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SUMMARY 

 

Microbial pathogens play an important role in the food industry where they could cause 

disease and subsequently significant economic losses. Limited information is available 

on the situation with regard to Listeria in food products in South Africa. However, much 

research is being done in the rest of the world on Listeria indicating serious problems as 

a result of resistance development against various antimicrobial agents, including the 

organic acids. It is hypothesised that the situation with regard to resistance development 

may be more serious than generally admitted. Isolation of 200 different food samples 

was done by using a slightly modified EN ISO 11290-1/A1:2004 standard method. 

Identification of presumptive positive colonies was confirmed as Listeria by API 

(Analytical profile index) Listeria. API positive cultures were subjected to 16S rDNA 

sequencing to compare and confirm identification. Isolates and standard strains were 

screened for resistance to food preservatives such as organic acids and antibiotics used 

in the current treatment regime for Listeria infections. The organisms evaluated included 

isolated strains namely Listeria monocytogenes, Listeria welshimeri, Listeria innocua 

and their corresponding ATCC (American type culture colletion) strains. An agar dilution 

method as described by the Clinical and Laboratory Standard Institute (CLSI) was used 

to determine the minimum inhibitory concentrations (MICs) of 11 antibiotics and 13 

organic acids and salts for all the isolates. Overall antibiotic susceptibility patterns of all 

the isolates indicated high level susceptibility to all the antibiotics tested. Susceptibility 

to all the organic acids was notably reduced at pH 7 in all the isolates and control 

strains.  
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Eight highly susceptible strains were selected for induction and represented each of the 

species isolated. These isolates were exposed to increasing concentrations of three 

antibiotics and three organic acids. MICs were again determined for all the induced 

strains for five antibiotics and three organic acids. Proteins extracted from the induced 

strains were separated on discontinuous SDS-PAGE slab gels to generate total protein 

profiles. Notable variations were observed in MICs, although induction with antibiotics 

as well as organic acids did not result in general resistance development. However, 

evidence was provided that continuous exposure to antimicrobial agents may cause 

Listeria spp. to develop resistance to different antimicrobial agents. Further research 

and in depth studies on mechanisms involved in the development of resistance to food 

preservatives would, therefore, be required. 

Finally, it is concluded that Listeria monocytogenes may be a possible threat in the 

Central South African food industry, which deserves more attention.  The situation may 

actually pose a problem that is overseen, because only a small percentage of people 

that get sick from food, would seek medical advice. 
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CHAPTER 1 

 

 

LITERATURE REVIEW 
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1.1  INTRODUCTION 

 

Listeria was initially included among the coryneform bacteria and actinomycetes 

(Bousfield, 1972). In 1969 Listeria was compared to various representatives of lactic 

acid bacteria (Davis et al., 1969). In 1988 Listeria was distinguished from other known 

genera, including Erysipelothirix and Brochothrix thermosphacta and recognised to be 

related to Lactobacillus and Streptococcus (Freesu and Jones, 1988). After 25 years of 

studies by various laboratories in different countries, the genus Listeria currently 

contains six species; Listeria monocytogenes, L. ivanovii, L. innocua, L. welshimeri, L. 

seeligeri and L. grayi (Rocourt and Buchrieser, 2007).  L. monocytogenes is recognised 

as a human pathogen, although L. seeligeri and L. ivanovii have also been implicated in 

human infections (McLauchlin, 1996).  The distinction between the pathogenic L. 

monocytogenes and the other nonpathogenic species was already defined when food-

borne listeriosis became a public health problem in the United States and Europe. 

 

L. monocytogenes is a Gram-positive non-spore forming bacillus and occurs widely in 

agricultural (soil, silage, water, faecal material, sewage) and food processing 

environments.  L. monocytogenes is also a resident of the intestinal tract in humans 

resulting in carriers of the microorganism without any apparent health consequences. In 

comparison to other non-spore forming food-borne pathogenic bacteria (e.g. Salmonella 

spp. and enterohemorrhagic Escherichia coli), L. monocytogenes is resistant to 

environmental conditions such as acidity or high salt. This bacterium grows at low 

refrigeration temperatures (2-8°C) with low oxygen levels and survives for long periods 
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in the environment. Listeriosis is generally associated with ready-to-eat, refrigerated 

foods and often involves the post-processing recontamination of cooked foods.  Low 

levels of L. monocytogenes in contaminated food may multiply during storage in foods 

that support growth, even at refrigeration temperatures (2-8°C). Invasive listeriosis is 

relatively rare, but often severe disease with incidences of 3 to 8 cases per 1,000,000 

individuals reported world wide with fatality rates of 20 to 30% among hospitalised 

patients (Food and Agriculture organisation of the United Nations/World Health 

Organisation food standards program, 2005).  

 

Statistics of the incidence of food-borne diseases in the Central Region of South Africa 

caused by the genus Listeria are limited and only a few articles are available in South 

Africa on studies done that include this organism. 

 

 

1.2 IDENTIFICATION OF LISTERIA 

 

Listeria is a Gram-positive, non-spore forming, facultative anaerobic, motile bacillus. 

The organism is catalase positive and oxidase negative and the tumbling effect of the 

active motility characteristic of this bacterium can be observed with a light microscope. 

Motility is visible when cultured at 20 to 25ÛC (Rocourt and Buchrieser, 2007). After 

enrichment in a broth, colonies are isolated on selective agar. The most commonly used 

pre-enrichment and selective enrichment broth is Fraser Broth. Listeria will turn Fraser 

broth black from esculin hydrolysis within 48 h of incubation (Buchanan, 1988). 
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Selective agar includes Oxford agar, Palcam agar and Listeria agar according to 

Ottaviani et al. (1997). These media all contain supplements and inhibition substances 

for “non-Listeria” flora. Selective agents include acriflavin (to inhibit various Gram-

positive bacteria) and nalidixic acid (to inhibit all Gram-negative bacteria). 

 

 

1.3 LISTERIA FROM THE ENVIRONMENT 

 

The organism that was originally named Listerella hepatolytica was first discovered in 

1927 by Pirie while investigating the unusual deaths of field rodents near Gauteng in 

South Africa (Rocourt and Buchrieser, 2007).  Listeria has been implicated in diseases 

affecting both man and animals. It was initially believed that farm animals transmitted L. 

monocytogenes to farm workers as the organism has specifically been isolated from 

many different environments including soil, water, vegetation, sewage, animal feeds, 

farm environments, and food-processing environments (Saunders and Wiedmann, 

2007). Faecal contamination of vegetables from farm animals, due to improperly 

fermented silage, may result after fertilisation with animal manure. Listeriosis started to 

appear in people living in the city, and it was only then that public health authorities 

realised that animal contact was not always the source of disease transmission 

(USDA/FSIS, 1992). 

 

In 1983 a food-borne outbreak of human listeriosis was associated with coleslaw from 

crops that were fertilised with contaminated sludge. A variety of food products is 
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produced from farm animals that can be contaminated with Listeria spp. (UDSA/FSIS, 

1992), and caution should therefore be taken when applying animal wastes on crops 

that may be consumed raw (Schlech et al., 1983). 

 

An investigation by Garrec et al. (2003) on the impact of sludge treatments in different 

treatments plants showed that liming of sludge was found to reduce Listeria spp. loads 

to less than detectable levels. It was also found that 73% of dewatered sludge 

contained L. monocytogenes and 87% contained Listeria spp. Moreover, 96% of sludge 

stored in tanks contained Listeria spp. and 80% contained L. monocytogenes. From 

Italy it was reported that the highest concentrations of Listeria spp. (L. monocytogenes, 

L. innocua, L. welshimeri, and L. grayi) were isolated from activated sludge that was 

fertilised (De Luca et al., 1998).  

 

In various studies from different countries, Listeria spp. had been found in a wide range 

of surface waters, including lakes, rivers and streams. L. monocytogenes has been 

reported to be present in varying numbers in water (Watkins and Sleath, 1981; Fenlon 

et al., 1996). Studies done in a lake in Greece showed the prevalence of L. 

monocytogenes to be only 4% (Arvanitidou et al., 1997) and in Belgium a smaller 

survey of 15 groundwater samples found L. monocytogenes in only one sample (Van 

Renterghem et al., 1991). There is however, no epidemiological data available which 

show that listeriosis was caused by water contaminated with L. monocytogenes 

(Sauders and Wiedmann, 2007).  
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Domestic animals such as sheep, cattle, goats and birds are all susceptible for listeric 

infection, and a number of healthy asymptomatic animals may shed L. monocytogenes 

in their faeces. Animals usually become infected with L. monocytogenes by ingestion of 

contaminated feed (Wesley, 2007) which subsequently colonises the medulla 

oblongata, viscera or gravid uterus (Kimberling, 1988). Although livestock management 

practices as well as climate differ in countries, listeriosis in domestic livestock is 

recognised worldwide (Doyle, 1994). For example, in the Netherlands annual livestock 

losses have been reported to be between 0.7 and 8.7% with an average of 3.2%. From 

1970 to 1985 losses of between 234 and 928 cases occurred as a result of bovine 

abortions attributed to L. monocytogenes in cattle (Dijkstra, 1987). Transmission of L. 

monocytogenes from livestock to humans occurs by direct contact with infected 

animals, especially during lambing or calving and also the consumption of contaminated 

raw milk (Sauders and Wiedmann, 2007). 

 

 

1.4  LISTERIA IN FOOD 

 

Currently the most common cause of human listeriosis infections in the United States is 

reported to be the consumption of L. monocytogenes contaminated ready-to-eat (RTE) 

meat products (FDA/USDA/CDC, 2003). RTE products permit growth of L. 

monocytogenes because of its ability to grow at refrigeration temperatures. Norton and 

Braden (2007) reported that the highest incidence of recalls for cooked and RTE meat 

products contaminated with L. monocytogenes in the United States from 1991 to 
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November 2006 was 35 000 000 lbs of hot dogs and packaged meat. In Table 1.1 the 

highest worldwide incidence of reported invasive listeriosis outbreaks from 1945 to 1999 

and the associated foodstuff are illustrated. 

 

TABLE 1.1:  Food-borne outbreaks of invasive listeriosis with ten or more cases 

YEAR LOCATION SUSPECT/IMPLICATED FOOD NO. CASESa 

 

1945-1952 

1960-1961 

1966 

1975-1976 

1983-1987 

1985 

1987-1989 

1992 

1998-1999 

 

Halle, East Germany 

Bremen, West Germany 

Halle, East Germany 

Anjou, France 

Vaud, Switzerland 

Los Angeles 

England, Wales, North Ireland 

France 

United States, multistate  (n = 24) 

 

Raw milk, sour milk, cream, cottage cheese 

Unknown 

Unknown 

Unknown 

Vacherin Mont d’Or cheese 

Mexican-style cheese 

Påté 

Pork tongue in aspic (jelly) 

Processed meats 

 

100 

81 

279 

162 

122 

142 

366 

279 

108 

aNumber of cases reflects laboratory-confirmed and epidemiologically linked cases (Norton and Braden, 2007) 

 

Outbreaks of listeriosis have also been linked to seafood items. These include imitation 

crab meat, smoked mussels, gravad (salmon), and cold-smoked fish. Few listeriosis 

outbreaks have been linked to consumption of contaminated vegetables or vegetable 

products. However, in 1981 during an investigation of a large epidemic of listeriosis in 

adults and perinatals in the Maritime Provinces of Canada, officials hypothesised that 

cabbage, contaminated with L. monocytogenes, was the causative agent (Schlech et 

al., 1983). The short shelf-life of unpreserved vegetable products may contribute to the 

infrequent association with invasive disease. 
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1.5 CLINICAL MANIFESTATION OF LISTERIA MONOCYTOGENES 

 

L. monocytogenes has been identified to be the causative agent of listeriosis in humans 

(Bille, 1990; Gilbert et al., 1993; Jacquet et al., 1995). L. monocytogenes is also a food-

borne pathogen and approximately 10% of all deaths related to food-borne illnesses in 

the United States are caused by this pathogen (Mead et al., 1999). Listeriosis is a 

disease contracted after eating food contaminated with this organism. People that are 

particularly at risk include pregnant women as infection may lead to spontaneous 

abortions or serious illness in newborns. The highest incidence of listeriosis has been in 

persons over 60 years old as well as newborns. Immune-compromised patients such as 

those suffering from cancer and AIDS or patients using immunosuppressive medication 

such as steroids are also at risk. Other patients include those suffering from cirrhosis, 

diabetes and ulcerative colitis (USDA/FSIS, 1992). 

 

Symptoms of listeriosis may vary and depend on the individual’s susceptibility. Early 

symptoms include fever, fatigue, nausea, vomiting and diarrhea. These symptoms may 

become more serious and can result in meningitis (brain infections) and septicemia 

(bacteria in the bloodstream). Severe listeriosis in pregnant women, starting with flu-like 

symptoms, can result in miscarriage, stillbirth, septicemia or meningitis in the newborn. 

In adults and older children complications usually affect the bloodstream and central 

nervous system, but may also include pneumonia and endocarditis (inflammation of the 

lining of the heart and valves). Skin contact with L. monocytogenes can cause skin 
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lesions or localised abscesses. Flu-like symptoms may occur 12 hours after eating 

contaminated food while it takes from one to six weeks for a serious case of listeriosis to 

develop (USDA/FSIS, 1992). 

 

 

1.6 SUSCEPTIBILITY PATTERNS OF LISTERIA 

 

Many pathogens, including Listeria, are developing resistance to most antibiotics used 

in current treatment regimes, with frequent reports of pathogens being resistant to 

almost all available antibiotics (Levy, 1998). Antibiotic resistance is increasingly widely 

reported in all bacteria, mainly as a result of the over-use of antibiotics in animals and 

humans (Davies, 1998; Rao, 1998). Transfer of genetic material, carrying resistance 

determinants, is also possible between unrelated bacterial species (Kruse and Sorum, 

1994). Many antibiotic-resistant bacteria in foods are saprophytic or commensal 

habitants but their resistance genes can be transferred to other food-borne bacteria. 

These include pathogenic species found in the gastrointestinal tract (Perreten et al., 

1997). This process can have clinical implications for the host and for the wider 

population that comes into contact with antibiotic-resistant pathogens. 

 

Listeriosis has commonly been treated with penicillin or ampicillin in combination with an 

aminoglycoside (Charpentier and Courvalin, 1999), while alternative treatments 

included tetracycline, erythromycin or chloramphenicol, alone or in combination (Hof, 

1991). Currently a combination of ampicillin and gentamicin is standard therapy for 
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systemic listeriosis, and trimethoprim-sulfamethoxazole (TMP-SMX) may be used for 

patients with beta-lactam intolerance (Schlech, 2000). Although Listeria spp. have been 

reported to be susceptible to antibiotics (Hof, 1991), more recent reports have indicated 

resistance in Listeria spp. to antibiotics active against Gram-positive bacteria (Abrahim 

et al., 1998). This development of antibiotic resistance among Listeria spp. shows a 

similar pattern world-wide and is on the increase (Walsh et al., 2001). 

 

In a study by Walsh et al. (2001) susceptibility of 1001 Listeria strains isolated from 67 

retail food samples was determined for eight antibiotics. The antibiotics included 

tetracycline, penicillin G, ampicillin, streptomycin, erythromycin, vancomycin, 

chloramphenicol and gentamicin. Of the isolates, 10.9% displayed resistance to one or 

more antibiotics. Resistance to one or more antibiotics was found in 0.6% of L. 

monocytogenes isolates compared to 19.5% of L. innocua isolates, and no resistance in 

L. seeligeri or L. welshimeri. Resistance to tetracycline (6.7%) and penicillin (3.7%) was 

also prevalent. 

 

Resistance to antibiotics most commonly used to treat human listeriosis was not 

observed in L. monocytogenes, but the presence of such resistance in other Listeria 

spp. raises the possibility of future acquisition of resistance by L. monocytogenes. In 

addition, the higher level of resistance in L. innocua as opposed to that of L. 

monocytogenes suggests the existence of a species related ability to acquire resistance 

to antibiotics (Walsh et al., 2001; Morvan et al., 2010). 
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1.7 IMPACT OF ORGANIC ACIDS ON LISTERIA IN FOOD PRESERVATION  

 

There is an increasing demand for natural processed food in the food industry.  This has 

caused a growing interest in naturally produced antimicrobial agents including organic 

acids (McEntire et al., 2003). Because of their natural origin and preservative, 

antioxidant, flavouring and acidifying properties, as well as low cost, organic acids and 

their salts are widely used as preservatives in the production of various food products 

(Crozier-Dodson et al., 2005). 

 

The treatment of fresh meat with organic acids can provide other means of extending 

distribution and visual attraction (Bauernfeind and Pinkert, 1970; Barker and Park, 2001; 

Haung et al., 2005) while cured meats such as sausage, ham, and frankfurters already 

contain salt and other preservatives which enhance the listericidal effects of organic 

acids (Doyle, 1999). Organic acid(s) present in acidified food products, for example 

apple cider, dry-fermented sausage, mayonnaise and yoghurt, have made a huge 

contribution to the safe production of these products without heat treatments (Zagory 

and Garren, 1999).  

 

L. monocytogenes has been isolated from fresh and minimally processed vegetables 

(Francis and O’Breine, 2006). However, the application of washing solutions containing 

bacteriocins (produced by lactic acid bacteria), to fresh-cut lettuce has been reported to 

inhibit the proliferation of L. monocytogenes during storage (Allende et al., 2007). 

Consumption of unpasteurised fruit juices has increased in recent years because of 
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freshness, high vitamin content as well as low calorie contribution (Harris et al., 2003). 

However, the incidence or survival of L. monocytogenes, L. innocua, Salmonella 

serovars and Escherichia coli in fruit juices and apple cider has been demonstrated 

(Ceylan et al., 2004). Different concentrations of malic acid added to apple, pear and 

melon juices have been demonstrated to inactivate these pathogens by more than 5 log 

cycles after 24 h storage at 5ÛC (Raybaudi-Massilia et al., 2009). 

 

 

1.8  LISTERIA IN AFRICA 

 

A limited number of studies have been done on the prevalence of Listeria spp. in African 

food products. African countries where such studies have been done include Morocco, 

Nigeria, Ghana, Egypt, Ethiopia and Senegal (Ababouch, 2000). Research carried out 

in Morocco showed an increase in the incidence rate, with 10.5-86.3% involving meat 

products (Kriem et al., 1998) and 10-18% involving raw milk, fermented milk-based 

products and fresh cheese (El Marrakchi et al., 1993). 

 

In South Africa, however, there are few statistics available on the prevalence of Listeria 

found in food such as RTE meat, poultry, milk and soft cheeses. A study done by 

Vorster et al. (1993) in South Africa on the incidence of Listeria in 134 retail samples of 

processed meats,  showed  only 8% overall prevalence in Vienna sausage, ham, and 

cervelat. L. monocytogenes was not found in any of these samples. More recently Van 

Nierop et al. (2005) conducted a survey on the microbial quality of 99 fresh and frozen 
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chicken carcasses from butchers, supermarkets and street vendors in Gauteng. Of the 

99 carcasses 19 (19.2%) were culture positive for L. monocytogenes, but PCR 

amplification showed 41 of 99 carcasses positive for L. monocytogenes. Sixty six fresh 

and 33 frozen carcasses were tested, of which 19.2% and 21.2% rinsed samples 

respectively yielded L. monocytogenes. The highest contamination rate was seen on 

frozen carcasses from butchers (35.3%) and the lowest rate from supermarkets (6.3%). 

One out of six chickens slaughtered and plucked by street vendors was found to be 

infected with L. monocytogenes.   

 

 

1.9 ACID TOLERANCE IN LISTERIA 

 

The effect of organic acids used as preservatives in food production is not always 

positive in terms of food safety. Listeria, which survive after exposure to these acids 

may repair themselves during storage at low temperatures and continue to multiply 

(Cheroutre-Vialette et al., 1998). Exposure to acid also induces stress responses in 

listeriae which make the bacteria more tolerant of more acidity (Lou and Yousef, 1997). 

Various studies have shown that L. monocytogenes is more acid tolerant than most 

food-borne pathogens, although sensitivity of the organism to organic acids varies with 

the nature of the acidulant used (Sorrells et al., 1989). Acid tolerance is enhanced by 

exposing the organism to moderately acidic conditions (Davis et al., 1996; Kroll and 

Patchett, 1992). This is of importance as L. monocytogenes often encounters a low pH 
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environment in acidic foods and during gastric passage in the host (Gandhi and 

Chikindas, 2006). 

 

The optimum pH for L. monocytogenes growth is 7 to 8, but this organism may grow in 

a pH range of 5 to 10 (Sorrells et al., 1989). However, Barker and Park (2001) have 

shown that this organism can survive and grow at a pH as low as 4.4.  To tolerate salt 

stress Listeria may change its gene expression, which leads to an increased or 

decreased synthesis of various proteins. In response to salt stress, L. monocytogenes 

has been reported to induce 12 proteins (Duche et al., 2002). When confronted with 

acidic conditions, Listeria cells resist adversity by increasing the synthesis of proteins 

which participate in the resistance mechanisms. When exposed to a more severe 

acidity, Listeria attempt to resist further by synthesising additional stress proteins (Phan-

Thanh, 2000). 

 

Another survival mechanism of Listeria spp. is the ability of the organism to grow over a 

wide range of temperatures (2–45ÛC). Refrigeration is one of the most common ways to 

increase the shelf life of foods, and the survival and growth of L. monocytogenes at 

refrigeration temperatures (2–4ÛC) are, therefore, two of the many factors that 

complicate the control of this food-borne pathogen (Rocourt and Cossart, 1997). 
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1.10 PREVENTION OF LISTERIA CONTAMINATION 

 

Recognition that most human listeriosis is food-borne has led to control measures that 

have reduced the incidence of listeriosis. In 2001 and 2003, the Food and Drug 

Administration (FDA), Centre for Disease Control (CDC) and the United States 

Department of Agriculture (USDA) released a national Listeria Action Plan in the United 

States to control efforts by industry, regulators and public health officials, to adhere to 

the zero-tolerance policy of the US food industry (FDA/CDC, 2003). However, control of 

listeriosis requires action from public health agencies as well as the food industry (Elliot 

and Elmer, 2007). The food industry must understand how contamination occurs and 

then implement hazard analysis critical control point (HACCP) programs to minimise the 

presence of L. monocytogenes at important points in the processing, distribution and 

marketing of processed foods (Anonymous, 1991). According to the Regulations 

Governing Microbiological Standards For Foodstuffs and Related Matters in South 

Africa no provision has been made for microbiological specifications with regards to 

Listeria monocytogenes (South African Department of Health, 2001). 

 

 

1.11 RATIONALE 

 

Although much research is being done world-wide on Listeria indicating serious 

problems as a result of resistance development against various antimicrobial agents, 

including organic acids, limited information is available on the situation with regard to 
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Listeria in food products in South Africa. Ultimately, this study endeavours to contribute 

to the body of knowledge with regard to the situation. 

 

The aims of this study, therefore, are: 

• To determine the presence of various Listeria strains from various food premises 

and abattoirs in the Free State province. 

• To identify isolates by using prescribed methods and selective culture media. 

• To screen isolates and reference strains for resistance to food preservatives such as 

organic acids and antibiotics used in the current treatment regime for Listeria 

infections. 

• To determine the possibility of cross-resistance against antibiotics and organic acids, 

and 

• To determine possible mechanisms involved in resistance development against 

antibiotics as well as the organic acids. 
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CHAPTER 2 

 

 

ISOLATION AND IDENTIFICATION OF LISTERIA SPP. FROM 

VARIOUS FOOD PREMISES IN CENTRAL SOUTH AFRICA 
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2.1 INTRODUCTION 

 

Isolation of Listeria from inoculated or naturally contaminated food and clinical 

specimens by use of nonselective media is a difficult process. Almost a century ago, 

Murray et al. (1926) stated that:  “The isolation of the infecting organism is not easy and 

we found this to remain true even after we had established the cause of the disease”. In 

recent years, various combinations of direct plating, cold enrichment, selective 

enrichment and several rapid methods are available to detect L. monocytogenes in 

clinical, food and environmental samples.  

 

It is difficult to detect and isolate small numbers of Listeria from environmental and food 

samples that contain large numbers of indigenous microorganisms. In 1948, however, a 

young graduate student recognised the benefits of low-temperature incubation for 

recovering L. monocytogenes from clinical specimens. According to Gray et al. (1948), 

L. monocytogenes was only isolated in three of five bovine listeriosis cases after brain 

tissue was diluted in tryptose broth, stored for 5 to 13 weeks at 4 ÛC and then plated 

onto tryptose agar. This clearly demonstrated the ability of L. monocytogenes to multiply 

to detectable levels during extended storage at refrigeration temperature. 

 

Gray’s cold enrichment method was soon adopted as the standard procedure for 

recovering L. monocytogenes. Although this procedure is slow and labour intensive, it 

greatly enhances the isolation of Listeria (if present) from a variety of specimens, 

including food. In a study by Ryser et al. (1985) cottage cheese samples inoculated with 
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L. monocytogenes, yielded 43 of 112 (38.4%) samples after the samples were stored at 

3ÛC for up to 28 days, whereas cold enrichment of the same samples in tryptose broth 

for up to 8 weeks yielded Listeria in 50 of 112 (52.7%) samples. 

 

The growth of L. monocytogenes is favoured at 4ÛC but other organisms, including 

Proteus, Pseudomonas, Hafnia, enterococci and certain lactic acid bacteria are also 

able to multiply in non-selective media at refrigeration temperatures. This renders the 

detection of Listeria even more difficult (Albritton et al., 1980). 

 

Availability of improved selective media and methods led investigators to the conclusion 

that cold enrichment offers no advantages over selective enrichment. The extended 

incubation period necessary for cold enrichments makes this procedure impractical for 

routine analysis of foods (Donnelly and Nyachuba, 2007).  Cold enrichment has been a 

time consuming process and it was, therefore necessary to find a method with a shorter 

incubation period. In 1950 L. monocytogenes was isolated from an inoculation of 

nutrient broth containing 0.05% potassium tellurite. Contaminated material was 

inoculated into the nutrient broth and incubated at 37ÛC for 6 to 8 h before being plated 

on tryptose agar with or without 0.05% potassium tellurite (Gray et al., 1950). 

 

L. monocytogenes is resistant to various selective agents, including chemicals, 

antimicrobials and dyes. This resistance was therefore utilised to formulate a media that 

would enhance the growth of this pathogen and inhibit the growth of indigenous 
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bacterial flora. Selective agents that may be useful are included in Table 2.1 (Donnelly 

and Nyachuba, 2007): 

 

Table 2.1:  Potential selective reagents for enhancement of Listeria isolation 

 

Selective agent Effect 

 

Potassium tellurite 

 

Naladixic acid 

Acriflavine 

Polymyxin B 

 

Moxalactam 

 

Listeria reduces tellurite to tellurium, 

producing black colonies 

Inhibitory to Gram-negative bacteria 

Inhibitory to Gram-positive cocci 

Prevents growth of Gram-negative rods 

and streptococci 

Broad spectrum inhibitor to many Gram-

positive and Gram-negative contaminants 

 

 

2.1.1 Selective media for enrichment and isolation of Listeria 

 

Fraser broth 

Fraser broth is a modification of United States Department of Agriculture (USDA) LEB II 

medium consisting of proteose peptone (5.0 g/l), tryptone (5.0 g/l), Lab-Lemco powder 

(5.0 g/l), yeast extract (5.0 g/l), sodium chloride (20.0 g/l), disodium phosphate-2-
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hydrate (12.0 g/l), potassium phosphate monobasic (1.35 g/l), naladixic acid (20 mg/l) 

and acriflavine HCl (25 mg/l), (McClain and Lee, 1987) and now also contains lithium 

chloride (3.0 g/l) and ferric ammonium citrate (0.5 g/l). In the presence of Listeria this 

broth has the advantage of turning black as a result esculin hydrolysis within 48 h of 

incubation. The USDA protocol has, therefore, replaced USDA LEB II medium with 

fraser broth as preferred secondary enrichment medium for meat, poultry and 

environmental samples (Johnson, 1998). Fraser broth is used as primary and 

secondary enrichment medium for the recovery of Listeria. However, no single selective 

enrichment broth has proven to be completely reliable for analysis of food products 

containing Listeria (Donnelly and Nyachuba, 2007). 

 

Oxford Agar 

In 1989, Curtis et al. developed Oxford agar, a medium prepared from Columbia agar 

base to which several selective agents were added. These selective agents include 

colistin sulfate (20 mg/l), fosfomycin (10 mg/l), cefotetan (2 mg/l), cycloheximide (400 

mg/l), lithium chloride (15 g/l) and acriflavine (5 mg/l). Esculin and ferric ammonium 

citrate were added to produce black Listeria colonies from esculin hydrolysis. 

 

Chromocult Listeria selective agar 

The rich basis of Chromocult Listeria selective agar ensures rapid growth of a broad 

range of bacteria. Inhibitors are added to reduce growth of the majority of Gram-positive 

and Gram-negative pathogens, as well as yeasts and fungi. Addition of D-

glucopyranoside enables visualisation of Listeria in the form of blue-green colonies 
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because of the production of D-glucosidase. L. monocytogenes also produces the 

enzyme phosphatidylinositol phospholipase C and the phospholipase activity can be 

seen in the formation of opaque haloes around L. monocytogenes colonies. L-

phosphatidylinositol is added to the medium to detect these haloes. Colonies that 

appear blue-green with an opaque halo on the medium are, therefore, suspected to be 

Listeria (Ottaviani et al., 1997). 

 

2.1.2 Rapid methods for detection of Listeria 

Rapid test kits and systems are commercially available for the detection of Listeria. 

Many of these have received validation approval from the International Association of 

Analytical Communities (AOAC). Assay formats include latex bead-based lateral flow 

immunoassay, enzyme-linked immunosorbent assay (ELISA), enzyme-linked 

immunofluorescence assay (ELFA), colorimetric DNA probe, immunomagnetic 

separation (IMS), fluorescence  in situ hybridization (FISH) and polymerase chain 

reaction (PCR) based methods. Most methods require selective enrichment for up to 48 

h (Elliot and Elmer, 2007). 

 

2.1.3 Polymerase chain reaction (PCR) 

PCR is the most widely reported rapid method for detection of Listeria, in particular L. 

monocytogenes (Levin, 2003) and this method has become more accessible to 

numerous specialist laboratories. Automated detection of PCR products, which exclude 

labour-intensive post-amplification, and the availability of commercial prepackaged 

reagents make it easier for laboratories to use this rapid method. However, PCR is still 
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not used in the food industry because of the high cost of instrumentation and a lack of 

standardised and validated methods for PCR detection of pathogens in foods (Malorny 

et al., 2003). A number of errors can also affect the specificity of the final test. Target 

sequences should be specific and primer specificity should be validated experimentally 

against a well-characterised reference strain panel that consist of both target and non-

target organisms (Aznar and Alarcón, 2002). Various components in food can also 

interfere with the PCR reaction.  Such PCR inhibitors include fats, proteins and primer-

degrading nucleases. Certain components of selective media used to enrich for Listeria 

may also have inhibitory activity, including acriflavin, esculin, bile salts and ferric 

ammonium citrate (Scheu et al., 1998). 

 

The aim of this study was to apply and evaluate various methods to isolate and identify 

Listeria spp. from various food production premises and RTE foodstuffs. 

 

 

2.2 MATERIALS AND METHODS 

 

2.2.1 Sampling methods 

A total of 200 samples were collected from August 2009 to February 2010. Samples 

were collected from a red meat abattoir, a poultry abattoir, a dairy outlet and ready-to-

eat (RTE) samples purchased from various outlets in the Bloemfontein and Kroonstad 

area. 
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Meat abattoir 

Fifty red meat samples were collected and included 16 from different sites on pigs, 14 

beef samples, 18 samples from sheep and two water samples from the drainage water 

of the abattoir. Samples were cut from the carcasses before final washing with a sterile 

butcher’s knife, placed into sterile whirl packs and stored on ice in a cooler bag. 

Samples from sheep included faeces and intestines as well as swabs from the mouth 

and nostrils of the sheep. Samples were transported to the laboratory in a cooler bag 

immediately after collection and stored in a fridge until processing. 

 

Poultry abattoir 

Fifty samples were collected in two batches of 25 each, two weeks apart. Samples were 

taken at receiving and killing, de-feathering and evisceration.  These included swabs 

from the skin of the poultry after de-feathering, different pieces of slaughtered chicken, 

water samples after rinsing of the whole chicken, water after de-feathering, brine water 

samples and different frozen portions. Samples were collected, transported, stored and 

analysed similar to previously reported. 

 

Dairy samples 

Fifty samples were collected from a dairy outlet in Bloemfontein. Samples were 

collected in two batches of 25 each over a two day period, one week apart. These 

included raw milk, pasteurised milk, cottage cheese, raw yoghurt, processed yoghurt, 

fruit juice, cheddar cheese and whey. Samples were collected aseptically from the 
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processing tanks into Falcon tubes, placed on ice in a cooler bag, transported to the 

laboratory and processed without delay. 

 

Ready to eat samples (RTE) 

Ready-to-eat samples were purchased from various outlets in Bloemfontein, the first 25 

samples included a variety of food including sliced ham, salads, pasta dishes, mixed 

cold meat, ciabata filled with bacon and russians. The remaining 25 samples were 

different sushi samples collected from five different restaurants in the city. These 

samples included smoked salmon, crab and prawn. 

 

 

2.2.2 Culturing procedures 

Reference Listeria strains used as controls throughout the study included Listeria 

monocytogenes ATCC 19111, Listeria welshimeri ATCC 35897, Listeria innocua ATCC 

33090, Listeria seeligeri ATCC 35967, Listeria ivanovii ATCC 19119 and Listeria grayi 

ATCC 25401, supplied by Quantum Biotechnologies (Randburg, RSA). The samples 

ZHUH� GLOXWHG� ZLWK� ���� O� RI� EUDLQ� KHDUW� LQIXVLRQ� EURWK� DQG� LQRFXODWHG� RQWR� EUDLQ� KHDUW�

infusion agar plates. After incubation at 35ÛC for 24 h one loop-full of growth from agar 

plates was stored at 70ÛC in Microbanks (Davies Diagnostics, Randburg, RSA). 

 

Isolation was performed by using a slightly modified method of the EN ISO 11290-

1/A1:2004 standard method (Figure 2.1). Dairy samples (25 ml) were pre-enriched by 

the addition of 225 ml half-Fraser broth. Pre-enrichment of all other food samples was 
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performed by placing 25 g of sample into a stomacher bag containing 225 ml half-

Fraser broth dehydrated base (Bio-Rad, Johannesburg, RSA) and stomached for 2 min 

in a Seeward Stomacher 400 (Lab Systems, Victoria, Australia). A commercial 

supplement for half-Fraser broth was added to the base and samples were incubated at 

35ÛC for 24 h.  After incubation 1 ml was collected for PCR pre-screening, 0.1 ml was 

inoculated into 10 ml full-Fraser broth for selective enrichment and one loopful was 

inoculated onto Oxford agar plates (Merck, Bellville, RSA) and incubated at 35ÛC for 24 

h.  Fraser broth was incubated at 35ÛC for 48 h after which one loop was inoculated 

onto Listeria agar (according to Ottaviani et al., 1997) (Merck) and another onto Oxford 

agar. Plates were again incubated at 35ÛC for 24 – 48 h. 

 

Colonies that appeared turquoise-blue with opaque halo colonies on Listeria agar and 

colonies that hydrolysed aesculin on Oxford agar were Gram-stained and checked for 

cellular motility. Gram-positive, catalase positive bacilli with tumbling motility at room 

temperature under microscope were confirmed as Listeria by API (Analytical Profile 

Index) Listeria (BioMèrieux, Randburg, RSA). Presumptive positive colonies were sub-

cultured onto Listeria agar and incubated for 24 h at 35ÛC. API test strips were 

inoculated with the pure culture according to the instructions of the manufacturer. After 

incubation, reagents were added to test strips and identification obtained via numerical 

profiling. Listeria monocytogenes ATCC 19111 was included as positive control and all 

positive isolates were stored in Microbanks at í70ÛC. 
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Figure 2.1 Diagrammatic representation of the method followed for detection of 

Listeria spp. 

25 g (25 ml) of sample in 225 g (225 ml) 
of half-Fraser broth�

Incubate at 30 ÛC for 24 h�

0.1 ml in 10 ml 
full- Fraser broth�

1 ml of broth for  
DNA extraction�

48 h at 35 - 37°C�

�

1 loop on surface of 
Listeria agar�

1 loop on surface of 
Oxford medium�

Incubate 24 -48 h at 
37 ÛC�

�

Incubate 24 h at 37 ÛC���

Biochemical confirmation 
(catalase, motility, Listeria API)�

�

PCR amplification as pre-
screening method�

API results confirmed with 16S 
rDNA sequencing�
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2.2.3 DNA based methodologies 

Templates used for DNA based applications originated from the following:  (a) the six 

mentioned Listeria control strains for testing the specificity of the primers (b) L. 

monocytogenes, L. welshimeri and L. innocua dilution series for determining PCR 

detection limits, and (c) API positive cultures for 16S rRNA sequencing. 

 

2.2.3.1 Template preparation 

(a) The six Listeria control strains included L. monocytogenes, L. innocua, L. 

welshimeri, L. ivanovii, L. seeligeri and L. grayi as previously described. Strains 

were inoculated on brain heart infusion agar plates. After incubation at 35ÛC for 24 

h adequate amounts of culture growth were suspended in 1 ml half-Fraser broth 

using an inoculation loop. Samples were centrifuged for 3 min at 3 000 rpm and 

DNA extracted from the pellets. Genomic DNA was extracted from the control 

strains using the PrepMan Ultra Sample Kit (Applied Biosystems, Halfway House, 

56$���IROORZLQJ�WKH�LQVWUXFWLRQV�DV�GHVFULEHG�E\�WKH�PDQXIDFWXUHU���2QH�KXQGUHG� O�

of sample preparation reagent was aseptically added to each pellet, vortexed 

vigorously to resuspend the pellet and heated (100ÛC) for 10 min. The tubes were 

then cooled to room temperature for 2 min and 50 µl of the supernatant was 

transferred to a new tube and stored at -20ÛC.  A 1:10 dilution was also prepared 

for each DNA sample and stored under the same conditions. 

 

(b) L. monocytogenes, L. welshimeri and L. innocua. controls were inoculated from the 

Microbanks onto brain heart infusion agar and incubated at 35ÛC for 24 h. A 
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suspension with an OD 600 nm absorbance value of 0.2 was prepared for each strain 

in half-Fraser broth, as well as a ten fold serial dilution ranging from 10-1 to 10-10. A 

YROXPH�RI����� O�IURP�HDFK�GLOXWLRQ�ZDV�VSUHDG�RQWR�EUDLQ�KHDUW�LQIXVLRQ�DJDU�DQG�

incubated for 48 h at 35ÛC. This was performed in duplicate and the remainder of 

the dilution kept in the fridge. After incubation growth was enumerated and 

according to the CFU.ml-1 values obtained, further dilutions of 100 CFU.ml-1, 50 

CFU.ml-1, 10 CFU.ml-1 and 5 CFU.ml-1 were prepared from the suitable originals. 

Two aliquots (1 ml each) from each dilution were centrifuged for 5 min at 3 000 

rpm. The pellet from one aliquot was subjected to DNA extraction using the 

PrepMan Ultra Sample Kit (Applied Biosystems) and the second was resuspended 

LQ����� O�KDOI-Fraser broth and subjected to lysis by boiling for 10 min. Samples 

were cooled on ice for 2 min and centrifuged at 13 000 rpm for 5 min at 4ÛC. The 

supernatants were kept on ice and used directly as templates for PCR analysis. 

 

(c) Pure growth from the isolates identified as Listeria with API was suspended in 1 ml 

sterile water and centrifuged for 3 min at 3 000 rpm at room temperature. Pellets 

were subjected to DNA extraction using a harsh lysis method (Labuschagne and 

$OEHUW\Q���������/\VLV�EXIIHU� ���� O��DQG�����PO�JODVV�EHDGV�ZHUH�DGGHG�WR�HDFK�

pellet. Samples were vortexed for 2 min and kept on ice after which 7 M 

DPPRQLXP�DFHWDWH������ O��ZDV�DGGHG�WR�HDFK�WXEH���7KH�WXEHV�ZHUH�LQFXEDWHG�DW�

65Û&�IRU���PLQ�� IROORZHG�E\� LQFXEDWLRQ�RQ� LFH�IRU���PLQ��&KORURIRUP������ O��ZDV�

added to the supernatant and the suspension vortexed for 3 sec. Samples were 

centrifuged at 13 000 rpm for 2 min at 25ÛC and the supernatants transferred to 
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new tubes. An equal volume of isopropanol was added and precipitation allowed 

for 5 min at 25ÛC. Samples were centrifuged at 13 500 rpm for 2 min at 4ÛC, 

ZDVKHG� RQFH� ZLWK� ���� O� LFH� FROG� ���� HWKDQRO� DQG� WKH� SHOOHWV� GULHG� LQ� WKH�

CentriVacTM  DNA concentrator (Labconco, Johannesburg, RSA) for 5–10 min. The 

SHOOHWV�ZHUH�UHVXVSHQGHG�LQ���� O�7(�EXIIHU�����P0�7ULV����P0�('7$��ZLWK�51DVH�

and incubated at 37ÛC for one hour. DNA was stored at í20ÛC until further use. 

 

2.2.3.2 PCR set up and conditions 

(a) The primer pair List-univ-F (5’-ATGTCATGGAATAA-3’) and List-univ-R (5’-

GCTTTTCCAAGGTGTTTTT-3’) (Cocolin et al., 2002) targeting the iap gene 

encoding the invasion-associated protein p60 in all Listeria spp. were used (Bubert 

HW�DO����������3&5�ZDV�SHUIRUPHG�LQ�D�ILQDO�YROXPH�RI���� O�LQ�WKH�*-Storm GS482 

thermal cycler (Gene Technologies, Pretoria, RSA). The reaction mixture consisted 

RI��� O�H[WUDFWHG�'1A, 1X reaction buffer (100 mM Tris-HCl, 15 mM MgCl2, 500 

P0� .&O�� S+� ������ ���� P0� G173V�� ���� 0� �HDFK�� SULPHUV� DQG� ����� 8� RI� 6XSHU-

Therm DNA polymerase (Southern Cross Biotechnology, Cape Town, RSA). The 

reaction conditions were 95ÛC for 2 min, followed by 35 cycles of 95ÛC for 1 min, 

36ÛC for 2 min, 72ÛC for 3 min and a final cycle of 72ÛC for 7 min. The products 

were analysed by electrophoresis on a 2% agarose gel stained with Gold View 

(0.05%) and visualised under UV light. To determine the optimum annealing 

temperature a gradient PCR was performed. The reaction conditions were 92ÛC for 

5 min, followed by 35 cycles of annealing at 95ÛC for 1 min, temperatures ranging 

from 36ÛC to 50ÛC for 1 min, and 72ÛC for 3 min. A final elongation step at 72ÛC for 
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7 min was also included. Seeing that the gradient PCR still yielded non-specific 

binding, a touch down PCR was performed in an attempt to increase the sensitivity 

and specificity of the amplification. The touch down PCR consisted of one cycle at 

95ÛC for 3 min, followed by 10 cycles of 95ÛC for 30 sec, 47ÛC for 30 sec and 72ÛC 

for 45 sec. A further 25 cycles of 95ÛC for 30 sec, 36ÛC for 30 sec and 72ÛC for 45 

sec were included with a final elongation cycle at 72ÛC for 7 min. 

 

(b) Two PCR amplifications were performed on the three control strains, L. 

monocytogenes, L. innocua and L. welshimeri, using the Listeria universal primers 

as described in 2.2.3.2 (a) above and another pair amplifying the 16S rRNA gene 

region identified as 63-F (5’-CAGGCCTAACACATGCAAGTC-3’) and -1387-R (5’-

GGGCGGGTCACAAGGC-3’) (Marchesi et al., 1998). The reaction mixture 

FRQVLVWHG�RI��� O�'1$���;�UHDFWLRQ�EXIIHU� �����P0�7ULV-HCl, 15 mM MgCl2, 500 

P0� .&O�� S+� ������ ���� P0� G173V�� ���� 0� �HDFK�� SULPHUV� DQG� ����� 8� RI� 6XSHU-

Therm DNA polymerase iQ�D�ILQDO�YROXPH�RI���� O��7KH�F\FOLQJ�SDUDPHWHUV�IRU�WKH�

Listeria universal primers were the touch down PCR conditions in 2.2.3.2 (a) and 

the parameters for amplifying the 16S rRNA gene region were 94ÛC for 3 min, 

followed by 30 cycles of 94ÛC for 30 sec, 55ÛC for 30 sec and 72ÛC for 90 min and 

a final elongation cycle of 72ÛC for 10 min. 

 

(c) The same primer pair described in 2.2.3.2 (b) was used to amplify the 16S rRNA 

gene region of partially identified Listeria specimens isolated from food samples. 

PCR amplification was performed using the same reaction setup, reaction 
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conditions and thermal cycler as described in 2.2.3.2 (b) with the exception of DNA 

WHPSODWH�YROXPH�ZKLFK�ZDV�LQ�WKLV�FDVH�RQO\����� O��7KH�DPSOLILHG�SURGXFWV�ZHUH�

analysed by electrophoresis on a 1% agarose gel, stained with Gold View (0.05%) 

and visualised under UV light. 

 

2.2.3.3 DNA sequencing 

16S rDNA PCR products generated in 2.2.3.2 (c) for each of the partially identified 

Listeria isolates, were subjected to DNA sequencing using primer 63-F. The reaction 

PL[WXUH�FRQVLVWHG�RI����� O�RI�SUHYLRXVO\�DPSOLILHG�3&5�SURGXFW�DV�WHPSODWH��EXIIHU��;�

(100 mM Tris-HCl, 15 mM MgCl2�� ���� P0� .&O�� S+� ������ ���� 0� SULPHU�� DQG� ���� O�

premix (Big Dye® Terminator V3.1 Cycle Sequencing Kit, Applied Biosystems). The 

UHDFWLRQV�ZHUH�SHUIRUPHG�LQ�D�WRWDO�YROXPH�RI���� O�XVLQJ�WKH�*-Storm GS482 thermal 

cycler (Gene Technologies) and the cycling parameters were 96ÛC for 1 min, followed 

by 25 cycles of 96ÛC for 10 sec, 50ÛC for 5 sec and 60ÛC for 4 min. Post-reaction 

cleanup was performed using EDTA-ethanol method precipitation. EDTA (125 mM) and 

��� O�DEVROXWH�HWKDQRO�ZHUH�DGGHG�WR�WKH�VHTXHQFH�SURGXFWV��$IWHU�YRUWH[LQJ�IRU���VHF��

DNA was precipitated at room temperature for 15 min. Samples were centrifuged at 4ÛC 

IRU����PLQ�DW��������USP�DQG�WKH�SHOOHW�ZDVKHG�ZLWK����� O�����HWKDQRO��3HOOHWV�ZHUH�

dried in the CentrivacTM DNA concentrator (Labconco) for 5 min and stored at 4ÛC. 

Sequencing was performed on an ABI Prism 3130 XL genetic analyser. The Basic Logal 

Alignment Search Tool (BLAST) was used to compare the obtained sequences to the 

National Center for Biotechnology Information (NCBI) GenBank database for 

identification. 
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2.3 RESULTS AND DISCUSSION 

 

2.3.1 Isolation 

The majority of the Listeria strains were isolated from poultry samples. None of the 

samples from the red meat abattoir were found to be positive for Listeria, whereas 80% 

(40/50) of the samples from the poultry abattoir were positive for Listeria spp. Listeria 

monocytogenes were cultured from two samples from the poultry abattoir, one sample 

was collected from the running water after the first rinsing of the carcasses before de-

feathering and the other sample collected from the offal of the carcass.  

 

The majority of Listeria strains had acceptable Listeria genus API profiles (Table 2.2). 

The Listeria welshimeri/L. innocua API profile (sample no 60) turned out to be L. 

monocytogenes when confirmed with 16S rRNA sequencing profiles, while the two L. 

grayi strains were identified as L. innocua. Table 2.3 represents a detailed list of the 

different species cultured from the 200 samples where the API profiles are compared 

with the 16S results. Six Listeria spp. were isolated from the RTE samples and L. 

monocytogenes  was identified in four (16%) of the sushi samples. The dairy samples 

yielded six Listeria spp., but did not include any L. monocytogenes. 
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Table 2.2 API profiles of presumptive Listeria strains isolated from food and 

diary samples (n=52). 

Samples Profile/Description* Strain 

 

Chicken (38 samples) 

Chicken (2 samples) 

RTE food (2 samples) 

RTE food (2 sample) 

RTE food (1 sample) 

RTE food (1 sample) 

Dairy (2 samples) 

Dairy (4 samples) 

 

7511/7711 acceptable to genus 

7510/7110 acceptable to genus 

7711 acceptable to genus 

7110/7510 acceptable to genus 

6550 acceptable to genus 

7710 

7530 

7510 acceptable to genus   

 

L. welshimeri 

L. innocua 

L. welshimeri 

L. innocua 

L. monocytogenes 

L. welshimeri /L. innocua 

L. grayi 

L. innocua 

* Acceptable to genus when ID >98% 
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Table 2.3 Listeria isolates identified using API and 16S rDNA sequencing 

Lab. No. Origin API 16S rDNA PCR 

51 - 100 
51 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
91 
92 
93 
94 
95 
96 
97 
98 
100 
 

Poultry abattoir 
Piece found on floor 
Water after de-feathering 
Brine water 
Drumstick 
Wing 
Small fillet 
Large fillet 
Bone after deboning 
Offal (neck, intestines) 
Frozen piece 
Ice from frozen pieces 
Frozen piece 
Ice scraping 
Whole carcass 
Stomach 
Intestines 
Feathers 
Drain sample 
Water after 1st rinse 
Water after de-feathering 
Water after de-feathering 
Brine water 
Drain sample 
Feathers 
Intestines 
Head and claws 
Intestines 
Wing 
Liver 
Stomach 
Stomach 
Neck 
Drumstick after brining 
Fillet after brining 
Fresh piece pre-packed 
Fresh piece pre-packed 
Bone after deboning 
Fillet 
Fillet 
Ice scrapings 
 

 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. innocua 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. innocua 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
Mixed culture 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
 

 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. monocytogenes 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. monocytogenes 
Bacillus species 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. innocua 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
L. welshimeri 
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Table 2.3 Continued 

 

Lab. No. Origin API 16S rDNA PCR 

101 – 150 
105 
115 
126 
138 
139 
141 
 
 
 
151 – 200 
151 
152 
153 
157 
158 
172 
 

RTE samples 
Tuna pasta 
Pasta salad 
Sashimi 
California roll (prawn) 
Maki  
California roll (salmon) 
 
 
 
Dairy samples 
Raw milk 
Raw milk 
Raw milk 
Raw yoghurt 
Raw yoghurt 
Raw milk 
 

 
L. innocua 
L. welshimeri 
L. monocytogenes 
L. welshimeri 
L. innocua 
L. welshimeri/ 
L. innocua 
 
 
 
L. grayi 
L. innocua 
L. grayi 
L. innocua 
L. innocua 
L. innocua 

 
L. innocua 
L. welshimeri 
L. monocytogenes 
L. monocytogenes 
L. monocytogenes 
 
L. monocytogenes 
 
 
 
L. innocua 
L. innocua 
L. innocua 
L. innocua 
L. innocua 
L. innocua 

 

 

Milk and dairy products, various meats and meat products such as beef, pork, 

fermented sausages, fresh produce such as radishes, cabbage, seafood and fresh 

products have all been associated with Listeria contamination (Gandhi and Chikindas, 

2007).  L. monocytogenes has been found in a wide variety of raw and processed 

foods.  Although L. monocytogenes is a major public health concern, the non-

pathogenic species L. innocua and L. welshimeri are considered of interest in food 

microbiology since its presence indicates the potential presence of L. monocytogenes 

(Pellicer et al., 2004). Academia, government agencies and the food industry have 

aimed at developing new and improved methods to prevent the survival and growth of 
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Listeria. Ongoing efforts are in place to control the food-borne pathogen Listeria in foods 

and in food processing facilities. These efforts include improved monitoring and 

reporting of food-borne diseases by government agencies, routine food sampling and 

testing, inspection at food processing facilities, training of food workers, establishment 

of HACCP and general awareness among consumers about food safety (Bryan, 2002). 

 

Currently, the FDA has a zero-tolerance policy in place for L. monocytogenes in ready-

to-eat foods. Based on this policy, if any indication of L. monocytogenes is found in 

food, the product is regarded as adulterated. The FDA is reviewing a petition (2007) 

made by trade associations to change the zero-tolerance policy for L. monocytogenes in 

foods that do not support the growth of the organism. The petition has requested the 

establishment of a regulatory limit for L. monocytogenes of 100 CFU.g-1 in foods that do 

not support the growth of the microorganism (Todd, 2007). Based on the risk 

assessment published by the FDA and FSIS and other research reports (Chen et al., 

2003), the petition proposes that concentrating on the number of L. monocytogenes 

present in a food rather than just its presence alone may be more effective in improving 

food safety and promoting public health (Gandhi and Chikindas, 2007). Tests for the 

detection of Listeria are being done routinely in the food industry.  However, according 

to the Regulations Governing Microbiological Standards For Foodstuffs and Related 

Matters in South Africa no provision has been made for microbiological specifications 

with regards to Listeria monocytogenes (South African Department of Health, 2001). 
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2.3.2 DNA based results 

L. monocytogenes ATCC 19111, L. innocua ATCC 33090, L. welshimeri ATCC 35897, 

L. ivanovii ATCC 19119, L. seeligeri ATCC 35967 and L. grayi ATCC 25401 were used 

as positive controls in attempting to establish a pre-screening PCR method for the 

detection of Listeria species directly from food samples, subject to 24 h enrichment. 

Genomic DNA extracted from each of the controls was used as template to amplify the 

iap gene using primer pair List-univ-F and List-univ-R (Cocolin et al., 2002). Each 

species should be, at least partially, identifiable by the length of the amplified product: 

457 bp (L. monocytogenes), 472 bp (L. innocua), 610 bp (L. welshimeri), 610 bp (L. 

ivanovii), 601 bp (L. seeligeri) and unknown (L. grayi). Initially non specific binding was 

evident (Fig. 2.2), but PCR optimisation resulted in the successful amplification of the 

target gene in all but L. grayi (Fig. 2.3). Detection limits were determined using a dilution 

series of pure L. monocytogenes, L. welshimeri and L. innocua cultures representing 5–

100 CFU.ml-1. Genomic DNA was extracted from 1 ml of each dilution (using two 

different extraction methods), and used as template for amplification of the iap gene. 

The 16S rDNA gene was also targeted as a control, but no amplification was obtained 

for either of the targeted genes.  

 

In the current study the possibility of using a PCR pre-screening method was 

considered for the early detection of Listeria species from 24 h enriched samples. 

Culturing techniques used to detect Listeria are laborious and time consuming and a 

pre-screening for the presence of Listeria might lighten the sample load. Although many 

studies have considered the use of PCR methods for Listeria detection the approach 
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usually implied numerous enrichment steps and some require considerable skill and 

financial means (Brehm-Stecher and Johnson, 2007). The iap gene targeted in this 

study has been demonstrated a reliable PCR target for differentiation of cultivated 

Listeria spp. (Bubert et al., 1992, Bubert et al., 1999 and Cocolin et al., 2002) and the 

applicability for its use on actual food samples seemed promising. The DNA extraction 

methods used were not laborious and required no specialised equipment. PCR reaction 

conditions had to be optimised to increase the sensitivity and specificity of the 

amplification as is often the case with inter laboratory duplication. No amplicon could be 

obtained for L. grayi, but since this species was not included in the study by Cocolin et. 

al. (2002) and it has not been detected in, or isolated from food samples to date, it was 

disregarded for the purpose of the present study. 
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Fig. 2.2 Agarose gel electrophoresis of iap gene products amplified from control Listeria 

genomic DNA. Lane 1 represents a 50bp DNA ladder (Fermentas); lane 2, L. 

monocytogenes; lane 3, L. grayi; lane 4, L. welshimeri; lane 5, L. innocua; lane 6, L. 

ivanovii and lane 7, L. seelegeri. 

 
 
 

           

Fig. 2.3  Agarose gel electrophoresis of iap gene products amplified from control Listeria 

genomic DNA after PCR optimisation. Lane 1 represents a 50bp DNA ladder 

(Fermentas); lane 2, L. monocytogenes (457 bp); lane 3, L. grayi; lane 4, L. welshimeri 

(610 bp); lane 5, L. innocua (472 bp); lane 6, L. ivanovii (610 bp) and lane 7, L. seeligeri 

(601 bp). 
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To determine detection limits dilutions ranging from 5–100 CFU.ml-1 of the control 

strains were included. Quantitative assays based on the detection of virulence genes in 

L. monocytogenes have been tested on a variety of foods, and sensitivities reported to 

range from 1000 CFU.ml-1 (Bhagwat, 2003) to 1-5 CFU.25 ml-1 (or 1-5 CFU.25 g-1) 

(Somer and Kashi, 2003). Countries including the United States, Australia and New 

Zealand applied a zero-tolerance policy for L. monocytogenes in foods (absent in 25 g 

food). The European legislation requires absence of L. monocytogenes in RTE food for 

certain consumer groups and allows limits of 100 CFU.g-1 in other categories of RTE 

foods (Food Safety Authority of Ireland, 2005).  

 

Table 2.4 summarises some examples of detection limits determined for L. 

monocytogenes in food samples, using different PCR methods (Scheu, 1998). 

 

 

Table 2.4:  Listeria monocytogenes detection limits in various food products. 

 

SAMPLE GENE REGION DETECTION LIMIT REFERENCE 

Milk 

Cheese, poultry 

 

Chicken, pork, beef 

Soft cheese 

hylA promoter region 

Cell surface protein 

associated gene 

16S rRNA 

Dth 18 gene 

1 CFU/.300 ml-1 

4-10 CFU/PCR 

 

2 X 104 CFU.ml-1 

2 X 103-2 X 108 CFU.g-1 

Starbuck et al., 1992 

Wang et al., 1992a 

 

Wang et al., 1992b 

Wemars et al., 1991a 
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No amplification of the iap gene could be detected, even above a concentration of 100 

CFU.ml-1. The 16S rDNA gene, included as control, also failed to amplify, which says 

more about the DNA extraction method that the gene chosen for screening. Although 

the extraction methods are highly recommended as being rapid and easy to perform 

with no specialised equipment needed, the applicability might rather be aimed at 

extracting DNA from excess target material, rather than the detection of limited 

amounts. Furthermore, the extraction methods did not allow for the detection of 100 

CFU.ml-1 originating from a pure culture, which would not even consider the PCR 

inhibitors that may be present in food samples (for example fat, salts or acids).  In 

conclusion, the results do not reflect on the applicability of the targeted iap gene in this 

case, since difficulty with the extraction method hampered any further downstream 

applications. 

 

 

2.4 CONCLUSIONS 

 

The presence of Listeria in food samples in the current study, is an indication of the 

importance of routine laboratory tests for the detection of Listeria. Although none of the 

Listeria spp. found in this study have been implicated in food-borne outbreaks, it is 

important to recognise their presence. Many of the food-borne diseases that result in 

diarrhea are usually not severe.  However, more serious and prolonged illness can 

occur due to pathogens such as L. monocytogenes and usually requires antibiotic 

treatment (Gandhi and Chikindas, 2007). Approximately five people in South Africa die 
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each day from something they have ingested, while people suffering with AIDS, 

diabetes, heart disease or TB are highly susceptible and most at risk.  However, food-

borne diseases caused by L. monocytogenes, Vibrio parahemoliticus and E. coli 

0157H:7, have unusually high mortality rates even among healthy individuals. Due to a 

lack of information, most of these deaths in South Africa go without notice, except to 

friends and family (handwashingforlife® South Africa, 2003).  It can, therefore, be 

concluded that routine testing for Listeria monocytogenes is of utmost importance in 

both the clinical setup as well as the food production industry. 
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CHAPTER 3 

 

 

COMPARING ANTIBIOTIC AND ORGANIC ACID SUSCEPTIBILITY 

IN LISTERIA SPP. 
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3.1 INTRODUCTION 

 

Antibiotics have for many years been used to control bacterial diseases in livestock and 

also as growth promoters.  However, this practice has been reported to result in the 

development of resistance to one or more antibiotics in food-borne pathogens, as 

bacteria are capable of adapting to unfavourable environmental conditions.  When this 

organism is exposed to sub-lethal levels of an antimicrobial agent, it can adapt and 

develop resistance to higher levels of the antimicrobial as well as cross-resistance to 

other agents (Gandhi and Chikindas, 2007).  Because bacteria have the ability to 

develop resistance to every antibiotic, it is anticipated that bacterial species which are 

still considered susceptible to most antibiotics will become resistant (Faleiro et al., 

2003).  In recent years reports have increased on emerging antimicrobial resistance in 

the food-borne pathogen Listeria (Gandi and Chikindas, 2007).  This organism has until 

recently been regarded as highly susceptible.  L. monocytogenes, for example, is 

frequently found in the digestive tract in humans and animals where various 

Enterococcus and Streptococcus are prevalent in high numbers and which can harbour 

resistance genes, contributing to the problem (Faleiro et al., 2003). 

 

Because of their natural origin and activity as antimicrobial agent, antioxidant, flavouring 

and acidifying agents as well as their low cost, organic acids are widely used as 

preservatives in the production of various food products (Crozier- Dodson et al., 2005). 

Organic acids as well as their salts also have antilisterial effects, although the efficacy of 

the organic acids has been reported to be dose dependent and that combinations of 
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organic acids may be required to increase the antimicrobial action.  It has, however, 

also been found that L. monocytogenes is capable of surviving at refrigerated storage 

even in the presence of additives (Zheng Lu et al., 2005).  Storage temperatures lower 

than 4ÛC are, therefore, often necessary for safe storage even when surface treatments 

utilising organic acid salts are used. 

 

The aim of this study was to determine the susceptibility of Listeria spp. isolated from 

various food premises (Chapter 2) to a range of antimicrobial agents, which include 

antibiotics used in current treatment regimes for Listeria infections as well as organic 

acids commonly used in food preservation and to determine possible associations 

between susceptibility to antibiotics and susceptibility to the organic acids. 

 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Antibiotics 

An agar dilution method as described by the Clinical and Laboratory Standard Institute 

(CLSI, 2006) was used to determine the minimum inhibitory concentrations (MICs) of all 

the Listeria strains isolated (Chapter 2).  Standard antibiotic powders were obtained 

from Sigma Aldrich (Kemptonpark, RSA) and are listed in Table 3.1.  MIC test strips 

were obtained from Davies Diagnostics (Johannesburg, RSA) and were included if an 

antibiotic powder was not available.  Susceptibility breakpoints as determined by the 

CLSI were available for only three antibiotics. 
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Table 3.1 Antibiotics included in MIC determination. 

 

Antibiotic Abbreviation Susceptibility breakpoints for  
L. monocytogenes�� J�PO� 

 
Amikacin 
Ampicillin 
Ciprofloxacin 
Erythromycin 
Gentamicin 
Levofloxacin 
Penicillin G 
Tetracycline 
 
MIC test strip 
Clindamycin 
Imipenem 
Trimethoprim-sulfamethoxazole 
 

 
AMK 
AMP 
CIP 
ERY 
GEN 
LEV 
PEN 
TET 
 
 
CD 
IMI 
TS 
 

 
 

< 2 
 
 
 
 
 

< 2 
 
 

0.5 - 4 
 
 

 

Logarithmic growth phase cultures were prepared on Listeria agar plates incubated for 

24 h at 35ÛC.  A cell suspension was prepared in brain heart infusion (BHI) broth and 

incubated at 35ÛC for 24 h.  Cultures were standardised to a McFarland 0.5 (107 

CFU.ml-1) in saline and diluted 1/10 in 4.5 ml of fresh sterile saline (0.85% NaCl).  Cell 

suspensions were inoculated onto the surface of BHI agar plates containing two-fold 

antibiotic concentrations, ranging from 0.25–���� J�PO�� � $� PXOWLSRLQW� LQRFXODWRU�

(Multipointelite, Mast Diagnostics, UK) was used to deliver a final cell concentration of 1 

x 105 CFU.ml-1 per spot.  MICs were read after 24 h incubation at 35ÛC and recorded as 

the lowest concentration of antibiotic that inhibited growth, disregarding one or two 

colonies or a trailing haze of growth.  A control strain, Streptococcus pneumonia ATCC 
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49619 was included in each series.  Approved and tentative CLSI susceptible 

breakpoints (CLSI, 2006) and preliminary breakpoints were used. 

 

MIC tests strips were applied onto a BHI agar surface inoculated with a 0.5 McFarland 

broth of the test strains and the preformed exponential gradient of antimicrobial agent 

immediately diffused into the agar matrix.  After 18 h incubation at 35ÛC a symmetrical 

inhibition ellipse was formed, centered along the strip.  The MIC was read directly from 

WKH�VFDOH�LQ�WHUPV�RI� J�PO�DW�WKH�SRLQW�ZKHUH�WKH�HGJH�RI�WKH�LQKLELWLRQ�HOOLSVH�LQWHUVHFWV�

the MIC test strip. 

 

 

3.2.2 Organic acids 

The same method as described above was used for the determination of MICs of nine 

organic acids and five salts obtained from MP Biomedicals, Inc. (Solon, Ohio, USA) and 

Sigma Chemicals (St Louis, MO, USA). Organic acids included acetic acid, benzoic 

acid, butyric acid, citric acid, formic acid, lactic acid, malic acid and propionic acid, while 

the salts consisted of sodium citrate, sorbic acid, potassium sorbate, sodium benzoate 

and sodium propionate. Concentrations ranged from 0.5 – 300 mM, consisting of 13 

dilutions. Dilutions differed because of the molecular weight and solubility of the 

substance. MICs were performed at pH 5 and pH 7 to determine the variance in 

susceptibility at different pH levels. The pH of the BHI agar was adjusted before 

autoclaving. Control strains L. monocytogenes (ATCC 19111), L. welshimeri (ATCC 

35897) and L. innocua (ATCC 33090) were included in the MIC determination. 
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3.3 RESULTS AND DISCUSSION 

 

3.3.1 Antibiotic susceptibility 

Overall antibiotic susceptibility patterns of all the isolates indicated high level 

susceptibility among the majority of the Listeria spp. to all the antibiotics tested.  Most of 

the isolates were equally susceptible or more susceptible than the control strain.  

however, some notable variations did occur and it would be necessary to highlight and 

discuss these concerns. 

 

For example, one L. innocua strain (L. innocua 172), showed exceptionally high MIC 

values for amikacin (>256 µg/ml), gentamicin (64 µg/ml) and trimethoprim-

sulfamethoxazole (>32 µg/ml) (Table A.1 – please refer to Appendix Table A.1 for more 

explanatory MIC results with regard to individual L. innocua strains).  Elevated MICs 

were also found for ampicillin (4 µg/ml), ciprofloxacin (2 µg/ml) and clindamycin (0.75 

µg/ml), when compared with the control strain (2, 0.5 and 0.19 µg/ml respectively) 

(Table 3.2).  Six of the remaining seven L. innocua strains had a higher MIC for 

gentamicin (2-4 µg/ml) than the control strain (1 µg/ml).  All the other L. innocua isolates 

had a higher MIC for ciprofloxacin (1-2 µg/ml) than the control strain (0.5 µg/ml).  Three 

isolates showed very high MICs for trimethoprim-sulfamethoxazole and imipenem (>32 

µg/ml, or no zone of inhibition detected).  It is interesting to note that the highly resistant 

L. innocua isolate 172 had a much lower MIC for levofloxacin (�0.25 µg/ml) than any of 

the other isolates or control strains, irrespective of the species. 
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Table 3.2: Antibiotic susceptibility ranges for Listeria innocua isolates (n = 8) 

compared to the control strain. 

 

 MIC (µg/ml) 

Antibiotic Isolated strains L. innocua 

ATCC 33090 

Amikacin 

Ampicillin 

Ciprofloxacin 

Clindamycin 

Erythromycin 

Gentamicin 

Imipenem 

Levofloxacin 

Penicillin 

Tetracycline 

Trimethoprim-sulfamethoxazole 

4->256 

1-4 

�0.25 

0.5-0.75 

�0.25 

1-64 

0.75->32 

�0.25-2 

�0.25 

0.5-1 

0.125-32 

8 

2 

0.5 

0.19 

�0.25 

1 

>32 

2 

�0.25 

1 

>32 

 

The unusually wide range of MIC values observed in Table 3.2 is attributed to only one 

isolate L. innocua 172, which showed extremely high values as opposed to the other 

seven L. innocua isolates. 
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In Table 3.3 the antibiotic susceptibility of L. monocytogenes strains are summarised.  

For a more detailed representation of the MICs for individual strains, please refer to 

Appendix Table A.2.  One L. monocytogenes isolate (L. monocytogenes 138) had an 

MIC of 12 µg/ml for clindamycin, while the MIC for the control strain was 0.5 µg/ml 

(Table 3.3).  Two L. monocytogenes isolates (L. monocytogenes 77 and 126) also 

showed increased MIC values for gentamicin (2-4 µg/ml) as opposed to 1 µg/ml of the 

control strain.  All the L. monocytogenes isolates were susceptible to imipenem, while 

the control strain showed high level resistance to imipenem (no zone of inhibition 

detected). 

Table 3.3: Antibiotic susceptibility ranges for Listeria monocytogenes isolates (n = 6) 

compared to the control strain. 

 

 MIC (µg/ml) 

Antibiotic Isolated strains L. monocytogenes 

ATCC 19111 

Amikacin 

Ampicillin 

Ciprofloxacin 

Clindamycin 

Erythromycin 

Gentamicin 

Imipenem 

Levofloxacin 

Penicillin 

Tetracycline 

Trimethoprim-sulfamethoxazole 

4-8 

0.5-2 

0.5-1 

0.25-12 

�0.25 

1-4 

0.5-1 

1-2 

�0.25 

�0.25-1 

0.032-0.094 

8 

2 

0.5 

0.5 

�0.25 

1 

>32 

2 

�0.25 

1 

>32 
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All the L. welshimeri isolates had a higher MIC for tetracycline (0.5-1 µg/ml) than the 

control strain (�0.25 µg/ml), while 13/36 (36%) of the L. welshimeri isolates had a higher 

MIC for gentamicin (2 µg/ml) compared to the control strain (Table 3.4) (For a more 

detailed representation of the MICs for individual strains, please refer to Appendix Table 

A.3).  One of the L. welshimeri isolates (L. welshimeri 76) had an MIC of 4 µg/ml for 

levofloxacin opposed to the MIC of 2 µg/ml of the control strain.  All the L. welshimeri 

isolates were susceptible to imipenem, while the control strain showed high level 

resistance to imipenem (no zone of inhibition detected). 

 

Table 3.4: Antibiotic susceptibility ranges for Listeria welshimeri isolates (n = 36) 

compared to the control strain. 

 

 MIC (µg/ml) 

Antibiotic Isolated strains L. welshimeri  

ATCC 35897 

Amikacin 

Ampicillin 

Ciprofloxacin 

Clindamycin 

Erythromycin 

Gentamicin 

Imipenem 

Levofloxacin 

Penicillin 

Tetracycline 

Trimethoprim-sulfamethoxazole 

4-8 

0.5-2 

0.5-1 

0.25-1 

�0.25 

1.2 

0.25-1.5 

1.4 

�0.25 

0.5-1 

0.016-0.094 

8 

2 

1 

1.5 

�0.25 

1 

>32 

2 

�0.25 

�0.25 

>32 

 



�

L. monocytogenes, and also strains of other Listeria spp., are generally susceptible to a 

wide range of antibiotics and the treatment of choice for listeriosis include ampicillin or 

penicillin G in combination with an aminoglycoside, such as gentamicin, while co-

trimoxazole (trimethoprim combined with sulfamethoxazole) is administered as 

alternative therapy (Charpentier and Courvalin, 1999).  In the current study, reduced 

susceptibility in L. monocytogenes  was found only against gentamicin (two isolates, 

one from the rinsing water at the chicken abattoir and one from sushi) and clindamycin 

(one isolate from sushi).  Except for the single L. innocua strain with notably high MIC 

values, and three L. innocua isolates resistant to trimethoprim-sulfamethoxazole and 

imipenem (all from dairy products) antibiotic susceptibility is still intact for all the 

isolates.  The highest overall resistance was noted against amikacin, gentamicin and 

trimethoprim-sulfamethoxazole.  An interesting observation was the high-level 

resistance of L. monocytogenes ATCC 19111 against imipenem, while all the isolated 

strains were notably susceptible. 

 

Although it is reported that most Listeria spp., from clinical as well as food-borne and 

environmental sources, are susceptible to the antibiotics active against Gram-positive 

bacteria, the first resistant strains of L. monocytogenes were already reported in 1988. 

These strains were resistant to >10 µg/ml tetracycline (Charpentier and Courvalin, 

1999).  Tetracycline resistance is in fact, reported to be the most frequently resistance 

encountered in L. monocytogenes isolated from humans.  Incidentally tetracycline 

resistance is also increasing in Listeria spp. isolated from food and environmental 
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sources (Charpentier and Courvalin, 1999).  In the current study the MIC levels 

remained low for all the isolates and control strains. 

 

The treatment of choice for systemic listeric infections in humans include high doses of 

amoxicillin, with an additional dose of gentamicin for non-pregnant adults (Hof, 2004).  

However, L. monocytogenes is able to grow intracellularly (Havell, 1986) and because 

aminoclygosides penetrate cells poorly, this agent may be ineffective.  For patients with 

hypersensitivity to penicillin, a combination of trimethoprim-sulfamethoxazole has 

proved effective in patients with listeriosis (Armstrong, 1995).  Antimicrobial agents such 

as chloramphenicol or tetracycline have also been associated with high treatment failure 

rates and are therefore not recommended (Southwick and Purich, 1996). 

 

3.3.2 Organic acid susceptibility 

Susceptibility to all the organic acids was notably reduced at pH 7 in all the isolates and 

control strains, especially for the salts potassium sorbate, sodium benzoate and sodium 

propionate (Figure 3.1).  All the isolates and control strains were resistant to sodium 

citrate at pH 5 as well as pH 7. 
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Figure 3.1. Comparison of MICs obtained at two pH values (pH 7 and pH 5) for 

propionic acid.  It is clear that inhibitory activity is higher at pH 5. 

 

In Table 3.5 the organic acid susceptibility at pH 5 and pH 7 of all the L. monocytogenes 

strains are summarised.  For a more detailed representation of the organic acid MICs 

for individual strains at pH 5 and pH 7 respectively, please refer to Appendix Table A.4 

and A.5.  Higher MICs were found at pH 5 for lactic acid in all isolates (10 mM) 

compared to the control strain (5 mM).  One isolate (L. monocytogenes 77) had a higher 

MIC for benzoic acid at pH 5 (10 mM) (Table A.4) than the control strain (5 mM).  Two 

isolates (L. monocytogenes 60 & 77) had higher MICs at pH 5 for sodium benzoate (20 

,� � ,� �
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mM) and sodium propionate (20 mM) (Table A.4) than the control strain (10 mM) (Table 

3.5).  One isolate (L. monocytogenes 126) had a distinctly high MIC of 150 mM for 

sodium propionate at pH 5 (Table A.4).  All the L. monocytogenes isolates were equally 

or more susceptible at pH 5 than the control strain for acetic acid, butyric acid, citric 

acid, fumaric acid, malic acid, potassium sorbate, propionic acid and sorbic acid. 

 

Organic acid susceptibility of all the L. welshimeri isolates compared to the control strain 

at pH 5 and pH 7 is presented in Table 3.6.  For a more detailed representation of the 

organic acid MICs for individual strains at pH 5 and pH 7 respectively, please refer to 

Appendix Table A.6 and A.7.  All the L. innocua isolates were equally or more 

susceptible at pH 5 than the control strain for butyric acid, citric acid, fumaric acid, lactic 

acid, malic acid, propionic acid, and sorbic acid.  At pH 5, 27 (75%) of the L. welshimeri 

isolates were less susceptible than the control strain to acetic acid (MIC 2.5-5 mM), 12 

(33.33%) were less susceptible to benzoic acid (MIC 10 mM), while 24 (66.7%) isolates 

had four times the MIC (20 mM) of that of the control strain (MIC 5 mM).  Only one of 

the L. welshimeri isolates (L. welshimeri 85) was less susceptible for sodium propionate 

(MIC 50 mM) than the control strain (MIC 20 mM) (Table A.6). 
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Table 3.5: Susceptibility of Listeria monocytogenes isolates to organic acids (n = 6) 

compared to the control strain. 

 

 MIC (mM) 

Organic acid Isolated strains L. monocytogenes ATCC 

19111 

 pH 5 pH 7 pH 5 pH 7 

Acetic acid 

Benzoic acid 

Butyric acid 

Citric acid 

Formic acid 

Lactic acid 

Malic acid 

Potassium sorbate 

Propionic acid 

Sodium benzoate 

Sodium citrate 

Sodium propionate 

Sorbic acid 

2.5-5 

1-10 

5-10 

2.5 

2.5 

10 

2.5-10 

10-50 

2.5-5 

5-20 

100->150 

5-150 

5-10 

25-50 

20-30 

25-50 

20 

20-25 

50-100 

20 

200-300 

25-50 

150 

>150 

250-300 

20->30 

5 

5 

10 

2.5 

2.5 

5 

10 

20 

2.5 

5 

150 

10 

10 

25 

30 

50 

20 

25 

50 

20 

100 

20 

150 

>150 

300 

20 
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Table 3.6: Susceptibility of Listeria welshimeri isolates to organic acids (n = 36) 

compared to the control strain. 

 

 MIC (mM) 

Organic acid Isolated strains L. welshimeri ATCC 35897 

 pH 5 pH7 pH 5 pH 7 

Acetic acid 

Benzoic acid 

Butyric acid 

Citric acid 

Formic acid 

Lactic acid 

Malic acid 

Potassium sorbate 

Propionic acid 

Sodium benzoate 

Sodium citrate 

Sodium propionate 

Sorbic acid 

�0.5-5 

1-10 

5-10 

2.5 

2.5-5 

5-10 

2.5-10 

2.5-20 

2.5 

�0.5-20 

>150 

5-50 

5-10 

20-50 

20-30 

20-50 

20 

20-25 

50 

20 

200-300 

25 

100-150 

150->150 

150-300 

20->30 

1 

5 

10 

2.5 

2.5 

10 

10 

20 

2.5 

5 

>150 

20 

10 

25 

30 

50 

20 

25 

50 

20 

200 

25 

150 

>150 

300 

20 

 

 

In Table 3.7 organic acid susceptibility of all the L. innocua isolates are compared to the 

control strain at pH 5 and pH 7.  For a more detailed representation of the organic acid 

MICs for individual strains at pH 5 and pH 7 respectively, please refer to Appendix 

Table A.8 and A.9.  At pH 5 all the L. innocua isolates were equally or more susceptible 

than the control strain for benzoic acid, butyric acid, malic acid, potassium sorbate, 

sodium benzoate, sodium propionate and sorbic acid (Table A.8).  All the L. innocua 

isolates had an MIC for lactic acid (10 mM), which is twice that of the control strain (5 
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mM), while seven (87.5%) isolates were less susceptible to propionic acid (MIC 5-10 

mM) than the control strain (MIC 2.5 mM).  Three (37.5%) isolates had an MIC for acetic 

acid five times (25 mM) than that of the control strain (5 mM).  One isolate (L. innocua 

153) had an MIC of 50 mM as opposed to that of the control strain (20 mM). 

 

Table 3.7: Susceptibility of Listeria innocua isolates to organic acids (n = 8) 

compared to the control strain. 

 

 MIC (mM) 

Organic acid Isolated strains L. innocua ATCC 33090 

 pH 5 pH7 pH 5 pH 7 

Acetic acid 

Benzoic acid 

Butyric acid 

Citric acid 

Formic acid 

Lactic acid 

Malic acid 

Potassium sorbate 

Propionic acid 

Sodium benzoate 

Sodium citrate 

Sodium propionate 

Sorbic acid 

1-25 

1-10 

5-10 

2.5-5 

2.5-5 

10 

5-10 

10-50 

2.5-10 

5-20 

>150 

5-20 

5-10 

25-50 

20-30 

25-50 

20-25 

20-25 

50 

20 

150-300 

25-50 

150 

>150 

150-300 

20->30 

5 

10 

10 

2.5 

5 

5 

10 

20 

2.5 

20 

>150 

20 

10 

50 

30 

50 

20 

25 

50 

20 

200 

25 

150 

>150 

300 

20 

 

 



�

Reduction of organic acid activity at higher pH values was evident against all the 

Listeria isolates in the study.  Organic acids are weak acids with pKa (ionisation 

constant) ranges between pH 3 and 5 (Doores, 1993; Fang and Tsai, 2003) and are 

most active at a pH equal or lower than their pKa value (Brul et al., 2002).  At low pH 

values weak acids are mainly in their un-dissociated form and it is in this state that they 

can then freely diffuse across the bacterial cell membrane and enter the cytosol 

(Papadimitriou et al., 2007).  As the pH value increases the amount of un-dissociated 

acid also decreases (Price-Carter et al., 2005). 

 

Decreased susceptibility was evident in some L. monocytogenes strains for benzoic 

acid, sodium benzoate and sodium propionate, while all six strains indicated a slight 

decrease in susceptibility for lactic acid.  In vitro studies have shown that the inhibitory 

action of organic acids on L. monocytogenes depends on the characteristics of the acid, 

such as the pKa value (dissociation constant) (Buchanan and Klawitter, 1990; Glass et 

al., 1992; Rayboudi-Massilia et al., 2009).  For example, acetic acid and propionic acid 

both have higher pKa values than lactic acid and, as a result they possess a higher 

proportion of un-dissociated acid at a specific pH (Schnürer and Magnusson, 2005). It 

would, therefore, be expected that they have a greater inhibitory effect than lactic acid.  

L. monocytogenes have also been reported to use lactate as a source of carbohydrate 

(Kouassi and Shelef, 1996). 

 

Previous studies have found L. monocytogenes to be more sensitive to organic acids 

than Gram-negative bacteria such as Salmonella enteritidis or Escherichia coli 
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O157:H7.  This may be attributed to the Gram-positive cell wall, which contains only a 

thick peptidoglycan layer and a lipid bilayer (Rayboudi-Massilia et al., 2009).  This cell 

membrane is therefore, generally impermeable to polar compounds.  Malic acid, for 

example, has low lipid solubility, and this would limit entry into the cell.  Effectiveness of 

organic acids also varies depending on its molecular weight.  The smaller molecules of 

malic acid (134.09 Da) and lactic acid (90.08 Da) may enter into the bacterial cells more 

easily than the larger molecules of citric acid (192.13 Da) and tartaric acid (150.09 Da) 

(Rayboudi-Massilia et al., 2009). 

 

Although the optimum pH for L. monocytogenes is 7-8, this organism may grow in a pH 

range of 5-10 (Sorrels et al., 1989).  A number of studies have also shown that L. 

monocytogenes is more acid tolerant than most food-borne pathogens.  However, the 

sensitivity of the organism to organic acids varies with the nature of the acidulant used 

as well as the concentration of organic acid in food products.  The concentration of 

organic acids used in the industry is also dependent on the type of food.  Although 

organic acids have been reported to produce adverse sensory changes, dilute solutions 

of organic acids (1-3%) are generally applied without any effect on sensory properties of 

meat (Smulders and Greer, 1998; Min et al., 2007).  Good Manufacturing Practices 

(GMP) standard is recognised as an absolutely essential standard to reduce risk of food 

safety and quality deviations.  GMP is also a pre-requisite to implementing HACCP 

standards in companies.  In South Africa the SABS 049 code of practice was 

implemented and is followed to achieve good practices. 
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In one L. innocua strain (isolate 172) an indirect relationship was found between the 

susceptibility to the organic acids and susceptibility to antibiotics (Appendix Table A.3 

and A.8)  This strain was highly resistant to amikacin, ampicillin, gentamicin, imipenem 

and trimethoprim/sulphamethoxazole (Table A.3), yet highly sensitive to all the organic 

acids (Table A.8).  It would be interesting and revelatory to investigate possible 

mechanisms involved in resistance development against antibiotics as well as the 

organic acids. 

 

3.4 CONCLUSIONS 

 

Although antimicrobials used as growth promoters in animal feed have caused a 

decrease in infectious diseases, such as diarrhea, abscesses and mastitis, it has 

resulted in the spreading of antimicrobial-resistant L. monocytogenes into the 

environment.  It has, therefore, become imperative that antimicrobial resistance of L. 

monocytogenes in humans and animals be monitored to recognise alterations in 

susceptibility to antimicrobials commonly used, to apply control measures for the use of 

these antimicrobial agents and to prevent the spread of multi-resistant strains (Harakeh 

et al., 2009). 

 

Susceptibility of the isolates from samples was often lower than the reference strains, 

but MIC values of the organic acids also indicated much higher susceptibility at the 

lower pH value (pH 5).  Organic acids are known to have better activity at a lower pH 

and should, therefore, be more inhibitory in acidic foodstuff when applied as food 
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preservatives.  However, Listeria is an organism notorious of growing at extremely low 

pH values and continuous monitoring of foodstuff should be imperative. 
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CHAPTER 4 

 

 

EXPOSURE OF LISTERIA SPP. TO SUB-LETHAL TREATMENT OF 

ANTIMICROBIAL AGENTS 



�

4.1 INTRODUCTION 

 

In animal feed, antimicrobials used as growth promoters have reduced the impact of 

infectious diseases such as diarrhea, but has also led to the dissemination of 

antimicrobial-resistant Listeria monocytogenes into the environment (Teuber, 1999). 

Antimicrobial-resistant bacteria in the environment have emerged due to the excessive 

use of antimicrobials. It is therefore important to monitor the antimicrobial resistance 

patterns of L. monocytogenes in humans as well as in animals. The first reported 

resistant L. monocytogenes VWUDLQV�ZHUH�UHVLVWDQW�WR�!��� J�PO�RI tetracycline, and this 

was already in 1988 (Poyart-Salmeron et al., 1990).  

 

The presence of a resistance plasmid in L. monocytogenes may be implicated in 

antimicrobial resistance as genes may be transferred by conjugation. Mutational events 

in chromosomal genes can also play a role in exchange of resistance between Listeria 

species (Poros-Gluchowska and Markiewicz, 2003). Antibiotic resistance is increasingly 

reported widely in all bacteria, not only in pathogens, and poses a risk to human health. 

Many antibiotic-resistant bacteria in foods are saprophytic, but their resistance genes 

can be transferred to other food-borne bacteria, including pathogenic species within the 

gastrointestinal tract (Perreten et al., 1997). This may have undesirable clinical 

implications for the host, and for the rest of the population that comes into contact with 

the antibiotic-resistant pathogens.  
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L. monocytogenes has the ability to respond and adapt to changing environments, thus 

making it difficult to control the organism in food environments. US regulatory agencies, 

such as the FDA have established a zero tolerance policy for L. monocytogenes in RTE 

foods because of an increase in the number of listeriosis outbreaks associated with 

these food products (Jay, 2000). Consumers have ever-changing food habits and there 

is a trend towards consumption of minimally processed, ready-to-eat convenience foods 

and refrigerated or frozen food products. These habits have affected the incidence of 

listeriosis (Rocourt and Bille, 1997). There are indications that microorganisms will 

increasingly become resistant to preservatives such as the organic acids, the same take 

place in human pathogens as they become increasingly resistant to antibiotics (Theron 

and Lues, 2007).  Mechanisms of survival under adverse environmental conditions 

include survival at low temperatures, survival under acid stress and survival under 

osmotic stress 

 

The aim of this study was, therefore, (1) to monitor the induction of resistance 

development against food preservatives such as organic acids as well as antibiotics 

used in the current treatment regime for Listeria infections, (2) to determine the 

possibility of cross-resistance against antibiotics and organic acids and (3) to determine 

the involvement of cell proteins in resistance development. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Induction 

Eight highly susceptible strains were selected for induction from each of the isolated 

species.  These isolates as well as the three control strains L. monocytogenes ATCC 

19111, L. welshimeri ATCC 35897 and L. innocua ATCC 33090 were exposed to 

increasing concentrations of three antibiotics (penicillin, tetracycline, ciprofloxacin) and 

three organic acids (citric acid, acetic acid and lactic acid). The first concentration used 

was one concentration below the MIC:  Citric acid 10 mM, acetic acid 20 mM, lactic acid 

20 mM, penicillin 0.125 µg/ml, tetracycline 0.25 µg/ml and ciprofloxacin 0.25 µ/ml.  

Induction was performed in 5 ml brain heart infusion (BHI) broth. One hundred 

microliters of an overnight broth culture of the specific strains were inoculated into the 

broth containing the inducing agent. The tubes were incubated on a platform shaker at 

35ÛC at 120 rpm and observed daily for growth. These cultures were streaked out on 

BHI agar containing relevant concentrations of the inducing agent in order to maintain 

developed resistance. Growth from these plates was used for protein analysis.  

Induction was terminated at the highest concentration where growth could be detected. 

 

4.2.2 Susceptibility Testing 

Minimum inhibitory concentrations of all the induced strains were determined for the 

penicillin, ampicillin, tetracycline, gentamicin, ciprofloxacin, acetic acid, citric acid and 

lactic acid as described in Chapter 3.  MIC determination of the organic acids was 

performed at pH 5 only. 
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4.2.3 Protein Extraction 

 

Preparation of protein samples 

After induction, overnight cultures were harvested by centrifugation at 12 000 x g for 5 

min (Eppendorf-Netheler-Hinz).  Cells were washed twice with sodium phosphate buffer 

(0.01 M, pH 7)�� :DVKHG� FHOOV� ZHUH� VXVSHQGHG� LQ� ���� O� VDPSOH� WUHDWPHQW� EXIIHU�

(distilled H2O, 0.5 M Tris-HCl, pH 6.8 [Saarchem, Merck Chemicals [PTY] Ltd., 

Modderfontein, RSA], glycerol [Roche Diagnostics Corporation, Isando, RSA], 10% 

[w/v] SDS,��� -mercaptoethanol [MP Biochemicals Inc., Menlopark, RSA], 0.05% [w/v] 

bromophenol blue [Saarchem]) in eppendorf tubes. The suspension was mixed 

WKRURXJKO\� E\� YRUWH[LQJ� DQG� ���� O� ('7$� ����� 0�� DQG� ���� O� O\VR]\PH� (Roche 

Diagnostics Corporation) solution added. Tubes were incubated for 30 min at 37ÛC. 

After incubation,����� O�RI�����6'6�(Saarchem) was added and the solution was mixed 

again. The suspension was heated at 95ÛC for 10 min, allowed to cool and centrifuged 

at 10 000 x g for 10 min. The supernatant was stored in eppendorf tubes at -20ÛC until 

protein separation by SDS-PAGE. 
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SDS PAGE 

Protein samples were loaded onto a 12% discontinuous SDS-PAGE slab gel, consisting 

of a stacking gel (0.5 M Tris-HCl [pH 6.8], 10% [wt/wt] SDS, 30% [wt/vol] 

acrylamide/bisacrylamide [Saarchem], 10 % [wt/vol] ammonium persulphate 

[Saarchem], TEMED [Saarchem]), and a separating gel (1.5 M Tris-HCl [pH 8.8], 10% 

[wt/wt] SDS, 30% [wt/vol] acrylamide/bisacrylamide, 10% [wt/vol] ammonium 

persulphate, TEMED).  Gels were run in a PROTEAN II xi cell (Bio-Rad, Johannesburg, 

RSA) attached to a Haake K10 cooling system (Lasec, Bloemfontein, RSA) at a 

constant current of 16 mA per gel through the stacking gel and 24 mA per gel through 

the separating gel.  Gels were run in a tris-glycine running buffer (25 mM Tris, 192 mM 

glycine [Saarchem], 0.1% SDS), pH 8.3, with a running time between 4 to 5 hours.  Gels 

were stained with 0.1% Coommassie brilliant blue (Saarchem) in 40% ethanol 

(Saarchem) and 10% acetic acid (Saarchem) and destained with 40% methanol 

(Saarchem) and 10% acetic acid. Protein profiles were captured with a GelDoc XR (Bio-

Rad) and molecular weight determined by Quantity One® 1-D Analysis Software (Bio-

Rad). 
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4.3 RESULTS AND DISCUSSION 

 

Minimum inhibitory concentrations after induction showed notable variations and are 

presented in Tables 4.1 to 4.3.  Depicted on the tables are MICs of ampicillin, 

ciprofloxacin, gentamicin, penicillin, tetracycline, acetic acid, citric acid and lactic acid 

for induced strains. Only the strains that were able to survive at least one induction step 

are included in the tables.  The boxed values show an increase in MIC of two or more 

doubling concentrations in the induced strain. 

 

Induction with antibiotics as well as organic acids did not result in general resistance 

development.  However, a few isolated cases of reduced susceptibility were found in all 

of the induced strains, except L. monocytogenes ATCC 19111, although no definite 

pattern could be observed (Table 4.1).  Overall increased MIC values were 

demonstrated in tetracycline and ciprofloxacin after induction with the respective agents. 

 

Induction with acetic acid resulted in a notable increase in MIC values of ampicillin for L. 

monocytogenes 138 and 139 (1 to 4 µg/ml), while induction with citric acid similarly 

caused an MIC increase of ampicillin in L. monocytogenes 139 (1 to 4 µg/ml).  Induction 

with acetic acid as well as lactic acid also resulted in a notable increase in MIC values 

of ciprofloxacin for L. monocytogenes ATCC 19111 (0.5 to 2 µg/ml). In addition, 

induction with tetracycline also caused an increase in MIC value of acetic acid for L. 

monocytogenes 139 (2.5 to 10 µg/ml).  Such cross induction of resistance may play a  
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Table 4.1 Comparison of inhibitory concentrations of five antibiotics and three organic acids after induction of 

three Listeria monocytogenes and L. monocytogenes ATCC19111. 

 MIC (µg/ml) before and after induction MIC (mM) before and after induction 

 Ampicillin  Ciprofloxacin Gentamicin Penicillin Tetracycline Acetic acid Citric acid Lactic acid 

 before after before After before after before after before after before after before after before after 

60 CAab 

60 LA 

60 TE# 

60 CP 

2 

2 

2 

2 

2 

4 

2 

4 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

128 

1 

1 

1 

1 

1 

2 

2 

2 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

0.5 

0.5 

0.5 

0.5 

1 

1 

16 

2 

2.5 

2.5 

2.5 

2.5 

5 

5 

5 

5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

10 

10 

10 

10 

10 

10 

10 

10 

138 AA 

138 LA 

138 TE# 

1 

1 

1 

4 

2 

4 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

2 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

1 

1 

1 

1 

1 

16 

5 

5 

5 

10 

10 

10 

2.5 

2.5 

2.5 

5 

5 

5 

10 

10 

10 

10 

10 

10 

139 AA 

139 CA 

139 TE# 

1 

1 

1 

4 

4 

4 

1 

1 

1 

0.5 

1 

0.5 

1 

1 

1 

1 

1 

1 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

1 

1 

1 

1 

1 

16 

2.5 

2.5 

2.5 

10 

10 

10 

2.5 

2.5 

2.5 

5 

5 

5 

10 

10 

10 

10 

10 

10 

ATCC AA 

ATCC LA 

ATCC TE* 

2 

2 

2 

2 

4 

2 

0.5 

0.5 

0.5 

2 

2 

1 

1 

1 

1 

1 

2 

1 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

1 

1 

1 

1 

1 

2 

5 

5 

5 

10 

10 

10 

2.5 

2.5 

2.5 

5 

2.5 

2.5 

5 

5 

5 

10 

10 

10 

a Inducing agent:  AA = Acetic acid, CA = citric acid, LA = lactic acid, CP = ciprofloxacin, TE = tetracycline. 
b Final induction concentrations: acetic acid 40 mM, citric acid 20 mM, lactic acid 40 mM, ciprofloxacin 32 µg/ml, tetracycline 32# and 2* µg/ml. 
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Table 4.2 Comparison of inhibitory concentrations of five antibiotics and three organic acids after induction 

of four Listeria welshimeri and L. welshimeri ATCC 35897. 

 MIC (µg/ml) before and after induction MIC (mM) before and after induction 

 Ampicillin  Ciprofloxacin Gentamicin Penicillin Tetracycline Acetic acid Citric acid Lactic acid 

 before after before After before after before after before after before after before after before after 

87 LAab 

87 PE 
87 TE# 
87 CP 

2 
2 
2 
2 

2 

64 

4 
4 

0.5 
0.5 
0.5 
0.5 

1 
1 

0.5 

128 

1 
1 
1 
1 

2 

4 

2 
2 

�0.25 
�0.25 
�0.25 
�0.25 

�0.25 

32 

�0.25 
�0.25 

0.5 
0.5 
0.5 
0.5 

1 
0.5 

16 

2 

�0.5 
�0.5 
2.5 

�0.5 

5 

5 

5 

5 

2.5 
2.5 
2.5 
2.5 

5 
2.5 
2.5 
2.5 

10 
10 
10 
10 

10 
10 
10 
10 

88 CA 
88 LA 
88 TE# 
88 CP 

2 
2 
2 
2 

4 
4 
2 
4 

0.5 
0.5 
0.5 
0.5 

1 
1 
1 

128 

1 
1 
1 
1 

1 
2 
2 
2 

�0.25 
�0.25 
�0.25 
�0.25 

�0.25 
�0.25 
�0.25 
�0.25 

0.5 
0.5 
0.5 
0.5 

1 
1 

16 

2 

�0.5 
�0.5 
�0.5 
2.5 

5 

5 

5 

5 

2.5 
2.5 
2.5 
2.5 

5 
2.5 
2.5 
2.5 

10 
10 
10 
10 

10 
10 
10 
10 

92 CA 
92 TE# 
92 CP 

2 
2 
2 

4 
4 
4 

0.5 
0.5 
0.5 

2 
1 

128 

2 
2 
2 

2 
1 
2 

�0.25 
�0.25 
�0.25 

�0.25 
�0.25 
�0.25 

0.5 
0.5 
0.5 

0.5 

16 

2 

�0.5 
�0.5 
�0.5 

10 

5 

5 

2.5 
2.5 
2.5 

5 
2.5 
2.5 

10 
10 
10 

10 
10 
10 

95 LA 
95 TE# 
95 CP 

0.5 
0.5 
0.5 

4 
4 
4 

0.5 
0.5 
0.5 

0.5 
1 

128 

1 
1 
1 

1 
2 
2 

�0.25 
�0.25 
�0.25 

�0.25 
�0.25 
�0.25 

0.5 
0.5 
0.5 

1 

16 

2 

�0.5 
�0.5 
�0.5 

5 

5 

5 

2.5 
2.5 
2.5 

5 
2.5 
2.5 

10 
10 
10 

10 
10 
10 

ATCC CA 
ATCC LA 
ATCC TE* 

2 
2 
2 

4 
4 
4 

1 
0.5 
1 

1 
1 
1 

1 
1 
1 

1 
2 
1 

�0.25 
�0.25 
�0.25 

�0.25 
�0.25 
�0.25 

�0.25 
0.5 

�0.25 

1 
1 

8 

1 
2.5 
1 

10 

5 

10 

2.5 
2.5 
2.5 

5 
2.5 
2.5 

10 
10 
10 

10 
10 
10 

a Inducing agent:  AA = Acetic acid, CA = citric acid, LA = lactic acid, CP = ciprofloxacin, PE = 1µg/ml, TE = tetracycline. 
b Final induction concentrations: acetic acid 40 mM, citric acid 20 mM, lactic acid 40 mM, ciprofloxacin 32 µg/ml, tetracycline 32# and 2* µg/ml. 
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Table 4.3 Comparison of inhibitory concentrations of five antibiotics and three organic acids after induction of 

one Listeria innocua and L. innocua ATCC 33090. 

 MIC (µg/ml) before and after induction MIC (mM) before and after induction 

 Ampicillin  Ciprofloxacin Gentamicin Penicillin Tetracycline Acetic acid Citric acid Lactic acid 

 before after before After before after before after before after before after before after before after 

105 AA 
105 CA# 
105 TE 

1 
1 
1 

4 

4 

4 

1 
1 
1 

2 
2 
2 

2 
2 
2 

2 
2 
2 

�0.25 
�0.25 
�0.25 

�0.25 
�0.25 
�0.25 

1 
1 
1 

1 
0.5 

16 

5 
5 
5 

10 
10 
10 

2.5 
2.5 
2.5 

5 
5 
5 

10 
10 
10 

20 
10 
10 

ATCC AA 
ATCC CA 
ATCC LA 
ATCC TE* 

2 
2 
2 
2 

4 
4 
4 
4 

0.5 
0.5 
0.5 
0.5 

2 
2 
2 
2 

1 
1 
1 
1 

2 
2 

4 

1 

�0.25 
�0.25 
�0.25 
�0.25 

�0.25 
�0.25 
�0.25 
�0.25 

1 
1 
1 
1 

0.5 
0.5 
0.5 

16 

5 
5 
5 
5 

10 
10 
10 
10 

2.5 
2.5 
2.5 
2.5 

5 
5 
5 
5 

5 
5 
5 
5 

10 
10 
10 
10 

a Inducing agent:  AA = Acetic acid, CA = citric acid, LA = lactic acid, CP = ciprofloxacin, PE = 1µg/ml, TE = tetracycline. 
b Final induction concentrations: acetic acid 40 mM, citric acid 20 mM, lactic acid 40 mM, ciprofloxacin 32 µg/ml, tetracycline 32# and 16* µg/ml.
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significant role in both the clinical treatment of Listeria infections, as well as successful 

control of L. monocytogenes in food products. 

 

Of all induced isolates, L. welshimeri 87 was the only strain where induced resistance 

was demonstrated after induction with penicillin (Table 4.2).  This was detected in 

increased MIC values for ampicillin, gentamicin, penicillin as well as acetic acid, again 

indicating cross resistance induction between an antibiotic and an organic acid.  Such 

cross resistance induction was also found after induction with tetracycline in L. 

welshimeri isolates 88, 95 and ATCC 35897 and after induction with ciprofloxacin in L. 

welshimeri isolates 87, 92 and 95 (Table 4.2).  Although L. welshimeri is not a 

recognised pathogen, development of resistance should be monitored as resistance 

genes can be transferred to other important food-borne pathogens, such as L. 

monocytogenes (Poyart-Salmeron et al., 1990).  In L. innocua 105 cross resistance 

induction was found after induction with acetic as well as citric acid as this led to a 

notable increase in MIC value for ampicillin (1 to 4 µg/ml) (Table 4.3). 

 

No definite correlation could be observed between protein profiles and induced 

resistance.  In general, in all the induced strains more protein bands were observed 

after induction with the antibiotics, in particular induction with tetracycline.  Only a few 

well defined protein bands could be detected in all the isolates.  It would be necessary 

to conduct a comparison of total protein profiles to demonstrate the differences between 

species and serovars in order to identify specific alterations in protein composition as a 
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result of decreased susceptibility.  In Figure 4.1 a photograph of a protein gel is shown 

to illustrate protein profiles of induced strains. 

 

All protein bands that could be visually detected are presented in detail in Appendix B.  

Fewer protein bands were visible in all the tetracycline induced strains of L. welshimeri 

(Appendix Tables B.5 to B.9) as well as L. innocua (Tables B.10 and B.11) than in the L. 

monocytogenes isolates (Tables B.10 to B.13).  Lactic acid induction did not produce 

less visible protein bands than were observed in L. monocytogenes induction protein 

profiles.  In L. monocytogenes 60 no definite difference was demonstrated between 

protein profiles of strains after induction with organic acids (citric and lactic acid) as 

opposed to antibiotics (ciprofloxacin and tetracycline) (Table B.10).  This difference is 

obvious when observing the band sizes, as more prominent protein bands of organic 

acid induced strains could be observed in the lower ranges of protein bands, while the 

strains induced with ciprofloxacin and tetracycline produced more prominent proteins 

bands of higher molecular weight.  Bands that were evidently darker stained, were 

found in the strains induced by ciprofloxacin and tetracycline, as none of these band 

were observed in the un-induced strain.  No resistance was induced in L. 

monocytogenes ATCC 19111 against any of the antibiotics.  Similar protein bands were 

observed after induction with acetic and lactic acids. 
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Figure 4.1: Total protein profiles of seven Listeria spp. after induction with various 

antibiotics.  Lanes 1-3, L. welshimeri 87 (penicillin, ciprofloxacin and 

tetracycline); lanes 4-5 L. monocytogenes 60 (ciprofloxacin and 

tetracycline); lane 6-7 L. welshimeri 88 (ciprofloxacin and tetracycline);  

lane 8, Molecular Weight Marker (Bio-Rad); lanes 9-10, L. welshimeri 92 

(ciprofloxacin and tetracycline); lanes 11-12, L. welshimeri 95 

(ciprofloxacin and tetracycline); lane 13, L. innocua 105 (tetracycline); lane 

14, L. monocytogenes 138 (tetracycline). 

� �
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In the L. welshimeri 87 penicillin induced strain numerous protein bands were visible, as 

opposed to only a few visible bands in the un-induced strain (Table B.5).  In the un-

induced sample of L. welshimeri 92 (Table B.7), notably more protein bands were 

visible over a wide size range (5.4 – 85.1 kDa).  This was also found in the citric acid 

induced strain (5.4 – 93.4 kDa). 

 

Numerous protein bands were visible in the un-induced L. innocua 105 strain in the 

lower protein size range (9.8 – 37.3 kDa) (Table B.10).  Of interest were the protein 

bands observed in the tetracycline induced strain in the higher size range (39.6 – 104.3 

kDa).  In the un-induced strain of L. innocua ATCC 33090 only a few protein bands 

were visible and ranged from 7.4 to 82.3 kDa (Table B.11).  Protein bands found in all 

the induced strains were also visibly distributed over a wide range of protein sizes.  

Protein could be detected in the samples induced by all three organic acids (acetic, 

citric and lactic acid).  This was not found in any of the induced strains of either L. 

monocytogenes or L. welshimeri. 
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4.4 CONCLUSIONS 

 

The study provided information with regard to the potential of Listeria spp. in developing 

resistance after continuous exposure to antimicrobial agents.  This was indicated by a 

substantial increase in MIC values in various isolates after exposure to different 

antimicrobial agents.  Although the study did not provide sound proof of concurrent 

resistance development against antibiotics as well as preservatives such as the organic 

acids, there were indications of cross resistance developing. 

 

It is known that cellular proteins are often involved in resistance development against 

numerous antimicrobial agents, and more specifically the outer membrane of Gram-

negative bacteria.  Listeria is a Gram-positive bacterium and the involvement of proteins 

may be more complicated.  Current results have, however, provided some valuable 

information on which to build further in-depth investigations.  It may even be possible to 

use the results in the prediction of resistance developing against antibiotics as well as 

food preservatives. 
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CHAPTER 5 

 
 
 

GENERAL DISCUSSION 
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5.1 BACKGROUND 

 

Listeria is a food-borne pathogen commonly found in the environment.  As such, the 

organism is often consumed in small amounts by the general public without apparent ill 

effects as it is believed that only higher levels of Listeria will cause severe problems.  

Although the genus currently consists of six species and several of these species have 

been implicated in human infections L. monocytogenes is the only species recognised 

as a human pathogen. 

 

The bacterium later named Listeria monocytogenes was first isolated from diseased 

laboratory animals and a description published in 1926 (Murray et al., 1926). This 

publication did not result in immediate interest and research consisted largely of reports 

of different animals and birds that suffered from listeriosis. Reports on transmission of 

the disease to humans were increasing and during 1940 to 1960, research efforts were 

established by Gray (1963). This led to isolation methods and increasing knowledge on 

the widespread of this organism in the environment (Gray, 1963). In the late 1940s 

there was some evidence in Germany of the possible role of food in human listeriosis 

but no research on this potential cause of food-borne illness was performed. However, 

in the 1980s this changed after three major outbreaks of listeriosis in North America 

were attributed to contaminated food. 
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5.2 ISOLATION AND IDENTIFICATION OF LISTERIA 

 

Isolation of Listeria from food samples has been reported to be problematic due to small 

numbers of the organism often being suppressed by large quantities of normal 

habitants.  Enrichment methods have been developed and were used in the current 

study.  As such a wide range of Listeria spp. could be isolated.  Routine identification 

procedures, which include Gram-staining, catalase reaction, motility and biochemical 

identification (API Listeria) were found adequate to identify the isolates to genus level.  

However, reliable species identification could only be achieved by 16S rDNA 

sequencing.  From 200 samples 51 were identified as Listeria spp. by the API Listeria 

kit as well as with 16S rDNA.  However, species identification was more accurately 

confirmed by the DNA based method (Chapter 2, Table 2.2). 

 

 

5.3 ANTIMICROBIAL SUSCEPTIBILITY OF LISTERIA 

 

Susceptibility of Listeria spp. isolated from various food premises was determined 

against a wide range of antimicrobial agents, including antibiotics used in current 

treatment regimes for Listeria infections and organic acids commonly used in food 

preservation (Chapter 3).  High level antibiotic susceptibility was observed in the 

majority of the isolates, except for individual resistance in one L. innocua strain, which 

showed exceptionally high MIC values for amikacin, gentamicin and trimethoprim-

sulfamethoxazole.  However this strain was much more susceptible to levofloxacin than 
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any of the other isolates.  Although all the L. monocytogenes isolates were susceptible 

for imipenem, the control L. monocytogenes ATCC 19111 showed high level resistance.  

Treatment of choice for Listeria infections includes ampicillin or penicillin G in 

combination with an aminoglycoside, such as gentamicin.  It was interesting to note that 

in the current study, reduced susceptibility in L. monocytogenes was found only against 

gentamicin and clindamycin.  Tetracycline resistance has been reported to be the most 

frequently resistance encountered in L. monocytogenes isolated from humans and also 

increasingly found in Listeria spp. isolated from food and environmental sources.  In the 

current study the MIC levels recorded for tetracycline were notably low. 

 

Decreased organic acid activity was evident at the higher pH especially for the salts 

potassium sorbate, sodium benzoate and sodium propionate.  All the isolates and 

control strains were resistant to sodium citrate at pH 5 as well as pH 7.  At a more acidic 

pH value organic acids are found in their un-dissociated form and as such they can 

freely diffuse across the bacterial cell membrane into the cell.  Organic acids should, 

therefore, be more inhibitory in acidic foodstuff.  However, Listeria is notorious of 

growing at extremely low pH values and susceptibility against these food preservatives 

should be mandatory. 

 

An indirect relationship between the susceptibility to the organic acids and antibiotics 

was found in isolated cases, where an organism showed high minimum inhibitory 

concentration (MIC) values for various antibiotics, but at the same time was highly 

sensitive for all the organic acids.  However, the majority of the isolates did not follow a 
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similar trend and in depth studies of the mechanisms involved in resistance 

development may reveal valuable information with regard to successful application of 

antibiotics as well as the organic acids in clinical therapy and food preservation. 

 

 

5.4 INDUCING ANTIMICROBIAL RESISTANCE 

 

Susceptible isolates and control strains were exposed to increasing concentrations of 

antibiotics and organic acids in attempting to simulate resistance development.  Any 

change in susceptibility was monitored by comparing MICs before and after induction.  

Cellular proteins are often involved in resistance development and isolates that survived 

at various exposing concentrations were selected to investigate the possible alterations 

in cellular protein profiles (Chapter 4). 

 

Increased MIC values were recorded after exposure, although this induction did not 

result in high level resistance against all the antimicrobial agents.  Overall increased 

MIC values were demonstrated in tetracycline and ciprofloxacin after induction with the 

respective agents, while exposure to some organic acids resulted in notable increases 

in MIC values of antibiotics such as ampicillin and ciprofloxacin in some L. 

monocytogenes isolates.  On the other hand induction with tetracycline demonstrated 

increased MIC values of acetic acid also in L. monocytogenes.  
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Protein bands visible in all the induced strains were distributed over a wide range of 

protein sizes.  No obvious correlation could be demonstrated by visual observation of 

resulting protein profiles.  Overall, the induced strains produced more protein bands, in 

particular induction with tetracycline, while only a few well defined protein bands could 

be clearly detected in all the isolates.  It would be necessary to conduct a comparison of 

total protein profiles to demonstrate the differences between species and serovars in 

order to identify specific alterations in protein composition as a result of decreased 

susceptibility. 

 

Evidence was provided that continuous exposure to antimicrobial agents may cause 

Listeria spp. to develop resistance to different antimicrobial agents.  Although 

concurrent resistance development against antibiotics as well as organic acids was not 

unequivocally demonstrated, there were indications of cross resistance developing.  

Any indications of cross resistance development may play a significant role in clinical 

treatment of Listeria infections, as well as effective food preservation. 

 

 

5.5. FUTURE RESEARCH 

 

The study has revealed various factors associated with the problems encountered in the 

control of Listeria in the food matrix and has opened up numerous research 

opportunities: 
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• Continuous monitoring of the prevalence of Listeria spp. in South African food 

production. 

• Correlate prevalence of Listeria in food with possible listeriosis and isolation from 

clinical samples. 

• Transmission of resistance between food isolates and Listeria from clinical 

infections. 

• In depth studies on mechanisms involved in the development of resistance to food 

preservatives, such as the presence of plasmids and virulence genes. 
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APPENDIX A 
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Table A.1: Antibiotic susceptibility of Listeria innocua isolates (n = 8). 

 

  
0,&�� J�PO) 

Sample no Origin* AMK AMP CIP CD ERY GEN IMI LEV PEN TET TS 

 

84 

105 

151 

152 

153 

157 

158 

172 

 

CA head and claws 

RTE tuna pasta 

DAIRY raw milk 

DAIRY raw milk 

DAIRY raw milk 

DAIRY raw yoghurt 

DAIRY raw yoghurt 

DAIRY raw milk 

 

8 

4 

8 

8 

4 

8 

8 

>256 

 

2 

1 

1 

1 

1 

1 

1 

4 

 

1 

1 

1 

1 

1 

2 

2 

1 

 

0.75 

0.75 

0.5 

0.5 

0.75 

0.75 

0.75 

0.75 

 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

 

2 

2 

2 

2 

2 

1 

4 

64 

 

2 

0.75 

0.75 

0.75 

1.5 

>32 

>32 

>32 

 

2 

1 

2 

2 

2 

2 

2 

�0.25 

 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

 

0.5 

1 

1 

1 

1 

1 

1 

1 

 

0.047 

0.047 

0.047 

0.125 

0.125 

>32 

>32 

>32 

   *CA = chicken abattoir, RTE = ready-to-eat. 

 AMK = amikacin, AMP = ampicillin, CIP = ciprofloxacin, CD = clindamycin, ERY = erythromycin, GEN = gentamicin, IMI = imipenem, LEV = 
levofloxacin, PEN = penicillin, TET = tetracycline, TS = trimethoprim/sulphamethoxazole 
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Table A.2: Antibiotic susceptibility of Listeria monocytogenes isolates (n = 6). 

  
0,&�� J�PO) 

Sample no Origin* AMK AMP CIP CD ERY GEN IMI LEV PEN TET TS 

 

60 

77 

126 

138 

139 

141 

 

CA offal (neck, intestines) 

CA water after 1st rinsing 

RTE sashimi 

RTE california roll (prawn) 

RTE maki 

RTE california roll (salmon) 

 

8 

8 

8 

8 

4 

4 

 

2 

2 

1 

1 

1 

0.5 

 

0.5 

0.5 

0.5 

1 

1 

0.5 

 

0.75 

0.5 

0.25 

12 

0.25 

0.27 

 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

 

1 

2 

4 

1 

1 

1 

 

0.5 

0.75 

1 

0.75 

0.75 

0.5 

 

1 

2 

1 

1 

1 

1 

 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

�0.25 

 

0.5 

�0.25 

1 

1 

1 

1 

 

0.032 

0.032 

0.047 

0.047 

0.094 

0.047 

 *CA = chicken abattoir, RTE = ready-to-eat. 

 AMK = amikacin, AMP = ampicillin, CIP = ciprofloxacin, CD = clindamycin, ERY = erythromycin, GEN = gentamicin, IMI = imipenem, LEV = 
levofloxacin, PEN = penicillin, TET = tetracycline, TS = trimethoprim/sulphamethoxazole 
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Table A.3: Antibiotic susceptibility of Listeria welshimeri isolates (n = 36). 

  
0,&�� J�PO) 

Sample no Origin* AMK AMP CIP CD ERY GEN IMI LEV PEN TET TS 

 
51 
53 
54 
55 
56 
57 
58 
59 
61 
62 
63 
64 
65 
66 
67 
75 
76 
79 
80 
81 
82 
83 
85 
86 
87 
88 
89 
91 
92 
95 
96 
97 
98 
99 
115 

 
CA  piece of meat on floor 
CA water after de-feathering 
CA brine water 
CA drumstick 
CA wing 
CA small fillet 
CA large fillet 
CA bone after deboning 
CA frozen piece of meat 
CA ice from frozen meat 
CA frozen piece of meat 
CA ice scraping 
CA whole carcass 
CA stomach 
CA intestines 
CA feathers 
CA drain sample 
CA water after de-feathering 
CA brine water 
CA drain sample 
CA feathers 
CA intestines 
CA intestines 
CA wing 
CA liver 
CA stomach 
CA stomach 
CA neck 
CA drumstick after brine dip 
CA fresh piece before packaging 
CA bone after deboning 
CA fillet 
CA fillet 
CA ice scrapings 
RTE Pasta salad 

 
4 
8 
8 
8 
8 
4 
8 
8 
8 
4 
4 
8 
8 
4 
4 
4 
8 
8 
8 
8 
8 
8 
4 
8 
8 
8 
8 
8 
8 
8 
8 
4 
4 
4 
8 

 
1 
2 
1 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
2 
1 

0.5 
2 

0.5 
1 

0.5 
2 
2 

0.5 
0.5 
0.5 
2 
2 
2 
2 
2 
2 
2 
2 

0.5 
2 

0.5 
0.5 
0.5 
0.5 

 
1 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1 

0.5 
0.5 
0.5 
0.5 
1 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

0.75 
0.5 

0.25 
0.5 
1 

0.75 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

0.38 
0.75 
0.75 
0.75 
0.5 

0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 

 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 

 
1 
2 
2 
1 
1 
1 
2 
2 
1 
2 
2 
2 
2 
1 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
1 
2 
2 
1 
2 
1 
1 
1 
1 

 
0.75 
0.38 
0.5 

0.25 
0.25 
0.38 
0.5 

0.38 
0.38 
0.5 

0.25 
0.75 
0.75 
0.5 

0.38 
0.25 
0.5 
0.5 
0.5 
0.5 

0.38 
0.5 
1.5 
1 

0.5 
0.75 

1 
0.75 
0.75 
0.75 
0.75 
0.5 

0.25 
0.5 

0.25 

 
1 
1 
1 
1 
1 
1 
2 
2 
1 
2 
2 
2 
1 
1 
2 
1 
4 
2 
1 
1 
2 
2 
2 
1 
2 
2 
2 
1 
2 
1 
2 
1 
1 
1 
1 

 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 
�0.25 

 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1 
1 
1 
1 
1 

 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.032 
0.047 
0.064 
0.047 
0.016 
0.016 
0.047 
0.032 
0.032 
0.032 
0.064 
0.047 
0.047 
0.047 
0.047 
0.047 
0.023 
0.094 
0.064 
0.064 
0.064 
0.032 
0.032 
0.047 
0.047 
0.032 
0.047 

   *CA = chicken abattoir, RTE = ready-to-eat 
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Table A.4: Susceptibility of Listeria monocytogenes isolates to organic acids (n = 6) at pH 5. 

 

  MIC (mM) 

Sample no Origin* ACE BNZ BUT CIT FMC LAC MAL PSB PPN SBZ SCT SPP SOR 

 

60 

77 

126 

138 

139 

141 

 

CA offal (neck, intestines) 

CA water after 1st rinsing 

RTE sashimi 

RTE californian roll (prawn) 

RTE maki 

RTE californian roll (salmon) 

 

2.5 

5 

5 

2.5 

2.5 

5 

 

5 

10 

2.5 

1 

1 

1 

 

5 

10 

10 

10 

5 

10 

 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

 

10 

10 

10 

10 

10 

10 

 

10 

10 

5 

5 

2.5 

5 

 

20 

20 

50 

10 

10 

10 

 

2.5 

2.5 

5 

2.5 

2.5 

2.5 

 

20 

20 

5 

5 

5 

5 

 

>150 

100 

>150 

>150 

>150 

>150 

 

20 

20 

150 

10 

5 

10 

 

10 

10 

10 

5 

5 

5 

 *CA = chicken abattoir, RTE = ready-to-eat. 

 ACE = acetic acid, BNZ = benzoic acid, BUT = butyric acid, CIT = citric acid, FMC = fumaric acid, MAL = malic acid, PSB = potassium sorbate, 
SCT = sodium citrate, SPP = sodium propionate, SOR = sorbic acid. 
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Table A.5: Susceptibility of Listeria monocytogenes isolates to organic acids (n = 6) at pH 7. 

 

  MIC (mM) 

Sample no Origin* ACE BNZ BUT CIT FMC LAC MAL PSB PPN SBZ SCT SPP SOR 

 

60 

77 

126 

138 

139 

141 

 

CA offal (neck, intestines) 

CA water after 1st rinsing 

RTE sashimi 

RTE californian roll (prawn) 

RTE maki 

RTE californian roll (salmon) 

 

25 

50 

50 

25 

25 

25 

 

30 

30 

20 

20 

20 

20 

 

50 

50 

25 

25 

25 

25 

 

20 

20 

20 

20 

20 

20 

 

20 

20 

25 

25 

25 

25 

 

50 

50 

50 

100 

50 

50 

 

20 

20 

20 

20 

20 

20 

 

200 

200 

300 

300 

300 

300 

 

25 

25 

50 

50 

50 

25 

 

150 

150 

150 

150 

150 

150 

 

>150 

>150 

>150 

>150 

>150 

>150 

 

300 

300 

300 

300 

250 

300 

 

20 

20 

>30 

>30 

>30 

>30 

   *CA = chicken abattoir, RTE = ready-to-eat. 

 ACE = acetic acid, BNZ = benzoic acid, BUT = butyric acid, CIT = citric acid, FMC = fumaric acid, MAL = malic acid, PSB = potassium sorbate, 
SCT = sodium citrate, SPP = sodium propionate, SOR = sorbic acid. 
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Table A.6: Susceptibility of Listeria welshimeri isolates to organic acids (n = 36) at pH 5. 

  MIC (mM) 

Sample no Origin* ACE BNZ BUT CIT FMC LAC MAL PSB PPN SBZ SCT SPP SOR 

 
51 
53 
54 
55 
56 
57 
58 
59 
61 
62 
63 
64 
65 
66 
67 
75 
76 
79 
80 
81 
82 
83 
85 
86 
87 
88 
89 
91 
92 
95 
96 
97 
98 
99 
115 

 
CA  piece of meat on floor 
CA water after defeathering 
CA brine water 
CA drumstick 
CA wing 
CA small fillet 
CA large fillet 
CA bone after deboning 
CA frozen piece of meat 
CA ice from frozen meat 
CA frozen piece of meat 
CA ice scraping 
CA whole carcass 
CA stomach 
CA intestines 
CA feathers 
CA drain sample 
CA water after defeathering 
CA brine water 
CA drain sample 
CA feathers 
CA intestines 
CA intestines 
CA wing 
CA liver 
CA stomach 
CA stomach 
CA neck 
CA drumstick after brine dip 
CA fresh piece before packaging 
CA bone after deboning 
CA fillet 
CA fillet 
CA Ice scrapings 
RTE Pasta salad 

 
2.5 
5 
5 

2.5 
5 
5 
5 
5 
5 
5 
5 
5 

2.5 
2.5 
5 
5 
5 

2.5 
2.5 
5 
5 
5 

2.5 
5 

�0.5 
�0.5 
�0.5 
�0.5 
�0.5 
�0.5 

1 
2.5 
2.5 
5 
1 

 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 
10 
10 
10 
5 

10 
10 
10 
10 
10 
5 

10 
10 
10 
5 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2.5 
1 

 
10 
10 
10 
5 

10 
10 
10 
10 
10 
10 
10 
10 
10 
5 

10 
10 
10 
5 
5 
5 
5 

10 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 
10 
10 

 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
5 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
5 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
5 
5 

 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
10 
10 
10 
5 

2.5 
10 
10 
10 
10 
10 
10 

 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

�0.5 
�0.5 

1 
1 

�0.5 
�0.5 

1 
1 

�0.5 
10 
5 

 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 

 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
50 
10 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 
10 

 
5 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 
5 

*CA = chicken abattoir, RTE = ready-to-eat. 

ACE = acetic acid, BNZ = benzoic acid, BUT = butyric acid, CIT = citric acid, FMC = fumaric acid, MAL = malic acid, PSB = potassium sorbate, 
SCT = sodium citrate, SPP = sodium propionate, SOR = sorbic acid. 
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Table A.7: Susceptibility of Listeria welshimeri isolates to organic acids (n = 36) at pH 7. 

  MIC (mM) 

Sample no Origin* ACE BNZ BUT CIT FMC LAC MAL PSB PPN SBZ SCT SPP SOR 

 
51 
53 
54 
55 
56 
57 
58 
59 
61 
62 
63 
64 
65 
66 
67 
75 
76 
79 
80 
81 
82 
83 
85 
86 
87 
88 
89 
91 
92 
95 
96 
97 
98 
99 
115 

 
CA  piece of meat on floor 
CA water after defeathering 
CA brine water 
CA drumstick 
CA wing 
CA small fillet 
CA large fillet 
CA bone after deboning 
CA frozen piece of meat 
CA ice from frozen meat 
CA frozen piece of meat 
CA ice scraping 
CA whole carcass 
CA stomach 
CA intestines 
CA feathers 
CA drain sample 
CA water after defeathering 
CA brine water 
CA drain sample 
CA feathers 
CA intestines 
CA intestines 
CA wing 
CA liver 
CA stomach 
CA stomach 
CA neck 
CA drumstick after brine dip 
CA fresh piece before packaging 
CA bone after deboning 
CA fillet 
CA fillet 
CA Ice scrapings 
RTE Pasta salad 

 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
50 
50 
50 
50 
25 
50 
50 
50 
25 
20 
20 
20 
20 
20 
20 
20 
20 
25 
50 
25 

 
20 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

 
50 
50 
50 
20 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
20 
50 
50 
50 
50 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 

 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
25 
25 
25 
25 
25 
25 

 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 

 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 

 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 

 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
100 
100 
100 
100 
100 
100 
100 
100 
150 
150 
150 

 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
>150 
150 
150 
150 
150 

>150 
150 
150 
150 

>150 
>150 
>150 

 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 

 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

>30 
>30 
>30 
>30 
>30 
>30 
>30 
>30 
>30 
>30 
>30 

*CA = chicken abattoir, RTE = ready-to-eat. 
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Table A.8: Susceptibility of Listeria innocua isolates to organic acids (n = 8) at pH 5. 

 

  MIC (mM) 

Sample no Origin* ACE BNZ BUT CIT FMC LAC MAL PSB PPN SBZ SCT SPP SOR 

 

84 

105 

151 

152 

153 

157 

158 

172 

 

CA head and claws 

RTE tuna pasta 

DAIRY raw milk 

DAIRY raw milk 

DAIRY raw milk 

DAIRY raw yoghurt 

DAIRY raw yoghurt 

DAIRY raw milk 

 

25 

1 

5 

5 

5 

25 

25 

2.5 

 

10 

1 

1 

1 

1 

1 

1 

1 

 

10 

5 

10 

10 

10 

10 

10 

10 

 

2.5 

2.5 

2.5 

2.5 

2.5 

5 

5 

5 

 

5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

 

10 

10 

10 

10 

10 

10 

10 

10 

 

10 

5 

5 

5 

5 

5 

5 

5 

 

20 

10 

10 

10 

50 

10 

10 

10 

 

2.5 

5 

5 

5 

10 

10 

10 

5 

 

20 

5 

5 

5 

5 

5 

5 

5 

 

>150 

>150 

>150 

>150 

>150 

>150 

>150 

>150 

 

20 

5 

10 

10 

10 

10 

10 

10 

 

10 

5 

5 

5 

5 

5 

5 

5 

    *CA = chicken abattoir, RTE = ready-to-eat. 

 ACE = acetic acid, BNZ = benzoic acid, BUT = butyric acid, CIT = citric acid, FMC = fumaric acid, MAL = malic acid, PSB = potassium sorbate, 
SCT = sodium citrate, SPP = sodium propionate, SOR = sorbic acid. 
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Table A.9: Susceptibility of Listeria innocua isolates to organic acids (n = 8) at pH 7. 

 

  MIC (mM) 

Sample no Origin* ACE BNZ BUT CIT FMC LAC MAL PSB PPN SBZ SCT SPP SOR 

 

84 

105 

151 

152 

153 

157 

158 

172 

 

CA head and claws 

RTE tuna pasta 

DAIRY raw milk 

DAIRY raw milk 

DAIRY raw milk 

DAIRY raw yoghurt 

DAIRY raw yoghurt 

DAIRY raw milk 

 

50 

50 

50 

50 

50 

25 

25 

25 

 

30 

20 

20 

20 

20 

20 

20 

20 

 

50 

25 

25 

25 

25 

25 

25 

25 

 

20 

20 

20 

20 

20 

25 

25 

20 

 

20 

25 

25 

25 

25 

25 

25 

25 

 

50 

50 

50 

50 

50 

50 

50 

50 

 

20 

20 

20 

20 

20 

20 

20 

20 

 

200 

300 

300 

300 

300 

300 

150 

150 

 

25 

50 

50 

50 

50 

50 

50 

50 

 

150 

150 

150 

150 

150 

150 

150 

150 

 

>150 

>150 

>150 

>150 

>150 

>150 

>150 

>150 

 

300 

150 

300 

300 

300 

300 

250 

250 

 

20 

>30 

>30 

>30 

>30 

>30 

>30 

>30 

    *CA = chicken abattoir, RTE = ready-to-eat. 

 ACE = acetic acid, BNZ = benzoic acid, BUT = butyric acid, CIT = citric acid, FMC = fumaric acid, MAL = malic acid, PSB = potassium sorbate, 
SCT = sodium citrate, SPP = sodium propionate, SOR = sorbic acid. 
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APPENDIX B 
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Table B.1: Total protein profiles of Listeria monocytogenes 60 after induction 

with various antimicrobial agents.  Notable MIC increases are 

depicted below the protein bands. 

 

 Induced strainab Visible protein 
bands (kDa) 

 6O no 
induction 

60 CA  60 LA 60 CP 60 TE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ciprofloxacin 
 
Tetracycline 

 
+ 
+ 
+ 
+ 
 
 
 
 
 
 
 

0.5 µg/ml 
 

0.5 µg/ml 

 
+ 
+ 
+ 

 
+ 
+ 
+ 

+ 
 
 
 

+ 
+ 
+ 
 

+ 
+ 
+ 
 

128 µg/ml 

 
 
 
 

+ 
+ 
+ 
+ 
 
 
 
 
 
 

16 µg/ml 

9.8 
32.5 
33.3 
33.6 
37.2 
41.4 
44.5 
47 

48.5 
85.1 
104.3 

a Inducing agent:  CA = citric acid, LA = lactic acid, CP = ciprofloxacin, TE = tetracycline. 
b Final induction concentrations: citric acid 20 mM, lactic acid 40 mM, ciprofloxacin 32 µg/ml, 

tetracycline 32 µg/ml. 
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Table B.2: Total protein profiles of Listeria monocytogenes 138 after induction 

with various antimicrobial agents.  Notable MIC increases are 

depicted below the protein bands. 

 

 Induced strainab Visible protein 
bands (kDa) 

 138 no 
induction 

138 AA 138 LA 138 TE  

 

 

 

 

 

 

 

 

 

 

 

Ampicillin 

 

Tetracycline 

 

+ 

 

+ 

+ 

+ 

+ 

 

 

 

 

1 µg/ml 

 

1 µg/ml 

 

 

+ 

 

 

 

 

 

 

 

 

4 µg/ml 

 

 

 

 

 

+ 

+ 

+ 

+ 

+ 

+ 

 

 

+ 

+ 

+ 

 

4 µg/ml 

 

16 µg/ml 

5.4-27.5 

32.7 

33.3 

33.6 

35.3 

37 

37.2 

39.6 

41.4 

44.5-113.8 

 

a Inducing agent:  AA = Acetic acid, LA = lactic acid, TE = tetracycline. 
b Final induction concentrations: acetic acid 40 mM, lactic acid 40 mM, tetracycline 32 µg/ml 
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Table B.3: Total protein profiles of Listeria monocytogenes 139 after induction 

with various antimicrobial agents.  Notable MIC increases are 

depicted below the protein bands. 

 

 Induced strainab Visible protein 
bands (kDa) 

 139 no 
induction 

139 AA 139 CA 139 TE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ampicillin 

Tetracycline 

Acetic acid 

 

 

+ 

 

 

+ 

 

 

 

 

 

 

 

 

 

 

 

1 µg/ml 

1 µg/ml 

2.5 mM 

 

 

 

 

+ 

+ 

+ 

 

 

 

 

 

 

 

+ 

 

 

4 µg/ml 

 

10 mM 

 

 

 

 

+ 

+ 

+ 

 

 

+ 

 

 

+ 

 

 

+ 

 

4 µg/ml 

 

10 mM 

+ 

+ 

 

+ 

 

 

 

+ 

+ 

 

+ 

+ 

 

+ 

+ 

 

+ 

4 µg/ml 

16 µg/ml 

10 mM 

5.4 

9.8 

11.6 

15.8-32 

33.3 

33.6 

35.3 

39.6 

41.4 

47 

48.5 

50.3 

54.4 

57.7-80.6 

85.1 

87.9 

89-135.2 

 

a Inducing agent:  AA = Acetic acid, CA = citric acid, TE = tetracycline. 
b Final induction concentrations: acetic acid 40 mM, citric acid 20 mM, tetracycline 32 µg/ml 
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Table B.4: Total protein profiles of Listeria monocytogenes ATCC 19111 after 

induction with various antimicrobial agents.  Notable MIC increases 

are depicted below the protein bands. 

 Induced strainab Visible protein 
bands (kDa) 

 No induction AA LA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ciprofloxacin 

+ 

 

+ 

+ 

+ 

+ 

 

+ 

+ 

+ 

 

 

 

+ 

 

 

 

 

 

 

+ 

+ 

0.5 µg/ml 

 

 

+ 

+ 

+ 

+ 

+ 

+ 

 

 

 

+ 

 

+ 

 

+ 

 

+ 

+ 

+ 

+ 

+ 

2 µg/ml 

 

+ 

+ 

+ 

+ 

+ 

 

+ 

 

 

+ 

+ 

+ 

+ 

+ 

 

+ 

 

+ 

 

+ 

+ 

2 µg/ml 

5.4 

9.8 

13.2 

17.5 

20.3 

32.7 

33.3 

33.6 

37 

37.2 

39.6 

44.5 

51.6 

59.8 

61.5 

63.6 

69.5 

71.1 

75.3 

78 

85.1 

95.5 

 

a Inducing agent:  AA = Acetic acid, LA = lactic acid. 
b Final induction concentrations: acetic acid 40 mM, lactic acid 40 mM. 
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Table B.5: Total protein profiles of Listeria welshimeri 87 after induction with 

various antimicrobial agents.  Notable MIC increases are depicted 

below the protein bands. 

 Induced strainab Visible protein 
bands (kDa) 

 87 no 
induction 

87 LA  87 PE 87 CP 87 TE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ampicillin 
Ciprofloxacin 
Penicillin 
Tetracycline 
Acetic acid 

 
 
 
 

+ 
+ 
+ 
 
 
 
 
 
 
 
 
 
 
 

+ 
 
 
 
 
 
 
 
 
 
 
 
 

�� J�PO 
���� J�PO 

������ J�PO 
���� J�PO 
�0.5 mM 

 
+ 
+ 
 
 

+ 
+ 
+ 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 mM 

+ 
 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
 
 

+ 
 
 

+ 
 

+ 
+ 
+ 
+ 
+ 
+ 
 

+ 
+ 
+ 
+ 
+ 
 

+ 
 

��� J�PO 
 

��� J�PO 
 

5mM 

 
+ 
 

+ 
 

+ 
 

+ 
 

+ 
+ 
 
 

+ 
 
 

+ 
+ 
 
 

+ 
+ 
 
 
 
 
 

+ 
+ 
 
 
 

���� J�PO 
 

�� J�PO 
5 mM 

+ 
 
 
 
 
 

+ 
 
 

+ 
+ 
+ 
 

+ 
 
 
 
 
 

+ 
 
 
 

+ 
 
 
 
 
 
 
 
 
 
 

��� J�PO 

7.4 
9.8 
17.5 
27.5 
32 

32.7 
33.6 
35.3 
37 

37.3 
39.6 
41.4 
44.5 
48.5 
50.3 
51.6 
54.4 
57.7 
63.6 
69.5 
80.6 
87.9 
89 

93.4 
95.5 

100.8 
104.3 
107.8 
113.8 
122 

 
 

a Inducing agent: LA = lactic acid, PE = Penicillin, CP = ciprofloxacin, TE = tetracycline. 
b Final induction concentrations: lactic acid 40 mM, penicillin 1 µg/ml, ciprofloxacin 32 µg/ml, 

tetracycline 32 µg/ml. 



� �

Table B.6: Total protein profiles of Listeria welshimeri 88 after induction with 

various antimicrobial agents.  Notable MIC increases are depicted 

below the protein bands. 

 

 Induced strainab Visible protein 
bands (kDa) 

 88 no 
induction 

88 CA  88 LA 88 CP 88 TE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ciprofloxacin 
 
Tetracycline 

 
+ 
 
 
 
 
 
 
 
 
 
 

0.5 µg/ml 
 

0.5 µg/ml 

 
+ 
+ 
+ 
+ 
+ 

 
+ 
 
 

+ 
 
 

+ 
 
 

+ 
+ 
+ 
+ 
+ 
+ 

128 µg/ml 

 
 
 
 
 
 

+ 
 
 
 
 

+ 
 
 

16 µg/ml 

9.8 
32.7 
33.3 
33.6 
35.3 
37.3 
39.3 
41.4 
44.5 
48.5 
82.3 
104.3 

a Inducing agent:  CA = citric acid, LA = lactic acid, CP = ciprofloxacin, TE = tetracycline. 
b Final induction concentrations: citric acid 20 mM, lactic acid 40 mM, ciprofloxacin 32 µg/ml, 

tetracycline 32 µg/ml. 



� �

Table B.7: Total protein profiles of Listeria welshimeri 92 after induction with 

various antimicrobial agents.  Notable MIC increases are depicted 

below the protein bands. 

 Induced strainab Visible protein 
bands (kDa) 

 92 no 
induction 

92 CA 92 CP 92 TE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ciprofloxacin 

Tetracycline 

Acetic acid 

+ 
+ 
+ 
+ 
 
 

+ 
+ 
 

+ 
+ 
 
 

+ 
 
 
 
 

+ 
 
 
 
 

���� J�PO 

���� J�PO 

�0.5 mM 

+ 
+ 
+ 
+ 
 
 
 

+ 
 

+ 
+ 
 

+ 
+ 
+ 
 
 

+ 
 

+ 
+ 
 
 

 
 

10 mM 

+ 
 
 
 

+ 
+ 
 

+ 
+ 
+ 
 

+ 
 
 
 
 

+ 
 

+ 
 
 

+ 
 

���� J�PO 

 
 
 
 

+ 
+ 
 
 
 

+ 
+ 
 
 
 
 

+ 
 

+ 
 
 
 
 

+ 
 

��� J�PO 

5.4 
15.8 
17.5 
23.2 
35.3 
37.3 
39.6 
41.4 
44.5 
47 

48.5 
54.4 
63.6 
71.1 
72.6 
75.3 
78 

82.3 
85.1 
87.9 
93.4 
98.6 

100.8 
 

a Inducing agent: CA = citric acid, CP = ciprofloxacin, TE = tetracycline. 
b Final induction concentrations: citric acid 20 mM, ciprofloxacin 32 µg/ml, tetracycline 32 µg/ml. 



� �

Table B.8: Total protein profiles of Listeria welshimeri 95 after induction with 

various antimicrobial agents.  Notable MIC increases are depicted 

below the protein bands. 

 Induced strainab Visible protein 
bands (kDa) 

 95 no 
induction 

95 LA 95 CP 95 TE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ciprofloxacin 

Tetracycline 

Acetic acid 

+ 

 

+ 

 

+ 

+ 

 

 

+ 

 

 

+ 

 

 

 

+ 

 

 

 

���� J�PO 

���� J�PO 

�0.5 mM 

 

 

+ 

+ 

+ 

+ 

 

 

+ 

 

 

+ 

 

 

 

 

+ 

 

 

 

 

5 mM 

 

+ 

 

 

 

 

+ 

+ 

 

 

+ 

 

+ 

+ 

 

 

 

+ 

 

���� J�PO 

 

5 mM 

 

+ 

 

 

 

 

+ 

+ 

+ 

+ 

+ 

 

+ 

 

+ 

 

 

 

+ 

 

��� J�PO 

5 mM 

5.4 

7.4 

15.8 

17.5 

20.3 

23.2 

35.3 

39.6 

41.4 

44.5 

47.1 

48.5 

72.6 

82.3 

85.1 

87.9 

89 

100.8 

104.3 

 

a Inducing agent:  LA = Lactic acid, CP = ciprofloxacin, TE = tetracycline. 
b Final induction concentrations: lactic acid 40 mM, FLSURIOR[DFLQ���� J�PO, tetracycline 32 µg/ml. 
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Table B.9: Total protein profiles of Listeria welshimeri ATCC 35897 after 

induction with various antimicrobial agents.  Notable MIC increases 

are depicted below the protein bands. 

 Induced strainab Visible protein 
bands (kDa) 

 No induction CA TE  

 

 

 

 

 

 

 

 

 

 

 

Tetracycline 

Acetic acid 

 

 

 

 

+ 

+ 

+ 

 

+ 

 

 

+ 

+ 

 

������ J�PO 

1 mM 

 

 

 

+ 

 

+ 

+ 

 

 

 

 

 

 

 

 

10 mM 

+ 

+ 

 

 

 

 

 

+ 

 

+ 

+ 

 

+ 

 

�� J�PO 

10 mM 

5.4 

13.2 

20.3 

23.2 

32.3 

33.6 

35.3 

41.4 

44.5 

48.5 

69.5 

78 

85.1 

 

a Inducing agent:  CA = Citric acid, TE = tetracycline. 
b Final induction concentrations: citric acid 20 mM, WHWUDF\FOLQH��� J�PO� 
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Table B.10: Total protein profiles of Listeria innocua 105 after induction with 

various antimicrobial agents.  Notable MIC increases are depicted 

below the protein bands. 

 Induced strainab Visible protein 
bands (kDa) 

 105 no 
induction 

105 AA  105 CA 105 LA 105 TE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ampicillin 

Tetracycline 

 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
 
 
 
 
 
 
 
 
 
 

�� J�PO 

�� J�PO 

 
 
 
 

+ 
 

+ 
+ 
+ 
+ 
+ 
 
 
 
 
 
 
 
 
 
 

�� J�PO 

 
 
 
 

+ 
 
 
 

+ 
 

+ 
 
 
 
 
 
 
 
 
 
 

�� J�ml 

 
 
 
 
 
 
 
 
 
 

+ 

+ 
 
 
 
 
 
 
 
 
 
 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
 

�� J�PO 

��� J�PO 

7.4 
9.8 

11.6 
23.2 
32.5 
32.7 
33.3 
33.6 
35.3 
37 

37.3 
39.6 
47.1 
63.6 
69.5 
80.6 
82.3 
93.4 
98.6 
104.3 

 

a Inducing agent: AA = acetic acid, CA = citric acid, LA = lactic acid, TE = tetracycline. 
b Final induction concentrations: acetic acid 40 mM, citric acid 20 mM, lactic acid 40 mM, tetracycline 

32 µg/ml. 
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Table B.11: Total protein profiles of Listeria innocua ATCC 33090 after induction 

with various antimicrobial agents.  Notable MIC increases are 

depicted below the protein bands. 

 Induced strainab Visible protein  

 No induction AA CA LA TE bands (kDa) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gentamicin 
 

Tetracycline 

 
+ 
 

+ 
 
 
 
 
 
 
 

+ 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
 
 
 
 
 
 

�� J�PO 
 

�� J�PO 

 
+ 
 
 
 
 
 
 
 
 
 

+ 
 

+ 
 
 
 
 

+ 
 
 

+ 
+ 
 

+ 
 
 
 
 

 
+ 
 

+ 
 
 
 

+ 
 
 

+ 
 

+ 
 

+ 
+ 
 
 

+ 
+ 
+ 
 
 
 

+ 

 
+ 
+ 
+ 
 

+ 
 
 
 
 

+ 
+ 
+ 
+ 
 

+ 
 

+ 
+ 
 
 
 
 
 
 

+ 
 
 

+ 
 
 

�� J�PO 
 

+ 
 
 
 

+ 
+ 
+ 
+ 
+ 
+ 
 
 
 
 
 
 

+ 
+ 
+ 
 

+ 
+ 
+ 
+ 
 

+ 
+ 
+ 
+ 
+ 
 
 
 

��� J�PO 

5.4 
7.4 
11.6 
13.2 
15.8 
17.5 
20.3 
23.2 
27.5 
32 

32.5 
32.7 
33.2 
33.6 
35.3 
37.3 

41.4-48.5 
51.6 
54.4 
57.6 
59.8 
61.5 
65.7 

69.5-80.6 
82.3 
85.1 
87.9 
89 

93.4 
107.8 

 
 

a Inducing agent: AA = acetic acid, CA = citric acid, LA = lactic acid, TE = tetracycline. 
b Final induction concentrations: acetic acid 40 mM, citric acid 20 mM, lactic acid 40 mM, tetracycline 16 µg/ml. 
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