were not factored during the prior investigations. 
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3.4.2 Recognition of Sky Objects  

Image scenes were acquired from the field using an all-weather sky camera on a daily basis. The 

cameras accumulated this data for use in the image pre-processing (Pandit, Kolhar, & Patil, 

2015) and sky object recognition tasks (Dagher, Sallak, & Hazim, 2014).  

The different techniques used for objects detection in images have been discussed in the 

literature review section. The sky objects detection process was exploited on the colour, texture 

and the shape characteristics of visual sky objects. In this research experiments were made to 

uncover the best feature that can represent sky objects. The feature type selection was achieved 

through representing the target sky objects using shape and texture followed by cross technique 

comparisons. The features of the visual objects are illustrated, as well as the pre-processing tasks 

crucial for detection process.  

After the sky objects were identified using the right techniques, the identified features were  

exploited by detectors that filtered them for false detections and extracted detected visual objects. 

Detection of objects was carried out using vision cascade classifiers (Xinggang Wang, Feng, Bai, 

W. Liu, & Jan, 2014) and a benchmark function that determined the similarity between the 

extracted sky objects and corresponding ground truths.  

Detection of sky objects using Histogram of Oriented Gradients/Linear Binary Patterns 

classifiers and performance results are presented. The performances of the detectors were tested 

under three different sets of conditions using massive data sets and results are presented. Lastly 

the presentation of tests and results in the benchmark process which computes scores of detected 

visual objects in reference to some ground truth (otherwise referred to as ideal visual sky objects 

in some sections of this research). The results from the benchmark process were transformed to 

visual sky concepts. 

Image sets representing visual weather concept were extracted from a collection of known 

images to label positive training samples (Olaode, Naghdy, & Todd, 2014; Xudong, Bappaditya, 

& Alex, 2009). Using positive samples the finest actual images of objects were then extracted 

and specified as base (ideal object). Samples of negative images were also extracted and 

specified as negative image training sets. 
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Regions of interest (Feifei, Lijian, & Zhe-ming, 2015; Sindhu, 2015) that define visual objects 

(Feifei, Lijian, & Zhe-ming, 2015; Sindhu, 2015 were delineated from the sets of positive 

samples. For each set of positive samples a corresponding set was specified with negative 

samples consisting of scenes with different objects to the object concept. 

An input sky scene was subjected to a processing component where consecutive detectors 

recognize objects representing the various concepts. The output from this process was a set of 

extracted objects corresponding to the various sky concepts. 

The process of checking similarity between extracted and ideal objects involved computing the 

distance between the compared objects (Mohamed, Heshmat, Girgis, & Elaw, 2013; Sridhar, 

2012). Similar objects had a minimal distance, while the distance increases as the objects 

increasingly becomes wider. This process was vital to supplement the object detection procedure 

in the eventuality of false positives (Neiting & Aftery, 2007). The set of similarity scores was 

used to compute the vector that represented the detected sky objects.  

The visual sky objects were transformed to a form suitable for verification. Appropriate tools for 

data transformation were implemented to handle errors and incompatibilities. All transformed 

weather concepts were logged in the form of input vector representing the sky weather concepts. 

3.4.3 Weather Outcomes Prediction 

A fuzzy cognitive mapping middleware was integrated into the weather lore verification tool for 

mapping detected visual weather concepts to weather outcomes. The learning algorithms 

(Papageorgiou & Salmeron, 2014) and procedures in the FCM middleware were tested before 

integration. An incremental prototyping approach was used as  continually check the suitability 

and appropriateness of techniques implemented.   

The numbers of nodes (Najafi, 2011) in the FCM process (or concepts) were determined 

dynamically by computing the size of the input concept vector. The weights (causal relationships 

between concepts) were represented in adjacency matrices distinguished by the four weather 

seasons (summer, autumn, winter and spring). The numeric values represented in seasonal 

matrices varied corresponding to the strengths of relationship between the concepts in the 
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different seasons. During simulation runs the weights were resolved from the specific seasons by 

determining numeric data in the matrices.   

The seasons were represented such that each of the seasons iS   had previous and next seasons 

represented as 1iS   , and 1iS   respectively. The onset and cessation of seasons had timing 

characteristics of early or late, while the season progress was specified as either continuous or 

interrupted. To mimic the circular and overlapping nature of the weather seasons (such as the 

onset/cessation timing and progress) and weather season selection procedure was employed. 

Simulations were run for the state of input concepts (
k
ic ) by computing new concepts (

1k
ic 

) using 

the seasonal knowledge represented in adjacency matrices (Din & Cretan, 2014). The input to a 

simulation run was a vector of n concepts determined using information from the object detector 

component. An activation function (Cai, 2011; Uygar & Stacy, 2004) was used in predicting the 

new state of concepts. 

To restrict the concepts’ values to be in the interval [0, 1] a transformation function (Chrysafiadi 

& Virvou, 2013) was applied per iteration. This transformation function generated concepts 

values in the range 0 ( ) 1c i  with a prospect that the maximum likelihood was positive but 

infinitely small (for instance 0.4 x 10-70). Alleviation of this prospect was achieved using a min-

max normalization (Luo, 2010; Najafi, 2011; Xirogiannis & Glykas, 2004) function that scaled 

the predictions in the range [0, 1].  

Appropriate statistical learning (Rahat, Cécile, Damien, & Ducottet, 2015) tools were employed 

to discover patterns between fuzzy cognitive map predictions during iterations. An iterative 

learning (Karagiannis & Groumpos, 2013; Rangarajan et al., 2012) process was implemented via 

a transformation function. The purpose was to update the strengths of causal links in the season 

connection matrix before it was used in the next concept activation (Stylios, Georgopoulos, & 

Manis, 2013) iteration. This function also ensured that the strengths of causal links were 

confined within the range [-1, 1] prior to activation of new concepts states. The learning function 

also removed self loops (Obiedat, 1994) to ascertain that a concept could not have a causal effect 

on itself. 
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On the final run of a simulation process the output was generated in the form of a vector (Mago 

et al., 2013) consisting of selected values of predicted weather outcomes. These values were in 

the range [0, 1] representing the expectation (probability) of the weather outcomes. The 

predicted weather outcomes formed the main input to the (prediction against observation) 

verification process.  

The predicted weather outcomes were visualized using bar charts to depict the variation of the 

expected weather outcomes. The new causal effects between the concepts were also visualized 

using a network graph (H. Singh, G. Singh, & Bhatia, 2013) depicting the new relations and 

strengths of causal effects between the concepts. Since the predicted weather outcomes were in 

probability values [0, 1], a transformation function was used to convert these probability values 

into human understandable form (linguistic terms (Papageorgiou & Salmeron, 2014) describing 

the likeliness of the predicted weather outcomes). The strongest outcome was also described as 

the major outcome (in order of the magnitudes of the strongest outcomes). 

3.4.4 Weather-sensing Platform  

A wireless weather-sensing platform with real-time sensor nodes was integrated to gather 

weather parameters and conditions in Bloemfontein, Free State. The data was transmitted 

through wireless transmission protocols (Lane et al., 2010) to the base station. To build up 

sufficient data for evaluation of the predictions the automated (using wireless sensor nodes) 

weather station in the field logged periodic actual weather observations.  

3.4.5 Image Data Gathering  

Weather images (daily sky scenes) were gathered in real time through sky cameras at the test 

locations. The images were logged by date and geographic position (GPS) (Laliberte & Rango, 

2011) for concurrence with the weather sensor data. Data gathering was done incrementally and 

on daily basis to guarantee a sufficient data set for the experimentation procedures. 

3.5 Experimentation Process 

Daily system simulations were run using the implemented tool to predict and record probabilities 

of weather outcomes (rain, heat index/hotness, dry, cold index). Weather observations were 

captured periodically by use of a wireless weather station. The weather logging process was 
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repeated daily (for periods extending more than a month) until there was sufficient data to use for 

in the verification process. The actual weather observations data sets (weather measurements) 

were transformed to categorical values [0, 1] to match with the range of the predicted weather 

outcomes (Nurmi, 2003; Stanski, L. Wilson, & Burrows, 1871).  

3.6 Verification Procedure 

In the verification process comparisons were made between the actual observations and weather 

outcome predictions, values by computing residuals (error values) from the observations. The 

error values and the squared error were used to compute the (MSE) Mean Squared Error and the 

(RMSE) Root Mean Squared Error forecast skill scores for each predicted weather outcome 

(Casati et al., 2008; Shrestha, Robertson, J.Wang, Pagano, & Hapuarachchi, 2013). Contingency 

tables (Hamill, 2006) were computed to determine prediction rates and Threat Scores. 

3.7 Evaluation Procedures 

The integrated tool for visual weather lore verification was tested with independent data acquired 

from a selected location (in CUT, Free State, South Africa).  

The validity of the visual weather lore verification model was assessed using actual experiments 

and data from the second case study location (Taita-Taveta County of Kenya). This data was 

organized in the form of daily sky scenes and weather parameters acquired from Voi 

meteorological weather station, during the month of December 2015. 

To evaluate the methods used in this research, relationships between visual weather lore 

(expected weather) to logged weather images and actual weather data were analyzed using 

appropriate forecast skills (Hamill, 2006). Validation tests were performed in Kenya to estimate 

performance of the visual weather lore verification tool. In order to benchmark the weather lore 

verification tool using fuzzy cognitive maps based on symbolic image classifiers, comparative 

analyses (Randall & Wood, 2007) of accuracies were made with some modern weather 

validation techniques.   
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4.Chapter Four: Weather Lore Investigation and Verification Tool Design 

4.1 Introduction 

This chapter presents the results for investigation of knowledge in the visual weather lore domain 

followed by a description of a visual weather lore verification tool. The preliminary task was to 

recognize the visual weather lore domain through statistical analysis of interview responses 

concerning traditional knowledge of visual weather aspects. Upon understanding of the domain, 

the next step was to formulate the definition of requirements, outputs and definition of 

mathematical logic that entail the visual weather lore verification tool. The investigation and 

planning procedures followed a sequence of sub-tasks (a) to (e), as depicted in Figure 4-1 and 

described in subsequent sections. 

 

4.2 Identification of Concepts and their Relations in the Visual Weather Lore Domain 

An endorsement from literature shows that, since time immemorial, people have been interacting 

with the natural environment, and with experience they have developed some sense on predicting 

weather changes in their surroundings (Fishman & Amico, 1994; Mwangi, Wetterhall, Dutra, 

Giuseppe, & Pappenberger, 2014; Nakashima & McLean, 2012). The traditional predictions 

have been applied in lifestyles such as deciding on farming schedules in the course of the seasons 

(Hornidge & Antweiler, 2012; Kidd, 1984). With interference from climate change and other 

factors such as population growth and urbanization, the interactions between humans and 

environment have been reducing (Abdulrashid, 2013; Enock, 2013; Owiny & Maretzki, 2014). 

This has contributed to the erosion of important knowledge being witnessed today, hence the 

uncertainty of events dependent on weather outcomes. Weather patterns are complex and arise 

 

Figure 4-1 Analysis and Design Procedure 

(a) domain 
understanding 

(b) formal 
representation 
of knowledge

(c) object 
recognition

(d) scenario 
prediction(e) verificaton
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from multiple weather concepts that dynamically interact with each other within an uncertain 

environment (Calbo & Sabburg, 2008; Narasimhan & Nayar, 2002). In order to understand the 

characteristics of the weather concepts, it is necessary to apply computational techniques that 

mimic human senses and decision-making (Chiwanza, Musingafi, & Mupa, 2013; Enock, 2013; 

Zuma-netshiukhwi, Stigter, & Walker, 2013). This calls for the identification of relevant human 

knowledge and understanding of how the complex weather concepts interact. Once understood, 

these processes can be validated (Acharya, 2011a; Shoko, 2012) and integrated with models that 

simulate weather phenomenon.   

4.2.1 The Aim and Scope of Visual Weather Lore Investigations 

This research is aimed at understanding the relations between visual weather concepts and  

examining their computational applicability in mimicking human sense and decision making. To 

achieve this objective, this research investigated the most significant weather concepts that 

humans exploit for decision-making in the process of planning for their daily activities. Given 

that effects of weather outcomes vary from one group of people (such as farmers and rural 

inhabitants) to another, information sought was locality-specific (KwaZulu-Natal in South Africa 

and Taita in Kenya). The scope of this study was limited to the identification of visual 

astronomical and meteorological weather aspects as applied in traditional ways of weather 

forecasting. A comparative case study method was used, followed by aggregation of seasonal 

knowledge from the two case study areas.  

To hasten the domain understanding process, local research assistants were employed to relay 

information about the research and identify questionnaire respondents. The informants were 

informed that the right of ownership of the information collected from them is held in trust by 

the researcher. The informants completed consent forms (see Consent Form in Appendix: Phase I 

Data Collection Instruments) that identified the specifics of this ,including the purpose and the 

use of the resulting knowledge. The informants participated in the interview voluntarily and had 

power to decide to withdraw or not to answer parts of research questions. 

4.2.2 Range of Visual Weather Lore Knowledge 

This study considered visual weather lore aspects from the world perspective; for this, literature 

was reviewed to gain insights into the global perceptions of weather lore. A wide variety of 

© Central University of Technology, Free State



72 
 

visual astronomical and meteorological weather indicators were identified from literature 

(Mwagha & Masinde, 2015) and considered for further investigation (Table 4—1). 

Table 4—1: Collection of Visual Weather Indicators 
Object Indicators  
Cloud colour White; grey  

Cloud types altocumulus; altostratus; cirrocumulus; cirrostratus; cirrus; cumulonimbus; 
stratocumulus; stratus 

Cloud shape cauliflower; towers 

Cloud patterns  feathery; layered; rippled; uniform; filaments 

Cloud levels  low; medium; high 

Sun   halo around 

Stars  dull; twinkle; filled; few 

Moon phase new; full; dark; transition; halo around 

Night sky  clear; dark; red  

Lightning  high; low 

Rainbow   morning; evening 

  

4.2.3 Identification of Visual Astronomical and Meteorological Weather Lore Concepts 

The respondent(s) were asked to state their perceptions on the degree of causal effect (strong 

positive, positive, none, negative and strong negative) of astronomical and meteorological 

indicators to weather outcomes (rain, dry, hot, cold, calm, windy and cloudy). The results were 

organized in a summary (Table A—1) derived by grouping of the responses.  

4.2.4 Reduction of the Identified Visual Weather Concepts 

Based on clouds patterns, colour and shape characteristics, the following cloud characteristics 

were linked to specific cloud types: cirrus, cirrostratus, cirrocumulus, high clouds, low clouds, 

medium clouds, blue clouds, brown clouds, cauliflower clouds, feathery clouds, filaments 

clouds, grey clouds, layered clouds, nimbus, red clouds, rippled clouds, tower clouds, uniform 

clouds and white clouds.  
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Using knowledge of associations and characteristics of clouds, the clouds concepts were re-

grouped according to levels. For instance, high clouds consisted of cirrus, cirrostratus and 

cirrocumulus clouds which were characterized by being white and taking the shapes of feathers, 

filaments or hair. The high clouds appeared yellow or red at sunset. The regroupings of major 

cloud levels with associations to type and characteristics is shown in Table 4—2 below. 

Table 4—2: Grouping of Clouds by levels 
Cloud Group Cloud Type Characteristics  
High clouds Cirrus feathery, white, filaments, hair-like, yellow/red at sunset/-

rise 

 Cirrostratus creates halo around sun/moon, white, can cover all sky, 
hair-like, smooth 

 Cirrocumulus clusters of small round white patches, ripples/grains,  

Middle clouds Altostratus grey/bluish cloud sheets, thin so can reveal sun 

 Altocumulus white/grey patches, rounded masses or rolls 

Low and Vertical 
clouds  

 

Stratus a fog not far from ground, grey cloud layer, a uniform base 

Stratocumulus layered, grey or whitish patch, honeycomb appearance, 
rounded masses or rolls 

Nimbostratus dark rainclouds, covers sky, blocks sun, grey, continuous 
raincloud, results from thickening altostratus 

Cumulus fair weather, cauliflower, detached, rising mounds, domes 
or towers 

Cumulonimbus brings and goes with rain, thunderstorm cloud, mountain or 
huge tower 

 
Using knowledge of concept associations, the initial concepts were condensed by clustering 

similar and restating opposing concepts leading to a fewer number of concepts. The notion of 

condensing the concepts was necessitated by uncertainty in the occurrence of concepts, meaning 

that some concepts could override (such as occurrence of the different cloud types) and inherit 

characteristics of other concepts. The clouds concepts were reduced to high, medium and low 

level clouds respectively. The dark sky and clear sky were considered to be opposing each other; 

by identifying one concept, the other could be determined as the converse. Twinkling and many 

stars were combined to represent one concept, while dull and few stars were combined to come 

up with a new concept. Similarly, the twinkling/many and dull/few stars were determined as 

stars; hence, by identifying one the other is determined as the converse. The rainbows occurring 
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at any time of the day were reduced to represent a single concept. The concepts relating to 

lightning (much and less) were taken to represent a single concept. Due to the fact that changes 

in weather outcomes occur mostly between the full/visible to dark moon transitions, the concepts 

dark moon, full moon, decreasing moon, increasing moon and new moon were condensed to two 

concepts: full/visible moon and partial/dark moon. The weather outcomes were reduced to only 

four concepts (rain, hot, cold and dry) which proved significant to the daily activities of humans. 

The concepts cloudy and clear skies were considered redundant since they represented opposing 

characteristics, while the concepts of windy and calm were considered having non-visual 

characteristics. The final list of interacting concepts were determined as: high clouds; low 

clouds; medium clouds; clear sky; many stars; rainbow; lightning; partial/dark moon; full/visible 

moon; rain; dry; hot; and cold 

4.3 Causal Effects of Visual Astronomical & Meteorological Concepts 

4.3.1 Case One: KwaZulu-Natal Province of South Africa 

4.3.3.1 Description of the Study Area 
KwaZulu-Natal (see map in Figure 4-2 and Figure 4-3) is South Africa’s third-smallest province 

with a total area of 94361 square kilometres and taking up 7.7% of South Africa's land area 

(South Africa Statistics, 2015). The province has the second-largest population in South Africa 

(with 10.3 million people in 2015). Climate in the coastal areas of KwaZulu-Natal is subtropical, 

with summer temperatures rising to over 30 oC. KwaZulu-Natal gets the most rain (over 

1 000mm a year)  in South Africa, which occurs between the months of October and April and 

mostly during the summer months of December to February in which thunderstorms can occur 

almost every afternoon. During winter seasons, the temperatures are usually mild to warm 

(average over 20 oC) and the probability of raining is low. KwaZulu-Natal has fertile soils, 

making agriculture the major economic activity.  
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Figure 4-2: Location of KwaZulu-Natal in South Africa 
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Figure 4-3: Data Collection Points at KwaZulu-Natal 

 

Note: The data collection points selected are represented by the triangles. The selection of the 

locations was based on the research assistants’ familiarity with the places. 

4.3.2 Demographics of Respondents 

A sample of 51 respondents consisting of 60% females and 40% males was drawn using 

purposive sampling (Duan & Hoagwood, 2013) from the villages of KwaZulu-Natal province of 

South Africa. The majority of the respondents were middle-aged, with 56% over 35 years of age 

while 40% were aged between 18 and 35 years. Most of the respondents were educated: 75% had 

a minimum of secondary education with a third of these having post-secondary qualifications. 

Two-thirds of the respondent(s) were working class, of which 28% were self-employed and, 

interestingly, 37% seeking academic qualifications in either secondary schools or universities. 

The main economic activity in the province is farming, represented by 76% of the respondents, 
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while some people do business and mining, as indicated by the remaining respondents. Most of 

the respondents have lived in KwaZulu-Natal a long time, with 75% indicating that they had 

stayed for over five years, of which over 50%  have lived there for over 20 years.  

4.3.3 Significance of Weather on Daily Activities 

The respondents were asked to provide their opinion on how weather affects their daily 

activities: 58% of them stated that weather sometimes affected their activities; against 33% who 

indicated that weather often affected their activities. Of the total number of the respondents, only 

5% stated that weather rarely affected their activities, while the rest (1%) said weather did not 

affect their daily activities. The majority (51%) of the respondents indicated that they often 

checked for weather forecasts while 41% stated they sometimes checked for the forecasts. The 

rest (8%) stated that they rarely checked for weather forecasts. The respondents indicated that 

they were interested in daily (52%), seasonal (29%) and fortnight (15%), weather forecasts 

respectively; 55% of the respondents stated that they got their weather forecasts from the radio, 

while 39% indicated that they relied on traditional weather forecasts. About 4% of the 

respondents got their weather forecasts from the newspapers and the internet. The respondents 

showed some confidence in their methods of weather forecasts as 49% indicated that they had 

some confidence in the forecasts, 21% having great confidence and 29% having little confidence 

in the accuracy of the forecasts.  

The results reveal that traditional people (over50%) still rely on weather information to plan for 

their daily activities (such as farming). The communities show some confidence (over 50%) in 

the methods and forecasts that they make using the various methods. 

4.3.4 Knowledge of Meteorological and Astronomical Weather Indicators 

The respondents were asked to state their knowledge and significance of the visual weather 

indicators. Of these, 51.7% stated that they knew some astronomical or meteorological weather 

indicators, 40% indicated that they knew only a few indicators, while 8.3% of the respondents 

stated that they knew a substantial number of the indicators. When asked to indicate the 

indicators they knew best, 63.3% of the respondents selected both sun and clouds as indicators, 

73.3% knew stars, 70% rainbows, 93.3% clouds, and 90% lightning. When asked if the 

indicators assisted them in predicting weather, 51.7% of them indicated that very often the 
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indicators help them predict weather, 45% stated that sometimes the indicators are useful, while 

the rest stated that the indicators were not useful in predicting weather.  

4.3.5 Characteristics of Weather Seasons in KwaZulu-Natal Province of South Africa 

The respondent(s) were asked to state the local names (in isiZulu, the language mostly spoken by 

the communities living in KZN) of weather seasons, times and the corresponding signals of onset 

and cessation as well as if the seasons were interruptible. The summer season (October to 

February) is locally known as ihlobo. Autumn, locally known as intwasabusika, is the long rainy 

season that occurs from March to May. The cold season (winter) is locally known as ubusika 

and occurs from May to July. The spring (short rainy season), locally known as intwasahlo, 

occurs from August to October. Table 4—3summarizes the weather seasons and their 

characteristics in KwaZulu-Natal. 

Table 4—3: Characteristics of Weather Seasons in KwaZulu-Natal 

Season  Local name Onset signs Cessation signs Start End Season 
interrupts 

Summer   ihlobo lightning 
very hot 
daytime rain  

cold  
winds 
temperature 
lowers 
rain stops 

Oct  Feb Yes 

Autumn  intwasabusika trees shed leaves 
grass turns 
colour 

very cold Mar  May Yes 

Winter  ubusika mists clear sky in the 
morning 
birds build new 
nests 
trees look dry 

May July Yes 

Spring intwasahlo lot of wind very hot Aug Oct Yes 

 

4.3.6 Causal Effects of Astronomical and Meteorological Indicators to Weather Outcomes 

The respondents were asked to link any causal effects between visual weather concepts and short 

term weather outcomes. They stated their perceptions on causal effects of astronomical and 

meteorological indicators to weather outcomes. The percentage of respondents associated with 

each causal effect, mode and mean were determined for each set of interacting concepts. The 

results were categorized into the four weather seasons (winter, summer, autumn and spring).  
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The complete results of statistical analysis of the responses were summarized in Table A—2 to 

Table A—6. 

4.4 Case Two: Taita Taveta County of Kenya 

4.4.1 Description of the Study Area 

Taita-Taveta County (see Figure 4-4 and Figure 4-5) is an arid and semi-arid (ASAL) county in 

Kenya covering an area of 17083.9 km2. The county lies between 2° 46’ north to 4° 10’ north 

and longitudes 37° 36’ east to 30°14’ east. The altitude of Taita-Taveta varies between 481m 

above sea level in the lowlands to 2200m above sea level for highlands, giving two distinct 

climatic characteristics, with the hills experiencing lower temperatures (as low as 18.2˚C) 

compared to the lower zones with an average temperature of 24.6°C (Taita Taveta County 

Government Profile, 2015).The average temperature in the county is 23˚C. The county is divided 

into highlands zone, dry lowlands zone and some volcanic foothills. The highlands receive high 

rainfall and are suitable for horticultural farming. The county experiences two rain seasons: the 

long rains between the months of March and May and the short rains between November and 

December. The rainfall distribution is uneven in the county, with the highlands receiving higher 

rainfall than the lowland areas. The major economic activities include ranching and farming 

(such as maize and sisal growing) (Taita Taveta County Government Profile, 2015). 
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Figure 4-4: Location of Taita-Taveta County in Kenya 

 

 

Figure 4-5: Data Collection Points in Taita-Taveta County of Kenya 
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Note: The data collection points were identified by the named places on the map. The selected 

locations were identified with major shopping centres in the constituency. 

4.4.2 Demographics of Respondents 

A sample of respondents comprising 51.7% females and 48.3% males was drawn using 

purposive sampling (Duan & Hoagwood, 2013). The majority (i.e. 68%) of the respondents were 

between 46 to 55 years of age while 15% were aged between 36 to 45 years; 6.7% of the 

respondents were between 56 to 65 years while 8.3% were over 66 years of age. Young people 

aged 18 to 35 years represented only 1.7% of the sample. More than half (55%) of the 

respondents had a minimum of secondary education while 22% had primary education; 44% 

were self-employed and 15% in formal employment. The main economic activity in the 

constituency is farming (61.7%), followed by cattle keeping (16.7%). Other economic activities 

are mining (8.3%), sand-harvesting (5%), ranching (3.3%), brick-making (3.3%) and business 

(1.7%) respectively. Most of the respondents are permanent residents in the county, as indicated 

by 51.7% staying over 20 years while 41.7% stayed for over 10 years. 

4.4.3 Significance of Weather on Daily Activities 

The respondents were asked to state the impact of weather on their activities and their preferred 

forecasts methods: 71.7% of them stated that sometimes weather affects their daily activities, 

while 28.3% indicated that weather often affects their activities; 53.3% of the respondent(s) 

indicated that they sometimes check for weather forecasts while 43.3% stated they often check 

for the forecasts. Only 3.3% of the respondents stated that they rarely check for weather 

forecasts. The respondents indicated that they were interested in seasonal (56.7%), next two days 

(41.7%) and next week’s (1.7%) weather forecasts respectively. Almost all of the respondents 

(91.7%) stated that they checked weather by observing the environment. 

4.4.4 Knowledge of Meteorological and Astronomical Weather Indicators 

The respondents were asked to state their knowledge of visual weather concepts and how it helps 

in predicting weather: 51.7% of them stated that they knew some astronomical or meteorological 

weather indicators, 40% indicated that they knew only a few indicators, while 8.3% of the 

respondents stated that they knew a substantial number of the indicators. When asked to state the 
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indicators they knew, 63.3%  confirmed that they knew both sun and clouds as indicators, 73.3% 

knew stars, 70% rainbows, 93.3% clouds, and 90% lightning. When asked if the indicators 

assisted them in predicting weather, 51.7% of the respondents indicated that very often the 

indicators helped them predict weather, 45% stated that sometimes the indicators were useful, 

while the rest stated that the indicators were not useful in predicting weather.   

4.4.5 The Characteristics Weather Seasons in Taita-Taveta County of Kenya 

The respondents were asked to state the local names (in Taita dialects, the language mostly 

spoken in the county) of weather seasons, occurrence times and the corresponding signals of 

onset and cessation. The summer season (December to February) is locally known as kaskazi or 

kiangaza. The autumn, locally known as ishika (name close to isiZulu one-ubusika), is the long 

rain season from March to May. The cold season (winter) is locally known as mtsuo, occurring 

from July to September. There is a hot spell known as kwalazi or kwari that occurs towards the 

end of winter (August and September) signifying a transition to the short rain season. The spring 

(short rains season), locally known as vuli, occurs from October to December. Table 4—

4summarizes the weather seasons and their characteristics. 
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Table 4—4: Characteristics of Weather Seasons in Taita-Taveta, Kenya 

Season Local name Onset signs Cessation signs Start End 
season  
interrupts 

Summer  kaskazi/ kiangaza 

Clear day/night 

Warm evening/night 
Hot day 
Wild fires  
Warm breezes 
Sky blue 
Long day hours 

grass dry 

Hot humid 
Cool nights 
mosquitoes appear 
less sun 
sweating 
tired of activities 

Dec Feb Yes 

Autumn  ishika 

Clouds accumulate 

Dark evenings 
Evening rains 
Temperature  drop 
Trees flower 
Short days  
Long nights 

Clear day skies 

Crops stagnant 
Rains disappear 
Thick vegetation 
Temperatures lower 
Trees lose leaves 
flowers blossom 

Mar May Yes 

Winter  
mtsuo 

kwalazi / kwari 

Bird/bees nesting high 

Birds migrating 
Cold evenings 
Cold mornings 
Cold nights 
Cloudy day times 
Winds 
Pests move in houses 

Warm evenings 

Warm mornings 
Warm nights 
Clouds accumulate 
Evening winds  
Clear sky 
Hot sun 
 

Jun Sep Yes 

Spring  vuli 

Dark nights 

Evening rain 
Hot mornings 
Leaves bud/flowers 
Hot nights 
Lightning 
Migrating butterflies 

Baobab fruits ripen 

Clear sky 
Grass mature 
Hot sun 
Trees yellow leaves 

Oct Dec Yes 

 

4.4.6 Causal Effects of Astronomical and Meteorological Indicators to Weather Outcomes 

The respondents were asked to state their perceptions of causal effects of astronomical and 

meteorological indicators to weather outcomes. Weather varies significantly during the seasons 

and depending on the phases of the moon, unexpected weather change might occur during any of 

the seasons.   
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Table A—11depicts the statistical analysis of the responses. The tables present a summary of the 

percentage of responses for each class of causal effect (strong positive; positive; none, negative 

and strong negative). The tables show the mean and mode of responses for each set of interacting 

concepts. 

4.4.7 Comparison of Case Studies 

4.4.8 Significance of Weather on Daily Activities and Knowledge of Visual Weather Indicators 

The analysis of the two case studies indicates that weather has significant effect on human 

activities. This is depicted by the statistics that the majority of people (58% in South Africa and 

71% in Kenya) stating that weather affects their daily activities. The majority of the respondents 

in both case studies stated that they often checked for weather forecasts. On the knowledge of 

visual weather indicators most of the respondents in both case studies stated that they knew some 

visual indicators and that the visual indicators help them to predict weather. The trend of the 

significance and knowledge of visual weather indicators in the two case studies is depicted in 

Figure 4-6. 

 

Figure 4-6: Trends of Knowledge of Weather in Kenya and South Africa 
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4.4.9 Causal Effects between Astronomical and Meteorological Concepts: Kenya vs. South Africa 

The mode and mean knowledge (separately for Kenya and South Africa) were determined for 

each set of interacting concepts. The analysis showed that the weather season’s patterns in Kenya 

and South Africa correspond but the extremes (high and low values) vary significantly. The 

comparison of the mode and mean knowledge of the causal effects to the various weather 

outcomes in the various seasons  (for both Kenya and South Africa) are depicted in Table 4—5 to 

Table A—20.The values in the table represent the strength (range -1 to 1) based on computed 

average of responses. 
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Table 4—5: Comparison of Mode and Mean Knowledge for the Relations in Weather Concepts 

Concept to Concept 
Causal Effect (mode Values) Causal Effect (mean Values) 
Kenya South Africa Kenya South Africa 

high clouds to low clouds .0 .0 -.1 -.2 
high clouds to medium clouds .0 .0 -.1 -.3 
high clouds to clear sky .5 .5 .5 .5 
high clouds to many stars .0 .0 -.1 -.1 
high clouds to rainbow .0 .0 -.1 .0 
high clouds to lightning -1.0 -1.0 -.8 -.9 
high clouds to partial/dark moon .0 .0 .0 .0 
high clouds to full/visible   moon .0 .0 .1 .1 
medium clouds to low clouds .0 .0 .0 .0 
medium clouds to clear sky -.5 -.5 -.5 -.5 
medium clouds to many stars .0 .0 -.2 -.2 
medium clouds to rainbow .0 -1.0 -.3 -.5 
medium clouds to lightning .0 .0 .1 .1 
medium clouds to partial/dark moon .0 .0 .1 .1 
medium clouds to full/visible   moon .0 -1.0 -.2 -.5 
low clouds to clear sky -1.0 -1.0 -.8 -.9 
low clouds to many stars .0 .0 -.1 -.1 
low clouds to rainbow .0 .0 -.1 .0 
low clouds to lightning .0 .0 .1 .0 
low clouds to partial/dark moon .0 .0 .1 .0 
low clouds to full/visible   moon .0 .0 -.2 -.1 
clear sky to many stars .0 .0 .2 .1 
clear sky to rainbow .0 .0 .1 .1 
clear sky to lightning -1.0 -1.0 -.8 -.8 
clear sky to partial/dark moon .0 .0 -.2 -.5 
clear sky to full/visible   moon .0 .0 .2 .2 
many stars to rainbow .0 .0 .2 .1 
many stars to lightning .0 .0 -.2 -.1 
many stars to partial/dark moon .0 -.5 -.2 -.3 
many stars to full/visible   moon .0 .0 .3 .3 
rainbow to lightning .0 .0 -.3 -.2 
rainbow to partial/dark moon .0 .0 .0 .0 
rainbow to full/visible   moon .0 .0 .1 .1 
lightning to partial/dark moon .0 .0 .2 .1 
lightning to full/visible   moon .0 .0 -.2 -.1 
partial/dark moon to full/visible   moon .0 .0 -.2 -.1 
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4.4.10 Variation of Knowledge between Case Studies 

Performing separate analysis using mode and mean and comparing between the case studies 

(Figure 4-7 -Figure C-4) depicted some trends in knowledge of causal effects. The mode of 

responses was steadier (the mode knowledge between the two case studies override) than the 

mean (the mean knowledge values do not override between the two case studies).  

 

  

 

Figure 4-7: Comparison of Modal Causal Effects between Kenya and South Africa 

 

 

Figure 4-8: Comparison of Mean Causal Effects between Kenya and South Africa 
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Table 4—6: Summary of Modal Seasonal Causal effects in Kenya and South Africa 

Concept to Outcome 

Seasonal Causal Effects (modal Values) 

Winter Summer  Autumn Spring 
Kenya  South 

Africa  
Kenya  South 

Africa  
Kenya  South 

Africa  
Kenya  South 

Africa  
high clouds to rain -1.0 .0 -1.0 -1.0 -1.0 -.5 -1.0 -.5 
low clouds to rain .5 .5 .0 1.0 1.0 1.0 .5 .5 
medium clouds to rain .0 .5 .5 .5 .5 .5 -.5 .5 
clear sky  to rain -1.0 .0 -1.0 -.5 -1.0 -1.0 -1.0 -.5 
many stars to rain -1.0 .0 -.5 -1.0 -1.0 -1.0 -1.0 -1.0 
rainbow to rain -.5 -.5 -.5 -.5 -.5 -1.0 -.5 -.5 
lightning to rain .5 .5 .0 1.0 1.0 .5 1.0 1.0 
partial/dark moon to rain .5 .0 .5 .5 .5 .5 .5 .5 
full/visible   moon to rain .0 .0 -.5 -1.0 -.5 -.5 -.5 -1.0 
high clouds to dry 1.0 1.0 1.0 1.0 1.0 .5 1.0 .5 
low clouds to dry .5 1.0 -1.0 -1.0 -1.0 -1.0 -.5 .5 
medium clouds to dry -.5 1.0 -.5 -.5 -.5 -1.0 .5 -.5 
clear sky  to dry 1.0 1.0 1.0 1.0 1.0 .5 1.0 .5 
many stars to dry .5 1.0 1.0 1.0 1.0 -1.0 1.0 .5 
rainbow to dry .0 1.0 .5 .5 .5 .5 .5 -.5 
lightning to dry -.5 -1.0 -1.0 -1.0 -1.0 -.5 -1.0 -1.0 
partial/dark moon to dry -.5 -.5 -.5 -1.0 -.5 -.5 -.5 -1.0 
full/visible   moon to dry .5 .5 1.0 1.0 .5 .5 .5 -1.0 
high clouds to hot .5 -.5 1.0 1.0 .5 .5 1.0 .5 
low clouds to hot -1.0 -.5 -1.0 -1.0 -.5 -.5 -.5 -.5 
medium clouds to hot -.5 -.5 -.5 1.0 .5 -1.0 .5 -.5 
clear sky  to hot .5 .5 1.0 1.0 1.0 .5 1.0 1.0 
many stars to hot .5 .5 1.0 1.0 1.0 -1.0 1.0 .5 
rainbow to hot .5 .5 1.0 .5 .5 .5 .5 .5 
lightning to hot -.5 -1.0 -1.0 -.5 -.5 -.5 -1.0 -.5 
partial/dark moon to hot -.5 .0 -.5 -1.0 -.5 -.5 -.5 -.5 
full/visible   moon to hot .5 .5 1.0 1.0 1.0 .5 .5 1.0 
high clouds to cold -.5 1.0 -1.0 -1.0 -1.0 .5 -1.0 -1.0 
low clouds to cold 1.0 1.0 .5 .5 .5 .5 .5 .5 
medium clouds to cold .5 1.0 .5 -1.0 .5 .5 .5 .5 
clear sky  to cold -.5 .5 -1.0 -1.0 -1.0 .5 -1.0 -1.0 
many stars to cold -.5 .5 -.5 -1.0 -.5 .5 -1.0 -1.0 
rainbow to cold -.5 .5 -.5 -1.0 -.5 .5 .5 -.5 
lightning to cold .5 1.0 .5 .5 1.0 .5 1.0 .5 
partial/dark moon to cold .5 1.0 -.5 .5 .5 .5 .5 .5 
full/visible   moon to cold -.5 1.0 -1.0 -1.0 -.5 .5 -.5 -1.0 
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Figure 4-12: Modal Causal Effect in Kenya and South Africa Spring 
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Figure 4-11: Modal Causal Effect in Kenya and South Africa Autumn 
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Figure 4-10: Modal Causal Effect in Kenya and South Africa Summer 
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Figure 4-9: Modal Causal Effect in Kenya and South Africa Winter 
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Mean analysis was done in similar fashion (see Table A—20) and the results summarized from 
Figure C-1 to Figure C-4. 

4.4.11 Aggregation of Seasonal Knowledge from Case Studies 

To represent common knowledge for the two case studies, joint statistics (mode and mean 
values) were determined for:  

(1) between the visual astronomical and meteorological concepts and  

(2) between the astronomical and meteorological concepts to weather outcomes in the various 
seasons.  

Aggregated mode and mean values for the four weather seasons were summarized in Table 4—7 
and Table 4—8.  Depiction in the trends of the mode and mean causal effects between the 
astronomical and meteorological concepts are shown in Figure 4-13, while Figure 4-14 – Figure 
4-17 depict the trends in the aggregated (mode and mean) causal effects for the winter, summer, 
autumn and spring seasons. 

 

  

 

Figure 4-13: Comparison of Mean and Modal Aggregated Knowledge 
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Table 4—7: Aggregated Mode and Mean Knowledge on Concepts 

Aggregated Causal Effect (Kenya and South Africa) 
Concept to Concept mode mean 

high clouds to low clouds 0 -0.15 
high clouds to medium clouds 0 -0.2 
high clouds to clear sky 0.5 0.5 
high clouds to many stars 0 -0.1 
high clouds to rainbow 0 -0.05 
high clouds to lightning -1 -0.85 
high clouds to partial/dark moon 0 0 
high clouds to full/visible   moon 0 0.1 
medium clouds to low clouds 0 0 
medium clouds to clear sky -0.5 -0.5 
medium clouds to many stars 0 -0.2 
medium clouds to rainbow -0.5 -0.4 
medium clouds to lightning 0 0.1 
medium clouds to partial/dark moon 0 0.1 
medium clouds to full/visible   moon -0.5 -0.35 
low clouds to clear sky -1 -0.85 
low clouds to many stars 0 -0.1 
low clouds to rainbow 0 -0.05 
low clouds to lightning 0 0.05 
low clouds to partial/dark moon 0 0.05 
low clouds to full/visible   moon 0 -0.15 
clear sky to many stars 0 0.15 
clear sky to rainbow 0 0.1 
clear sky to lightning -1 -0.8 
clear sky to partial/dark moon 0 -0.35 
clear sky to full/visible   moon 0 0.2 
many stars to rainbow 0 0.15 
many stars to lightning 0 -0.15 
many stars to partial/dark moon -0.25 -0.25 
many stars to full/visible moon 0 0.3 
rainbow to lightning 0 -0.25 
rainbow to partial/dark moon 0 0 
rainbow to full/visible   moon 0 0.1 
lightning to partial/dark moon 0 0.15 
lightning to full/visible   moon 0 -0.15 
partial/dark moon to full/visible   moon 0 -0.15 
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Table 4—8: Aggregated Mode and Mean Knowledge for the Various Weather Seasons 

Kenya and South Africa Aggregated Seasonal Causal Effects 

Concept to Outcome 

Winter Summer Autumn Spring 
mode mean mode mean mode mean mode mean 

high clouds to rain -0.5 -0.4 -1 -0.75 -0.75 -0.65 -0.75 -0.65 
low clouds to rain 0.5 0.45 0.5 0.5 1 0.8 0.5 0.55 
medium clouds to rain 0.25 0.25 0.5 0.3 0.5 0.6 0 -0.05 
clear sky  to rain -0.5 -0.45 -0.75 -0.65 -1 -0.8 -0.75 -0.75 
many stars to rain -0.5 -0.4 -0.75 -0.7 -1 -0.85 -1 -0.85 
rainbow to rain -0.5 -0.55 -0.5 -0.55 -0.75 -0.7 -0.5 -0.55 
lightning to rain 0.5 0.5 0.5 0.55 0.75 0.7 1 0.8 
partial/dark moon to rain 0.25 0.2 0.5 0.35 0.5 0.6 0.5 0.55 
full/visible   moon to rain 0 0.05 -0.75 -0.65 -0.5 -0.55 -0.75 -0.7 
high clouds to dry 1 0.8 1 0.85 0.75 0.7 0.75 0.7 
low clouds to dry 0.75 0.7 -1 -0.8 -1 -0.85 0 0.05 
medium clouds to dry 0.25 0.15 -0.5 -0.5 -0.75 -0.75 0 0.05 
clear sky  to dry 1 0.8 1 0.85 0.75 0.75 0.75 0.65 
many stars to dry 0.75 0.65 1 0.8 0 0 0.75 0.6 
rainbow to dry 0.5 0.45 0.5 0.5 0.5 0.55 0 0.05 
lightning to dry -0.75 -0.7 -1 -0.75 -0.75 -0.65 -1 -0.8 
partial/dark moon to dry -0.5 -0.5 -0.75 -0.6 -0.5 -0.55 -0.75 -0.7 
full/visible   moon to dry 0.5 0.5 1 0.75 0.5 0.55 -0.25 -0.05 
high clouds to hot 0 0.1 1 0.85 0.5 0.45 0.75 0.6 
low clouds to hot -0.75 -0.65 -1 -0.85 -0.5 -0.5 -0.5 -0.5 
medium clouds to hot -0.5 -0.5 0.25 0.15 -0.25 -0.05 0 -0.2 
clear sky  to hot 0.5 0.55 1 0.85 0.75 0.65 1 0.85 
many stars to hot 0.5 0.5 1 0.85 0 -0.05 0.75 0.65 
rainbow to hot 0.5 0.5 0.75 0.65 0.5 0.65 0.5 0.55 
lightning to hot -0.75 -0.65 -0.75 -0.65 -0.5 -0.55 -0.75 -0.65 
partial/dark moon to hot -0.25 -0.2 -0.75 -0.7 -0.5 -0.5 -0.5 -0.5 
full/visible   moon to hot 0.5 0.5 1 0.85 0.75 0.65 0.75 0.75 
high clouds to cold 0.25 0.2 -1 -0.85 -0.25 -0.15 -1 -0.85 
low clouds to cold 1 0.8 0.5 0.45 0.5 0.55 0.5 0.55 
medium clouds to cold 0.75 0.65 -0.25 -0.15 0.5 0.55 0.5 0.55 
clear sky  to cold 0 0 -1 -0.8 -0.25 -0.1 -1 -0.8 
many stars to cold 0 0.05 -0.75 -0.65 0 0 -1 -0.8 
rainbow to cold 0 0 -0.75 -0.7 0 0 0 0 
lightning to cold 0.75 0.65 0.5 0.55 0.75 0.65 0.75 0.7 
partial/dark moon to cold 0.75 0.65 0 0.05 0.5 0.6 0.5 0.5 
full/visible   moon to cold 0.25 0.15 -1 -0.85 0 0 -0.75 -0.6 
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Figure 4-16: Trend of Aggregated Mean and Mode for the Autumn Season 
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Figure 4-15: Trend of Aggregated Mean and Mode for the Summer Season 
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Figure 4-14: Trend of Aggregated Mean and Mode for the Winter Season 
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Figure 4-17: Trend of Aggregated Mean and Mode for the Spring Season 

4.4.12 Representations of Aggregated Knowledge 

In the joint analysis, the mean statistic considered all the possible responses (strong-negative, 

negative, none, positive, strong-positive) from the two case studies. Results of statistical analysis 

for seasons such as winter (South Africa was colder than Kenya), and summer (South Africa was 

hotter than Kenya) portrayed that the causal effects vary significantly (see Figure 4-14 to Figure 

4-17 on the knowledge trends for the various seasons). The analysis of all responses using mean 

depicted a poor aggregate of causal effects; hence the mean aggregate was not preferred as the 

best statistic to represent the mutual causal effects for the case studies.  

The joint averages of majority responses from the case studies were determined for each set of 

interacting concepts. The knowledge variation between the modal values in the two case studies 

was not extreme as that of the mean (see Figure 4-14 to Figure 4-17 on the knowledge trends for 

the various seasons). This observation led to the preference of the averages of probability (modal 

values) in favour of the mean for representing the interactions between the concepts. Table 4—9 

and Table 4—10 show the preferred values representing causal effects between the interacting 

visual astronomical and meteorological concepts. 
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Table 4—9: Aggregated Causal Effect (Kenya and South Africa) 

Concept to Concept value 
high clouds to low clouds 0 
high clouds to medium clouds 0 
high clouds to clear sky 0.5 
high clouds to many stars 0 
high clouds to rainbow 0 
high clouds to lightning -1 
high clouds to partial/dark moon 0 
high clouds to full/visible   moon 0 
medium clouds to low clouds 0 
medium clouds to clear sky -0.5 
medium clouds to many stars 0 
medium clouds to rainbow -0.5 
medium clouds to lightning 0 
medium clouds to partial/dark moon 0 
medium clouds to full/visible   moon -0.5 
low clouds to clear sky -1 
low clouds to many stars 0 
low clouds to rainbow 0 
low clouds to lightning 0 
low clouds to partial/dark moon 0 
low clouds to full/visible   moon 0 
clear sky to many stars 0 
clear sky to rainbow 0 
clear sky to lightning -1 
clear sky to partial/dark moon 0 
clear sky to full/visible   moon 0 
many stars to rainbow 0 
many stars to lightning 0 
many stars to partial/dark moon -0.25 
many stars to full/visible   moon 0 
rainbow to lightning 0 
rainbow to partial/dark moon 0 
rainbow to full/visible   moon 0 
lightning to partial/dark moon 0 
lightning to full/visible   moon 0 
partial/dark moon to full/visible   moon 0 
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Table 4—10: Kenya and South Africa Aggregated Seasonal Causal Effects 

Concept to Outcome Winter Summer Autumn Spring 
high clouds to rain -0.5 -1 -0.75 -0.75 
low clouds to rain 0.5 0.5 1 0.5 
medium clouds to rain 0.25 0.5 0.5 0 
clear sky  to rain -0.5 -0.75 -1 -0.75 
many stars to rain -0.5 -0.75 -1 -1 
rainbow to rain -0.5 -0.5 -0.75 -0.5 
lightning to rain 0.5 0.5 0.75 1 
partial/dark moon to rain 0.25 0.5 0.5 0.5 
full/visible   moon to rain 0 -0.75 -0.5 -0.75 
high clouds to dry 1 1 0.75 0.75 
low clouds to dry 0.75 -1 -1 0 
medium clouds to dry 0.25 -0.5 -0.75 0 
clear sky  to dry 1 1 0.75 0.75 
many stars to dry 0.75 1 0 0.75 
rainbow to dry 0.5 0.5 0.5 0 
lightning to dry -0.75 -1 -0.75 -1 
partial/dark moon to dry -0.5 -0.75 -0.5 -0.75 
full/visible   moon to dry 0.5 1 0.5 -0.25 
high clouds to hot 0 1 0.5 0.75 
low clouds to hot -0.75 -1 -0.5 -0.5 
medium clouds to hot -0.5 0.25 -0.25 0 
clear sky  to hot 0.5 1 0.75 1 
many stars to hot 0.5 1 0 0.75 
rainbow to hot 0.5 0.75 0.5 0.5 
lightning to hot -0.75 -0.75 -0.5 -0.75 
partial/dark moon to hot -0.25 -0.75 -0.5 -0.5 
full/visible   moon to hot 0.5 1 0.75 0.75 
high clouds to cold 0.25 -1 -0.25 -1 
low clouds to cold 1 0.5 0.5 0.5 
medium clouds to cold 0.75 -0.25 0.5 0.5 
clear sky  to cold 0 -1 -0.25 -1 
many stars to cold 0 -0.75 0 -1 
rainbow to cold 0 -0.75 0 0 
lightning to cold 0.75 0.5 0.75 0.75 
partial/dark moon to cold 0.75 0 0.5 0.5 
full/visible   moon to cold 0.25 -1 0 -0.75 

4.5 Formal Representations of Visual Weather Lore Knowledge 

4.5.1 Representation of Concepts in Fuzzy Cognitive Maps 

The concepts identified during weather lore domain understanding and analysis (high clouds; low 

clouds; medium clouds; clear sky; many stars; rainbow; lightning; partial/darkmoon; full/visible   
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moon; rain; dry; hot; cold) were uniquely structured by their respective positions in an n state 

vector as follows: 

 1,..., ................................nC c c Equation 4-1 

The state of a concept c, was represented by the probability of occurrence with term sets taking 

real values, p, in the closed set of range 0 1v  . The corresponding membership functions, 

which describe each linguistic variable (probability of occurrence), were represented as follows: 

1, _
.

( ) . sin _ ......................................
.

0, _

full presence

c p decrea g presence

full absence



 




Equation 4-2 

The set of states of the concepts (both indicators and outcomes) were mathematically represented 

by an n state vector,C , consisting of the presence probabilities of the concepts. 

 1( ),..., ( ) ................................states nC c p c p Equation 4-3 

such that n   is the number of interacting concepts 

4.5.2 Representation of Causal Effects  

The causal effects between the concepts (weather indicators) were declared using the variable 

“causal effect” which takes values, w  in a closed set of range 1 1w   with term sets T, 

proposed to comprise five variables. Using five linguistic variables, the different degrees of 

causal effects between concept(s) were determined. The five derivable variables according to 

degrees of the causal effects were represented by T (causal effect) such that; 

T (causal effect) = {strong positive, positive, none, negative, strong negative}. 

During a scenario simulation the causal effects between concepts change states. The final causal 

effects correspond to weights within a range in which membership functions describe the terms 

of causal effects using a linguistic variable. Unlike the probability values [0, 1], the membership 
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functions for the terms of the causal effect were classified to take values of in the range [-1, 1], 

taking the range of strong positive to strong negative effects as follows: 

0.5 _ 1
0 0.5

0
0.5 0

1 _ 0.5

strong positive
positive

none
negativee

strong negative

 
 


  

   

 

4.5.3 Representation of Concepts Relations Using Fuzzy Cognitive Maps 

The relations between the concepts were represented by a statistically weighted n n adjacency 

matrixW , which mapped the causal weights at the intersection of concepts pair’s i.e.  

11 1

1

...
. ...................................

j

i ij

w w
W

w w

 
   
  

Equation 4-4 

The value n represents the number of interacting concepts that falls in the range 1 ( , )i j n   

The general rule of fuzzy cognitive maps (Din & Cretan, 2014; Najafi & Afrazeh, 2008) was 

applied i.e. for any concept ic , the causal effect of concept ic on another concept jc is ijw  

The final (Kenya and South Africa) fuzzy cognitive maps (Table A—12 to Table A—19) were 

formulated as n n matricesW , using the results of statistical analysis (see Table A—12 to Table 

A—19). The adjacency matrices were filled with values ijw indicating the strength of the 

relationship between interacting concepts at position ijc . A positive sign (+ or no sign) was used 

before the value to indicate an enhancing effect while a negative sign (-) was used to indicate a 

depressing effect. The value of zero (0) was used to mean that concept ic has no causal effect to 

an adjacent concept jc  
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4.5.4 Formation of Group Knowledge by Aggregation of Fuzzy Cognitive Maps  

A simple form of learning was represented by aggregating knowledge from corresponding 

seasonal fuzzy cognitive map matrices (Kenya and South Africa) into single units. This was done 

by adding the adjacency matrices of the seasonal FCM iW  to form an overall FCM connection 

matrixW . The resultant matrix had values outside the range [-1, 1]; hence to scale the combined 

matrix was divided by N. 

1

1 ..............................
N

i
i

W W
N 

  Equation 4-5 

The object W represented the overall seasonal FCM, N  corresponds to the number FCMs, and 

iW corresponds to the FCM connection matrix of thi season. The final fuzzy cognitive map 

connection matrices consisted of collective knowledge from both Kenya and South Africa (Table 

4—11andTable 4—12.  

Table 4—11: Final Fuzzy Cognitive Map for Winter Season 
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high clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -0.50 1.00 0.00 0.25 
low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.75 -0.75 1.00 

medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.25 0.25 -0.50 0.75 
clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -0.50 1.00 0.50 0.00 

many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.75 0.50 0.00 
rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.50 0.00 

lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.75 -0.75 0.75 
partial/dark    moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 -0.50 -0.25 0.75 

full/visible   moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.25 
rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 4—12: Final Fuzzy Cognitive Map for Summer Season 

Concepts 
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high clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 -1.00 -1.00 0.50 

medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.50 -0.50 0.25 -0.25 

clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -0.75 1.00 1.00 -1.00 

many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.75 1.00 1.00 -0.75 

rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.75 -0.75 

lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -1.00 -0.75 0.50 

partial/dark    moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.75 -0.75 0.00 

full/visible   moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.75 1.00 1.00 -1.00 

rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

An FCM network for the spring season and as part of the complex network of weather seasons is 

depicted in Figure 4-18. The network depicts the interaction between the concepts with values of 

edges representing the strength of causal effect between the interacting concepts. 
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Figure 4-18: FCM for the Spring Season 

Key: (C1=high clouds; C2=low clouds; C3=medium clouds; C4=clear sky; C5=many stars; C6=rainbow; C7=lightning; C8=partial/dark moon; 
C9=full/visible moon: C10=rain; C11=dry; C12=hot; C13=cold) 

 

The significance outdegree (outgoing nodes), indegree (incoming nodes) and centrality (total 

incoming and outgoing nodes) of the visual weather concepts were analyzed and presented in 

Table 4—13. 

Table 4—13: Analysis of the Importance of Nodes (Concepts) for Spring Season 

Concepts Outdegree Indegree Centrality 
high clouds 4.75 0.00 4.75 
low clouds 2.50 0.00 2.50 
medium clouds 1.50 0.00 1.50 
clear sky 4.50 2.00 6.50 
many stars 3.50 0.00 3.50 
Rainbow 1.00 0.00 1.00 
Lightning 3.50 2.00 5.50 
partial/dark    moon 2.25 0.00 2.25 
full/visible   moon 2.50 0.50 3.00 
rain 0.00 5.75 5.75 
Dry 0.00 4.25 4.25 
Hot 0.00 5.50 5.50 
Cold 0.00 6.00 6.00 
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4.6 The Blueprint of Weather Lore Verification Tool 

This section describes the weather lore verification tool consisting of input, processing 

components and output. The input to the system is in the form of sky image scenes and actual 

weather observations from wireless weather sensors. The image recognition component performs 

three sub tasks including: objects (concepts) detection from image scenes, extraction of detected 

objects, and to approximate presence of the concepts by comparing extracted objects to ideal 

objects. The prediction process involves the use of approximated concepts to simulate scenarios 

using the knowledge represented in the fuzzy cognitive maps generated in the previous section. 

The verification component evaluates the variation between the predictions and actual weather 

observations to determine prediction errors and accuracy. Figure 4-19and Figure 4-20 depicts the 

architecture and the use case diagrams of the weather lore verification tool. This is followed by 

discussion of the working for each sequential component. 

 In the architecture the tool works by accepting sky images that are passed through an image 

recognition component. The detected objects are benchmarked then passed to an FCM based 

prediction component. The predictions are then verified against actual sensor weather records. 
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Figure 4-19: Architecture of the Visual Weather Lore Verification Method 
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The use case diagram for the visual weather lore verification tool is depicted below (Figure 

4-20). In the use diagram the knowledge expert identifies visual weather lore that is used to 

develop seasonal weather fuzzy cognitive maps. The designer uses the techniques of computer 

vision and FCMs to develop programs for training detectors and verify predictions.   The user 

(who is a meteorologist) can then use the tool to add new images and actual weather data for 

purposes of verification.  

 

4.6.1 Object Recognition in Visual Sky Scenes Using Machine Learning 

The object recognition process identifies specific objects in a digital sky image using machine 

learning and pattern recognition algorithms. This process involves a series of subtasks as 

depicted in the process flow diagram (Figure 4-21) and explained in subsequent sections. 

 
 

Figure 4-20: Use Case Diagram for the Weather Lore Verification Tool 
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4.6.2 Data Format and Acquisition Methods 

Image scenes are acquired from the field using all-weather sky cameras at specific time intervals. 

The automated cameras accumulate this data for use in the image pre-processing and object 

recognition tasks. To build up sufficient data for evaluation of the predictions an automated 

(using wireless sensor nodes) weather station in the field logs periodic actual weather 

observations.  

4.6.3 Pre-processing Objects Sets from Image Data 

Image sets representing the visual weather concept are extracted from a collection of known 

images to label positive training samples. Using positive samples the finest actual images of 

objects are then extracted and specified as base (ideal object). Samples of negative images are 

also extracted and specified as negative image training sets. The process of identifying positive 

samples iterates (see Figure 4-22) until there are sufficient quantities of images to represent each 

visual concept. 

 

Figure 4-22: Process of Preparing Image Sets for Detector Training 
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Figure 4-21: The Object Recognition Process 
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4.6.4 Training of Sequential Object Detectors 

Regions of interest that define visual objects are delineated from the sets of positive samples. For 

each set of positive samples, a corresponding set is specified with negative samples consisting of 

scenes with different objects to the object concept. The procedure of training object detectors for 

each concept is depicted in Figure 4-23. 

 

Figure 4-23: Flow Chart for Training Detectors 

4.6.5 Object Detection and Extraction from an Input Sky Scene 

An input sky scene is subjected to a processing component (Figure 4-24) where predefined 

consecutive detectors recognize objects representing the various concepts. The output from this 

process is a set of extracted objects corresponding to the various concepts. Visual objects that are 
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undetected are represented with value zero (meaning the probability of the concept presence is 

zero) and consequently by pass the test of extraction and similarity check procedures. 

 

4.6.6 Similarities Check between Detected and Ideal Objects 

The process of checking similarity (Figure 4-25) between extracted and ideal objects involves 

computing the distance or the difference between the objects (Figure 4-25). Similar objects will 

have a distance of zero, while the distance between objects increases as the objects increasingly 

becomes more different. This process is vital to supplement the object detection procedure in the 

eventuality of false positives. The image colour, shape and texture intensity variations (specified 

as benchmarks or similarity scores) are the output in this process. 
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Figure 4-24: Object Detection and Extraction Process 
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Figure 4-25: Similarity Check between Detected and True Objects 
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4.6.7 Computing the Presence Probabilities of Detected Objects 

The set of objects differences or similarity (S) scores are used to compute the likelihood (P) of 

presence for the detected objects. The transformation from the similarity scores to the concept 

values (probability of object presence) is depicted in a flow chart (Figure 4-26). 

 

  

image 
A;

image 
B;

S=A-B P=1-S

Figure 4-26: Estimating the Presence Concepts from Detected Objects 
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4.7 Fuzzy Cognitive Mapping Technique for Weather Outcome Scenarios Processing 

4.7.1 Determination of the Number of Nodes and Concepts Values 

Given an input consisting of benchmarked sky concepts, the numbers of nodes (or concepts) are 

determined dynamically by computing the size of the input concept vector. This can also be 

determined from the weights matrices by determining the row or column size of the matrices. 

The values of concepts are then determined in a straight forward approach by using the indices of 

the values in the input concepts vector. The sequence of determination of the number and values 

of concepts is depicted in Figure 4-27.  

Number of Nodes (Concepts) =size (Concepts-Vector, Row) OR 

Number of Nodes = size (Weights-Matrix, Row or Column) 

Value of Concept =input (index) 

 

Figure 4-27: Process Flow of Generating Number and Probability of Nodes in FCM 

4.7.2 Representation of Causal Relationships between Concepts 

The weights (causal relationships between concepts) are represented in adjacency matrices 

distinguished by the four weather seasons (summer, autumn, winter and spring). The numeric 

values represented in seasonal matrices vary corresponding to the strengths of relationship 

between the concepts in the different seasons. During simulation runs the weights are resolved 

from the specific seasons by determining numeric data in the matrices.   

4.7.3 Choice and Status of a Seasonal Fuzzy Cognitive Map 

The seasons are represented as a circular linked list where season iS   has a previous and next 

season(s) represented as 1iS   , and 1iS   respectively. The onset and cessation of seasons take 

timing characteristics of early or late, while the season progress is specified as either continuous 

Input Concepts Vector 
Get  

Size of Concepts Vector 
Or  

Weights Matrix 

Return number of 
nodes 

 
Return the concepts 

values 

© Central University of Technology, Free State



110 
 

or interrupted. To mimic the circular and overlapping nature of the weather seasons (such as the 

timing and progress) a selection routing procedure is employed ( 

 

Figure 4-28). The overlapping nature of the weather seasons during the months is illustrated in 

Figure 4-29. 
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Figure 4-28: Flowchart for Selection of Weather Seasons 
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Figure 4-29: The Overlapping Nature of the Weather Seasons 

4.7.4 Activation of New Concepts States and States of Equilibrium 

Simulations are run for the state of input concepts ( k
ic ) by computing new concepts ( 1k

ic  ) using 

the seasonal knowledge represented in adjacency matrices. The input to a simulation run is a 

vector of n concepts determined using information from the object detector component. An 

activation function (Cai, 2011; Uygar & Stacy, 2004) is used in predicting the new state of 

concepts. The number of iterations of the simulations per concept is set to be equal to the number 

of concepts (nodes). The procedure of activating new states of concepts is shown in Figure 4-30. 

Since the state vectors of the fuzzy cognitive map at iteration n  is completely determined by the 

state vector at iteration ( 1n  ), the state of equilibrium is detectable during simulation runs by 

comparing two successive state vectors. 
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Figure 4-30: Flowchart for Activation of New Concepts states 
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4.7.5 Limiting the New Concepts States Using a Transformation Function 

To restrict the concepts values to be in the interval [0, 1] a transformation function is applied per 

iteration. This transformation function generates concepts values in the range 0 ( ) 1c i  with a 

prospect that the maximum likelihood is positive but infinitely small (for instance 0.4 x 10-70). 

Alleviation of this prospect is achieved using a min-max normalization (Luo, 2010; Najafi, 2011; 

Xirogiannis & Glykas, 2004) function that scales the predictions in the range [0, 1]. The concept 

state limiting process runs through the stages depicted in  

Figure 4-31 and Figure 4-32.  

 

Figure 4-31: Process Flow in Predictions Transformation and Normalization 

Predictions during iterations 
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Figure 4-32: Flowchart for Transforming Concepts 
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4.7.6 Iterative Learning of New Causal Weights in Fuzzy Cognitive Maps 

An iterative learning (Karagiannis & Groumpos, 2013; Rangarajan et al., 2012) process takes 

place via a transformation function. The purpose is to update the strengths of causal links in the 

season connection matrix before it is used in the next concept activation iteration. This function 

also ensures that the strengths of causal links are within the range [-1, 1] prior to activation of 

new concepts states. The learning function also removes self-loops to ascertain that a given 

concept cannot have a causal effect on itself (Figure 4-33).  

 

Figure 4-33: Learning Process in FCM 
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4.7.7 The Likelihoods of Weather Outcomes 

On the final run of a simulation process, the output is generated in form of a vector consisting of 

predicted values of selected weather outcomes. These values are in the range [0, 1] representing 

the expectation (probability) of the weather outcomes in the next 12-24 hours. The predicted 

weather outcomes form main input to the (prediction against observation) verification process.  

4.7.8 Visualization of Predicted Weather Outcomes 

The predicted weather outcomes are visualized using bar charts to depict the variation of the 

expected weather outcomes. The new causal effects between the concepts are also visualized 

using a network graph (Figure 4-34) depicting the new relations and strengths of causal effects 

between the concepts. Since the predicted weather outcomes are in probability values with range 

[0, 1], a transformation function is used to convert these probability values into human 

understandable form (linguistic terms describing the likeliness of the predicted weather 

outcomes). The strongest outcome is also described as the major outcome. 

 

Figure 4-34: Sample Network Graph Depicting Connection in Concepts 
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4.8 Determination of Forecast Skills for Verification of Visual Weather Lore 

4.8.1 Simulation Scenario Outcomes Vs Observations 

Daily system simulations are run to predict and record probabilities of weather outcomes (rain, 

heat, dry, cold). Weather observations are captured periodically by use of a wireless sensor 

weather station. This process is repeated several times until there is sufficient data to use for in 

verification process. The actual weather observations (measurement) are transformed and 

normalized to categorical values [0, 1] to match the range of the predicted weather outcomes. 

The observations are transformed to categorical values (see Table 4—14). 

Table 4—14: Transformation Values for Human Weather Descriptions 

Observation level  (linguistic) Rain Dry Heat Cold Values (numeric ) 
None         0 
very low         1 
very low         1 
very low – low         1 
Low         1 
low – medium         1 
Medium         1 
medium – high         1 
High         1 
high- very high         1 
very high         1 

 

To make the verification process simple a procedure is employed to organize the data sets with updated 

history using time stamps of observed and predicted values (Table 4—15). 

Table 4—15: Representation of Observations and Predictions Summary 
Concept Predicted (P) Observed (O)  Predicted (P) Observed (O) 

 day=1 day=1 … day=n day=n 
C1 P1(1) O1(1)  O1(n) P1(n) 
.      

Cn Pn(1) On(1)  On(n) Pn(n) 
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4.8.2 Verification using Forecast Skills 

In the verification process (Figure 4-35 and  
 
 

 

Figure 4-36) comparisons are made between the actual observations (Oi) and weather outcome 

predictions (Pi), values by computing residuals (error values) from the observations. The error 

values, iE  and the squared error 2( )iE are used to compute the (MSE) Mean Squared Error and 

the (RMSE) Root Mean Squared Error (Casati et al., 2008; Shrestha, Robertson, J.Wang, 

Pagano, & Hapuarachchi, 2013) forecast skill scores for each predicted weather outcome. 

 

Figure 4-35: Process for Verification of Forecast Skill 

The formulae MSE = 2

1

1 | |
n

i
t

E
n 
  and RMSE = 2

1

1 | |
n

t
t

E
n 
 are used to compute the verification 

forecast skills. The MSE and RMSE values are analyzed where smaller MSE indicate that the 

predictions are closer to the observations.  Large values for RMSE are indicative of large errors 

in prediction. RMSE is a measure of the spread (Mariani & Casaioli, 2008; Thornes & David B 

Stephenson, 2001) of the observed values about the predicted values. The verification statistics 

are represented in both summary form and visualized in graphic charts. The process of 

computing the metrics is as follows. 

•predictions
•observations

input

•values in 
category 

[0, 1]

transformation and 
normalization •Errors

•MSE
•RMSE

process

•% error
•% accuracy

output

© Central University of Technology, Free State



120 
 

 

 

 

 

 

Figure 4-36: Flowchart for Computing Verification Statistics 
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4.8.3 Summary of the Verification Tool Design 

This chapter presented an understanding of the visual weather lore domain. This was followed by 

the formulation and the definition of requirements, outputs and definition of mathematical logic 

that entail the visual weather lore verification tool. In Chapter Five, the implementation and 

working of the visual weather lore verification tool are presented through a series of subsections. 
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5.Chapter Five: Implementation of Visual Weather Lore Verification Tool 

5.1 Overview of the Tool 

This chapter presents the functioning and test results of a visual weather lore verification tool, 

which is ascertained through experiments in a series of sub components and presenting of results. 

To start with, a description concerning the vital computational hardware and software 

configuration of the model is presented. Tests are presented on machine learning methods for sky 

objects detection. The outcomes of a verification process based on comparison of weather 

predictions to actual weather observations (using various forecast skills metrics) are presented. 

For experimental purposes, a configuration of wireless weather sensors are employed as a 

method of acquiring actual weather observations in real-time. To make evident the validity of the 

visual weather lore verification model, experiments and results using actual data acquired from 

Bloemfontein municipality during the month of October/December2015 are presented. The 

structure of the sub-components is based on the architecture of the verification tool presented in 

Chapter Four.  The discussions concerning the specifics of the techniques used to realize a 

working model for visual weather lore verification were presented in the literature review 

section. 

The computational platform for visual weather lore verification consists of data transformations 

results processing cycles. The combination of data acquisition devices (hardware) and human 

interaction was important to enhance the results of the visual weather lore verification model. 

Sky imagers and wireless weather sensor were the main devices for acquiring experimentation 

data for this type of a verification model. The hardware and software components of visual 

weather lore verification model form essential parts of discussions in this chapter. The 

procedural components of the visual weather lore verification model were programmed in 

parallel. This rendered the model an incremental software artefact that was continuously 

enhanced during and after development. The realization of individual components consisted of 

mock-up tests, run in command line to gauge whether the components generate acceptable 

outputs. After the development, real tests were run by entering data through the model user 

interface. The model was enhanced with file data logging environment for output post processing 

and analysis. The visual weather lore verification model presented provides users of the system 

with an interactive platform for input and output visualizations. 
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5.2 Detection of Sky Objects 

5.2.1 Training of Cascade Detectors for Sky Objects 

5.2.1.1 Data Sources and Acquisition 
The training of sky objects detectors followed the analysis and designs (Chapter Four). The 

training was carried out using only selected target sky objects (refer to the discussion on 

concepts identified in the analysis section). The scope of training data involved valid and quality 

sky scenes (sky images) obtained using a sky camera.  

The detection of sky objects and representation into visual sky concepts relied on the 

independent (restricted by features of the sky objects) pre-processing of each sky object to match 

appropriate feature classifiers and object detection techniques. The relationship between the 

discernible features in sky objects and the classifiers used was vital to successful sky concepts 

representation. The features of the sky objects dictated the choice of classifiers, while the type of 

classifiers determined the final detected sky objects. For reliable representation of sky concepts 

some transformations were necessary to strike some balance between the classifiers’ results and 

each of the final detected sky objects.  

In the literature review the various shortcomings allied with visual objects detection (including 

geometric and photometric changes) were discussed. Apart from the shape and texture contained 

within sky objects, colour was also a significant feature in the process of recognizing sky objects. 

Bearing in mind the object detection shortcomings, an initial emphasis was placed on the 

identification of features associated with sky objects in variations of day and night conditions. In 

the literature review section it was clearly stated clearly that variations in visual features of an 

object is the main cause of false positives. This makes the selection of sky objects and their 

features vital for successful detection of sky objects and representation to visual sky concepts. 

The training process was conducted using images in any scale and graphic formats. Scale 

transformation functions were put in place to handle memory overflow resulting from high 

resolution sky images.  The training sky scenes were provided in both day and night conditions. 

In experimentation cycles, image metadata were processed to enhance the representation and 

outputs (see the next section). 
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5.2.1.2 Meta-Data of the Sky Objects 

 

Figure 5-1: Object Time and Date Meta-Data 

 

Figure 5-2: GPS Meta-Data 

Sky objects meta-data (Figure 5-1and Figure 5-2) were processed with date-time zone in 24-hour 

clock format and GPS coordinates (latitudes, longitudes, compass direction) in degrees, minutes 

and seconds.  The GPS coordinates were transformed to decimal degrees (positive or negative) 

for mapping in web map and prediction location identification. 
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5.2.1.3 Selecting Features Descriptors for Identification of Sky Objects 
In order to effectively detect a visual object from an input sky scene, the properties of each sky 

object were described with uniqueness. To achieve this, it was necessary to determine unique 

feature descriptors that were repetitive and invariant to transformations such as scale, rotation, 

viewpoint and illumination.  

Sky objects were classified to a particular category only if they had similar feature descriptors. 

The pre-processing of features of sky objects formed the backbone of subsequent detection tasks, 

since it was necessary to represent high level information about the sky objects (using features as 

colour, texture and shape). The features identified in pre-processing were the basis in the training 

of the cascade of sky objects detectors.  

The aim of investigating features in sky objects was to exploit the raw pixel information so that 

the variations between sky objects that had the same features (inter-features variations) were not 

preserved while variations between features of different sky objects (between-object variations) 

were preserved. 

The detection of sky objects demanded for the best selection of visual features to be extracted. 

The Local Binary Patterns (LBP), commonly used for extracting image texture features; and the 

Histogram of Oriented Gradients (HOG), commonly used for getting object shape information, 

were the considered descriptors of sky objects.  

The visual objects on which the cascade classifiers were trained had to be pre-processed 

satisfactorily for optimal results of the detections. The concern was to generate efficient feature 

descriptors for the visual sky objects which present excellent robustness under conditions of 

illumination, scale and clutter that could distort the objects in sky scenes. Some deliberate pre-

processing was necessary to uncover the finest feature space which allowed the features from 

individual sky objects to be distinguished from the rest of the features in an input sky scene. To 

minimize the constraint of illumination and background in visual sky objects, independent 

conditions of day and night were pre-processed for use in ultimate decision regarding visual sky 

concepts representation. 

The pre-processing for the visual objects features was realized using a collection of sky images 

obtained from the open skies of Bloemfontein, Free State, South Africa. The main interest was to 
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obtain as much as possible a variation of the sky objects required for the detectors training 

process. The sky scenes were chosen to represent the selected sky objects in various day-time 

and night-time illumination conditions.  

To determine the best feature to use in the detection procedure, the texture, edge and shape 

feature models were evaluated using test images for the different sky objects. Some sky objects 

emerge both in day and night; hence where appropriate objects in both illumination conditions 

were tested (Table 5—1). Several experiments were done to investigate the features of each sky 

object. The table below shows the visual objects and the features tested as well as an indication 

of best feature.  
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Table 5—1: Comparison of Features Descriptors in Sky Objects 
Sky 
Objects   

 visual features of target object Best 
Feature Original  Edge Texture Shape 

high 
clouds     

Shape 

low 
clouds     

Shape 

medium 
clouds     

Shape 

clear sky 
    

Shape 

stars 
    

Shape 

rainbow 
    

Shape 

lightning 
    

Shape 

dark 
moon     

Shape 

visible 
moon     

Shape 

Similar to other objects recognition tasks, sky objects detection conditions were dictated by the 

actual conditions intended for the recognition process. The detection of sky objects was a 

complex task since sky scenes contained rotated, scaled as well as blurred sky objects. The 

analysis of best feature descriptor showed that shape descriptor could represent the near actual 

sky object information less invariant to colour and other conditions. 

5.2.1.4 Dimensionality Reduction in Sky Objects 
Quality sky images contained data that had very high dimensional (in both resolution and 

quantity), computationally demanding and time-consuming to process. High dimensionality in 

sky scenes was tackled by eliminating the dimensions that seemed irrelevant for each sky object. 

This ensured that the sky objects were transformed from the high dimensional spaces to a lower 
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dimensional space while preserving the important features of the sky objects for subsequent 

detection tasks. This procedure offered computational payback resulting from processing a 

smaller amount of data in the sky scenes. Reducing the feature space also facilitated elimination 

of redundancies in the features of sky objects. The dimensionality reduction process was 

significant as the final features in sky objects were represented in a more compact and effective 

way, which enhanced the performance of the detectors. 

The input sky scenes were resized by specifying the dynamic size of the output image. To avoid 

distorting the output images and to maintain the same aspect ratio as the input image, the height 

was specified to NaN, for dynamic calculation of dimension that can preserve the aspect ratio of 

the scaled image. The Nearest-neighbour interpolation method (Kennedy, 2010) was applied to 

assign the output pixels, values that their exact points felled within. The median filtering method 

was also applied to remove noise (outliers) without distorting the sharpness of the scaled output 

image. 

5.2.1.5 Specification of Data for Training Sky Objects Detectors 
Further from determining the features of sky objects and performing dimensionality reduction, 

choosing training samples to represent the visual objects was of extreme importance. The quality 

of the training samples was indispensable in the performance of the sky object detectors. The 

training of cascade detectors for sky objects required specification of positive instances and 

corresponding sets of negative instances. For each visual object, a variation of 250 images were 

acquired, and where possible to represent as much as possible similar objects in varying scale 

and illumination during day and night conditions (Table 5—2).  
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Table 5—2: Sample Variation of Sky Objects 

Sky Object Orientation Scale Illumination 

high clouds 
 

 
 

low clouds   
 

medium 
clouds   

 

clear sky 
   

stars 
  

rainbow 
 

 
 

lightning 
 

 
 

dark moon    

visible 
moon 

 

 
 

5.2.1.6 Specifications of Negative Instances for Visual Sky Objects  
A collection of 1750 images per sky object were used as ‘negative samples’. These were the 

objects that associated to the non-target sky objects. To supplement the ‘negative samples’ 

datasets, several images that did not contain target objects were collected from NASA photos in 

the flickr website (https://www.flickr.com/photos/gsfc/). For better detection accuracy, objects that 

resembled targeted sky object (false positives) were also incorporated into their respective sets of 

negative samples. These datasets were duplicated by rotating the images to obtain 3500 samples. 

More negative samples were generated from the existing samples by varying the object 

brightness. Thus, a total of 7000 samples per sky object were used as negative samples. During 

the training of ‘object detectors’, the negative training samples were not specified explicitly as 

the detector function automatically generated negative samples from the supplied negative 

© Central University of Technology, Free State



130 
 

instances that did not contain the target sky objects. Given that the detector function worked in 

stages, detected false positives were automatically generated as negative samples in subsequent 

training stages.  

In the sky panorama, there were a quite a number of unrelated (Figure 5-3) objects (such as 

clear-sky and white clouds; moon and round clouds) which during experimentation, the sky 

object detectors erroneously identified as similar objects. The confusion mainly resulted from 

colour and the shape information of sky objects.  

 

Figure 5-3: Samples of Similar Sky Objects 

5.2.1.7 Specifications of Test Samples and Positive Instances for Visual Sky Objects 
A variation of 250 new images for each sky object were acquired, and where applicable, with 

varying illumination (during day and night conditions). To comprehensively represent test 

instances for each of the sky objects, the test samples were specified into three categories. The 

first test set consisted of sky scenes containing target sky objects. The second test set consisted 

of scenes that did not contain the target sky objects. The third test set contained objects that 

looked like the target sky objects. The test samples were duplicated at run time by rotating the 

images to obtain 500 samples. More positive test samples were generated at run time from the 

existing samples by varying object brightness. In total, 1000 samples containing target objects 

were tested for each object detector. For each detector the other two (sets of non-target objects; 

and sets containing only similar to target objects) test samples consisted of 1000 samples 

respectively. These test sets were derived from the difference between the target sets and that of 

other sky objects followed by duplications using geometric and photometric transformations.  

The positive training sets consisted of 250 images per sky object. The sets were duplicated 

(Figure 5-4), by rotating and flipping the images to generate500 samples. This number was 

doubled by varying object brightness, generating a total of 1000 samples per sky object. To 

reduce the memory requirement and enable easy comparisons of sky objects the images in the 

 
c) Round clouds 

 

 
b) Moon in dark clouds 

 
a) Round clouds in clearSky   
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training sets were transformed to a common resolution of 252 by 127 pixels. The positive 

samples were specified via rectangular Regions of Interest (ROI) in the whole images where 

appropriate. The ROI contained the location in coordinates of the objects of interest. Another 

approach that was used is that of cropping out the object of interest from the whole image and 

then supplying the coordinates of the whole images as ROI. In this research the majority of 

rectangular ROI in the whole images were specified by using the ‘Training Image Labeller’ 

application to delineate ROIs with bounding boxes, followed by generating outputs represented 

by array of structures for use as positive training instances.  

 

Figure 5-4: Example of some manipulated sky objects 

5.2.1.8 Benchmarks of Visual Objects 
A specification of benchmark sky objects were provided for each sky object. The benchmark 

formed the ground truth for evaluating the quality (similarity) of detected target sky objects. In 

appropriate circumstance two benchmark sky objects were specified for the day and night images 

respectively. The dimensions of the benchmarks were transformed to common size of 252 by 

127pixels. The day and night images (Table 5—3) were designated dynamically based on the 

time meta-data of detected sky scene.  

  

 
c) Flipped images 

 
b) Rotated images 

 
a) Original images 
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Table 5—3: The Ground Truths for Visual Sky Objects 
visual sky day image night image 

high clouds 
  

low clouds 
  

medium clouds 
  

clear sky 
  

stars 
  

rainbow 
  

lightning   

dark moon 
  

visible moon   

 

5.2.1.9 Feature Based Sky Objects Detectors 
In literature review, the exploitation of colour as a feature in objects detection tasks has been 

found to be problematic. This is because it is subject to changes in illumination and lighting; the 

same object can generate different colour information. The inherent problem made the colour 

features unreliable for exploitation by sky objects detectors. However, the Histogram of Oriented 

Gradients (HOG) was acknowledged as feature descriptors widely used for shape-based image 

classification tasks. In addition, the Local Binary Pattern (LBP) and Haar image features 
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descriptor are binary descriptor used to extract texture feature in images. In literature review 

complete discussions on the working of the techniques of representing image features using 

descriptor were presented. Confirmation tests in this study showed that it was computationally 

expensive to train sky object detectors using the Haar descriptor. Thus, in this study, sky objects 

detection was based on a cascade of classifiers trained using HOG image feature descriptors. The 

training and testing data were generated using the procedures discussed under the data for 

training the sky objects detectors.  

To detect sky objects in input sky scenes, target sky object specific cascade detectors were used 

to scan the input scene at multiple window positions with varying scales. At each scanned 

positions, the detectors assessed sub-windows for classification as containing target sky object. 

The concept of using sliding windows was an intentional task that enabled the detection of 

multiple sky objects in one input sky scene.  

Each sky object detector worked in multiple stages that were ensembles of weak learners or 

simple classifiers. The weak learners in detectors stages were trained using an adaptive boosting 

technique which enabled the training of perfect sky object detectors. The adaptive boosting 

technique computed a weighted average of the resolutions from the weak learners at each of the 

detectors training stages.  

During training and detection stages the classifiers marked the sub-window defined by the 

present position of the sliding window as either contained or did not contain a target sky object. 

A positive value was used to indicate that a target sky object was found while a negative value 

was used to indicate the target sky object was not found. If a position was marked with a 

negative value, the classification of the position was completed with a decision that the target sky 

object was not found, and the detector adjusted the window to the next position. Positions 

marked using positive values were moved for processing in the next detection stage. If the final 

detection stage assigned a positive value to the moved position, then the detectors could account 

for sky object as found at the window position. The use of multiple stages permitted the detectors 

to reject non target sky objects soonest possible. The assumption was that the majority of the 

scanned window positions did not contain the target sky objects. The use of a multistage detector 

increased the accuracy of detecting sky objects at the same time reducing the processing time. 
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The multistage detectors used both simple (with few number of features) and complex (with 

more number of features) classifiers. The simple classifiers were employed in early stages of 

detection to discard most of the false positives, while complex classifiers were used in the later 

detection stages to discard more complex sub-windows. 

5.2.1.10 Important Factors Considered for Sky Objects Detectors 
The training of the final sky objects detectors was cascaded by using the results of detections in 

the previous stages to train subsequent stages. Prior to the training of new stages, a cascade 

function tested the detector consisting of the stages already trained on parts of the supplied 

negative instances. The assumption was that some positions in the negative instances might be 

assigned positive values leading to false positives. The classifier moved the detected false 

positives to the next training stage as negative instances. The cascading of classifiers allowed 

subsequent training stages of the detectors to correct mistakes made in the previous training 

stages. 

During detectors training and detection process, three different situations were expected to occur. 

The first (an ideal situation) was that the detectors correctly identified target sky objects leading 

to true positives. Second, false positives were expected when the detectors erroneously assigned 

negative instances as positive values (meaning that target sky objects were present). The third 

situation was that false negatives were expected when the detectors erroneously assigned positive 

sky objects negative values (i.e. target sky objects were not found). In the third situation, when a 

detector training and detection stages had a low false negative rate, the detector erroneously 

marked a positive sky object as negative. In this situation, the detection process completed, and 

the detector could not correct the mistake. In the second situation, the detectors made use of high 

false positive rates, enabling the correction of mistakes by subsequent stages if negatives 

instances were assigned positive values.   

The overall false positive rates (Table 5—4) of the detectors were determined by multiplying the 

false positive rate (F) and the number of training stages (S). The value F was the false positive 

rate per visual sky object detector stage (lying in the open interval (0 1)). Likewise, the overall 

true positive rate per sky object detector were determined by multiplying the true positive rate 

per (T) the number of training stages (S). The value T, was the true positive rate per detector 

stage (lying in the open interval (0 1)). Experiments revealed that increasing the number of 
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training stages reduced the overall false-positive rate while reducing the overall true positive 

rate. To make sky objects comparison easier, a common false and true positive rates (F=0.2 and 

T=0.98) was used for all detectors. 

Table 5—4 : Evaluation of the Training Factors for Sky Objects Detectors 

Detectors 

number of 
samples 

Number of 
Training 
Stages (S) 

False 
Positive 
Rate (F) 

True 
Positive 
Rate (T) 

F*S T*S positive negative 
high clouds 1000 7000 18 0.2 0.98 3.6 17.64 
low clouds 1000 7000 15 0.2 0.98 3 14.7 
medium 
clouds 

1000 7000 15 0.2 0.98 3 14.7 
clear sky 1000 7000 10 0.2 0.98 2 9.8 
stars 1000 7000 10 0.2 0.98 2 9.8 
rainbow 1000 7000 15 0.2 0.98 3 14.7 
lightning 1000 7000 15 0.2 0.98 1 14.7 
dark moon 1000 7000 10 0.2 0.98 2 9.8 
visible moon 1000 7000 10 0.2 0.98 2 9.8 

Reducing the detector false positive rates led to some difficulty in the generating of negative 

instances between the training stages. This difficulty was alleviated by pre-processing as many 

negative instances (7000 samples) for each of the sky objects detectors as achievable.  

The selection between using fewer detector training stages with a lower false positive rate per 

stage or more training stages with a higher false positive rate per stage was very critical. Training 

sky object detectors stages’ using lower false positive rates led to difficulty as the majority of the 

final trained stages contained weak learners. The sky object detectors were trained using stages 

with a higher false positive rate and as a result they contained the minority of weak learners.  

The training results of the sky objects detector provided important information on the rate of 

false positives and true positives that occurred after using specific number of training stages. 

Tuning of the number of training stages, the false alarm and true positive rates, was done 

considering the information arising from training results so that the requirements of individual 

sky object detectors were satisfied. 

Ideally, it was attractive to train the sky object detectors with a greater number of stages since the 

overall false positive rates reduced at each stage. On the other hand, increasing the number of 

detector training stages raised the false negative rate which increased the probability of 
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erroneously discarding positive sky object instances. To obtain a balance between the training 

factors the sky objects detectors were trained using a maximum of twenty stages and a lower 

false negative rate (since using less number of training stages with a lower false negative rate 

gave satisfactory overall false positive rates). 

5.2.1.11 Features Preference in of Sky Objects Detectors  
The sky objects detectors were trained using two types of features descriptors: Local Binary 

Patterns (LBP) and Histograms of Oriented Gradients (HOG). Using the HOG provided 

advantages over LBP feature descriptors. This is because the HOG descriptor proved reliable 

when operating on localized image cells (Table 5—5), hence sustaining invariance to geometric 

and photometric transformations of the sky objects.  

The sky object detectors (based on LBP and HOG features) were independently tested using bulk 

sets consisting of 1000 target sky objects at various scales and orientations; the aim of this test 

was to find the best feature model (Table 5—5) for the final sky objects detectors. The 

conditions of the test instances were as explained in the section regarding specifications of test 

instances.  

Table 5—5: Evaluation of Feature Models for Sky Objects Detectors 

Detectors  

% of positive (negative) detections using 1000 samples 
containing target (non-target) sky objects best feature 

model LBP features HOG features 

high clouds 
88.004, (14.94) 90.812, (17.446) HOG 

low clouds 
89.642, (17.442) 88.472, (12.442) LBP 

medium 
clouds 

90.344, (16.608) 91.28, (12.442) HOG 

clear sky 
89.876, (22.446) 88.238, (13.276) LBP 

stars 
88.472, (14.944) 91.28, (10.77) HOG 

rainbow 
90.578, (22.446) 89.174, (10.774) LBP 

lightning 
89.642, (19.944) 90.11, (18.28) HOG 

dark moon 
90.11, (18.28) 91.046, (14.94) HOG 

visible 
moon 

88.706, (18.28) 90.578, (11.604) HOG 
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5.2.1.12 Normalized Image Intensity Histograms/ Histogram Equalization 
HOG feature descriptors were used for symbolic representation of visual sky objects. The 

features of sky objects had considerable intra-class variations in each sky object that were 

difficult to represent and preserve. Histogram contrast normalization was used to minimize the 

intra class variations. The processing of HOG descriptor involved dividing an image into small 

connected regions (cells) and for each cell calculating a histogram of gradient directions (edge 

orientations) for the pixels within the cell. The combination of these histograms of edge 

orientations was used to represent the HOG descriptor. The performance in using the HOG 

descriptors was enhanced by normalizing the contrast of the local histograms for the sky objects. 

The normalization process rendered the sky objects to a common resolution. The normalization 

was done before partitioning the sky objects into equal-sized grid blocks as well as computing 

the HOG features of the blocks. To normalize, the intensity value across larger sky object blocks 

were computed and the resulting value used to normalize the values of all the cells within the sky 

object block. The significance of the normalization process was that it enhanced the sky images, 

building an add-on to HOG invariance to changes in sky object illumination and shadowing. The 

normalization procedure was necessary before the training and testing of the sky objects 

detectors. This was due to the fact that, the representation of each sky objects consisted of 

distinctive features associated with its blocks. Adjusting the cell size of HOG descriptors 

influenced the descriptor parameters on the sky objects detection. The detectors were trained 

using the default cell size of 8x8, which proved to be the finest by its smallest rate of false 

positives. 

5.2.1.13 Representations of Sky Objects Detectors as XML Files 
A mechanism of representing the trained sky object detectors in symbolic form was essential 

before subjecting the detectors to experimental tests with input sky scenes. The trained sky 

object detectors were self-sufficient and liberated of any samples of training objects since all the 

information on sky objects features were represented in the form of decision trees. Self-defining 

Extensible Mark-up Language (XML) detectors (Figure 5-5) were generated. The structure of the 

detectors was embedded in the XML files, thus new sky objects were detected without re-

building the detectors, making it possible for the features of the sky objects to be dynamically re-

generated within the XML representations. 
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Figure 5-5: Segment of XML Representation of Detectors 

 

5.2.1.14 The Performance of Sky Objects Detectors  
The performance of each sky object detector was independently assessed by computing the rate 

of positive detection, which was the percentage of positive detections in pre-processed 

collections of test sky scenes. A performance evaluation function (see code below) was 

implemented in parallel with detector tests to account for the percentage rates of detection in 

each of the three test situations. 
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read (bulk set) 
n=number of objects; 
for object=1:n 
 begin 
 count=0; 
 detection procedure; 
  if(detected) 

  extract procedure; 
  count=count+1; 

  else 
  count=count; 

  endif 
 performance=count/n*100; 
end for 
 

During sky objects detections the descriptors corresponding to the regions of the sky objects 

within the detection window were generated. These descriptors were then classified according to 

the decision trees models in the XML files illustrated in section 5.2.1.13. The detection process 

allowed positive values to be assigned at multiple sub-window locations, and at varying scales 

determined by the minimum and maximum bounding box specifications. The assignments of 

positive values in this way led to multiple sky objects detections occurring at different image 

locations and scales. The multiple detections occurred to both the patterns of recurring objects 

(such as high clouds) and distinct sky objects (such as the moon) in the input sky scene. The 

multiple detections resulted from training the sky object detectors to be insensitive to small 

localization errors in sky objects. The multiple detections (Figure 5-6) also appeared as overlaps 

around the background of the detected sky objects. During training of the sky object detector the 

consistency of true positives was greater than that of false alarms (overlaps). The information 

arising from overlaps around detected sky objects was useful in reducing the false alarms and 

combination of true sky object detections.  
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Figure 5-6: Multiple Bounding Boxes (selection) Around detected Objects 

The multiple sky objects detections were processed in various approaches. The simplest 

approach was to select the strongest detection (scoring the detections and selecting the one with 

maximum confidence score). A second approach was to compute the average of the bounding 

boxes at each detected sky object location (in the normal flow of sky objects detections). The 

averages of the detected bounding boxes were also weighted using their confidence scores.  

The detectors were tested using sets of one thousand images to gauge their performance, and 

obtain   some useful statistics (Table 5—6). The merge thresholds were amplified to limit false 

detections and reduced to return strong positives in unlimited detections. The testing of sky 

objects detectors provided information on the rate of true positives that occurred when varying 

merge thresholds were applied to the specific test (with target object; with objects similar to 

target object; and with non-target objects) sets.  

  

 
b) Multiple detected clear sky regions 
(no suppression/merge of detections) 

 
a) Multiple detections around moon 
(no suppression/merge of detections) 
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Table 5—6: Determination of Optimal Merge Thresholds for Sky Object Detectors 

detector 
merge 

threshold 

% of positive detections in 1000 test samples 

set with 
target object 

set with 
objects like 

target 
object 

set without 
target object 

high clouds 

1 91.6667 80.6452 75.6098 
2 58.5366 50 22.5806 
3 29.6667 21.2683 3.2258 
4 19.3333 18.5122 3.2258 

low clouds 

1 100 100 47.6190 
2 96.7742 64.5161 38.0952 
3 96.7742 58.0645 33.3333 
4 96.7742 41.9355 33.3333 

medium 
clouds 

1 100 100 52.3810 
2 100 50 33.3333 
3 100 42.8571 20 
4 93.5484 23.8095 15 

clear sky 

1 90.2439 85.4271 84.4444 
2 80.4878 62.3116 48.8889 
3 65.8537 52.7638 42.2222 
4 53.6585 43.7186 33.3333 

rainbow 

1 88.8889 75 19.0476 
2 68.7500 60 0 
3 68.7500 37.7778 0 
4 62.5000 26.6667 0 

lightning 

1 100 91.6667 47.6190 
2 100 88.3333 42.8571 
3 100 86.6667 42.8571 
4 100 83.3333 42.8571 

dark moon 

1 100 74.1935 57.1429 
2 88 41.9355 30.9524 
3 56 22.5806 9.5238 
4 36 9.6774 2.3810 

visible 
moon 

1 85.4271 25.8065 28.6585 
2 83.4171 16.1290 12.1951 
3 81.4070 12.9032 6.0976 
4 79.8995 9.6774 4.8780 

By analyzing the test results, the default settings of the merge threshold parameters were 

adjusted accordingly to optimize the outcomes of each sky object detectors. To enhance the sky 

objects detectors accuracy merge threshold (Figure 5-7) functions were applied before extracting 

the final detected sky objects. 
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Figure 5-7: Effect of Merge Threshold (Mathworks 2014 Software was used) 

 

5.2.1.15 Benchmarks between Detected and Ideal Sky Objects 
The rationale of sky objects detection process was to identify the presence of specific sky objects 

in input sky scenes. The identified visual objects were expected to appear contradictory in 

different sky panorama, hence the results on the detected sky objects needed to be reviewed 

based on input occasion and the determination of appropriate ground truths. The benchmark 

process did the task of extracting the detected sky objects and pre-processing them, selecting an 

appropriate ground truth and representing the extracted sky object in the form of a sky concept. 

The representation of a sky object as a sky concept (a value in the range (0, 1); which was also 

the probability of the extracted object matching to specified ground truth), enabled some 

exploitation in the weather scenario prediction component based on fuzzy cognitive mapping. 

5.2.1.16 Extractions of Detected Visual Sky Objects from Sky Scenes 
The extraction (Figure 5-8) of detected sky objects was a pre-processing task in the process of 

approximating the presence of visual sky objects in sky scenes. Before extraction the results 

from the sky objects detectors were reviewed to determine for each sky object the best 

detections. The position (coordinates) values of detected sky objects that were recomputed by the 

merge threshold function were a critical ingredient to the extraction process. The positions of 

detected sky objects in the input sky scene were marked for extraction. Once the extraction was 

completed, the extracted sky objects were represented as independent object files that were 

isolated from the input sky scenes. The process of extracting sky objects relied on the detection 

results as follows: 

 
b) Merged/reduced detections of clear 
sky sections in a cloudy image 
(suppression of detections applied) 

 
a) Merged detections around moon 

(suppression of detections applied) 
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if (Detected object) 
extraction object; 
save as independent object; 
other procedures; 

endif 
 

 

 

Figure 5-8: Independent Extracted Object 

 

5.2.1.17 Symbolic Representation of the Presence of Sky Concepts  
The performance sky object detectors (in terms of percentage of correct detections and false 

positive rates) were not enough to symbolize the presence of sky objects in sky scenes. The 

results provided by detectors had to be processed, to provide some dependable truths about the 

sky objects. The detected sky objects were accounted for by estimating their presence in input 

sky scenes. The extracted sky objects were benchmarked based on their association to some 

precise objects (in some sections referred to as the ground truth). The detected sky objects 

needed to be represented as sky concepts for further computation in the predictions component.  

The tasks of representing sky objects to sky concepts were detector dependent; the extracted sky 

objects were scored at the detector levels based on how accurate the detectors generate bounding 

boxes that were comparable to the ground truth. The extracted sky objects were pre-processed 

and benchmarked using techniques of object similarity measures. In some similarity measures 

the match values were inversely proportional to the metric between the extracted sky object and 

the ground truths.  

 
extracted clear sky 

 
extracted visible moon 
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5.2.1.18 Elective Day and Night Ground Truths 
The ground truth on some of the sky objects (such as visible moon and clear-sky) varied 

depending on lighting conditions. As a pre-processing process, sets of sky objects for both day 

and night lighting conditions were specified. Histogram equalization was necessary to reduce 

variations in brightness and contrast of the sky objects within the specific lighting conditions 

(day or night). 

visiblemoonExtract = imresize(visiblemoonExtract, [252 127], 'nearest'); 
if (day_startTsec<scene_time2)||(day_startTsec==scene_time2)&&(scene_t… 
ime2<day_endTsec)||(day_endTsec==scene_time2) 
 visiblemoon_base=imread(*); 
else 
 visiblemoon_base=imread(*); 
end  

5.2.1.19 Similarity Scoring of Extracted Sky Objects 
Similarity scoring of extracted sky objects was of great significance in the attempts to account 

for the correspondence between detected sky objects and some positional ground truths. The 

scoring of extracted sky objects was based on testing a combination of well-known features 

humans use for visual perception, with a consideration that the human visual cognition system is 

well tailored for discriminating structural information from visual objects. The benchmark tests 

were not meant to penalize the quality of the extracted sky objects, but to compute some 

proximity of detected objects to specified ground truths. Apart from producing outputs for use in 

the prediction component, the similarity scoring acted as a supplementary quality assessment 

process for the results of sky objects detectors. The assumption here was that similar sky objects 

did not qualify as perfect matches to their principal objects but did contain some acceptable 

deviation in distances. In the benchmarking section, algorithms for extracting shape, colour and 

texture information in visual objects was investigated as candidates for sky objects 

benchmarking, and their performances compared using a collection of 1000 positive/negative 

instances per sky object. The rationale for testing both positive/negative instances was due to the 

fact that while the sky objects detectors were expected to generate positive detections, the 

number of false positives detected should be negligible.  

 
 

© Central University of Technology, Free State



145 
 

5.2.1.20 Shape-based Benchmark Tests 
Histogram of Oriented Gradients 

The HOG features of extracted sky object were generated by first computing the magnitudes of 

gradients and their orientations (directions) over the entire object.  

The magnitude of the gradients was computed by: 

2 2| | ...............................x yG I I 
Equation 5-1 

And the orientation of the gradients was computed by: 

arctan ......................................y

x

I
I

  Equation 5-2 

The gradients that had small magnitudes were transformed to zeros. The image grid cells were 

aligned to the object position. Orientation histograms were generated for each object cell, by 

quantizing the gradient directions. The gradient thresholds were added in orientation bins. The 

orientation histograms were stacked into one vector of length N*C. (The value of N represented 

the number of orientation bins while the values C representing the number of object cells.) After 

stacking the resultant vector was normalized to a unit length with the normalization factor using 

either of the forms: 
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v e
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Equation 5-3 
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Equation 5-4 
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vf
v e




Equation 5-5 

The unit vector consisted of the HOG features that uniquely represented the extracted sky object. 

5.2.1.21 Edge Based Benchmark Tests 
Edge detection methods were used to discover points in extracted sky objects where brightness 

changed abruptly (mathematically referred to as discontinuity). The discontinued points in 
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extracted objects were organized into sets of segments with curved lines (edges). Edge features 

were extracted objects using the canny and LoG edge detection algorithms.  

Canny edge algorithm of detecting discontinuities in image intensities was devised by John 

Canny (an Australian computer scientist). The Canny edge algorithm aims at the derivation of an 

optimal smoothing filter for minimizing multiple responses to single edge detections. In Canny, 

the edge points are determined using points in an image where the magnitude of gradients 

presume local maximum in the gradient direction.  

The procedure of deriving a Canny edge in extracted sky objects follows these steps: 

I. The first step was to apply a Gaussian smoothing filter to an extracted sky object using the 

formula: 

     , , , * , ............................S i j G i j I i j Equation 5-6 

The value I [i,j] represented the extracted object; G[i,j,σ] was the Gaussian smoothing filter, and 

σ was the spread of the Gaussian that was used to control the smoothing degree. The outcome of 

the convolution of an extracted object with the Gaussian filters led to an array matrix 

representing a smoothed object S[i, j] 

II. The second step was to calculate the magnitudes of gradients and orientations in the 

smoothed objects. This was achieved by using gradient of the smoothed array matrix S[i, j] to 

generate x and y partial derivatives, followed by applying the finite-difference method to 

approximate the partial derivatives.  
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III. The third step was to establish object edge directions by applying non-maxima suppression to 

the magnitudes of the gradients. Successful establishment of the edge directions was 

followed by the alignment of the edges to the directions that can be traced in an object. For 

each and every pixel (i,j) in an object some the direction was computed that can best 

approximate the direction of the object pixel.  

IV. The final step was applying the double threshold algorithm that links edges in an object.   

Laplacian of Gaussian 

The Laplacian of Gaussian edge feature extraction process was done in two steps.  The first step 

was to apply a Laplacian derivative filter to determine areas of abrupt variation (or edges) in an 

extracted object. The second step was to smooth the object by applying the Gaussian filter.  

2 2
2

2 2

( , ) ( , )( , ) ( , ) ......................f x y f x yL x y f x y
x y

 
  

  Equation 5-8 

The Laplacian and Gaussian functions can be combined to obtain a single equation that includes 

the smoothing Gaussian filter as follows: 

 

Equation 5-9
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The LoG (Laplacian of Gaussian) operator obtained the second derivative of the object. Object 

parts that are uniform gave LoG values of zero, while abrupt changes occurring in an object gave 

LoG values that were positive.  

5.2.1.22 Texture -based Benchmark Tests 
An image texture is a metric that can be used to depict in sequence the spatial arrangement of 

colour or intensities in an image. Texture is an important feature in distinguishing image 

contents. Various methods (such as Entropy and GLCM) were used to extract texture in sky 

objects.  

Entropy 

Entropy measured the randomness to represent the texture of an extracted sky object using the 

formula: 

sum (p.*log2 (p)). ……………………Equation 5-10 

The value p was a count of object histograms that were determined from an RGB object.  

Mathematically the entropy can be represented by: 

1 1

1 ( , )( ln ( , )).....................
M N

i i i
x y

Entropy I x y I x y
MN  

    Equation 5-11 

where ( , )iI x y  is an object with dimension MxN  

Grey Level Concurrence Matrix  

The procedures of calculating extracted objects texture features utilized the values of the GLCM 

to measure the variation in intensity or texture between extracted object pixels. A GLCM 

comprises information regarding the locations of object pixels that have similar grey levels. To 

come up with a GLCM a displacement vector ( , )d dx dy  was determined. From the vector d, 

pairs of image pixels that have grey levels (i,j)  and separation d were counted. A nxn  

dimensional GLCM was formed, where n is the number of grey levels determined from an 

extracted sky object.  
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5.2.1.23 Colour Based Benchmark Tests 
Colour was not reliable in detection tasks, since visual objects changed colour subject to 

geometric transformations and varying illumination. However, in the task of matching 

predefined sky objects, colour information proved important. To compare extracted sky objects 

the three independent colour channels (red, green and blue) were extracted from the pairs of 

detected objects and ground truths for matching purpose.  

Euclidean Distance 

The Euclidean Distance (Delta-E) is a single number representing the distance between colour 

channels images. Delta-E was determined by calculating the Euclidean distance difference 

between the red, green and blue channels in extracted objects and ground truths. The change in 

the distance abE between the objects was computed by using the formula 

2 2 2
* * * * * * * ..........................( ) ( ) ( )xy

E x y x y x yr r g g b b      Equation 5-12 

Where *r  is the red colour channel, *g is the green colour channel and *b  the blue colour 

channel of the objects (x= ground truth; y=extracted object).  

Structural SIMilarity Index   

The technique of Structural SIMilarity (SSIM) index was used in determining the 

correspondence between extracted object and ground truths. The SSIM measure was considered 

as a quality comparison of an image to another image that is of perfect quality. In SSIM the 

ground truth was assumed to be a perfect and distortion-free image. The SSIM index was 

measured on a range of common-size windows of extracted object and ground truth.  Given two 

windows (x=ground truth and y=extracted object), of size N×N the SSIM was determined by: 

1 2
2 2 2 2

1 2

(2 )(2 )
( , ) ........................

( )( )
x y xy

x y x y

c c
SSIM x y

c c
  

   
 


   

Equation 5-13 

5.2.1.24 Comparison between the Benchmarks 
The above bench mark tests were subjected to bulk data sets containing 1000 images per sky 

concept and in three varying sets of situations. Detected sky objects were subjected for similarity 

benchmark; the preferred scores were greater than or equal to 0.5 for detected sky objects. A 
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transformation function was used in parallel with benchmarks tests to account for the percentage 

of objects benchmarked with scores greater than 0.5 in each of the three situations. The rationale 

for setting scores greater than 0.5 was that the extracted sky objects were expected to resemble 

an average similarity to their corresponding ground truths. 

read (bulk set) 
n=number of objects; 
for object=1:n 
 begin 
 count=0; 
 detection procedure; 
  if(detected) 
  extract procedure; 
  benchmark procedure; 
   if(benchmark>threshold) 
   count=count+1; 
   else 
   count=count; 
   endif 
  else 
  count=count; 
  endif 
 performance=count/n*100;  
end for 
 

 

The benchmark results (Table 5—7 and Table 5—8) were useful in comparing the similarity check 

methods. The percentage scores for each feature were represented in the table, with the best 

measure identified in the last column. 
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Table 5—7: Performance of Measures for Benchmarking Negative Instances to Ground Truths 
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High clouds 88.3333 26.6667 41.6667 41.6667 88.3333 88.3333 88.3333 HOG 

Low clouds 96.7742 16.1290 58.0645 54.8387 100 100 
100 HOG 

Medium clouds 100 19.3548 67.7419 67.7419 100 100 100 HOG 

Clear sky 80.4878 78.0488 4.8780 4.8780 80.4878 80.4878 80.4878 HOG 

Stars 40.4762 2.3810 23.8095 35.7143 100 88.0952 100 HOG 

Rainbow 68.7500 0 0 0 75 75 75 HOG 

Lightning 84.4444 0 93.3333 95.5556 93.3333 88.8889 100 HOG 

Dark moon  32 100 96 
100 100 

100 HOG 

Visible moon 80.4020 48.7437 0 0 83.4171 83.4171 83.4171 HOG 
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Table 5—8: Performance of Measures for Benchmarking Negative Instances to Ground Truths 
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High clouds 22.5806 12.9032 19.3548 19.3548 22.5806 22.5806 22.5806 LoG 

Low clouds 40 8.3333 16.6667 16.6667 40 38.3333 40 
LoG 

Medium clouds 50 25 18.3333 23.3333 50 48.3333 50 
LoG 

Clear sky 48.8889 35.5556 2.2222 2.2222 48.8889 48.8889 48.8889 
LoG 

Stars 26.6667 6.6667 6.6667 6.6667 26.6667 26.6667 26.6667 
LoG 

Rainbow 19.0476 0 0 0 19.0476 19.0476 19.0476 
LoG 

Lightning 0 0 0 0 4.7619 4.7619 4.7619 
LoG 

Dark moon 4.7619 9.5238 9.5238 9.5238 9.5238 9.5238 9.5238 
HOG 

Visible moon 9.1463 9.1463 
0 0 11.5854 12.1951 

12.1951 LoG 

 

5.2.1.25 Joint Features Benchmarks Tests 
Joint benchmark features were realized by combining set of features (such as colour; texture; 

shape; and edge) that were unique to sky objects. The major importance of employing joint 

features to benchmark sky objects was that there were rare possibilities for joint features to be 

ambiguous. The assumption was that two or more sky objects with the same colour features 

could not have the same edge, shape and texture features. Computation of joint feature 

histograms was computationally more intensive (as several features tests and comparisons 

needed to be processed) than single feature tests, but led to better performance in sky object 

benchmark results. Tests were conducted using 1000 positive instances to evaluate benchmarks. 
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With single benchmarks, averages of 10 images were processed per second, while the joint 

benchmark tests processes an average of 2 images per second. 

5.2.1.26 Restraining of Complementary Sky Concepts 
The relationships between the detected sky concepts were evaluated for proper representation of 

overriding and overlapping complementary and supplementary sky concepts. The distinction 

between related sky concepts led to variation in terms of their values. The accumulative and 

combined effect of related sky concepts was considered when handling complementary and 

supplementary sky concepts. For instance, if the sky concept (moon) was detected, then the value 

of the contradictory sky concept (dark moon) was not anticipated.  For the concepts clear sky, if 

the detection was 100%, then it was necessary to restrict values of co-occurring concepts (such 

as low clouds and medium clouds). A simple rule was that if two sky concepts A and B have an 

opposing effect on each other, then if both the concepts were detected,  their values were to be 

regulated using some joint probability transformation to reflect the co-occurrence. The 

restraining of the complementary and supplementary relationships reduced the probability that 

co-occurring sky concepts hinder each other and subsequently nullify resulting effects during the 

prediction process. The detection of visible moon for instance automatically rendered the value 

of dark moon to zero as shown below.  

if (visiblemoon_value==0) 
    darkmoon_value=darkmoon_value;; 
else 
    darkmoon_value=0; 
end 
… 

Co-occurring sky concepts were dealt with by computing the joint existence relationships (the 

union of the sky concepts probabilities) as shown below.  

if(clearSky_value>threshold)&&((meddiumClouds_value>threshold)||… 
(lowClouds_value>threshold))&&(highClouds_value> threshold) 
clearSky_value=clearSky_value*meddiumClouds_value*lowClouds_value*highClouds_value; 
else 
clearSky_value=clearSky_value; 
end 
if(highClouds_value>threshold)&&((meddiumClouds_value>threshold)||… 
(lowClouds_value> threshold))&&(clearSky_value> threshold) 
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highClouds_value=highClouds_value*meddiumClouds_value*lowClouds_value*clearSky_value
; 
else 
 highClouds_value=highClouds_value; 
end 
 

5.2.1.27 Confidence on Detected Sky Concepts 
The percentage difference of the union of co-occurring sky concepts was determined to 

approximate the level of co-existence between two sky concepts. The average of the differences 

was taken for all co-occurring concepts to determine the overall level of confidence for all the 

detected sky concepts. A simple procedure was as follows: 

If the probability of a sky concept x (p,=,x) existing alone was 1, then the probability of x (p=x) 

and y (p=y) existing jointly was x*y. The percentage negation of this joint existence was 100*(1-

x*y) taken as the confidence level for the sky concepts A and B.  This procedure followed for all 

co-occurring sky concepts with the average taken as the overall confidence level. A sample 

computation was as follows 

clearsky2lowclouds=100*(1-clearSky_value*lowClouds_value); 
clearsky2mediumclouds=100*(1-clearSky_value*meddiumClouds_value); 
clearsky2lightining=100*(1-clearSky_value*lightining_value); 
darkmoon2fullmoon=100*(1-darkmoon_value*visiblemoon_value); 
highclouds2lowclouds=100*(1-highClouds_value*lowClouds_value); 
highclouds2mediumclouds=100*(1-highClouds_value*meddiumClouds_value); 
confidencelevel=(clearsky2lowclouds+clearsky2mediumclouds+clearsky2lightining+... 
    darkmoon2fullmoon+highclouds2lowclouds+highclouds2mediumclouds)/6; 

The significance of the confidence level was that of dynamically determining the value of alpha 

that was applied in the prediction component. The statistical significance of alpha (alpha =100% 

- confidence level) signified the level of rejecting the sky objects detections so that the 

predictions were computed based on the level of confidence.  

Some normalization was done to fix the values in an acceptable range, while the scaling was 

done to represent the concepts in a range (0,1). The final sky concepts were normalized and 

scaled using the formula shown below.  

concepts = cell2mat(detected_values); 
concepts = (concepts - min(concepts))/(max(concepts) - min(concepts)); 
range2 = 1 - 0.0; 
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concepts = (concepts*range2) + 0.0; 
 

Finally the scaled sky concepts were organized in a symbolic mathematical vector that had a 

distinct position for each of the sky concepts as shown below.  

detected_values={highClouds_value,lowClouds_value,meddiumClouds_value,clearSky_value,... 
stars_value,rainbow_value,lightining_value,darkmoon_value,visiblemoon_value,rain,dry,hot,col
d}; 
 

This vector, together with the confidence levels, determined from the detections process, formed 

the input to the prediction component. The aim of the rigorous benchmarking process should be 

understood not to penalize the sky objects detectors but to provide some clue to the predictions 

component pertaining to the quality of the detection process. The determination of detections 

confidence levels was meant to influence the outcome of the predictions component. Using 

confidence levels for self-learning in later sky objects detection tasks was achievable to influence 

the sky object detectors to fine-tune the merge thresholds in suppressing false positives.  

5.2.1.28 Review of Sky Objects Detection and Sky Concepts Representation 
The sky objects detection component used input from sky scenes and detected sky objects 

successively extracting and representing them as sky concepts. The sky objects were detected 

based on pre-trained cascade classifiers that perform multiple detections merging and improving 

results using input meta-data (time stamps).  The procedure of benchmarking-extracted sky 

objects used appropriate day or night truths to represent the detected sky objects as sky concepts. 

Confidence levels on the final sky concepts were determined based on complementary and 

supplementary relationships between the benchmarked sky objects. The three measures 

(detections, benchmarks, and confidence) in determining sky concepts were meant to increase 

model self-reliance in representing sky concepts. The final sky concepts were structured and 

represented in the form of a mathematical vector, for use in the predictions component. The 

experiments and results of the fuzzy cognitive maps-based predictions component form the 

major focus in the next section.  
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5.3 Simulation of Weather Outcomes through Fuzzy Cognitive Maps Simulations 

5.3.1 Overview of Scenario Simulations 

The previous section presented in detail the results of the sky objects detection component with 

the final output being sky concepts structured and represented in the form of mathematical 

vectors. This section discusses the experimental results of simulating weather outcomes 

scenarios using fuzzy cognitive mapping techniques. The predictions rely on fuzzy cognitive 

map connection matrices, which represent seasonal knowledge on sky weather concepts to 

weather outcomes. The outcomes of predictions are logged using input time stamps for further 

analysis. Finally, a range of fuzzy cognitive maps experimental results, including human-friendly 

predictions with graph visualizations are presented.  

Fuzzy cognitive mapping techniques were used to symbolically represent and depict the model 

of a complex visual sky weather lore domain. Descriptions were given (in terms of sky concepts) 

of the different characteristics of the visual sky weather lore domain. Each sky concept 

represents a characteristic of the visual sky weather lore system, where the sky concepts interact 

with each other resulting in changes in weather outcomes.  

5.3.2 Model Visual Sky Concepts 

In organizing fuzzy cognitive maps model to predict weather outcomes the visual sky concepts 

identified during the analysis phase were used. A total of nine visual sky concepts and four 

categories of weather conditions (see Table 5-9) were used to act as the nodes the seasonal fuzzy 

cognitive maps with statistically determined edge weights as described in subsequent sections. 

For each seasonal fuzzy cognitive map, a set of thirteen concepts {C1, C2, C3, C4, C5, C6, C7, 

C8, C9, C10, C11, C12 and C13} were specified as the key nodes in the experiments. The names 

of the concepts were specified together with their description and their probable range of their 

values (Table 5—9). 
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Table 5—9: Description of Concepts 

Concept Symbol Concept Name Description of Concepts Possible 
Range  C1 High Clouds sky object (0,1) 

C2 Low Clouds sky object (0,1) 
C3 Medium Clouds sky object (0,1) 
C4 Clear Sky sky object (0,1) 
C5 Stars sky object (0,1) 
C6 Rainbow sky object (0,1) 
C7 lightning sky object (0,1) 
C8 Dark Moon sky object (0,1) 
C9 Visible Moon sky object (0,1) 
C10 Rain/Wet weather outcome (0,1) 
C11 Dry weather outcome (0,1) 
C12 Hot/Heat weather outcome (0,1) 
C13 Cold weather outcome (0,1) 

 

5.3.3 The Seasonal Connection Matrices 

Connection matrices were used to represent the weights of the relationships between the thirteen 

concepts in each seasonal the fuzzy cognitive map. Each connection matrix had thirteen rows 

and thirteen columns. In the connection matrices the weights, which range between [-1, 1], were 

determined during the analysis phase.  

5.3.4 Inputs of Prediction Model 

The weather outcomes prediction model used sky concepts (a vector) and weights (a matrix) as 

inputs.. In graphical terms, the sky concepts inputs were represented by nodes, while the weights 

inputs were represented by arrows with some values between the sky concepts (nodes). Each sky 

concept was a node with its inputs and/or outputs. In the graph below (Figure 5-9) the inputs 

were indicated by dashed arrows that equate to the sky concepts. The outputs were other sky 

concepts that interact with the sky concept. Inputs to the prediction model used only detected sky 

concepts with provision that additional inputs need to be incorporated into connection matrices 

and associated object detectors trained as well.  
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Figure 5-9: Graphical Depiction of Prediction Inputs and Outputs 

The input sky concepts acted as either causal or effect concepts dependent on the direction of the 

arrow in the weight inputs. For instance in the graph above, 

causes
lowClouds clearSky , by some weight jiw ……………….. Equation 5-14 

The sky concept lowClouds was the causal concept of the weight jiw , while the sky concept 

clearSky was the effect concept of weight jiw . In the implementation of causal effect 

relationships, a sky concept could be both a causal concept of one causal relationship and an 

effect concept of different causal relationship. 

The two inputs (sky concepts vector and weights matrix) to the weather prediction model had 

influential quantity values, the sky concept status values and the weight values. The status values 

of the sky concepts showed the situation of the sky concepts. The weight values specified the 

strengths of causal effects from one sky concept to another sky concept.  

The two inputs (sky concepts vector and weights matrix) were specified by some input set, Input, 

which was represented by a two tuple  

 , .......................Input C W Equation 5-15 

where C was a real valued vector that represents the set of input sky concepts in the range [0,1], 

and W was a real valued matrix that represents the set of causal effect weights between sky 

concepts in the range [-1,1].  

clearSky

weight wji 
Inputs 

Output
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In mathematical terms  

 0,  1 ;  1,13  { | }.........................i ix x i xC and 


 Equation 5-16 

 { | }...........................1,  1 ;  1,13 ; 1,13   ij ij ijW w w i j and w    
 

 Equation 5-17 

In the predictions model the status of a sky concept was a positive numeric value in between [0, 

1]. A sky concept with a state of zero (0) value indicated that the sky concept was inactive. A 

higher numeric value in the state of a sky concept indicated that the sky concept was active. The 

maximum activity rate in a sky concept was (1), meaning that the sky concept was in maximum 

cause or effect. 

The causal or effect weight values, jiw  of the sky concepts were in the range [-1, 1]. A positive 

jiw   indicated that the state value of the effect sky concept iC changed proportionately with the 

state value of the cause sky concept jC . Negative jiw indicated that the changes of the effect 

concept iC were inversely proportional to the state value of the cause concept jC . 

To realize the representation of fuzzy sky concepts and fuzzy causal effects between sky 

concepts the weather predictions model used a bipolar in range [-1, 1] for the cause effects and 

the probability interval [0, 1] for the sky concepts states.  The fuzzy (overlap) nature of the 

inputs was implemented to map the human approximate way of thinking.  

The characteristics and qualities of the sky concepts and weights inputs described above powers 

critical interactions in predictions component as was desired. The sky concepts interacted with 

the predictions model through activation weights values to map sky concept state values. The 

causal effect weights values interacted with the sky concepts to transform a real causal activation 

values to the some new weights value. The final causal effect weights values were adjusted using 

relationship function that relies on the state values of the sky concepts.  This quality of the inputs 

introduced fuzziness in the determination of the final values of sky concepts.  

5.3.5 Model Simulation Experiments 

The simulation of predictions consisted of a series of sub-steps. First the systems obtained the 

input of the sky concepts state values and confidence levels from the detections component. At 
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this point the user is optionally allowed to alter/adjust the sky concepts to reflect the human 

opinion. The user can opt to select a seasonal connection matrix or rely on automated system 

procedure. The system also allowed the user to provide levels of desired accuracy which 

prompted the iteration to terminate once target accuracy was realized. This step was followed by 

a series of iterations until final output was displayed. A simple flow chart that guided the 

predictions is depicted (Figure 5-10). 

 

Figure 5-10: Prediction Steps 

5.3.6 Activations to New Sky Concepts States  

The sky concepts states were the values represented as a real valued vector iC  taking probability 

values between [0, 1]. The activation of new sky concepts states was realized by transforming 

previous sky concepts vector. The transformation considered all the causal sky concept nodes 

that influenced the given sky concept node. The transformation of sky concepts values to new 

state values used the two inputs described earlier: 

Given that there were 13 sky concepts (nodes) in the sky concepts vector, a 13x13 weights 

connection matrix W  was used: 

input sky 
concepts

get confidence 
level

iterate and 
predict outcomes
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1,1 1,2 1,3 1,13

2,1 2,2 2,3 2,13

3,1 3,2 3,3 3,13

13,1 13,2 13,3 13,13

w   w   w w
w   w   w w
w   w   w w ...........................

w  w  w w

W

 
  
  
 
 
  

Equation 5-18 

A 1x13 sky concepts vector C  was also generated 

 1 2 3 13C , C , C ,  ... C  .........................C  Equation 5-19 
 

The sky concepts vector C  was multiplied by the connection matrix W  to get a new 1x13 

vector 'C  as follows: 

'C CxW  

 

1,1 1,2 1,3 1,13

2,1 2,2 2,3 2,13
'

1 2 3 13 3,1 3,2 3,3 3,13

13,1 13,2 13,3 13,13

w   w   w w
w   w   w w

C , C , C ,  ... C  w   w   w w

w  w  w w

C x

 
  
  
 
 
  

 

= ' ' ' ' '
1 2 3 13, , ,  ...  .......................C C C C C   

Equation 5-20 

Statistically the new sky concepts state vector 'C was given by: 

' . . . . . . . . . . . . . . . . . . . . . . . . .i i j j
j

C w C  Equation 5-21

 

In the new sky concept activation process, a general assumption worth to note was that a sky 

concept cannot have a causal effect on itself.  

The value '
iC  was given by the sum of the products between the state values of all the causal sky 

concepts of concept iC  and the weight values between pairs of relating sky concept nodes. The 

value '
iC represented the new status of sky concept iC  considering the influence of all of its 

causal sky concepts.  
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5.3.7 Threshold, Max Min Normalization and Scaling Function 

In each stage of activating the new states of sky concepts a threshold function was used to 

regulate the resultant vector. In the last iteration the final stable sky concepts were standardized 

by using a max-min normalization function, and then scaled using the confidence level range.  

new_vector=oldvector*con_matrix 
for i = 1: oldvector.length   
if ((new_vector (i)> 0) && (new_vector (i)< 1)) 
     new_vector (i)= new_vector (i); 
else 
if new_vector (i)< 0 
      new_vector (i) = 0; 
else 
     new_vector (i)=1; 
if new_vector (i) == 0 
        new_vector (i) = 0; 
end 
end 
end 
end 
 
transformed = (new_vector - min(new_vector))/(max(new_vector) - min(new_vector)); 
new_vector =transformed;  
 
rng=confidence1; 
range2=(rng/100)-0; 
predictions = (new_vector *range2) + 0; 
 
 

5.3.8 Iterative Learning and Update of Cause Effects Relationships 

The prediction of the states of sky concepts used fuzzy cognitive map learning.  Iterative learning 

permitted the weights matrix to be updated as new concepts states were computed at each stage. 

This enabled the input sky concepts to interact with their desired weights values and adjust their 

cause effects relationships until stability.  

Iterative learning was a feedback mechanism used by the predictions component to enhance the 

quality of final predicted sky concepts. The procedure used is as follows: 

1. Initialize current sky concepts vector and the current weight matrix; 
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2. Determine the state values by the relationship functions between weight and its causal 

concept by multiplying the sky concept state vector by the weight matrix calculate 

3. Normalize the resultant sky concepts vector; 

4. Check error margin between resultant sky concepts nth outputs relative to nth-1 output 

5. If the error margin is unsatisfactory, increase the state value of the counter concept; 

6. Use the resultant state values of sky concepts as a new input vector; 

7. Repeat these steps until the values of the output sky concepts become stable; and 

8. If the state value of the counter concept reaches/exceeds a target value, adjust the state 

value of the parameter concept. 

The analysis of seasonal fuzzy cognitive maps scenarios allowed the determination of stable 

states for use in predicting sky concepts outcomes. The state of new sky concepts was 

determined by multiplying an input vector of sky concepts with the seasonal connection matrix. 

Depending on the strengths of the sky concepts connection matrix the cause and effect of input 

sky concept were transmitted from one sky concept to connected sky concepts. The process was 

iteratively repeated until the final sky concepts vector converged to a steady state. The 

convergence method enforced a number of iterations until stability. The simulation halted when 

the limit of the resultant sky concepts vector was reached, i.e. when  

'
1' 0.001......................k kC C    Equation 5-22 

so that   was an error margin, whose value could be dynamically specified. 

The running of scenario involved the adjustment of sky concepts (nodes) by varying to high and 

low value respectively. The final values of sky concepts in a scenario run were then compared to 

the iteration states results (Table 5—10) to see if the value of the concept increased or decreased. 
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Table 5—10: Concepts Values at Various Iterations 
Iteration C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

1 (initial 
values) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 1 1 0 1 1 0 1 0 0.3623 0 0.1074 0 

3 0.1965 0.0055 1 0 0.1965 0.1965 0 0.1965 0 0 0.25 1 0 

4 0.0672 0.0402 1 0 0.0672 0.0672 0 0.0672 0 0.1933 0 0.6462 0 

5 0.0369 0.0183 1 0 0.0369 0.0369 0 0.0369 0 0.4159 0 0.3472 0 

.6 0.0327 0.0174 1 0 0.0327 0.0327 0 0.0327 0 0.4519 0 0.3079 0 

7 0.0325 0.0174 1 0 0.0325 0.0325 0 0.0325 0 0.4579 0 0.3005 0 

8 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

9 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

10 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

11 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

12 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

13 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

14 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

15 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

16 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

17 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

18 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

19 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

20 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 

21 0.0326 0.0175 1 0 0.0326 0.0326 0 0.0326 0 0.4581 0 0.3002 0 
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The graphical representation of the convergence is as shown below (Figure 5-11). The constant 

lines after the 8th iteration indicate that the values of predictions do not change even with 

computations of more iterations. 

 

Figure 5-11: Iterative Predictions Convergence Graph 

5.3.9 Mapping of Predicted Weather Outcomes  

In the sky concepts all the concepts represent some change to some new state. The sky concepts 

were defined in the same way using a common set of membership function representing a certain 

amount of change ranging from [0, 1]. 

The predicted values were mapped to an incremental log file for use in the verification 

component that approximated the validity of the predicted concepts against actual weather 

outcomes. Considering the nature of humans, who often use their inaccurate expressions such as 

‘very much’, ‘much’, 'little’, and ‘very little’ to make prediction statements, the outputs from 

final predicted sky concepts (in the range [0, 1]) were transformed to human-understandable 

form. Defuzzification allowed the analysis and understanding of the predicted sky concepts. The 

simulated sky concepts were used to generate human comprehensible decisions that are instantly 
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handy for further decisions.  The outcomes were interpreted in scales ranging from 0% to 100% 

chances of weather prospects. 

%Log Process 
oldData = get('*'); 
newData = get ('*'); 
nRows = (size(oldData,1)); 
nRows = nRows +2; 
a = make_str(nRows); 
b = join('A', a); 
c = join('C', a);  
save('*', time_date,'predictions',b); 
save ('*', newData,'predictions',c); 
 
%Location Determination 
lat1=join(directionlat,X11);lon1=strcat(directionlon,Y11); 
lat=str2num(lat1);lon=str2num(lon1); 
url=sprintf('http://maps.googleapis.com/maps/api/geocode/xml?latlng=%.4f,%.4f&sensor=true'
, lat, lon); 
try 
buffer = urlread(url); 
results = regexp(buffer, '<formatted_address>(.*?)<', 'tokens') ; 
for k = 1 : length(results),  fprintf('%s\n', results{k}{1}) ;  end 
%xb=results;location=xb{3}{1}; 
xb=results;location1=xb{1}{1};location2=xb{2}{1};location3=xb{3}{1}; 
 

 

 
 

Figure 5-12: Depiction of Prediction Location in Map 
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Outcomes Transformation 
predictions= get('*'); 
nRows = (size(predictions,1)); 
nRows = nRows +1; 
d = num2str(nRows); 
 e = strcat('C', d); 
f = strcat('F', d); 
range=[e,':',f]; 
read_row=get('*','predictions',range); 
v=read_row; 
n=size(v,2); 
p=(v*100); 
for i=1:n 
if (0<v(i)<0.2)         z(i)={'statements'}; 
elseif (0.19<v(i)<0.3)         z(i)={'statements'};  
elseif (0.29<v(i)<0.4)         z(i)={ 'statements'}; 
elseif (0.39<v(i)<0.5)         z(i)={ 'statements'}; 
elseif (0.49<v(i)<0.6)         z(i)={ 'statements'}; 
elseif (0.59<v(i)<0.7)         z(i)={ 'statements'}; 
elseif (0.69<v(i)<0.8)         z(i)={ 'statements'}; 
elseif (0.79<v(i)<0.9)         z(i)={ 'statements'}; 
elseif (0.89<v(i)<1.0)         z(i)={ 'statements'}; 
else 
z(i)={ 'statements'}; 
end 
end 
z; 
concepts={'rainy';'dry';'hot';'cold'}; 
for i=1:n 
    outcomes(i)=strcat(z(i),{' ('},num2str(p(i)),{' % ) chances of being ' },concepts(i)); 
end 
outcomes; 
save('*', outcomes); 
ind=find(v==(max(max(v)))); 
size_ind=size(ind,2); 
for j=1:size_ind 
major_outcomes(j)=strcat(z(ind(j)),{' ('},num2str(p(ind(j))),{' %) chances of being ' 
},concepts(ind(j))); 
end 
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5.3.10 Network Visualizations of Causal Effects between Concepts 

The interactions in each season fuzzy cognitive map were implemented for graphical (network) 

visualization. For this network files were implemented to visualize the seasonal knowledge in 

radial graphical layout with straight edge types. In the connection matrices rows were used to 

generate source nodes (the influence sky concepts) and the matrix columns were used to 

represent the sinks (nodes representing affected sky concepts). A generated network graph for 

the summer season as depicted (Figure 5-14). 

 

Figure 5-13: Snapshot of Major Predicted Outcomes 
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Figure 5-14: Graphical depiction of the Summer Weather Season 

5.3.11 Dynamics of Seasonal Fuzzy Cognitive Maps 

The seasonal fuzzy cognitive maps were analyzed to determine and interpret the relations 

between the sky concepts. This analysis presented more understanding concerning the structural 

properties and dynamics of the seasonal fuzzy cognitive maps. To analyze the type and the role 

of each sky concept within the fuzzy cognitive maps the density, indegree, outdegree and 

centrality measures were determined. 

5.3.12 Density of the Seasonal Connection Matrices 

The densities, D, of the seasonal fuzzy cognitive maps were determined to depict how highly 

connected the sky concepts were to each other. For each seasonal fuzzy cognitive map, the 

densities were computed by dividing the number of countable connections, Z, by the number of 

possible connections between N sky concepts.  
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Given that the relationships in the seasonal connection matrices depict no self-loops, then the 

main diagonal of the connection matrices consisted only of zeros. The maximum number of sky 

concepts connections was given by N (N-1). The densities in the seasonal fuzzy cognitive maps 

were determined by: 

............................
( 1)

ZD
N N




Equation 5-23 

The implementation significance of density was that seasonal fuzzy cognitive maps with many 

connections per sky concept had higher density provided increased alternative of manipulating 

the sky concepts.  

5.3.13 Indegree, Outdegree and Centrality of Sky Concepts 

The indegree was computed by summing the counts of all the absolute values of incident arrows. 

In the connection matrices this was the sum of the columnar sky concepts. The outdegree was 

determined by summing the counts of all the absolute values of outgoing arrows. In the 

connection matrices this was the sum of the row sky concepts. The absolute values were used to 

give equal importance to recognize both negative and positive causal effects weights between 

sky concepts. 

1
deg .....................

N

ki
k

in ree a


 Equation 5-24 

1
deg ..............................

N

ik
k

out ree a


 Equation 5-25 

The centralities of all the sky concepts for each seasonal fuzzy cognitive map were determined 

(see Table 5—11to Table 5—14). The centrality was also called the total degree of the sky 

concepts (i.e. the sum of the indegree and outdegree per sky concept). The centrality was used to 

measure the importance of the sky concepts. Sky concepts with high centrality were given 

special attention.  
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Table 5—11: Summer Season Dynamics 

Summer C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
Indegree 0 0 0 3 0 0 2 0 1 9 9 9 8 
Outdegree 6 5 6 5 4 4 4 3 4 0 0 0 0 
Centrality 6 5 6 8 4 4 6 3 5 9 9 9 8 

 
Table 5—12: Autumn Season Dynamics 

Autumn C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
Indegree 0 0 0 3 0 0 2 0 1 9 8 8 6 
Outdegree 6 5 6 5 1 3 4 4 3 0 0 0 0 
Centrality 6 5 6 8 1 3 6 4 4 9 8 8 6 

 
Table 5—13: Winter Season Dynamics 

Winter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
Indegree 0 0 0 3 0 0 2 0 1 8 6 8 8 
Outdegree 6 4 3 5 4 2 4 4 4 0 0 0 0 
Centrality 6 4 3 8 4 2 6 4 5 8 6 8 8 

 
Table 5—14: Spring Season Dynamics 

Spring C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
Indegree 0 0 0 3 0 0 2 0 1 9 9 9 8 
Outdegree 6 5 6 5 4 4 4 3 4 0 0 0 0 
Centrality 6 5 6 8 4 4 6 3 5 9 9 9 8 

 

5.3.14 Transmitter, Receiver and Ordinary Sky Concepts  

The transmitter, receiver and ordinary factors of the sky concepts were determined. In 

implementation the transmitters had positive outdegree and zero indegree. The receivers had 

positive indegree and zero outdegree (also known as sink or ends in some other computational 

terms). Analysis of the transmitter sky concepts was important as they influence other sky 

concepts while they remain unaffected. Sky concepts with both positive indegree and outdegree 

were known as ordinary sky concepts. 

Complexity (Table 5—15) of the sky concepts was determined by the ratio of the total 

transmitters to total receivers. If the ration was high, then the sky concepts relationships were 

regarded as highly complex. For low complexity the sky concepts relationships were externally 

driven.   

 

© Central University of Technology, Free State



172 
 

 .........................TransmittersComplexity
Receivers

 Equation 5-26 

 

Table 5—15: Seasonal FCM Dynamics 

Season 
Total Sky 
Concepts 

Total  
Connections 

Total  
Transmitters 

Total  
Receivers 

Total  
Ordinary Complexity Density 

Summer 13 82 6 4 3 1.5000 0.5256 
Autumn 13 74 6 4 3 1.5000 0.4744 
Winter 13 72 6 4 3 1.5000 0.4615 
Spring 13 82 6 4 3 1.5000 0.5256 

 

5.3.15 Review of Scenario Simulations 

This section presented the experiments and results of the prediction component that makes use of 

detected concept values to predict weather outcomes based on knowledge represented in fuzzy 

cognitive maps. A mechanism of influencing the results of weather predictions was achieved by 

acknowledging model confidence on the detected concepts. The confidence levels were based on 

qualitative judgments of supplementary and complementary relationships between detected 

concepts. Experiment results revealed that integrating detections confidence suppresses near- 

false prediction of weather outcomes. The predicted weather outcomes were further enhanced by 

integrating iterative reorganization (a simple form of learning) of the season connection matrix 

weights before successive steps of a simulation. The prediction component portrayed uncertainty 

of the weather seasons by allowing specification of the season status; or else the model utilizes 

object time stamps for season resolution.  

5.4 Compilation of Actual Weather Observations Using Wireless Sensors 

5.4.1 Overview of Wireless Sensors based Weather Station 

These section present configuration and tests results of the wireless weather station used to 

gather actual weather observations. First, a description of the sensors and the components of the 

wireless station is presented.  The results of data logs are presented, followed by discussions on 

the choice of weather parameters, transformations and representations to verifiable weather 

observations. The weather parameters gathered using the wireless weather sensors were 

benchmarked to Bloemfontein weather records (http://www.accuweather.com/ and 

http://www.timeanddate.com/ real-time weather measurement mechanisms.)  

© Central University of Technology, Free State



173 
 

5.4.2 Components of the Wireless Weather Station 

A simple star topology wireless weather data acquisition system was employed. The weather 

station consisted of a central base station and numerous wireless sensing nodes.  Distance from 

the base station to the weather sensors varied to tens of metres, therefore a reliable 

communication was realized using a wireless network. The base station automatically 

synchronized the internal working clocks of the sensing nodes and received data from the 

wireless sensor nodes for logging in an internal central repository.  The internal power 

consumption for the wireless sensor nodes was minimal (at 3 volts). The base station was 

powered both internally and externally to increase its lifetime.  

The wireless weather station was used for continuous monitoring of weather conditions in order 

to generate a log of daily weather data. The purpose of this monitoring was to generate sufficient 

weather records which were useful in verification of the predicted weather outcomes. The sensor 

nodes had an internal buffer that temporarily stored weather readings. At distinct time intervals 

the wireless sensing nodes transmitted recently measured data to the base station.  The base 

station logged and displayed data for up to seven days. This data was accumulated by 

transferring to an external storage through a software program.  

To facilitate the collection of real-time weather data a configuration of Oregon scientific wireless 

sensor hardware and software was used. The Oregon scientific equipment used has been 

comprehensively validated in the country of origin (NIST Certification, USA) and experimented 

with in other countries (such as UK, France and Germany). An advantage of the Oregon 

Scientific variety of wireless weather stations is the capacity to introduce additional weather 

parameter sensors. 

The wireless weather station gathered (in real time and every one hour) the indoor and outdoor 

temperature, precipitation, heat index, wind chill, wind direction and wind speed among other 

parameters. The weather sensors remotely transmitted data to the base station. A wireless 

weather station used is depicted below (Figure 5-15) 
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5.4.3 Sensors used in the Wireless Weather Station 

The wireless weather station was positioned on the roof of the Central University of Technology 

(CUT) BHB building. The base station was positioned in an office on the 2nd floor of BHB 

building. The Oregon scientific wireless weather sensor proved reliable weather measurement 

equipment that meets WMO accuracy benchmarks. Essential weather parameters that were 

measurable by conventional weather monitoring systems were realized by this equipment.  

The wireless weather station measured a wide range of meteorological parameters by allowing 

wireless connection of different types of sensors. The wireless weather station equipment 

included a range of outdoor sensors consisting of a thermo-hygrometer, an anemometer-cum- 

wind vane, a rain gauge and a barometer that were used to acquire actual weather parameters that 

the format  described, as shown in Table 5—16.  

  

 

Figure 5-15: Oregon Scientific Weather Station 
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Table 5—16: Weather Parameters Recorded 

Parameter  Description Range, Accuracy 
Outdoor 
Temperatures 

The indoor/outdoor temperature values 
were recorded as real values in Celsius. 

-40°F;-40°C-
150°F;65°C 

1°F;0.5°C 
Outdoor 
humidity  

The humidity that is usually the ratio of 
the vapour pressure of moist air to its 
saturation vapour pressure at its 
temperature was expressed in %.  

0%-99%, ±3% 

Wind speed and 
direction,  

The Wind speed was recorded in 
kilometres per hour and wind direction 
was in compass points (NESW). 

0 m/s -80 m/s, ±5% 

0°-360°, ±3° 

Precipitation Precipitation was recorded in hourly and 
daily (24 hour) cumulative.  

0" -393.6", 5%  

Atmospheric 
pressure  

The atmospheric pressure was recorded 
in millibars.  

21.25inHg/540hPa 
43.31inHg / 1,100hPa 

 

Wind chill The wind chill was recorded as the 
cooling effect produced by the 
combination of cool temperature and 
wind.  

0%-99%, ±3% 

Heat index The measure of how hot it feels (heat 
index) was recorded in percentage. The 
values of humidity and air temperature 
were used to determine the humidity. 

0%-99%, ±3% 

To benchmark the wireless weather station, the daily meteorological parameters were obtained 

from the real-time weather observatories (http://www.accuweather.com/en/za/south-africa-

weather/bloemfontein). The Bloemfontein weather observatories also make available barometric 

pressure, dew point, and relative humidity observations.  

The wireless weather station was evaluated against the conventional weather station in 

Bloemfontein to guarantee dependable accuracy. The accuracy of the pre-calibrated automatic 
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wireless weather station was done by comparing the readings of the weather sensor with the 

Bloemfontein, Free State weather observations.  

5.4.4 Review of Wireless Sensors-based Weather Station 

These section presented configuration and tests results of the wireless weather station that was 

used to gather actual weather observation. The sensors setup and the components of the wireless 

station were discussed.  The results of data logs were presented, with specifications on the 

chosen weather parameters and the transformations used to represent the verifiable weather 

observations.  

5.5 Visual Weather Lore Verification Using Forecast Skills 

5.5.1 Overview of Visual Weather Lore Verification Component 

The previous two sections demonstrated the mechanisms of detecting weather concepts from sky 

scenes, predictions using fuzzy cognitive mapping techniques and gathering actual weather 

observations using wireless sensors. The results from the predictions component and actual 

weather sensor form the main ingredients of the verification component that is the focus of this 

section. The transformations applied to the two input verification data sets are illustrated. 

Verification experiments using various forecast skill metrics and results are presented. 

5.5.2 Range of Verification Data 

Two inputs were used in the verification component: first the predicted weather outcomes from the 

visual weather lore based predictions component, and secondly, the actual weather observations 

generated using the wireless weather-sensing component. Both data sets had time metadata to ensure 

correspondence in terms of prediction and observation periods. These two data sets were crucial in 

the validation of the visual weather lore verification model. The predictions data set consisted of 

daily records (wet/rain, dry, hot/heat, cold) which represented the next 12/24 hr weather prospect.  

The observation data set consisted of the actual records which represented the actual weather 

outcomes (wet/rain, dry, hot/heat, cold) for the day. A section of the data sets is shown (Figure 5-16) 

and graphs (Figure 5-17). 
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Figure 5-16: Section of Predictions/Observation Data Sets 
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5.5.3 Transformation of Weather Observations to Categorical Variables 

The observations data acquired using a wireless weather station was logged as variable strings of data 

containing weather parameters. The observed weather parameters were transformed to categorical 

weather variables (0 = non-occurrence, 1 = occurrence) that indicated the presence or absence of 

the weather outcomes. A value of 0 indicated a non-observed weather outcome while a value of 

1 indicated an observed weather outcome. The weather records were transformed to categorical 

values for simplicity of verification against predicted weather outcomes. The predictions data set 

consisted of scaled data in the range [0, 1]. To compare the two data sets the following 

transformations were implemented: 

Wet/Rain 

Categorical=IF(Precipitation>0,1,0) 

 

 

Figure 5-17: Graphs of Predictions Vs Observations 
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Dry 

Categorical =IF(Precipitation >0,0,1) 

Hot/Heat 

HI=IF((E3*9/5+32)<=80,E3,IF(AND(F3<13,((E3*9/5+32)>80),((E3*9/5+32)<112)),(((-
42.379+2.04901523*(E3*9/5+32)+10.14333127*F3-0.22475541*(E3*9/5+32)*F3-
0.00683783*(E3*9/5+32)*(E3*9/5+32)-
0.05481717*F3*F3+0.00122874*(E3*9/5+32)*(E3*9/5+32)*F3+0.00085282*(E3*9/5+32)*F
3*F3-0.00000199*(E3*9/5+32)*(E3*9/5+32)*F3*F3)-32)*5/9)-(((13-F3)/4)*SQRT((17-
ABS((E3*9/5+32)-95))/17)),IF(AND(F3>85,((E3*9/5+32)>80),((E3*9/5+32)<87)),(((-
42.379+2.04901523*(E3*9/5+32)+10.14333127*F3-0.22475541*(E3*9/5+32)*F3-
0.00683783*(E3*9/5+32)*(E3*9/5+32)-
0.05481717*F3*F3+0.00122874*(E3*9/5+32)*(E3*9/5+32)*F3+0.00085282*(E3*9/5+32)*F
3*F3-0.00000199*(E3*9/5+32)*(E3*9/5+32)*F3*F3)-32)*5/9)+((F3-85)/10)*((87-
(E3*9/5+32))/5),(((-42.379+2.04901523*(E3*9/5+32)+10.14333127*F3-
0.22475541*(E3*9/5+32)*F3-0.00683783*(E3*9/5+32)*(E3*9/5+32)-
0.05481717*F3*F3+0.00122874*(E3*9/5+32)*(E3*9/5+32)*F3+0.00085282*(E3*9/5+32)*F
3*F3-0.00000199*(E3*9/5+32)*(E3*9/5+32)*F3*F3)-32)*5/9)))) 
Categorical=IF(HI>25,1,0) 

Cold 

Categorical =IF(HI <18,1,0) 
 

5.5.4 Forecast Accuracy and Metrics 

A set of weather predictions are considered accurate if their variations from the actual weather 

are sufficiently small. A statistical evaluation of the visual weather lore-based weather 

predictions was achieved by comparing the predicted weather outcomes to wireless weather 

sensor observations. Statistical evaluation was undertaken using daily inputs of weather 

outcomes predicted against the observed meteorological parameters. Metrics of forecast skill 

were computed in error terms to compare the set of weather outcomes predictions and actual 

weather observations. The Mean Error (ME) was computed as the arithmetic average of the set 

of forecast errors. The Mean Absolute Error (MAE) was computed by averaging the absolute 

values of the prediction errors.  

1

1 ................................
n

i
i

ME e
n 

  Equation 5-27 
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1

1 ................................
n

i
i

MAE e
n 

  Equation 5-28 

The Mean Squared Error (MSE) was computed by averaging the squares of the prediction errors. 

MSE was the statistically appropriate measure of weather lore-based weather outcomes 

prediction errors. For each weather outcome the objective was to minimize as much as possible 

the MSE of the predictions.  

2

1

1 ...............................
n

i
i

MSE e
n 

  Equation 5-29 

The Root Mean Squared Error (RMSE) was determined by computing the square root of the 

MSE.  

..............................RMSE MSE Equation 5-30 

The MAPE is the most popular aggregate measure for prediction accuracy. The MAPEs were 

determined by expressing the absolute magnitude of each prediction error as a percentage of the 

actual observation followed by computing the average of the percentages.  

1

1 .....................................
n

i

i i

e
MAPE

n Z

  Equation 5-31 

The tendencies to under- or over-predict weather outcomes (Bias) were computed. 
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ME – Mean Error 

MAE –  Mean Absolute Error 

MAPE –  Mean Absolute Percentage Error 

MSE –  Mean Squared Error 

RMSE –  Root Mean Squared Error 

B –  Bias 

N_oc –  % of correct no weather outcomes predictions (against total no observations) 

Y_occ–% of correct positive weather outcomes predictions (against total yes observations) 

PC –  % of total correct predictions (against total yes and no observations). 

The verification statistics were computed for the 40 records (observations and predictions). The 

Mean Absolute Error (MAE) between the observations and predictions were rain (0.15), dry 

(0.15), heat (0.15), and cold (0.125) respectively. The Mean Absolute Percentage Error (MAPE) 

between the observations and predictions were rain (15), dry (15), heat (15), and cold (12.5) 

 

Figure 5-18: Snapshot of Error Metrics 
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respectively. The Mean Squared Errors (MSE) between the observations and predictions were 

rain (0.15), dry (0.15), heat (0.15), and cold (0.125) respectively. The Root Mean Squared Errors 

(RMSE) between the observations and predictions were rain (0.3873), dry (0. 3873), heat 

(0.3873), and cold (0.3536) respectively. The Bias between the observations and predictions was 

rain (0.0506), dry (0.0102), heat (0.0232), and cold (0.0946) respectively. The percentage of true 

non-occurrences between the observations and predictions were rain (84.48), dry (75), heat (40), 

and cold (89.74) respectively. The percentage of true occurrences between the observations and 

predictions were rain (66.66), dry (86.11), heat (91.42), and cold (0) respectively. The overall 

accuracy between the observations and predictions was rain (85), dry (85), heat (85), and cold 

(87.5) respectively. With increased scope (span and quantity of records) of verification the 

perceived accuracy increased considerably. 

5.5.5 Contingency Tables for Weather Outcomes 

In the verification process using contingency tables (Table 5—17 to Table 5—21) a collection of 

matching records of predictions and observations were used. The notions HIT(s), MISS(es), 

FALSE ALARM(s) and CORRECT-NEGATIVE(s) were used to depict a 2 by 2 contingency 

table for each predicted weather outcome. A ‘HIT’ was used to represent the occurrence of an 

observed (represented by 1) weather outcome that was also categorically predicted to occur 

(indicated as 1).A ‘FALSE ALARM’ was used to represent a weather outcome that was 

predicted to occur (represented by 1) but was not observed (indicated as 0). A ‘MISS’ was used 

to represent a weather outcome that was predicted not to occur (value 0) but was actually 

observed as positive (value 1).  A ‘CORRECT NEGATIVE’ was used to represent a weather 

outcome that was predicted not to occur (value 0) and was actually not observed (value 0).  

Table 5—17: General Contingency Table 

  Visual Weather Lore Predictions 
  Yes No Totals 

Se
ns

or
 

O
bs

er
va

tio
ns

 

Yes HITS MISSES Total 
Events 

No FALSE 
ALARMS 

CORRECT 
NEGATIVES 

Total non-
events 

Totals Total Events 
Predicted 

Total Non-
Events 

Sample size 

© Central University of Technology, Free State



183 
 

 

Table 5—18: Contingency Table (Rain) 

 
 Visual Weather Lore Predictions 

  Yes No Totals 
Se

ns
or

 
O

bs
er

va
tio

ns
 

Yes 2 1 3 

No 5 32 37 

Totals 7 33 40 
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Table 5—19: Contingency Table (Dry) 

 
 Visual Weather Lore Predictions 

  Yes No Totals 

Se
ns

or
 

O
bs

er
va

tio
ns

 

Yes 31 5 36 

No 1 3 4 

Totals 32 8 40 

Table 5—20: Contingency Table (Heat) 

 
 Visual Weather Lore Predictions 

  Yes No Totals 

Se
ns

or
 

O
bs

er
va

tio
ns

 

Yes 32 3 35 

No 3 2 5 

Totals 35 5 40 

Table 5—21: Contingency Table (Cold) 

 
 Visual Weather Lore Predictions 

  Yes No Totals 

Se
ns

or
 

O
bs

er
va

tio
ns

 

Yes 0 1 1 

No 4 35 39 

Totals 4 36 40 
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5.5.6 Threat Score (TS) or Critical Success Index (CSI) 

The TS (CSI) is a standard weather forecast verification measure which has a range of 0 to 1. 

The value of 1 indicates a perfect score and the score approaches zero as the weather outcome 

becomes rare. The TS or CSI was computed for all the weather outcomes as follows: 

, ..................................aTS CSI
a b c


 

Equation 5-32 

Using 40 records, the weather outcome rain was rare with a score of 0.25; the score of dry 

weather outcome was 0.837; hot/heat was 0.842; and the cold weather outcome was scored as 0. 

The scores were observed to be realistic with increased number of test records.  

 

Figure 5-19: snapshot of Contingency Tables 
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5.5.7 Review of Verification Process 

The verification component and experimental results based on a system predicted against actual 

weather outcomes logged from a wireless sensor station were presented in Chapter Five. The 

results of transformation functions on the verification data sets were presented. The results of 

verification experiment reveal that the visual weather lore-based predicted outcomes were close 

to the actual weather outcomes observed using the automatic (Oregon) wireless weather station. 

In Chapter Six discussions, evaluation and research conclusion are presented. 
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6.Chapter Six: Performance Evaluation, Discussion and Conclusions 

6.1 Introduction 

Chapter Five discussed the components and functionalities of the visual weather lore verification 

tool. The sub-components for detection, prediction and verification were experimented with, and 

in each case, the outputs were presented. The detection component was accomplished, using 

image recognition methods for objects recognition and approximation of the presence of visual 

objects in sky scenes. The performance of each detector was evaluated using bulk image data 

sets. The implementation and test results of fuzzy cognitive mapping techniques to represent tacit 

knowledge on visual weather and to predict weather outcomes based on selected visual sky 

concepts were discussed. A verification component that compares system predictions to actual 

weather observations was implemented and test results presented. The test results of the 

verification component that performs the key task of verification of visual weather lore, through 

computing various forecast skills metrics was presented. 

In this chapter (Chapter Six), various assessments that were performed to quantify the 

achievement of the objectives set in this research are reported. This chapter also presents some 

innovative aspects of this research and concludes by highlighting some opportunities for 

extending this research. 

6.2 Evaluation of Research Objectives 

6.2.1 Identification of Astronomical and Meteorological Visual Aspects Weather Lore 

An investigation was accomplished on the most influential visual weather concepts that humans 

exploit in deciding on weather outcomes in the process of planning for their daily activities. The 

investigation established that traditional knowledge on weather was locality specific, due to the 

fact that the effects of weather outcomes vary from different categories of people (such as 

farmers and general rural inhabitants). The identification of visual astronomical and 

meteorological weather aspects proved usable (over 50% of the respondents in both case studies 

stated that they knew some visual indicators and that the visual indicators help them to predict 

weather) as a traditional way of weather forecasting. The two case studies’ results were found to 

be comparable and aggregation was used to generate seasonal knowledge from the two study 

areas. An analysis of a broad selection of visual astronomical and meteorological weather 
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indicators identified using literature review and some previous research (Mwagha & Masinde, 

2015) were found to correlate to the results of the case studies in this research. 

An unambiguous number of concepts were realized using the knowledge of associations between 

weather concepts and the initially identified visual weather concepts reduced by clustering sky 

objects with similar characteristics (and restating contrasting concepts). The ambiguity and 

overlapping characteristics in the occurrence of sky concepts (such as similar cloud types) 

necessitated the reduction of the number of concepts. The selected weather outcomes (rain/wet 

condition, hot/heat cold and dry condition) were identified as major weather conditions (as 

identified in onset and cessation signs of weather seasons) in influencing the daily activities of 

people. The ultimate list of interacting and influential astronomical and meteorological aspects 

(also referred to as concepts) was realized as shown in Table 6—1.  

 
Table 6—1: List of astronomical and meteorological aspects 

high 
clouds 

low 
clouds 

medium 
clouds 

clear 
sky 

stars rainbow lightning partial/dark 
moon 

full/visible 
moon 

rain dry hot cold 

 

6.2.2 Causal Effects between Visual Weather Lore and Weather Outcomes 

In each of the two case studies conducted, group knowledge was realized by analyzing the data 

using both quantitative (percentage of respondents) and descriptive statistics (mean and mode of 

categorical responses). Cross-unit comparisons between the case studies’ results were 

accomplished before aggregation and group knowledge representation. The results of analysis 

were represented as group knowledge (on visual astronomical and meteorological weather 

concepts and the causal effects on short-term weather conditions) based on statistical summaries.  

The results of analyzing knowledge from the two case studies (see Figure 4-6) revealed that 

weather is significant on human activities. This was portrayed by the result that the majority of 

human daily activities (58% in South Africa and 71% in Kenya) were sometimes affected by 

weather. The possible reason for the higher percentage in Kenya was that more elderly people 

(46 to 55 years representing over 68% of the respondents) were sampled in Kenya. The analysis 

results also depicted that majority of the respondents in both case studies often check for weather 
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forecasts. The results also showed that most of the respondents in both case studies knew some 

visual indicators and that the visual indicators help them to predict weather. 

By analyzing of perceptions of individual respondents, the causal effects between visual weather 

concepts and short-term weather outcomes were realized. The percentage of respondents 

associated with each causal effect, mode and mean were represented for each pair of interacting 

weather concepts. The final results were categorized and represented in terms of the four weather 

seasons (winter, summer, autumn and spring). 

Joint statistics (mode and mean values) between the visual astronomical and meteorological 

concepts; and the astronomical and meteorological concepts to weather outcomes in the four 

weather seasons enabled the realization of common knowledge between the two case studies. 

Analysis and summaries of aggregated mode and mean values of causal effects for the four 

weather seasons (see Table 4—10) depicted and confirmed the trends for the winter, summer, 

autumn and spring seasons. The results of joint statistical analysis considering all the possible 

responses (strong-negative, negative, none, positive, strong-positive) for seasons such as winter 

(South Africa was colder than Kenya), and summer portrayed that the causal effects vary 

significantly (South Africa’s summer was hotter than Kenya’s summer; the depiction was similar 

for the winter season). The analysis using mean depicted a poor aggregate of causal effects; 

hence the mean aggregate was not preferred as the best statistic to represent the common causal 

effects between the two case studies.  

The combined averages of majority responses from the two case studies were resolved for each 

pair of selected interacting weather concepts. The deviation between the computed mean values 

in the two case studies was found to be greater than that of the mode on the knowledge trends for 

the various seasons). This observation led to the preference of the averages of probability (modal 

values; see Figure 4-9) in favour of the mean values for representing the causal effects between 

the interacting visual astronomical and meteorological weather indicators. 

6.2.3 The Role of Fuzzy Cognitive Mappings in representing Weather Role 

Influential sky weather concepts (also referred to as astronomical and meteorological weather 

concepts in some parts of this research) were identified through weather lore domain 
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understanding and analysis and represented as;(high clouds; low clouds; medium clouds; clear 

sky; many stars; rainbow; lightning; partial/dark    moon; full/visible   moon; rain; dry; hot; 

cold). 

The four seasonal fuzzy cognitive maps were accomplished by analyzing and interpreting the 

relations between the sky concepts. The analysis results permitted a more understanding 

concerning the structural properties and dynamics of the seasonal fuzzy cognitive maps. The type 

and the role of each sky concept within seasonal fuzzy cognitive maps were established by 

analyzing the density, indegree, outdegree and centrality measures (see Table). The centrality 

indicates clear sky has the highest strength in contribution to weather conditions. Rainbow has 

the least contribution to the weather conditions. 

Table 6—2: Results of analysis of the importance of concepts 

Concepts Outdegree Indegree Centrality 
high clouds 4.75 0.00 4.75 
low clouds 2.50 0.00 2.50 
medium clouds 1.50 0.00 1.50 
clear sky 4.50 2.00 6.50 
many stars 3.50 0.00 3.50 
Rainbow 1.00 0.00 1.00 
Lightning 3.50 2.00 5.50 
partial/dark    moon 2.25 0.00 2.25 
full/visible   moon 2.50 0.50 3.00 
Rain 0.00 5.75 5.75 
Dry 0.00 4.25 4.25 
Hot 0.00 5.50 5.50 
Cold 0.00 6.00 6.00 

 

6.2.4 Computer Vision as a Technique for Visual Weather Lore Recognition 

To achieve this objective, a sky objects detection component was implemented and tested using 

input from sky scenes.  The detected sky objects were represented as sky concepts.  The task of 

benchmarking extracted sky objects was realized using appropriate day or night images to 

represent the detected sky objects as sky concepts. Confidence levels on the final sky concepts 

were realized using existence relationships between the benchmarked sky objects. Three 

measures (detections, benchmarks, and confidence) for determining sky concepts were found 

significant in increasing model self-reliance in representing sky concepts. Experiments with the 
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sky object detectors revealed that, as the numbers of training stages for the detectors increased, 

the detector’s overall false positive rate reduced. On analysis (see Table 5—5) the HOG feature 

model was identified as the best for the sky objects detectors. 

6.2.5 Predicting Weather Outcomes Based On Symbolized Visual Weather Lore  

To attain this objective, a prediction component that makes use of detected sky concepts values 

to predict weather outcomes based on knowledge represented in fuzzy cognitive maps was 

implemented in MATLAB. Experiment results revealed that integrating detections confidence 

was suppressive of false predictions of weather outcomes. The choice on the status of weather 

seasons (including: the current season, onset, cessation, progress, or interrupted) enabled the 

determination of the working weather seasons for enhancing the model predictions.  

The determination of scenarios was achieved by the adjustment of values of the sky concepts 

(varying nodes/concepts values from high to low). The comparisons of the iterative changes in 

the values of the concepts (Table 5—10) were used to depict the final values of sky concepts in 

scenarios.  

The graphical representations of the concepts convergence (see Figure 5-11) envisaged the 

behaviour of the predictions component. The constant lines indicated that the values of 

predictions did not change beyond some values even with additional iterations of scenarios. 

6.2.6 Verification of the Weather Lore-Based Predictions 

To achieve this objective, the validity of the visual weather lore verification tool was re-assessed 

using data from a second case study location. Actual data in form of daily sky scenes and 

weather parameters were acquired from Voi, Kenya during December 2015 and January 2016. 

The experimentation results using the actual images and weather data and the performance of the 

verification tool formulate the discussion in sections 6.2.6.1 to 6.2.6.3.   

6.2.6.1 Data Acquisition and Experiments with the Verification Tool 
Sky scenes (in the form of images) and corresponding actual weather records were captured in 

the period December 2015 to January 2016 (on a  daily basis) from Voi Kenya. The images were 

subjected to the recogonition and sky objects extraction component. The extracted objects were 

benchmarked and transformed to  sky concepts. The generated sky concepts were subjected to 
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the predictions component to generate results in the form of projected 12/24-hour weather 

outcomes.  

The predicted weather outcomes were transformedto categorical variables where values (1,0) 

represented expected and weather an unexpected outcomes respectively. Daily actual weather 

records (precipitation, humidity, wind speed/direction, tempuratures) were logged and 

transformed to categorical weather outcomes.  

 

Using the predictions/observations data sets, verification statistics were computed for the 

evaluation period. The Mean Absolute Error (MAE) between the observations and predictions 

were determined as:  rain (0.1667); dry (0.0167); heat (0.15); and cold (0.1333) respectively. The 

Mean Absolute Percentage Error (MAPE) between the observations and predictions was 

determined as rain (16.67); dry (1.67); heat (1.5); and cold (13.33) respectively. The Mean 

Squared Error (MSE) between the observations and predictions was determined as rain (0.1667); 

dry (0.167); heat (0.15); and cold (0.1333) respectively.  The Root Mean Squared Error (RMSE) 

between the observations and predictions was determined as rain (0.4082); dry (0.1291); heat 

 

Figure 6-1: Graphs of Prediction/Observation Categorical Values 
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(0.3873); and cold (0.3551) respectively. The Bias between the observations and predictions was 

determined as rain (0.0123); dry (0.0066); heat (0.0130); and cold (0.0193) respectively. The 

percentage of true non-occurrences between the observations and predictions were determined as 

rain (78.72); dry (99.9); heat (40); and cold (89.47) respectively. The percentage of true 

occurrences between the observations and predictions were determined as rain (99.9); dry (97.8); 

heat (89.09); and cold (33.3) respectively. The overall accuracy between the observations and 

predictions was determined as rain (83.3); dry (98.3); heat (85); and cold (86.6) respectively. It is 

worth noting that these accuracies were based on comparison to gathered actual weather 

observations. 

 

 

6.2.6.2 Contingency Tables for Predicted/Observed Weather Outcomes 
The HIT(s), MISS(es), FALSE ALARM(s) and CORRECT-NEGATIVE(s) were computed and 

represented in 2 by 2 contingency tables as show in Figure 6-3below. 

 

Figure 6-2: Graphs of MSE/MAE 
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6.2.6.3 Threat Score (TS) or Critical Success Index (CSI) 
The contingency tables were used to determine the threat score of the weather outcomes. Rain 

was determined with a score of 056. The score of dry weather outcome was 0.97, hot/heat was 

0.844and the cold weather outcome was determined as 0.11.  

The results of evaluating the visual weather lore verification model depict that the model works 

for the second case study location (Voi, Kenya). The evaluation results confirm a near-perfect 

match (with above 80% accuracy) between the visual weather lore-based system predictions and 

actual weather observations. Contingency  

 

 

Figure 6-3: Snapshot of Contingency Tables 
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6.3 Innovative Aspects of the Research 

A technique for verifying visual weather lore through the use of computer vision, fuzzy cognitive 

mapping and sensor networks techniques has been developed.  The aim of the verification was 

intended to prove the significance of selected traditional knowledge in enhancing the accuracy of 

predicting weather conditions. It is important to note that shape-based features (HOG) 

descriptors performed best in both detection and benchmarking of sky concepts. This was 

evident from the higher overall detection and benchmark rates compared to other features. 

FCMs were found to be a useful mechanism for representation of interactions in the complex 

visual weather lore phenomenon. Collections of important WL concepts were gathered and 

visual ones used to guide in design of the FCM. As a first step only astronomical and 

meteorological concepts related to cloud physics were used to come up with a model of the 

FCM.  The results demonstrate that the stabilized FCM was efficient to predict weather condition 

scenarios. Fuzzy cognitive mapping for establishing links between weather knowledge and 

weather lore can contribute to environmental sustainability research by validation of otherwise 

complex phenomena such as weather lore.  

The research results on the use of visual weather lore aspects for predicting weather and 

subsequent verification against actual weather sensor observations was successful, with over 

80% accuracy. The increase in verification accuracy with increased records showed a promising 

trend promoting continuous research experimentation.  

The results from this research were specific to traditional people and the comparisons of the two 

case study locations were therefore generalized. Limitations in terms of weather variability 

existed but had minimal influence on the overall case studies results.  

The designed visual weather lore verification tool automatically analyzed visual weather data 

that could complement modern satellite data and weather models. The links between the visual 

weather lore and modern scientific weather models were used to determine the accuracy of 

traditional weather knowledge. 

The validation results showed that the verification process can combine data from various 

geographical locations, since accuracy of verifications increased with increased data sets. The 
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verification by using data sets from different geographical locations also produced similar 

results.  

The results of the visual weather lore validation stimulate the opportunity for integrating 

consistent weather lore with modern systems of weather prediction and enhancing applications 

offering decision support relying on weather effects. 

The FCM could be enhanced by incorporating sub-FCMs from other WL aspects such as animal 

or plant behaviours. With the complexity of incorporation of many concepts from sub-FCM 

models, the FCM outputs can as well be verified by machine learning.  

The use of optimized input sets of sky concepts in fuzzy cognitive maps could further be used to 

enhance the reliability of the predicted weather conditions. 

The application of the method used for real-time weather prediction needs to be investigated in 

the long run for massive data and for long-range weather prediction.  

6.4 Recommendations for Future Developments 

(a) This research combined hybrid techniques for verification of weather lore; this provides an 

entrance point for research on integrating indigenous knowledge on weather with modern 

numerical weather prediction systems for accurate and downscaled weather forecasts. 

(b) The verification process described in this research concentrated on only the most likely 

categorical weather outcomes such as presence or absence of heat/cold and dry/wet/rain. The 

scores presented using contingency tables do not cater for specific weather categories (such 

as intense rain). To better evaluate the performance of the method in these research-specific 

weather outcomes, further research aimed at determining particular levels of accuracies is 

necessary. 

(c) This research aimed at providing a scientific insight in to using selected visual weather lore 

for weather prediction; for this reason, considerable aspects of weather lore were not 

explored. Such unverified weather lore (for example sound) can be investigated where 

methods to verify these specific weather lore categories need to be developed. Future work 

could also deal with using FCMs for representing holistic characteristics of the weather lore 

domain. 
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(d) This research was conducted within a limited time-frame, making it challenging to consider 

weather lore from all communities. More case studies may therefore be conducted to 

compare and verify the results of this research in the future. The predictions of weather 

outcomes using the visual weather lore verification tool could also be benchmarked by 

comparative analysis with most of the modern weather validation techniques. 

(e) Wireless sensors are now embedded in most of modern communication devices (such as 

phones and personal digital assistants) and also attached to most movable objects such as 

robots, vehicles and animals. Mobile devices could be programmed to enable rural 

communities to characterize weather lore (using predefined Fuzzy Cognitive Mapping rules) 

based on their weather observations and conditions respective to their geographic locations. 

Mobile phone users could also be used to collect and transmit in real time to a central data 

store the weather images and conditions that they observe. This process would generate 

massive data sets that could easily be verified.  

(f) The process of gathering information using more than one technique and from two or more 

independent sources with different forms of data such as text and images could be 

investigated to confirm and verify visual weather lore in near real-time. Modern web 3.0 

techniques such as human computation and GIS tools could also be employed for collective 

weather sensing and gathering of weather images and conditions for weather lore 

verification.  

(g) The application of data mining techniques on visual weather lore can lead to useful 

information in which data mining algorithms can be used to learn patterns and evaluate the 

quality of visual weather lore data. Data mining validation tests could also be performed 

several times and results could be averaged to estimate performance of the visual weather 

lore verification tool.  
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A. Appendix of Tables 
Table A—1: Summary of Causal effects on Weather Outcomes 

WEATHER 
OUTCOMES 

CAUSAL EFFECTSC 

STRONG 
POSITIVE (1) 

POSITIVE (0.5) NONE (0) NEGATIVE  
(-0.5) 

STRONG 
NEGATIVE (-1) 

RAIN 

Nimbostratus  Altocumulus  Tower clouds Altostratus 
Stratus Cumulonimbus  Moon 

increasing  
cirrocumulus  

Stratocumulus Cumulus  Rainbow Cirrostratus 
Grey clouds Cauliflower 

clouds 
  Cirrus 

Brown clouds Layered clouds   White clouds 
Rippled clouds Dull stars   Blue clouds 
Uniform clouds Ring around 

moon 
  Red clouds 

Few stars Partial/dark    
moon 

  Feathery clouds 
New moon Moon decreasing   Filaments clouds 
Dark sky    Ring around sun 
Lightning    Twinkling stars 
    Many stars 
    Full moon 
    Blue moon 
    Clear sky 
    Red sky 
    Blue sky 
    Fog 

HOT  

Fog Rainbow  Dark sky Uniform clouds 
Red sky Lightning  Moon 

decreasing 
Rippled clouds 

Blue sky Clear sky  Dark moon Layered clouds 
Blue moon Moon increasing  New moon Brown clouds 
Full moon Ring around 

moon 
 Few stars Grey clouds 

Many stars Filaments clouds  Cumulus  Stratocumulus  
Twinkling stars Feathery clouds  Nimbus  Stratus  
Dull stars Tower clouds   Cumulonimbuss  
Ring around sun Cauliflower 

clouds 
   

Red clouds Blue clouds    
White clouds Cirrus clouds    
Altocumulus  Cirrostratus     
 Cirrocumulus     
 Altostratus     

CLOUDY 

Lightning Red sky  Fog Rainbow 
Dark sky Dark moon  Clear sky Blue sky 
Few stars New moon  Moon larger Full moon 
Dull stars Filaments clouds  Ring around 

moon 
Blue moon 

Uniform clouds Rippled clouds  Altostratus Many stars 
Layered clouds Feathery clouds   Twinkling stars 
Blue clouds Tower clouds   Ring around sun 
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Brown clouds Cauliflower 
clouds 

   
Grey clouds Red clouds    
Cumulus White clouds    
Stratocumulus Cumulonimbus    
Stratus Cirrus    
Cirrocumulus Cirrostratus    
Nimbus     
Altocumulus     

WINDY  

Blue sky Lightning  Rainbow Fog 
Dark moon Moon decreasing  Red sky Blue moon 
Dull stars New moon  Dark sky Full moon 
 Ring around 

moon 
 Clear sky Many stars 

 Few stars  Moon 
increasing 

Red clouds 
 Uniform clouds  Twinkling stars White clouds 
 Filaments clouds  Ring around 

sun 
 

 Rippled clouds  Cumulus   
 Layered clouds    
 Feathery clouds    
 Tower clouds    
 Cauliflower 

clouds 
   

 Blue clouds    
 Brown clouds    
 Grey clouds    
 Stratocumulus    
 Stratus    
 Cumulonimbus    
 Cirrus    
 Cirrostratus    
 Cirrocumulus    
 Nimbus    
 Altostratus    
 Altocumulus    

DRY  

Rainbow Red sky  Fog Lightning 
Blue sky Clear sky  Dark moon Moon decreasing  
Moon increasing Full moon  New moon Uniform clouds 
 Ring around 

moon 
 Few stars Filaments clouds 

 Many stars  Dull stars Rippled clouds 
 Ring around sun  Layered clouds Grey clouds 
 Red clouds  Feathery clouds Brown clouds 
 Blue clouds  Tower clouds Cauliflower clouds 
 White clouds  Cumulus Cirrocumulus 
 Cirrostratus  Stratocumulus  
 Altostratus  Stratus  
   Cumulonimbus  
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   Cirrus  
   Nimbus  
   altocumulus  
   dark sky  

COLD  

 Lightning  fog blue sky 
 Dark sky  rainbow clear sky 
 Dark moon  Red sky Blue moon 
 New moon  Moon 

decreasing 
Full moon 

 Few stars  Moon 
increasing 

Many stars 
 Dull stars  Ring around 

moon 
Twinkling stars 

 Uniform clouds  Tower clouds Ring around sun 
 Rippled clouds  Cirrus Filaments clouds 
 Layered clouds  Cirrocumulus Feathery clouds 
 Blue clouds  Nimbus Cauliflower clouds 
 Brown clouds  Altostratus Red clouds 
 Grey clouds   White clouds 
 Cumulus    Cirrostratus 
 Stratocumulus    
 Stratus    
 Cumulonimbus    
 Altocumulus    

CALM  

Cumulus Altocumulus  Stratus Layered clouds 
Blue clouds Altostratus  Grey clouds Rippled clouds 
Red clouds Nimbus  Brown clouds Lightning 
Tower clouds Cirrocumulus  Ring around 

sun 
 

Many stars Cirrostratus    
New moon Cirrus    
Full moon Cumulonimbus    
Dark moon Stratocumulus    
 White clouds    
 Cauliflower 

clouds 
   

 Feathery clouds    
 Filaments clouds    
 Uniform clouds    
 Dull stars    
 Twinkling stars    
 Few stars    
 Ring around 

moon 
   

 Moon increasing    
 Moon decreasing    
 Blue moon    
 Clear sky    
 Dark sky    
 Red sky    
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 Blue sky    
 Rainbow    
 Fog    
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Table A—2: Relations between Visual Weather Concepts 

Concept to Concept 

Causal Effect 

Strong 
negative 
(-1.) 

Negative  

(-0.5) 

None 

(0) 

Positive  

(0.5) 

Strong 
positive  

(1) 

mode 

-1 to 1 

mean  

-1 to 1 

High clouds to low clouds 3.3% 40.0% 56.7%   .0 -.2 
High clouds to medium clouds 8.3% 36.7% 55.0%   .0 -.3 
High clouds to clear sky   11.7% 76.7% 11.7% .5 .5 
High clouds to many stars 1.7% 8.3% 90.0%   .0 -.1 
High clouds to rainbow  6.7% 93.3%   .0 .0 
High clouds to lightning 86.7% 8.3% 5.0%   -1.0 -.9 
High clouds to partial/dark moon 1.7% 1.7% 86.7% 6.7% 3.3% .0 .0 
High clouds to full/visible   moon   86.7% 11.7% 1.7% .0 .1 
Medium clouds to low clouds  6.7% 88.3% 5.0%  .0 .0 
Medium clouds to clear sky 10.0% 85.0% 5.0%   -.5 -.5 
Medium clouds to many stars 11.7% 10.0% 78.3%   .0 -.2 
Medium clouds to rainbow 45.0% 13.3% 41.7%   -1.0 -.5 
Medium clouds to lightning   85.0% 15.0%  .0 .1 
Medium clouds to partial/dark moon   80.0% 20.0%  .0 .1 
Medium clouds to full/visible   moon 45.0% 11.7% 43.3%   -1.0 -.5 
Low clouds to clear sky 80.0% 16.7% 3.3%   -1.0 -.9 
Low clouds to many stars 3.3% 8.3% 88.3%   .0 -.1 
Low clouds to rainbow  8.3% 91.7%   .0 .0 
Low clouds to lightning   91.7% 8.3%  .0 .0 
Low clouds to partial/dark moon   91.7% 8.3%  .0 .0 
Low clouds to full/visible   moon 8.3% 1.7% 90.0%   .0 -.1 
Clear sky to many stars   81.7% 11.7% 6.7% .0 .1 
Clear sky to rainbow  1.7% 88.3% 1.7% 8.3% .0 .1 
Clear sky to lightning 73.3% 15.0% 11.7%   -1.0 -.8 
Clear sky to partial/dark moon 41.7% 6.7% 51.7%   .0 -.5 
Clear sky to full/visible   moon   78.3% 8.3% 13.3% .0 .2 
Many stars to rainbow   85.0% 8.3% 6.7% .0 .1 
Many stars to lightning 5.0% 11.7% 83.3%   .0 -.1 
Many stars to partial/dark moon 8.3% 48.3% 41.7% 1.7%  -.5 -.3 
Many stars to full/visible moon   70.0% 10.0% 20.0% .0 .3 
Rainbow to lightning 11.7% 6.7% 81.7%   .0 -.2 
Rainbow to partial/dark moon S 6.7% 75.0% 5.0% 5.0% .0 .0 
Rainbow to full/visible   moon 8.3%  78.3%  13.3% .0 .1 
lightning to partial/dark moon   83.3% 5.0% 11.7% .0 .1 
lightning to full/visible   moon 11.7%  88.3%   .0 -.1 
Partial/dark moon to full/visible   
moon 

13.3%  86.7%   .0 -.1 
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Table A—3: Causal Effects of Weather Concepts to Weather Outcomes during Winter Season 

Concept to Outcome 

Causal Effect 

Strong 
negative 
(-1.) 

Negative  

(-0.5) 

None 

(0) 

Positive  

(0.5) 

Strong 
positive  

(1) 

 mode 

-1 to 1 

Mean 

-1 to 1 

Winter high clouds to rain   100.0%   .0 .0 
Winter low clouds to rain   15.0% 70.0% 15.0% .5 .5 
Winter medium clouds to rain   23.3% 61.7% 15.0% .5 .5 
Winter clear sky  to rain   100.0%   .0 .0 
Winter many stars to rain   100.0%   .0 .0 
Winter rainbow to rain 21.7% 68.3% 10.0%   -.5 -.6 
Winter lightning to rain   15.0% 66.7% 18.3% .5 .5 
Winter partial/dark moon rain   98.3% 1.7%  .0 .0 
Winter full/visible   moon rain   100.0%   .0 .0 
Winter high clouds to dry   10.0% 15.0% 75.0% 1.0 .8 
Winter low clouds to dry   13.3% 18.3% 68.3% 1.0 .8 
Winter medium clouds dry   10.0% 15.0% 75.0% 1.0 .8 
Winter clear sky  to dry   11.7% 16.7% 71.7% 1.0 .8 
Winter many stars to dry   8.3% 21.7% 70.0% 1.0 .8 
Winter rainbow to dry   11.7% 21.7% 66.7% 1.0 .8 
Winter lightning to dry 66.7% 18.3% 15.0%   -1.0 -.8 
Winter partial/dark moon  dry 13.3% 73.3% 13.3%   -.5 -.5 
Winter full/visible   moon dry   15.0% 73.3% 11.7% .5 .5 
Winter high clouds to hot 5.0% 78.3% 16.7%   -.5 -.4 
Winter low clouds to hot 8.3% 78.3% 13.3%   -.5 -.5 
Winter medium clouds to hot 11.7% 78.3% 10.0%   -.5 -.5 
Winter clear sky  to hot   13.3% 75.0% 11.7% .5 .5 
Winter many stars to hot   5.0% 78.3% 16.7% .5 .6 
Winter rainbow to hot   3.3% 80.0% 16.7% .5 .6 
Winter lightning to hot 76.7% 13.3% 10.0%   -1.0 -.8 
Winter partial/dark moon hot   100.0%   .0 .0 
Winter full/visible   moon  hot   3.3% 83.3% 13.3% .5 .6 
Winter high clouds to cold   5.0% 15.0% 80.0% 1.0 .9 
Winter low clouds to cold   3.3% 18.3% 78.3% 1.0 .9 
Winter medium clouds to cold   10.0% 15.0% 75.0% 1.0 .8 
Winter clear sky  to cold   11.7% 76.7% 11.7% .5 .5 
Winter many stars to cold   18.3% 70.0% 11.7% .5 .5 
Winter rainbow to cold   11.7% 75.0% 13.3% .5 .5 
Winter lightning to cold   15.0% 15.0% 70.0% 1.0 .8 
Winter partial/dark moon Cold   16.7% 16.7% 66.7% 1.0 .8 
Winter full/visible   moon  Cold   11.7% 11.7% 76.7% 1.0 .8 
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Table A—4: Causal Effects of Weather Concepts to Weather Outcomes during Summer Season 

Concept to Outcome 

Causal Effect 

Strong 
negative  
(-1) 

Negative  

(-0.5) 

No Effect 

(0) 

Positive  

(0.5) 

Strong 
positive  

(1) 

 mode 

-1 to 1 

Mean 

-1 to 1 

Summer high clouds to rain 78.3% 10.0% 11.7%   -1.0 -.8 
Summer low clouds to rain   5.0% 16.7% 78.3% 1.0 .9 
Summer medium clouds to rain   16.7% 71.7% 11.7% .5 .5 
Summer clear sky  to rain 13.3% 73.3% 13.3%   -.5 -.5 
Summer many stars to rain 76.7% 15.0% 8.3%   -1.0 -.8 
Summer rainbow to rain 15.0% 76.7% 8.3%   -.5 -.5 
Summer lightning to rain   6.7% 16.7% 76.7% 1.0 .9 
Summer partial/dark moon to rain   13.3% 70.0% 16.7% .5 .5 
Summer full/visible   moon to rain 78.3% 10.0% 11.7%   -1.0 -.8 
Summer high clouds to dry   10.0% 13.3% 76.7% 1.0 .8 
Summer low clouds to dry 73.3% 13.3% 13.3%   -1.0 -.8 
Summer medium clouds to dry 13.3% 75.0% 11.7%   -.5 -.5 
Summer clear sky  to dry   6.7% 15.0% 78.3% 1.0 .9 
Summer many stars to dry   18.3% 11.7% 70.0% 1.0 .8 
Summer rainbow to dry   16.7% 70.0% 13.3% .5 .5 
Summer lightning to dry 68.3% 10.0% 21.7%   -1.0 -.7 
Summer partial/dark moon to dry 63.3% 15.0% 21.7%   -1.0 -.7 
Summer full/visible  moon to dry   8.3% 16.7% 75.0% 1.0 .8 
Summer high clouds to hot   8.3% 10.0% 81.7% 1.0 .9 
Summer low clouds to hot 83.3% 11.7% 5.0%   -1.0 -.9 
Summer medium clouds to hot  1.7

% 
8.3% 5.0% 85.0% 1.0 .9 

Summer clear sky  to hot   11.7% 3.3% 85.0% 1.0 .9 
Summer many stars to hot   6.7% 6.7% 86.7% 1.0 .9 
Summer rainbow to hot   10.0% 76.7% 13.3% .5 .5 
Summer lightning to hot 10.0% 76.7% 13.3%   -.5 -.5 
Summer partial/dark moon to hot 78.3% 13.3% 8.3%   -1.0 -.9 
Summer full/visible   moon to hot   10.0% 10.0% 80.0% 1.0 .9 
Summer high clouds to cold 81.7% 8.3% 10.0%   -1.0 -.9 
Summer low clouds to cold   10.0% 76.7% 13.3% .5 .5 
Summer medium clouds to cold 78.3% 8.3% 13.3%   -1.0 -.8 
Summer clear sky  to cold 80.0% 6.7% 13.3%   -1.0 -.8 
Summer many stars to cold 75.0% 11.7% 13.3%   -1.0 -.8 
Summer rainbow to cold 75.0% 10.0% 15.0%   -1.0 -.8 
Summer lightning to cold   13.3% 70.0% 16.7% .5 .5 
Summer partial/darkmoon to  cold 
cold 

  10.0% 76.7% 13.3% .5 .5 
Summer full/visible moon to cold 81.7% 10.0% 8.3%   -1.0 -.9 
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Table A—5: Causal Effects of Weather Concepts to Weather Outcomes during Autumn Season 

Concept to Outcome 

Causal Effect 

Strong 
negative 
(-1.) 

Negative 

(-0.5) 

No Effect 

(0) 

Positive 

(0.5) 

Strong 
positive 

(1) 

mode 

-1 to 1 

Mean 

-1 to 1 

Autumn high clouds to rain  91.7% 8.3%   -.5 -.5 
Autumn low clouds to RAIN   10.0% 11.7% 78.3% 1.0 .8 
Autumn medium clouds to rain   6.7% 70.0% 23.3% .5 .6 
Autumn clear sky  to rain 80.0% 6.7% 13.3%   -1.0 -.8 
Autumn many stars to rain 88.3% 5.0% 6.7%   -1.0 -.9 
Autumn rainbow to rain 76.7% 13.3% 10.0%   -1.0 -.8 
Autumn lightning to rain   5.0% 78.3% 16.7% .5 .6 
Autumn partial/dark moon to rain   3.3% 80.0% 16.7% .5 .6 
Autumn full/visible   moon to 

rain 
8.3% 83.3% 8.3%   -.5 -.5 

Autumn high clouds to dry   5.0% 80.0% 15.0% .5 .6 
Autumn low clouds to dry 85.0% 10.0% 5.0%   -1.0 -.9 
Autumn medium clouds to dry 85.0% 11.7% 3.3%   -1.0 -.9 
Autumn clear sky  to dry   5.0% 76.7% 18.3% .5 .6 
Autumn many stars to dry 80.0% 10.0% 10.0%   -1.0 -.9 
Autumn rainbow to dry   13.3% 71.7% 15.0% .5 .5 
Autumn lightning to dry 15.0% 71.7% 13.3%   -.5 -.5 
Autumn partial/dark moon to dry 6.7% 83.3% 10.0%   -.5 -.5 
Autumn full/visible   moon to dry   15.0% 70.0% 15.0% .5 .5 
Autumn high clouds to hot   6.7% 81.7% 11.7% .5 .5 
Autumn low clouds to hot 15.0% 73.3% 10.0%  1.7% -.5 -.5 
Autumn medium clouds to hot 76.7% 11.7% 11.7%   -1.0 -.8 
Autumn clear sky  to hot   8.3% 81.7% 10.0% .5 .5 
Autumn many stars to hot 85.0% 3.3% 11.7%   -1.0 -.9 
Autumn rainbow to hot   8.3% 71.7% 20.0% .5 .6 
Autumn lightning to hot 13.3% 76.7% 10.0%   -.5 -.5 
Autumn partial/dark moon to hot 13.3% 71.7% 15.0%   -.5 -.5 
Autumn full/visible   moon to hot   6.7% 86.7% 6.7% .5 .5 
Autumn high clouds to cold   6.7% 83.3% 10.0% .5 .5 
Autumn low clouds to cold   6.7% 81.7% 11.7% .5 .5 
Autumn medium clouds to cold   16.7% 73.3% 10.0% .5 .5 
Autumn clear sky  to cold   10.0% 78.3% 11.7% .5 .5 
Autumn many stars to cold   20.0% 68.3% 11.7% .5 .5 
Autumn rainbow to cold   8.3% 83.3% 8.3% .5 .5 
Autumn lightning to cold   18.3% 68.3% 13.3% .5 .5 
Autumn partial/dark moon to 
Cold 

  6.7% 76.7% 16.7% .5 .6 
Autumn full/visible   moon to 
Cold 

  6.7% 76.7% 16.7% .5 .6 
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Table A—6: Causal Effects of Weather Concepts to Weather Outcomes during Spring Season 

Concept to Outcome 

Causal Effect 

Strong 
negative 
(-1.) 

Negative 

(-0.5) 

No Effect 

(0) 

Positive 

(0.5) 

Strong 
positive 

(1) 

mode 

-1 to 1 

mean 

-1 to 1 

Spring high clouds to rain 15.0% 81.7% 3.3%   -.5 -.6 
Spring low clouds to rain   8.3%  76.7% .5 .5 
Spring medium clouds to rain   10.0%  73.3% .5 .5 
Spring clear sky  to rain 15.0% 80.0% 5.0%   -.5 -.6 
Spring many stars to rain 75.0% 20.0% 5.0%   -1.0 -.9 
Spring rainbow to rain 15.0% 75.0% 10.0%   -.5 -.5 
Spring lightning to rain   3.3%  15.0% 1.0 .9 
Spring partial/dark moon to rain   5.0%  71.7% .5 .6 
Spring full/visible  moon to rain 80.0% 15.0% 5.0%   -1.0 -.9 
Spring high clouds to dry   6.7%  76.7% .5 .6 
Spring low clouds to dry   1.7%  76.7% .5 .6 
Spring medium clouds to dry 13.3% 78.3% 8.3%   -.5 -.5 
Spring clear sky  to dry   6.7%  73.3% .5 .6 
Spring many stars to dry   8.3% 1.7% 76.7% .5 .5 
Spring rainbow to dry 13.3% 81.7% 5.0%   -.5 -.5 
Spring lightning to dry 73.3% 15.0% 11.7%   -1.0 -.8 
Spring partial/dark moon to dry 71.7% 16.7% 11.7%   -1.0 -.8 
Spring full/visible   moon to dry 61.7% 16.7% 21.7%   -1.0 -.7 
Spring high clouds to hot   5.0%  81.7% .5 .5 
Spring low clouds to hot 15.0% 71.7% 13.3%   -.5 -.5 
Spring medium clouds to hot 11.7% 83.3% 5.0%   -.5 -.5 
Spring clear sky  to hot   3.3%  11.7% 1.0 .9 
Spring many stars to hot   6.7%  81.7% .5 .5 
Spring rainbow to hot   6.7%  75.0% .5 .6 
Spring lightning to hot 11.7% 78.3% 10.0%   -.5 -.5 
Spring partial/dark moon to hot 10.0% 83.3% 6.7%   -.5 -.5 
Spring full/visible  moon to hot   1.7%  6.7% 1.0 1.0 
Spring high clouds to cold 75.0% 10.0% 15.0%   -1.0 -.8 
Spring low clouds to cold     83.3% .5 .6 
Spring medium clouds to cold   8.3%  76.7% .5 .5 
Spring clear sky  to cold 81.7% 10.0% 8.3%   -1.0 -.9 
Spring many stars to cold 85.0% 6.7% 8.3%   -1.0 -.9 
Spring rainbow to cold 10.0% 85.0% 5.0%   -.5 -.5 
Spring lightning to cold   10.0% 75.0% 15.0% .5 .5 
Spring partial/darkmoon to cold   5.0% 80.0% 15.0% .5 .6 
Spring full/visible moon to cold 75.0% 13.3% 11.7%   -1.0 -.8 
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Table A—7: Relations between Weather Concepts 

Concept to Outcome 

Causal Effect 

Strong 
negative  

(-1.) 

Negative 

(-0.5) 

No 
Effect 

(0) 

Positive 

(0.5) 

Strong 
positive 

(1) 

mode 

-1 to 1 

Mean 

-1 to 1 

High clouds to low clouds 5.0% 11.7% 83.3%   .0 -.1 
High clouds to medium clouds 6.7% 8.3% 85.0%   .0 -.1 
High clouds to clear sky   11.7% 70.0% 18.3% .5 .5 
High clouds to many stars 1.7% 13.3% 85.0%   .0 -.1 
High clouds to rainbow  11.

7% 
88.3%   .0 -.1 

High clouds to lightning 78.3% 10.0% 11.7%   -1.0 -.8 
High clouds to partial/dark moon 3.3% 3.3% 83.3% 6.7% 3.3% .0 .0 
High clouds to full/visible   moon   85.0% 13.3% 1.7% .0 .1 
Medium clouds to low clouds 1.7% 8.3% 81.7% 8.3%  .0 .0 
Medium clouds to clear sky 11.7% 78.3% 10.0%   -.5 -.5 
Medium clouds to many stars 13.3% 15.0% 71.7%   .0 -.2 
Medium clouds to rainbow 15.0% 20.0% 65.0%   .0 -.3 
Medium clouds to lightning   80.0% 20.0%  .0 .1 
Medium clouds to partial/dark 
moon 

  73.3% 26.7%  .0 .1 
Medium clouds to full/visible   
moon 

16.7% 13.3% 70.0%   .0 -.2 
Low clouds to clear sky 71.7% 25.0% 3.3%   -1.0 -.8 
Low clouds to many stars 5.0% 13.3% 81.7%   .0 -.1 
Low clouds to rainbow  11.7% 88.3%   .0 -.1 
Low clouds to lightning   86.7% 11.7% 1.7% .0 .1 
Low clouds to partial/dark moon   85.0% 15.0%  .0 .1 
Low clouds to full/visible   moon 13.3% 3.3% 83.3%   .0 -.2 
Clear sky to many stars   78.3% 11.7% 10.0% .0 .2 
Clear sky to rainbow  1.7% 81.7% 5.0% 11.7% .0 .1 
Clear sky to lightning 68.3% 18.3% 13.3%   -1.0 -.8 
Clear sky to partial/dark moon 10.0% 13.3% 76.7%   .0 -.2 
Clear sky to full/visible  moon   73.3% 10.0% 16.7% .0 .2 
Many stars to rainbow   78.3% 13.3% 8.3% .0 .2 
Many stars to lightning 8.3% 18.3% 73.3%   .0 -.2 
Many stars to partial/dark moon 11.7% 21.7% 65.0% 1.7%  .0 -.2 
Many stars to full/visible   moon   63.3% 10.0% 26.7% .0 .3 
Rainbow to lightning 21.7% 10.0% 68.3%   .0 -.3 
Rainbow to partial/dark moon 8.3% 10.0% 63.3% 10.0% 8.3% .0 .0 
Rainbow to full/visible   moon 13.3%  68.3%  18.3% .0 .1 
Lightning to partial/dark moon   75.0% 11.7% 13.3% .0 .2 
Lightning to full/visible   moon 15.0%  85.0%   .0 -.2 
Partial/dark moon to full/visible   

moon 
20.0%  80.0%   .0 -.2 

 
  

© Central University of Technology, Free State



235 
 

Table A—8: Causal Effects of Weather Concepts during the Winter Season 

Concept to Outcome 

Causal Effect 

Strong 
negative  

(-1) 

Negative 

(-0.5) 

No 
Effect 

(0) 

Positive 

(0.5) 

Strong 
positive 
(1) 

mode 

-1 to 1 

Mean 

-1 to 1 

Winter high clouds to rain 76.7% 8.3% 15.0%   -1.0 -.8 
Winter low clouds to rain   23.3% 71.7% 5.0% .5 .4 
Winter medium clouds to rain  10.0

% 
83.3% 6.7%  .0 .0 

Winter clear sky  to rain 86.7% 13.3%    -1.0 -.9 
Winter many stars to rain 71.7% 10.0% 18.3%   -1.0 -.8 
Winter rainbow to rain 11.7% 80.0% 8.3%   -.5 -.5 
Winter lightning to rain   16.7% 73.3% 10.0% .5 .5 
Winter partial/dark moon to 

rain 
  30.0% 65.0% 5.0% .5 .4 

Winter full/visible   moon to 
rain 

  78.3% 15.0% 6.7% .0 .1 
Winter high clouds to dry   8.3% 15.0% 76.7% 1.0 .8 
Winter low clouds to dry   10.0% 66.7% 23.3% .5 .6 
Winter medium clouds to dry 11.7% 76.7% 11.7%   -.5 -.5 
Winter clear sky  to dry   15.0% 20.0% 65.0% 1.0 .8 
Winter many stars to dry   15.0% 65.0% 20.0% .5 .5 
Winter rainbow to dry   83.3% 11.7% 5.0% .0 .1 
Winter lightning to dry 16.7% 76.7% 6.7%   -.5 -.6 
Winter partial/darkmoon to dry 13.3% 73.3% 13.3%   -.5 -.5 
Winter full/visiblemoon to dry   18.3% 71.7% 10.0% .5 .5 
Winter high clouds to hot   8.3% 71.7% 20.0% .5 .6 
Winter low clouds to hot 66.7% 16.7% 16.7%   -1.0 -.8 
Winter medium clouds to hot 10.0% 73.3% 16.7%   -.5 -.5 
Winter clear sky  to hot   6.7% 65.0% 28.3% .5 .6 
Winter many stars to hot   28.3% 63.3% 8.3% .5 .4 
Winter rainbow to hot   26.7% 70.0% 3.3% .5 .4 
Winter lightning to hot 18.3% 66.7% 15.0%   -.5 -.5 
Winter partial/dark moon to hot 11.7% 61.7% 26.7%   -.5 -.4 
Winter full/visible   moon to hot   23.3% 65.0% 11.7% .5 .4 
Winter high clouds to cold 23.3% 58.3% 18.3%   -.5 -.5 
Winter low clouds to cold   13.3% 30.0% 56.7% 1.0 .7 
Winter medium clouds to cold   10.0% 71.7% 18.3% .5 .5 
Winter clear sky  to cold 13.3% 71.7% 15.0%   -.5 -.5 
Winter many stars to cold 13.3% 61.7% 25.0%   -.5 -.4 
Winter rainbow to cold 15.0% 78.3% 6.7%   -.5 -.5 
Winter lightning to cold   18.3% 70.0% 11.7% .5 .5 
Winter partial/dark moon to 

cold 
  23.3% 53.3% 23.3% .5 .5 

Winter full/visible moon to cold 26.7% 53.3% 20.0%   -.5 -.5 
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Table A—9: Causal Effects of Weather Concepts during the Summer Season 

Concept to Outcome 

Causal Effect 

Strong 
negative 
(-1) 

Negative 

(-0.5) 

No 
Effect 

(0) 

Positive 

(0.5) 

Strong 
positive 

(1) 

mode 

-1 to 1 

Mean 

-1 to 1 

Summer high clouds to rain 73.3%  16.7% 10.0%  -1.0 -.7 
Summer low clouds to rain 16.7%  48.3% 16.7% 18.3% .0 .1 
Summer medium clouds to rain 18.3%  33.3% 40.0% 8.3% .5 .1 
Summer clear sky  to rain 68.3% 21.7% 10.0%   -1.0 -.8 
Summer many stars to rain 18.3% 78.3% 3.3%   -.5 -.6 
Summer rainbow to rain 16.7% 78.3% 5.0%   -.5 -.6 
Summer lightning to rain 8.3%  56.7% 11.7% 23.3% .0 .2 
Summer partial/dark moon to rain 8.3%  40.0% 46.7% 5.0% .5 .2 
Summer full/visible   moon to 

rain 
13.3% 80.0% 6.7%   -.5 -.5 

Summer high clouds to dry   10.0% 10.0% 80.0% 1.0 .9 
Summer low clouds to dry 73.3% 16.7% 10.0%   -1.0 -.8 
Summer medium clouds to dry 10.0% 81.7% 8.3%   -.5 -.5 
Summer clear sky  to dry   13.3% 15.0% 71.7% 1.0 .8 
Summer many stars to dry   13.3% 18.3% 68.3% 1.0 .8 
Summer rainbow to dry   13.3% 65.0% 21.7% .5 .5 
Summer lightning to dry 76.7% 15.0% 8.3%   -1.0 -.8 
Summer partial/dark moon to dry 8.3% 76.7% 15.0%   -.5 -.5 
Summer full/visible  moon to dry   21.7% 18.3% 60.0% 1.0 .7 
Summer high clouds to hot   6.7% 26.7% 66.7% 1.0 .8 
Summer low clouds to hot 73.3% 20.0% 6.7%   -1.0 -.8 
Summer medium clouds to hot 25.0% 68.3% 6.7%   -.5 -.6 
Summer clear sky  to hot   8.3% 20.0% 71.7% 1.0 .8 
Summer many stars to hot   6.7% 23.3% 70.0% 1.0 .8 
Summer rainbow to hot   15.0% 16.7% 68.3% 1.0 .8 
Summer lightning to hot 71.7% 16.7% 11.7%   -1.0 -.8 
Summer partial/dark moon to hot 18.3% 70.0% 11.7%   -.5 -.5 
Summer full/visible   moon to hot   8.3% 18.3% 73.3% 1.0 .8 
Summer high clouds to cold 71.7% 15.0% 13.3%   -1.0 -.8 
Summer low clouds to cold   26.7% 61.7% 11.7% .5 .4 
Summer medium clouds to cold   20.0% 61.7% 18.3% .5 .5 
Summer clear sky  to cold 68.3% 16.7% 15.0%   -1.0 -.8 
Summer many stars to cold 18.3% 71.7% 10.0%   -.5 -.5 
Summer rainbow to cold 25.0% 61.7% 13.3%   -.5 -.6 
Summer lightning to cold   5.0% 73.3% 21.7% .5 .6 
Summer partial/darkmoon to cold 6.7% 75.0% 18.3%   -.5 -.4 
Summer full/visible moon to cold 71.7% 18.3% 10.0%   -1.0 -.8 
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Table A—10: Causal Effects of Weather Concepts during the Autumn Season 

Concept to Outcome 

Causal Effect 

Strong 
negative 
(-1) 

Negative 

(-0.5) 

No 
Effect 
(0) 

Posi
tive 

(0.5) 

Strong 
positive 
(1) 

mode 
-1 to 1 

Mean 
-1 to 1 

Autumn high clouds to rain 76.7% 15.0% 8.3%   -1.0 -.8 
Autumn low clouds to rain   13.3% 20.0% 66.7% 1.0 .8 
Autumn medium clouds to rain   8.3% 73.3% 18.3% .5 .6 
Autumn clear sky  to rain 71.7% 21.7% 6.7%   -1.0 -.8 
Autumn many stars to rain 71.7% 18.3% 10.0%   -1.0 -.8 
Autumn rainbow to rain 20.0% 73.3% 6.7%   -.5 -.6 
Autumn lightning to rain   3.3% 28.3% 68.3% 1.0 .8 
Autumn partial/dark moon to 

rain 
  8.3% 73.3% 18.3% .5 .6 

Autumn full/visible   moon to 
rain 

18.3% 75.0% 6.7%   -.5 -.6 
Autumn high clouds to dry   8.3% 21.7% 70.0% 1.0 .8 
Autumn low clouds to dry 68.3% 23.3% 8.3%   -1.0 -.8 
Autumn medium clouds to dry 16.7% 76.7% 6.7%   -.5 -.6 
Autumn clear sky  to dry   5.0% 20.0% 75.0% 1.0 .9 
Autumn many stars to dry   6.7% 16.7% 76.7% 1.0 .9 
Autumn rainbow to dry   6.7% 71.7% 21.7% .5 .6 
Autumn lightning to dry 65.0% 25.0% 10.0%   -1.0 -.8 
Autumn partial/dark moon to dry 21.7% 73.3% 5.0%   -.5 -.6 
Autumn full/visible  moon to dry   8.3% 73.3% 18.3% .5 .6 
Autumn high clouds to hot   25.0% 61.7% 13.3% .5 .4 
Autumn low clouds to hot 8.3% 80.0% 11.7%   -.5 -.5 
Autumn medium clouds to hot   8.3% 73.3% 16.7% .5 .7 
Autumn clear sky  to hot   5.0% 31.7% 63.3% 1.0 .8 
Autumn many stars to hot   5.0% 25.0% 70.0% 1.0 .8 
Autumn rainbow to hot   10.0% 73.3% 15.0% .5 .7 
Autumn lightning to hot 23.3% 75.0% 1.7%   -.5 -.6 
Autumn partial/dark moon to hot 21.7% 65.0% 13.3%   -.5 -.5 
Autumn full/visible   moon to hot   10.0% 23.3% 66.7% 1.0 .8 
Autumn high clouds to cold 70.0% 21.7% 8.3%   -1.0 -.8 
Autumn low clouds to cold   10.0% 66.7% 23.3% .5 .6 
Autumn medium clouds to cold   6.7% 70.0% 23.3% .5 .6 
Autumn clear sky  to cold 61.7% 18.3% 20.0%   -1.0 -.7 
Autumn many stars to cold 18.3% 71.7% 10.0%   -.5 -.5 
Autumn rainbow to cold 18.3% 71.7% 10.0%   -.5 -.5 
Autumn lightning to cold   5.0% 28.3% 66.7% 1.0 .8 
Autumn partial/darkmoon to cold   10.0% 66.7% 23.3% .5 .6 
Autumn full/visible moon to cold 26.7% 58.3% 15.0%   -.5 -.6 
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Table A—11: Causal Effects of Weather Concepts during the Spring Season 

Concept to Outcome 

Causal Effect 

Strong 
negative 
(-1) 

Negative 

(-0.5) 

No 
Effect 
(0) 

Positive 
(0.5) 

Strong 
positive 
(1) 

mode 
-1 to 1 

mean 
-1 to 1 

Spring high clouds to rain 65.0% 11.7% 15.0% 8.3%  -1.0 -.7 
Spring low clouds to rain   5.0% 75.0% 20.0% .5 .6 
Spring medium clouds to rain 21.7% 76.7% 1.7%   -.5 -.6 
Spring clear sky  to rain 73.3% 23.3% 3.3%   -1.0 -.9 
Spring many stars to rain 76.7% 15.0% 8.3%   -1.0 -.8 
Spring rainbow to rain 16.7% 78.3% 5.0%   -.5 -.6 
Spring lightning to rain   15.0% 25.0% 60.0% 1.0 .7 
Spring partial/dark moon to rain   13.3% 73.3% 13.3% .5 .5 
Spring full/visible   moon to 
rain 

16.7% 70.0% 13.3%   -.5 -.5 
Spring high clouds to dry   10.0% 25.0% 65.0% 1.0 .8 
Spring low clouds to dry 16.7% 65.0% 18.3%   -.5 -.5 
Spring medium clouds to dry   10.0% 68.3% 21.7% .5 .6 
Spring clear sky  to dry   18.3% 18.3% 63.3% 1.0 .7 
Spring many stars to dry   20.0% 21.7% 58.3% 1.0 .7 
Spring rainbow to dry   11.7% 66.7% 21.7% .5 .6 
Spring lightning to dry 70.0% 15.0% 15.0%   -1.0 -.8 
Spring partial/dark moon to dry 23.3% 70.0% 6.7%   -.5 -.6 
Spring full/visible   moon to dry   10.0% 65.0% 25.0% .5 .6 
Spring high clouds to hot   15.0% 21.7% 63.3% 1.0 .7 
Spring low clouds to hot 15.0% 71.7% 13.3%   -.5 -.5 
Spring medium clouds to hot 20.0% 16.7% 3.3% 45.0% 15.0% .5 .1 
Spring clear sky  to hot   11.7% 21.7% 66.7% 1.0 .8 
Spring many stars to hot   10.0% 15.0% 75.0% 1.0 .8 
Spring rainbow to hot   16.7% 66.7% 16.7% .5 .5 
Spring lightning to hot 71.7% 15.0% 13.3%   -1.0 -.8 
Spring partial/dark moon to hot 20.0% 66.7% 13.3%   -.5 -.5 
Spring full/visible   moon to hot   15.0% 61.7% 23.3% .5 .5 
Spring high clouds to cold 81.7% 10.0% 8.3%   -1.0 -.9 
Spring low clouds to cold   18.3% 65.0% 16.7% .5 .5 
Spring medium clouds to cold   6.7% 70.0% 23.3% .5 .6 
Spring clear sky  to cold 63.3% 20.0% 16.7%   -1.0 -.7 
Spring many stars to cold 60.0% 20.0% 20.0%   -1.0 -.7 
Spring rainbow to cold   18.3% 63.3% 18.3% .5 .5 
Spring lightning to cold   5.0% 18.3% 76.7% 1.0 .9 
Spring partial/darkmoon to cold   33.3% 61.7% 5.0% .5 .4 
Spring full/visible moon to cold 6.7% 60.0% 33.3%   -.5 -.4 
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Table A—12: Representation of Knowledge for Kenya Winter 

Concepts 

H
ig
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 c
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k 
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Fu
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n 

R
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n 

D
ry

 

H
ot
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ld

 

High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 0.50 -0.50 
Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 -1.00 1.00 
Medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.00 -0.50 -0.50 0.50 
Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 0.50 -0.50 
Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.50 0.50 -0.50 
Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.00 0.50 -0.50 
Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 0.50 
Dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 0.50 
Full/visible moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 -0.50 
Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table A—13: Representation of Knowledge for South Africa Winter 

C
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 c
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D
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H
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C
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d 

High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 -0.50 1.00 

Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 -0.50 1.00 

Medium clouds 0.00 0.00 0.00 -0.50 0.00 -1.00 0.00 0.00 -1.00 0.50 1.00 -0.50 1.00 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 0.50 0.50 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.00 0.00 1.00 0.50 0.50 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 1.00 0.50 0.50 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -1.00 -1.00 1.00 

Dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.00 1.00 

Full/visible  moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 1.00 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A—14: Representation of Knowledge for Kenya Summer 

C
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D
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C
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d 

High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 0.50 
Medium 
clouds 

0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.50 -0.50 -0.50 0.50 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 1.00 1.00 -0.50 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 1.00 -0.50 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 0.50 

Dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 -0.50 
Full/ 
visible   

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 1.00 1.00 -1.00 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table A—15: representation of knowledge for south africa winter 
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High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

Low Clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -1.00 0.50 

Medium Clouds 0.00 0.00 0.00 -0.50 0.00 -1.00 0.00 0.00 -1.00 0.50 -0.50 1.00 -1.00 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -0.50 1.00 1.00 -1.00 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.00 -1.00 1.00 1.00 -1.00 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.50 -1.00 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -0.50 0.50 

Dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -1.00 -1.00 0.50 

Full/visible moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A—16: Representation of Knowledge for Kenya Autumn 
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High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 0.50 -1.00 

Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -0.50 0.50 

Medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.50 -0.50 0.50 0.50 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 1.00 1.00 -0.50 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.50 -0.50 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -0.50 1.00 

Dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 0.50 

Full/ Visible  moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 1.00 -0.50 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table A—17: Representation of Knowledge for South African Autumn 
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High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -0.50 0.50 0.50 0.50 

Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -0.50 0.50 

Medium clouds 0.00 0.00 0.00 -0.50 0.00 -1.00 0.00 0.00 -1.00 0.50 -1.00 -1.00 0.50 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -1.00 0.50 0.50 0.50 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.00 -1.00 -1.00 -1.00 0.50 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.50 0.50 0.50 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 0.50 

Dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 0.50 

Full/visible   moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.50 0.50 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A—18: Representation of Knowledge for Kenya Spring 
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High clouds 0.00 0. 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

Low clouds 0.00 0. 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 0.50 

Medium clouds 0.00 0. 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 -0.50 0.50 0.50 0.50 

Clear sky 0.00 0. 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

Many stars 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 1.00 1.00 -1.00 

Rainbow 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.50 0.50 

Lightning 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -1.00 1.00 

Dark moon 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 0.50 

Full/visible moon 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.50 -0.50 

Rain 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table A—19: Representation of Knowledge for South Africa Spring 
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High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -0.50 0.50 0.50 -1.00 

Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 -0.50 0.50 
Medium 

clouds 
0.00 0.00 0.00 -0.50 0.00 -1.00 0.00 0.00 -1.00 0.50 -0.50 -0.50 0.50 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -0.50 0.50 1.00 -1.00 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.00 -1.00 0.50 0.50 -1.00 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 -0.50 0.50 -0.50 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -0.50 0.50 

Dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -1.00 -0.50 0.50 
Full/visible   

moon 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 1.00 -1.00 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A—20 Summary of Mean Seasonal Causal effects in Kenya and South Africa 

Concept to Outcome 

Seasonal Causal Effects (mean Values) 

Winter Summer  Autumn Spring 
Kenya  South 

Africa  
Kenya  South 

Africa  
Kenya  South 

Africa  
Kenya  South 

Africa  
High clouds to rain -.8 .0 -.7 -.8 -.8 -.5 -.7 -.6 
Low clouds to rain .4 .5 .1 .9 .8 .8 .6 .5 
Medium clouds to rain .0 .5 .1 .5 .6 .6 -.6 .5 
Clear sky  to rain -.9 .0 -.8 -.5 -.8 -.8 -.9 -.6 
Many stars to rain -.8 .0 -.6 -.8 -.8 -.9 -.8 -.9 
Rainbow to rain -.5 -.6 -.6 -.5 -.6 -.8 -.6 -.5 
Lightning to rain .5 .5 .2 .9 .8 .6 .7 .9 
Partial/dark moon to rain .4 .0 .2 .5 .6 .6 .5 .6 
Full/visible   moon to rain .1 .0 -.5 -.8 -.6 -.5 -.5 -.9 
High clouds to dry .8 .8 .9 .8 .8 .6 .8 .6 
Low clouds to dry .6 .8 -.8 -.8 -.8 -.9 -.5 .6 
Medium clouds to dry -.5 .8 -.5 -.5 -.6 -.9 .6 -.5 
Clear sky  to dry .8 .8 .8 .9 .9 .6 .7 .6 
Many stars to dry .5 .8 .8 .8 .9 -.9 .7 .5 
Rainbow to dry .1 .8 .5 .5 .6 .5 .6 -.5 
Lightning to dry -.6 -.8 -.8 -.7 -.8 -.5 -.8 -.8 
Partial/dark moon to dry -.5 -.5 -.5 -.7 -.6 -.5 -.6 -.8 
Full/visible   moon to dry .5 .5 .7 .8 .6 .5 .6 -.7 
High clouds to hot .6 -.4 .8 .9 .4 .5 .7 .5 
Low clouds to hot -.8 -.5 -.8 -.9 -.5 -.5 -.5 -.5 
Medium clouds to hot -.5 -.5 -.6 .9 .7 -.8 .1 -.5 
Clear sky  to hot .6 .5 .8 .9 .8 .5 .8 .9 
Many stars to hot .4 .6 .8 .9 .8 -.9 .8 .5 
Rainbow to hot .4 .6 .8 .5 .7 .6 .5 .6 
Lightning to hot -.5 -.8 -.8 -.5 -.6 -.5 -.8 -.5 
Partial/dark moon to hot -.4 .0 -.5 -.9 -.5 -.5 -.5 -.5 
Full/visible  moon to hot .4 .6 .8 .9 .8 .5 .5 1.0 
High clouds to cold -.5 .9 -.8 -.9 -.8 .5 -.9 -.8 
Low clouds to cold .7 .9 .4 .5 .6 .5 .5 .6 
Medium clouds to cold .5 .8 .5 -.8 .6 .5 .6 .5 
Clear sky  to cold -.5 .5 -.8 -.8 -.7 .5 -.7 -.9 
Many stars to cold -.4 .5 -.5 -.8 -.5 .5 -.7 -.9 
Rainbow to cold -.5 .5 -.6 -.8 -.5 .5 .5 -.5 
Lightning to cold .5 .8 .6 .5 .8 .5 .9 .5 
Partial/dark moon to cold .5 .8 -.4 .5 .6 .6 .4 .6 
Full/visible  moon to cold -.5 .8 -.8 -.9 -.6 .6 -.4 -.8 
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Table A—21: Final Fuzzy Cognitive Map for Autumn Season 
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High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -0.75 0.75 0.50 -0.25 

Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -0.50 0.50 

Medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.50 -0.75 -0.25 0.50 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -1.00 0.75 0.75 -0.25 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.75 0.50 0.50 0.00 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 -0.75 -0.50 0.75 

Partial/dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.50 -0.50 0.50 

Full/visible  moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.50 0.75 0.00 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A—22: Final Fuzzy Cognitive Map for Spring Season 

Concepts 
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High clouds 0.00 0.00 0.00 0.50 0.00 0.00 -1.00 0.00 0.00 -0.75 0.75 0.75 -1.00 

Low clouds 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 -0.50 0.50 

Medium clouds 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.50 

Clear sky 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 -0.75 0.75 1.00 -1.00 

Many stars 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.75 0.75 -1.00 

Rainbow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 0.00 0.50 0.00 

Lightning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -1.00 -0.75 0.75 

Partial/dark moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 -0.75 -0.50 0.50 

Full/visible  moon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.75 -0.25 0.75 -0.75 

Rain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cold 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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C. Appendix of Figures 

 

 

 

 
 

Appendix: Phase I Data Collection Instruments 

RESEARCH INVITATION LETTER 

Dear ______________________, 

 
Figure C-4: Mean Causal Effect in Kenya and South Africa Spring 

 

-4
-2
0
2
4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

South Africa  Spring

Kenya Spring

 
Figure C-3: Mean Causal Effect in Kenya and South Africa Autumn 
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Figure C-2: Mean Causal Effect in Kenya and South Africa Summer 
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Figure C-1: Mean Causal Effect in Kenya and South Africa Winter 
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I am pleased to invite you to participate in an interview to identify traditional 

astronomical and meteorological aspects that are used to forecast weather. No 

more than thirty minutes would be required to complete the interview. 

Be assured that any information you provide will be treated in the strictest 

confidence and your participation will not be identifiable in the resulting report. 

You are entirely free to discontinue your participation at any time or to decline 

to answer particular questions. 

I will seek your consent, on the attached form, to record the interview and to 

use the recording in preparing the report, on condition that your name or 

identity is not revealed, and to make the recording available to other researchers 

on the same conditions.  

Mrs Sizakele Ngidi will guide you through the interview process. Please give 

her the necessary support.  

Please direct any enquiries concerning this study to the Researcher. 

Thank you for your assistance. 

 

SM Mwagha  
Tel: +27 724 161 884 / +27 051 507 3092 
E-mail:  soproltd@gmail.com || smwagha@cut.ac.za 
Central University of Technology, Free State, South Africa 

 

INTERVIEW/QUESTIONNAIRE GUIDE 

The purpose of the interview is to identify aspects of astronomical and 
meteorological knowledge that are used in traditional weather forecast.  
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The researcher/research assistant will: 

1. Introduce the interview session by explaining the purpose of the interview, 
welcome the respondent(s) and make clear why they were chosen.  

2. Explain the presence and purpose of any recording equipment and give the 
option for respondent(s) to opt out of recording.  

3. Outline ground rules and interview guidelines such as participants can end the 
interview at any time or refuse to answer any questions.  

4. Inform the respondent(s) that a break will be provided if time goes beyond 45 
minutes. 

5. Address the issue of privacy and confidentiality and inform the respondent(s) 
that information gathered will be analyzed aggregately and respondent’s 
personal details will not be used in any report. The researcher will also make 
it clear that respondents’ answers and any information identifying the 
respondent(s) as a participant of this research will be kept confidential.  

6. Inform the respondent(s) that they must sign consent forms before the 
interview begins. 

7. Inform the respondent(s) that the interview consists of 18 questions, some 
with sub sections.  

8. Inform the respondent(s) how to provide answers to questions by putting a 
mark on a check box for optional questions and giving a short answer for 
open ended questions.  

9. Inform the respondent(s) that during or after the interview additional 
questions can be asked to clarify respondent(s’) answer. 

10. Inform respondent(s) that they may choose not to answer a particular 
question; in that event, he will need to inform the researcher or research 
assistant.  

11. Inform the respondent(s) that oral interview will be recorded to ensure 
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responses are captured and transcribed accurately.   

12. Inform the respondent(s) that they are allowed to ask questions before, during 
and after the interview. 

13. Go through the process of  completing a questionnaire with the respondent(s) 
as an example 

14. Inform the respondent(s) of follow-up activities and that they should provide 
their contact details at the end of the questionnaire if they may wish to be 
involved in the implementation phase of the research. 

15. Assist the respondent(s) to properly fill the questionnaires to completion. 

16. Collect the questionnaire from the respondent(s). 

17. Close the interview by thanking the respondent(s), maintaining on privacy and 
confidentiality considerations.  
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CONSENT FORM  

           I, the undersigned, confirm that (please tick box as appropriate): 
 I have read and understood the information about the research.  
 I have been given the opportunity to ask questions about the 

research and my participation. 
 

 I voluntarily agree to participate in the research.  
 I understand I can withdraw at any time without giving reasons 

and that I will not be penalized for withdrawing. 
 

 The procedures regarding confidentiality have been clearly 
explained to me. 

 

 If applicable, separate terms of consent for forms of data 
collection have been explained and provided to me. 

 

 The use of the data in research, publications, sharing and 
archiving has been explained to me. 

 

 I understand that other researchers will have access to this data 
only if they agree to preserve the confidentiality of the data 
and if they agree to the terms I have specified in this form. 

 

 Select only ONE of the following: 
I would like my name used and understand what I have said or 
written as part of this research will be used in reports, publications 
and other research outputs so that anything I have contributed to 
this project can be recognised. 

 
 
 

I do not want my name used in this research.    
 I agree to sign and date this informed consent, along with the 

Researcher.  
 

 
________________________ _______________ ________________ 
Name of Respondent  Signature    Date 

 
________________________ _______________ ________________ 
Name of Researcher  Signature    Date 
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QUESTIONNAIRE FOR DATA AND REQUIREMENTS GATHERING IN 
THE DESIGN OF DATA REPRESENTATION TOOLS 

SCHEDULED FOR MARCH/APRIL 2015 

PART A: INTRODUCTION  

As a result of many years of experience in observation of weather 

conditions, many communities have been using weather lore observations in 

predicting weather and its effect on their livelihoods. With the need to make 

longer lead-times (over a season) weather predictions, weather lore is most 

considered to be uncertain.  

The Department of Information Technology at the Central University of 
Technology (Free State, South Africa) is conducting research to identify causal 
effect of traditional astronomical and meteorological weather indicators to 
weather outcomes.  

Phase I of this research seeks to gather knowledge from natives, local farmers 
and livestock keepers at KwaZulu-Natal province of South Africa. The results 
of this research will be used to design a scientific tool for weather lore 
validation. With the validation process, traditional knowledge on weather will 
become useful in enhancing modern weather prediction systems.  

You are requested to participate in this valuable research by completing this 
questionnaire. You will to put a mark (√ or X) in the check box to select an 
appropriate option or write down a response for open ended questions. 
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PART B: DEMOGRAPHIC INFORMATION 

 

Q 1 Your Names:_______________________________________________ (OPTIONAL)  

Q 2 Gender?   Male           Female 

Q 3 Your Age bracket?   

Under 18        18-35        36-45        46-55        56-65         above 66  

Q 4 What is your Highest Education Level:           

None          Primary          Secondary          Post-Secondary 

Q 5 What is the name of your village? 
_____________________________________________________________________ 

Q 6 What is the main economic activity in your village? 
_____________________________________________________________________ 

Q 7 How long have you stayed in this village?   

 5- 10 years   10-20 years   over 20 years 

Q 8 What do you do for a living?  

 Peasant farming (crop or livestock farming for family use)  

Small-scale farming (crop or livestock farming generating up to R 500,000 per year) 

Large-scale farming- (crop or livestock farming generating over R 1,000,000 per year) 

 Not indicated here? Please specify. 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 
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PART C: WEATHER FORECAST KNOWLEDGE 

Q 9 Does weather affect your daily activities?   Yes   No 

Q 10 Do you regularly check for the weather forecast?   Yes   No 

Q 11 Which type of weather forecast do you have most interest in? 

 Seasonal The next two days The next weekOther?Specify__________ 

Q 12 Where do you usually get your weather forecast from? (You may tick more than one box) 

 Radio/TV  Newspaper  Internet  Traditional observations 

 Other? Please specify __________________________________________ 

Q 13 Do you have confidence in the accuracy of these weather forecasts?   

 Yes   No 

Q 14 Do you know any astronomical and meteorological indicators associated to some kind of 
expected weather?          

 Yes           No 

If yes, which ones? (You may tick more than one box) 

 Sun    Moon   Stars  Rainbow  

 Clouds   Lighting   Sky   Other? _______________        

Q 15 Do the indicators you specified above help you predict what the weather will be like?  

 Yes   No 

Q 16 State an instance (positive or negative) in which weather predictions based on 

astronomical and meteorological indicators guided your ‘decisions. (NB: Please state the 

astronomical and/or meteorological observation and how it guided your activity) 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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PART D: IDENTIFICATION OF ASTRONOMICAL AND 
METEOROLOGICAL WEATHER INDICATORS AND CAUSAL 

EFFECTS 

 
Q 17 As per your village traditional beliefs, provide knowledge of expected weather outcomes 

for the followingastronomical and meteorological indicators.  

(NB: please state the effect of the indicators to the expected weather outcomes).  

 You should use the following phrases to specify the effect 

    Increases much   

 Increases    

 No effect   

 Decreases  

 Decreases much 

The following two examples will guide you in filling the table. The images are provided to guide 
you in visualizing the characteristic of the indicators. 

 
Indicator  
Characteristic 

Expected outcomes:  
Rain Temp Cloudy Wind Snow Humidity   Other?  

 
evening sun hot  

decreases 

 

decreases 
much 

 

 

decreases 

 

 

no effect 

 

no effect 

 

decreases 

 

lightning 
decreases 

 

 
morning sun hot  

increases 

 

increases 

 

decreases 

 

increases 

 

decreases 

 

increases 

 

 

decreases 
lake 
water 
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Indicator  
Characteristic 

Expected outcomes: (Give a causal effect,for example decreases/no 
effect/ increases) 

Rain Temp Cloudy Wind Snow Humid   Other?  

 
Altocumulus 
clouds 

       

 
Altostratus clouds 

       

 
Nimbus clouds 

       

 
Cirrocumulus 
clouds 

       

 
Cirrostratus 
clouds 

       

 
Cirrus clouds 

       

 
Cumulonimbus clouds 
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Indicator  
Characteristic 

Expected outcomes: (Give a causal effect ,for example decreases/no 
effect/ increases) 

Rain Temp Cloudy Wind Snow Humid   Other?  

 
Stratus clouds 

       

 
Stratocumulus 
clouds 

       

 
Cumulus clouds 

       

 
White clouds 

       

 
Grey clouds 

       

 
Brown clouds 

       

 
Blue clouds 
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Indicator  
Characteristic 

Expected outcomes: (give a causal effect,for example decreases/no 
effect/ increases) 

Rain Temp Cloudy Wind Snow Humid   Other?  

 
Red clouds 

       

 
Cauliflower clouds 

       

 
Towers clouds 

       

 
Feathery clouds 

       

 
Layered clouds 

       

 
Rippledclouds 

       

 
Filaments clouds 

       

 
Uniform clouds 
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Indicator  
Characteristic 

Expected outcomes: (Give a causal effect,for example decreases/no 
effect/ increases) 

Rain Temp Cloudy Wind Snow Humid   Other?  

 
Low clouds 

       

 
High clouds 

       

 
Medium clouds 

       

 
Ring around sun 

       

 
Dull stars 

       

 
Twinkle stars 

       

 
Many stars 
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Indicator  
Characteristic 

Expected outcomes: (give a causal effect for example decreases/no 
effect/ increases/ 

Rain Temp Cloudy Wind Snow Humid   Other?  

 
Few stars 

       

 
Ring around 
moon 

       

 
New moon 

       

 
Full moon 

       

 
Dark moon 

       

 
Moon getting larger 

       

 
Moon getting 
smaller 
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Indicator  
Characteristic 

Expected outcomes: (Give a causal effect,for example decreases/no 
effect/ increases) 

Rain Temp Cloudy Wind Snow Humid   Other?  

 
Blue moon 

       

 
Clear Night Sky 

       

 
Dark Night Sky 

       

 
Red Night Sky 

       

 
Blue Sky 

       

 
Clear Morning Sky 

       

 
Dark Morning Sky 
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Indicator  
Characteristic 

Expected outcomes: (Give a causal effect ,for example decreases/no 
effect/ increases) 

Rain Temp Cloudy Wind Snow Humid   Other?  

 
Red Morning Sky 

       

 
Red Evening Sky 

       

 
Much Lightning 

       

 
Less Lightning 

       

 
Morning Rainbow 

       

 
Evening Rainbow 

       
 
 
 
 
 

 
fog 
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Provide for other astronomical and meteorological indicators that you know but are not 

mentioned in this questionnaire 

Indicator 
Characteristics 

Expected outcomes 
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PART E: REQUEST FOR RESPONDENT’S FURTHER INVOLVEMENT 
(OPTIONAL) 

Phase II of this research, will involve capturing of weather images (astronomical and 
meteorological) and debrief meetings to fill knowledge gaps. If you will be interested to 
participate, please provide us your contact details. 

Full Name:  

ID Number:  

Email:  

Your   

Phone Number:  

Thank you very much for your participation 

Researcher Sign: ___________________________________ Date: _______/______/2015 
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Appendix: Phase II Data Collection Instruments 
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