

Genome-wide analysis and genome mapping of essential

cytochrome P450 monooxygenase CYP125 in

mycobacteria

By

Richie Monyaki

Dissertation submitted in fulfilment of the requirements of the degree

Master of Health Sciences in Biomedical Technology

Department of Health Sciences

Central University of Technology, Free State

08 November 2016

Promoter: Prof. Samson Sitheni Mashele

Co-Promoter: Prof. Khajamohiddin Syed

© Central University of Technology, Free State

DECLARATION

I, **RICHIE MONYAKI**, (South African ID number:) hereby certify that the dissertation submitted by me for the degree MASTER OF HEALTH SCIENCES IN BIOMEDICAL TECHNOLOGY, is my own independent work; and complies with the Code of Academic Integrity, as well as other relevant policies, procedures, rules and regulations of the Central University of Technology (Free State). I hereby declare, that this research project has not been previously submitted before to any university or faculty for the attainment of any qualification. I further waive copyright of the dissertation in favour of the Central University of Technology (Free State).

Furthermore, I declare that some of the contents used in the thesis are my own work published in Nature publishing group journal "Scientific Reports" (as listed in Abstract of the thesis) where I serve as a co-author.

MONYAKI RICHIE

DATE

ACKNOWLEDGEMENTS

I pass my sincere gratitude to the following individuals for the success of my study to:

- My supervisor Prof. Samson Setheni Mashele for guidance and his un-measurable support.
- My Co-supervisor Prof. Khajamohiddin Syed, for guidance and full support in every aspect. I could not have made it without him.
- Research and Innovation Fund, Central University of Technology, Free State for funding my studies.
- National Research Foundation scholarship for funding my studies.
- Mrs Dieketseng Monyaki, My Mother, for the unmeasurable love, support, guidance throughout my life and also through the duration of this study.
- My late Father Mr Tshehla Paulus Monyaki for showing me the potential I have and teaching me on how to tackle the difficulties in life and coming out the as the better person throughout every situation. This thesis is dedicated to you as you couldn't be around to see my success. You are always in my heart.
- My brother Buza Monyaki and my relatives for the support and trust in me.
- My friends, I am so grateful for your love and support.
- My colleagues at the Faculty of Health and Environmental Sciences, Department of Biomedical Technology at the Central University of Technology especially my research team for their overwhelming friendship and motivation.
- To my Creator for my existence, protection, guidance and blessings I am provided with.

"The function of education is to teach one to think intensively and to think critically. Intelligence plus character - that is the goal of true education."

Martín Luther Kíng, Jr

TABLE OF CONTENTS

		Page
LIST	OF ABBREVIATIONS AND ACRONYMS	IX
LIST OF FIGURES		
LIST	T OF TABLES	XII
СНА	PTER 1: ABSTRACT	1
СНА	PTER 2: INTRODUCTION AND LITERATURE REVIEW	
2.1.	Introduction to P450s	4
2.2.	P450 nomenclature	6
2.3.	Applications of P450s	7
	2.3.1. Production of Drug Metabolites	7
	2.3.2. Phytoremediation	9
	2.3.3. Selective oxidations of macrolide antibiotics	10
2.4.	Genome data-mining for P450s	11
2.5.	Phylogenetic analysis of P450s	14
2.6.	Synteny analysis and genome mapping of P450s	15
2.7.	Mycobacterium Tuberculosis	16
	2.7.1. Essential or important P450s in <i>M. tuberculosis</i>	18
2.8.	Rationale for the study	18
	2.8.1. Aims and objectives	20
2.9.	References	21

CHAPTER 3: ANNOTATION AND PHYLOGENETIC ANALYSIS OF

CYTOCHROME P450 MONOOXYGENASE CYP125 FAMILY IN THE GENUS

MYCOBACTERIUM

3.1.	Introduction		31
3.2.	Methods		33
	3.2.1.	Species used in the study	33
	3.2.2.	Genome data mining and annotation of CYP125	
		in Mycobacterium	33
	3.2.3.	Phylogenetic analysis of mycobacterial CYP125 P450s	34
3.3.	Results and Discussion		39
3.4.	Conclusion		44
3.5.	References		45
APPE	NDIX		51

CHAPTER 4: CYP125 P450 GENE MAPPING AND GENE-CLUSTER ANALYSIS IN THE GENUS *MYCOBACTERIUM*

4.1.	Introduction	65
4.2.	Methodology	
	4.2.1. P450s	66
	4.2.2. Genome mapping and gene-cluster analysis of CYP125	66
	4.2.3. Visualization of gene-cluster maps	67
4.3.	Results and discussion	67
4.4.	Conclusion	78

4.5. References	79
APPENDIX	82
CHAPTER 5: CONCLUSIONS AND FUTURE PERSPECTIVES	114
RESEARCH OUTPUTS	
Research articles	115
Conference Attendance	116
Media coverage	118

LIST OF ABBREVIATIONS AND ACRONYMS

%	Percentage
>	Greater than
=	Equals to
С-Н	Carbon–hydrogen
CYPs/P450s	Cytochrome P450 monooxygenases
CYPED	Cytochrome P450 Engineering Database
et al.,	Et alia (and others)
H ₂ O	Water
H^+	Hydrogen ion
HIV	Human Immune Virus
KEGG	Kyoto Encyclopedia of Genes and Genomes
M. avium	Mycobacterium avium
MAC	Mycobacterium avium complex
MCAC	Mycobacterium chelonae-abscessus complex
MDR	Multidrug-resistant
MEGA	Molecular Evolutionary Genetics Analysis
M. tuberculosis	Mycobacterium tuberculosis
MTBC	Mycobacterium tuberculosis complex
NADP	Nicotinamide adenine dinucleotide phosphate
NADP ⁺	Reduced nicotinamide adenine dinucleotide phosphate

NCBI CDD	National Center for Biotechnology Information Conserved
	Domain Database
NS	New Subfamily
NTM	Nontuberculous mycobacteria
N-terminal	Amino terminal end
nm	Nanometre
O ₂	Oxygen
SAP	Saprophytes
TB	Tuberculosis
TCE	Trichloroethylene
TRaSH	Transposon-site-hybridization-mutagenesis
WHO	World Health Organization
XDR	Extensively drug-resistant
USA	United States of America

List of figures

LIST OF FIGURES

		Page
Figure 2.1	Reactions catalysed by P450s	5
Figure 2.2	Cytochrome P450 monooxygenases role as	
	drug targets and new drug discovery processes.	8
Figure 2.3	CYP2E1 mediated transformation for	
	Trichloroethylene (TCE)	9
Figure 2.4	Macrolide antibiotics originating from	
	erythromycin A and their hydroxylated	
	derivatives produced by P450 PikC	11
Figure 2.5	Protocol for automated identification and	
	classification of P450s	14
Figure 2.6	Synteny analysis of P450s in Thielavia terrestris	15
Figure 3.1	The oxidation of cholesterol and cholesten-4-en-3-one	32
Figure 3.2	Phylogenetic analysis CYP125 P450s in mycobacterial	
	species	43
Figure 4.1	CYP125 gene-clusters (clusters 1 to 20)	
	analysis in the genus Mycobacterium	69
Figure 4.2	CYP125 unique gene-clusters (clusters 21 to 28)	
	analysis in the genus Mycobacterium	77

LIST OF TABLES

Page

Table 3.1	Properties of CYP125A1	31
Table 3.2	Information on mycobacterial species with codes	
	in parenthesis and their respective genome database links	
	used in the study	35
Table 3.3	Genome data mining and annotation of CYP125 P450s	
	in 60 mycobacterial species	39
Table 3.4	Analysis of CYP125 P450 family in different	
	mycobacterial categories	42
Table 4.1	Analysis of CYP125 gene clusters in the genus Mycobacterium	70

Chapter 1

Abstract

Tuberculosis, an infectious lung disease, is a leading cause of death worldwide caused by *Mycobacterium tuberculosis*. Genome-wide screening for genes essential for the survival of *M. tuberculosis* has revealed that cytochrome P450 monooxygenase CYP125A1 is critical for *M. tuberculosis* survival. CYP125A1 play key role in oxidation of cholesterol and help *M. tuberculosis* to utilize cholesterol as a carbon source during its inhabitant in host organism. Despite this great importance, to date, genome wide identification, annotation and phylogenetic analysis of CYP125A1 and its genome mapping with respect to gene-cluster analysis across mycobacterial species has not been performed. Also, to date, P450s from prokaryote organisms has not been subjected to evolutionary analysis. This study addresses these two research gaps.

Genome data-mining and annotation of CYP125 P450s across 60 mycobacterial species revealed presence of a total number of 120 CYP125 P450s that can be grouped into five subfamilies (A, D, E, F, NS). Analysis of CYP125 P450s distribution in different mycobacterial categories revealed that *Mycobacterium tuberculosis* complex (MTBC) species showed lowest copies of CYP125 in their genomes compared to other categories. This study revealed that CYP125 P450 is not present in Mycobacteria causing leprosy (MCL) species. *Mycobacterium avium* complex (MAC) and Saprophytes (SAP) species showed highest number of CYP125 subfamilies in their genomes. Analysis of CYP125 P450 subfamily patterns in mycobacterial categories revealed MAC species have highest diversity of CYP125 subfamilies followed by species belong to SAP and Nontuberculous mycobacteria (NTM). Presence of more than one copy of CYP125 in some mycobacterial categories suggests important role of this P450s in their physiology. Analysis of subfamily patterns in mycobacterial categories revealed MAC species have highest diversity of CYP125

subfamilies followed by species belong to SAP and NTM. Among subfamilies, subfamily A is more dominant across mycobacterial species. Subfamily D is present only in species belonging to MAC and NTM. Subfamily E is present only in species belonging to MAC. Subfamily F and NS is present in MAC and SAP.

Analysis of CYP125 gene clusters in the genus *Mycobacterium* revealed presence of 28 CYP125 gene-clusters. Gene clusters 1 to 20 comprised of quite a number of CYP125 P450s ranging from 2 to 23 and gene clusters 21 – 28 named as unique gene clusters considering each of the CYP125 P450 in this cluster have different genes both in the upstream and downstream of CYP125. Overall, SAP species showed highest CYP125 gene cluster diversity (10 clusters including 1 unique cluster) followed by MAC (8 clusters including 3 unique clusters), NTM (5 clusters including 3 unique clusters), MCAC (4 clusters) and MTBC (2 clusters including one unique cluster). This study is first of its kind on analysis of gene-clusters in prokaryote P450s. Some of the CYP125 P450s in different clusters have reverse complement arrangement of genes compared to other CYP125s in the same cluster. These P450s are under investigation for further analysis of possible gene rearrangement events in the chromosome.

Results generated in this study on genome data mining, identification, annotation and phylogenetic analysis of CYP125 is published as part of major article on mycobacterial P450s where I am a co-author. The article details are:

R Monyaki (co-author) (2016) Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s. Scientific Reports 6, Article number: 33099.

Apart from my Masters study, I supervised two B. Tech student projects and also worked on a few other bioinformatics projects and earned co-authorship in high impact factor journal listed below:

R Monyaki (co-author) (2015) Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes. Scientific Reports 5, Article number: 11572.

Article as first author on CYP125 gene-cluster analysis under preparation for submission to Plos ONE.

In addition to the above credits, I was featured on national TV and in newspapers for discovering a novel drug target. I also presented work at both national and international (Canada) conferences.

Chapter 2

Introduction and Literature review

2.1. Introduction to P450s

Cytochrome P450 monooxygenases (CYPs/P450s) are mixed function oxidoreductases ubiquitously distributed across all biological kingdoms (Nelson, 2013). P450s are well known for their role in essential cellular anabolic and catabolic processes. P450s are mainly characterized by their ability to absorb light at the 450nm peak by the heme cofactor and also their potential to oxidize a wide range of metabolic substrates and xenobiotic compounds. Independent studies carried out by Klingenberg (1958) and Garfinkel (1958) resulted in discovery of a carbon monoxide-binding pigment with a unique absorption maximum at 450 nm in rat and pig liver microsomes. P450s participate in a large number of primary, secondary and xenobiotic metabolic reactions. P450s are found to be involved in the production of metabolites critical for specific processes such as pathogenesis, the utilization of specific substrates, and/or the detoxification of xenobiotics (described in Ortiz de Montellano, 2015). This phenomenon has resulted in the interweaving of the evolution of the P450s with organism adaptation to several ecological niches (Syed et al., 2014a). Their ability to neutralize toxic chemical substrates and also synthesize metabolites has brought forward the hypothesis that they may have evolved through the chemical warfare waged among plants, animals, insects, and microbes (Gonzalez and Nebert, 1990; Lewis et al., 1998).

Upon the breakthrough of the discovery of P450s, studies on these enzymes have sparked interest among chemists, biochemists and biotechnologists worldwide. The work done on these P450's during the last 55 years has shown great advancements not only from the perspective of proceeding essential understanding but also at looking at the industrial perspectives. Their applications in the synthesis of oxyfunctionalized building blocks closely linked with the retrieval of new important compounds in demand (such as specialty chemicals and pharmaceutical synthons) are of immense importance (described in Syed and Yadav, 2012). Moreover, P450s have a great potential for the development of biosensors, as well as in bioremediation (described in Syed and Yadav, 2012).

The most common reaction catalysed by P450s is a monooxygenase reaction i.e., insertion of one atom of oxygen into the aliphatic position of an organic substrate (RH) while the other oxygen atom is reduced to water as shown below:

$RH + O_2 + NADPH + H^{\star} \rightarrow ROH + H_2O + NADP^{\star}$

In addition to the typical monooxygenase reaction, P450s also perform catalytically diverse reactions as shown in Figure 2.1.

Hydrocarbon hydroxylation Alkene epoxidation Alkyne oxygenation Arene epoxidation Aromatic hydroxylation N-Dealkylation S- Dealkylation O- Dealkylation N-Hydroxylation N-Oxidation S-Oxidation Oxidative deamination Oxidative dehalogenation Alcohol and aldehyde oxidations Dehydrogenation Dehydratations Reductive dehalogenation N-Oxide reduction Epoxide reduction Reductive B-scission of alkyl peroxides NO reduction Isomerizations Oxidative C-C bond cleavage

Figure 2.1. Reactions catalysed by P450s (taken from Sono et al., 1996; Bernhardt, 2006)

2.2. P450 nomenclature

P450s usually represent with code name such as "CYP1A2" where "CY" stands for cytochrome meaning hemoprotein; "P" is an abbreviation for pigment which absorbs light at 450 nm; the number that follow the "P" i.e. 1, represent the family; the letter "A" represent the subfamily and the number "2" represents the position in the subfamily (Nebert *et al.*, 1987 and 1991; Nelson, 1999).

The great diversification of P450's amongst living life forms such as insects, bacteria and fungi has brought forward a dire need to provide new gradations of nomenclature which are above the family/subfamily level. A new concept of clans has thus been introduced as a new level above the family rank (Nelson, 1998). The first nomenclature naming system was based on 100 P450 families applying a three digit system but owing to the growing nature of these P450's a new numbering scheme was introduced as a four digit setup (Nelson, 2009). The initial ranges of the three digit system were as follows: Bacteria (CYP101-299); Animals (CYP301-499); lower eukaryotes (CYP501-699) and plants (CYP701-999).The new ranges were then introduced and they arranged as follows: Bacteria (CYP1001-2999); animals (CYP3001-4999); lower eukaryotes (CYP5001-6999); and plants (CYP7001-9999) (Nelson, 2006).

The P450s were named based on the percentage identity where >40% identity and >55% identity were grouped under the same family and subfamily, respectively (Nebert *et al.*, 1987; Nebert *et al.*, 1991; Nelson, 2009). This criterion for naming of P450s is set by the International P450 Nomenclature Committee. Some of the P450s that have nearly 40% identity to the named P450s were classified based on their phylogenetic position (Nebert *et al.*, 1987; Nebert *et al.*, 1991; Nelson, 2009). P450s that have below 40% identity will be assigned to a new family with the help of Prof David Nelson, the University of Tennessee Health Science Center, Tennessee, USA for naming the new P450.

2.3. Applications of P450s

P450s perform catalytically diverse enzymatic reactions with stereo- and regio-specific manner (Figure 2.1). Due to these unique characteristics, P450s are exploited for various applications.

Looking field biotransformation, selective biocatalytic at the of the oxyfunctionalization of nonactivated hydrocarbons is considered as potentially the most useful (Myles and Whitesides, 1990). P450s contain heme B as prosthetic group that enables not only the activation of molecular oxygen (which is also possible by using flavincontaining enzymes) but also the oxidation of kinetically inert non-activated C-H bonds. Industrial applications of P450s have so far been restricted to whole-cell systems, which mostly solve the problem of cofactor delivery and regeneration. In such instances, physiological effects such as limited substrate uptake and reduced efflux of products out of cells, substrate or product toxicity, product degradation, as well as elaborate downstream processing are additional limiting factors that must be taken into account and often require optimization (van Beilen, 2003).

2.3.1. Production of drug metabolites

P450s have been identified to play a crucial role in the field of drug transformation (Figure 2.2). They are generally accountable for the primary oxidation of xenobiotics. In humans, P450s are found to be one of the essential enzymes in phase I drug metabolism reactions. Among the 57 P450s isoenzymes that have been expressed in human, special focus was given to certain P450s namely: CYP1A2, 2C9, 2C19, 2D6, and 3A4 as these P450s were identified to mediate close to 75-80% of the drug metabolism (Evans and Relling, 1999; Guengerich, 2003 and 2015). It is very important to carry out a thorough research on the molecular properties of drug metabolites as this plays an essential role in the evaluation of drug toxicity, drug–drug interaction and drug-induced side effects. Since drug metabolite standards are in

most cases not available or difficult to synthesize by chemical means, P450s are the most important enzymes for the biotransformation of drugs and the preparation of metabolites.

Figure 2.2. Cytochrome P450 monooxygenases role as drug targets and new drug discovery processes (taken from Lamb *et al.*, 2007). This is the summary of roles played by P450s in various applications that have been accomplished that include drug synthesis and drug targets.

2.3.2. Phytoremediation

Phytoremediation is the generic term used for the group of technologies that employ the direct use of plants to clean up environmental pollution. This process sometimes encounters problems like slow rate of removal or incomplete metabolism, so in order to counteract these limitations, new enzymatic activities has to be introduced within plants by the use of genetic engineering. During some cases of genetic engineering, some of the mammalian or bacterial P450s has been expressed in certain plants to remediate polluted soil, groundwater and air (Reichenauer and Germida, 2008). An example of this phenomenon was observed when the expression of the human CYP2E1 in hydroponically grown tobacco enhanced the metabolism of the volatile hydrocarbon trichloroethylene (TCE) up to 640-fold. The oxidation product 2,2,2-trichloroacetaldehyde (chloral) generated by CYP2E1 is further metabolized in the plant to the corresponding alcohol (Figure 2.3) (Doty *et al.*, 2000).

Figure 2.3. CYP2E1 mediated transformation for trichloroethylene (TCE) (taken from Girhard *et al.*, 2015).

Phytoremediation has also been found to be used in the extraction of herbicides and in this case it has been found that P450s expressed by transgenic plants enhance the process. Human CYP1A1 expressed in *Oryza sativa* (rice) either by conjunction or separately with CYP2B6 and CYP2C19, has been found to display a high resistance towards a wide range of herbicides which includes metolachlor, norflurazon and mixtures thereof (Kawahigashi *et al.*, 2005 and 2006).

2.3.3. Selective oxidations of macrolide antibiotics

The macrolides are a class of natural products that belong to the class of polyketides. These set of macromolecules have been found to have antibiotic or antifungal activity and can be used as pharmaceutical drugs. Their core structure is synthesized by polyketide synthases based on general precursor molecules and then further diversified by other P450-catalyzed hydroxylation and epoxidation activities (Zhan, 2009).

Thirty five percent of all marketed antibiotic formulations contain an active ingredient derived from *Actinomycetes*. Since most antibiotics are semisynthetic derivatives of a few natural products, *Actinomycetes* produce an impressive 76% of all original natural product scaffolds used as anti-infective agents (Gomez-Escribano and Bibb, 2014). Therefore, the "deorphanization" of *Actinomycetes* P450s is considered quite important for pharmacology, with ramifications for the use of clinical therapeutics (Lamb *et al.*, 2013; Guengerich, 2015). A well-characterized P450 involved in ring decoration of macrolide antibiotics is PikC from *Streptomyces venezuelae* catalyzing regioselective C12-hydroxylation of narbomycin—the final step in pikromycin biosynthesis (Figure 2.4).

pikromycin: R₁=OH, R₂=H neopikromycin: R₁=H, R₂=OH novapikromycin: R₁=OH, R₂=OH

4-hydroxy-oleandomycin

5-O-desosaminyl erythronolide A

Figure 2.4. Macrolide antibiotics originating from erythromycin A and their hydroxylated derivatives produced by P450 PikC (taken from Girhard *et al.*, 2015)

2.4. Genome data-mining for P450s

P450's are ubiquitously distributed in species belong to different biological kingdoms (Nelson, 2013). Genome data mining plays an important role in identification of P450s with novel oxidation activities (Furuya and Kino, 2010). The recent advancements in technologies throughout the years have unravelled new strategies that have led to the advancements of alternative screening strategies that are aimed to overcome the obstacles of modern microbial

Chapter 2: Introduction and Literature review

screenings. One example is the screening of the metagenomic libraries of non-culturable microorganisms (Schmeisser *et al.*, 2007). The *in silico* screening of annotated P450 sequences from different publicly available online databases has been considered as one of the most promising strategies to date. The number of annotated sequences is increasing by a large margin due to the large number of genome sequencing projects. Chronological events throughout the years since P450s were first discovered in 1958 (Klingenberg, 1958; Garfinkel, 1958) up to the 2013, has shown an exponential growth in number of P450s (from 1000 to >21000). The data on P450s annotation has shown less than 1000 P450 sequences between 1958 and 1998 (Nelson, 1999), then the number approached 4000 in 2004 (Nelson, 2006), 18,000 in 2011 (Nelson, 2011), and increased over 21,000 in 2013 (Nelson, 2013).

The P450s sequences and their annotation details are kept at the "official" P450 database also known as "the Cytochrome P450 Homepage" that is maintained by Prof David Nelson, University of Tennessee, Tennessee, USA (<u>http://drnelson.uthsc.edu/CytochromeP450.html</u>) (Nelson, 2009). This database provides information on classification of the currently known P450s. This database contains classification of 18 937 P450 genes, *inter alia* including bacteria with 1254 genes, fungi with 5729 genes, plants with 7446 genes, insects with 3452 genes, and mammals with 1056 genes (status as of August 2013).

Cytochrome P450 Engineering Database (CYPED; <u>http://www.cyped.uni-stuttgart.de</u>; Universität Stuttgart; 2014/03/20) is another P450 database where structure based information is available (Fischer *et al.*, 2007; Sirim *et al.*, 2009). CYPED includes more than 16,000 sequences of P450s. In addition, information on 741 structures of P450s is integrated into this database to facilitate protein engineering.

The growing nature in which new P450 sequences are being identified has made it difficult to keep up with the characterization of their biochemical properties. To this point

only a few number of currently annotated P450 sequences have been functionally characterized. Nevertheless, reports on the biotechnological exploitation of naturally occurring and highly selective oxidations by P450 enzymes are accumulating and has been reviewed by Schulz and co-worker's (2012).

The rapid influx of genome sequences calls for robust computational tools that can effectively support large-scale comparative analyses of genomes and specific gene families. The basis of P450 mining in diverse species has been carried out by following the methodology that has been described meticulously in several published literature (Park et al., 2008; Syed et al., 2013; Syed and Mashele, 2014; Syed et al., 2014a; Syed et al., 2014b; Jawallapersand et al., 2014; Kgosiemang et al., 2014; Sello et al., 2015; Mthakathi et al., 2015; Qhanya et al., 2015; Parvez et al., 2016). Park and co-workers (2008) developed an automated pipeline system for genome data mining and subsequence naming of P450s (Figure 2.5). Syed and co-workers developed a simple procedure for genome data-mining and subsequence annotation of P450s (Syed et al., 2013; Syed and Mashele, 2014; Syed et al., 2014a; Syed et al., 2014b; Jawallapersand et al., 2014; Kgosiemang et al., 2014; Sello et al., 2015; Mthakathi et al., 2015; Qhanya et al., 2015; Parvez et al., 2016). According to the authors the genome data mining and annotation of P450s follows as: briefly, the whole proteome of species will be subjected to the NCBI Batch Web CD-Search Tool (http://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi). NCBI Batch Web CD-Search Tool to identify P450s based on conserved motifs that include the oxygen-binding motif (FXXGXXXCXG) and the heme-binding motif (EXXR). Proteins that belong to a P450 superfamily were selected and further subjected to BLAST analysis against bacterial P450s at the Cytochrome P450 Homepage (Nelson, 2009). Based on the International P450 Nomenclature Committee rule, proteins with >40% identity and >55% identity were grouped under the same family and subfamily, respectively. P450s that showed less than 40% identity

to known P450s at the Cytochrome P450 Homepage (Nelson, 2009) were assigned to new P450 families and subfamilies as per International P450 Nomenclature Committee rules.

Figure 2.5. Protocol for automated identification and classification of P450s (taken from Park *et al.*, 2008).

2.5. Phylogenetic analysis of P450s

Phylogenetic analysis of P450s is very critical to assign P450s to correct families and subfamilies and also to group them into higher order such as clans. Although different methods employed for phylogenetic analysis, overall, analysis includes identifying the P450s position with other named P450s to double check the naming accuracy. Sometimes, P450s that showed close to 40% identity will be named based on their position on phylogenetic tree. Apart from this, the phylogenetic trees were extensively utilized to group P450s into higher order such as clans or clades (Chen *et al.*, 2014; Sello *et al.*, 2015; Parvez *et al.*, 2016).

2.6. Synteny analysis and genome mapping of P450s

The physical localization of P450 genes on the chromosomes were known as Synteny analysis (Figure 2.6). As shown in Figure 2.6, P450s in an organism will be mapped on their respective chromosomes with their position.

Figure 2.6. Synteny analysis of P450s in Thielavia terrestris (taken from Syed et al., 2014b).

Synteny analysis provides excellent information on genome-duplication of P450s where localization of P450s belongs to the same family on same chromosome next to each

other is a direct indication that these P450s are possibly duplicated during the evolution (Qhanya *et al.*, 2015; Sello *et al.*, 2015).

Genome mapping of P450s refer to the identification of neighbouring genes with respect to P450s. Genome mapping reveals information on possible role of P450s in a physiological function by involving in a metabolic pathway. For example, CYP128A1 of *Mycobacterium tuberculosis* function is predicted based on its physical localization with genes involved in the biosynthesis of menaquinone-like molecule (Holsclaw *et al.*, 2008). In addition, CYP121A1 of *M. tuberculosis* function identified based on its location in an operon with genes involved in the biosynthesis of cyclodipeptide cyclo(L-Tyr-L-Tyr) (cYY) molecule (Belin *et al.*, 2009).

2.7. Mycobacterium Tuberculosis

The genus *Mycobacterium* contains a vast number of strict and opportunistic pathogens that post a threat towards humans and other animals (Ventura *et al.*, 2007). Among various species within this genus, the principal leading pathogens in humans is *M. tuberculosis*, the causative agent of Tuberculosis (TB) (Koch, 1882), and *Mycobacterium leprae*, causative agent of leprosy (Cole, 2002). Mycobacterial species which serve as opportunistic pathogens comprise of *Mycobacterium avium*, *Mycobacterium simiae*, *Mycobacterium kansasii* and *Mycobacterium haemophilum*, which are more common among immunocompromised patients (Bhambri *et al.*, 2009). *Mycobacterium ulcerans* is also responsible for other opportunistic mycobacterial infections of which in most instances it produces a destructive, primarily tropical skin disease which, if however not treated rapidly, tends to produce chronic ulcers with necrotic centres (also known as Buruli ulcer) (Stinear *et al.*, 2007); *Mycobacterium marinum*, a pathogen of fish and amphibians, (close relative of *M. tuberculosis*), is responsible for fish-tank or swimming-pool granuloma which essentially concerns people exposed to fish or water (Li *et al.*, 2005).

Rapidly growing mycobacteria are found to be medically important due to their association with traumatic and surgical wound infections, skin, soft tissue infections, pulmonary disease etc, and they are essentially limited to *Mycobacterium fortuitum*, *Mycobacterium chelonae and Mycobacterium abscessus* (Brown *et al.*, 1992). The principal animal mycobacterial pathogens includes *Mycobacterium bovis*, the causative agent of bovine tuberculosis, *Mycobacterium paratuberculosis and M. avium* causes Johne's disease or paratuberculosis in cattle and pigs (Green *et al.*, 1989; Li *et al.*, 2005). *Mycobacterium vanbaalenii* is a rod-shaped, non-motile, non-sporulating bacterium; it was the first bacterium isolated by virtue of its ability to metabolize the polycyclic aromatic hydrocarbons (Khan *et al.*, 2002).

Mycobacterial infections are notoriously difficult to treat. This has brought forward a dire need for a worldwide research in search for a novel drug targets against mycobacterial pathogens to find new therapeutic methods and to eradicate or to minimize the infectivity rate.

TB is a major global epidemic and kills over one million people a year (WHO, 2013). The disease which was once thought to be practically eradicated in the western parts of the world, *M. tuberculosis* has resurfaced in recent years becoming a major worldwide threat to human health. The reappearance of *M. tuberculosis* owes its respect towards its synergy with the HIV virus whereby *M. tuberculosis* thrives in immune-compromised HIV-infected individuals and also because of the development and propagation of *M. tuberculosis* strains that are becoming resistant to existing anti-tubercular drugs (Brosch *et al.*, 2001). This has brought forward for it to be regarded as the leading cause of human mortality among infectious diseases.

2.7.1. Essential or important P450s in M. tuberculosis

The greatest significant breakthrough came from the research carried out by Cole and coworkers (1998) in which they sequenced the genome of M. tuberculosis H37Rv. Genome sequencing of *M. tuberculosis* revealed presence of 20 cytochrome P450 monooxygenases (P450s) in its genome (Cole et al., 1998). The preponderance of P450 genes in the *M. tuberculosis* genome is an idiosyncratic feature for a prokaryote and it might underlie a possible importance of the P450 gene-family in the life history of *M. tuberculosis*. As expected, three P450s, CYP121A1 (McLean et al., 2008), CYP125A1 (Sassetti and Rubin, 2003) and CYP128A1 (Sassetti et al., 2003) were found essential for survival of M. tuberculosis. Further, gene knockout studies showed CYP121A1 essential for in vitro M. tuberculosis growth (McLean et al., 2008) and CYP125A1 is essential for infection in mice (Sassetti and Rubin, 2003; McLean et al., 2009) and survival in macrophages (Chang et al., 2007). Since CYP128A1 mutant could not be initially obtained during in vitro growth, it can be only presumed that it plays an important role during infection (Ouellet et al., 2010). In vitro M. tuberculosis latency model studies including carbon starvation model (Betts et al., 2003) and hypoxia model (Rustad et al., 2008) showed up-regulation of three M. tuberculosis P450s, CYP128A1 and CYP135A1 and CYP123A1, suggesting their potential role during *M. tuberculosis* latency. Based on meta-analysis of expression data CYP123A1 is selected as best drug candidate against dormant phase of *M. tuberculosis* (Murphy & Brown 2007). It is noteworthy that CYP123A1 and CYP135A1 are present only in TB causing bacteria suggesting their essential role (Parvez et al., 2015).

2.8. Rationale for the study

Tuberculosis continues to be a leading cause of death globally, despite global efforts in disease-control programs during the previous 20 years (Raviglione *et al.*, 2012). In 2013, 9 million people fell ill with TB and 1.5 million died from the disease (WHO, 2013). In 2010,

Chapter 2: Introduction and Literature review

about 10 million children were orphaned as a result of TB deaths among parents. TB is a leading killer of people living with HIV, causing one quarter of all deaths. The WHO declared TB a "global health emergency" in 1993 (Lawn and Zumla, 2011) and in 2006. Even though urbanized countries seem to be doing considerably great in controlling or preventing TB, current studies shows that there is an existence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in urbanized countries as well (Migliori *et al.,* 2012). The presently available anti-TB drugs were developed over 40 years ago and they have become ineffective against drug-resistant TB (MDR- and XDR-TB strains). Globally in 2013, an estimated 480 000 people developed multidrug resistant TB (MDR-TB) (WHO, 2013). Long-term TB medication (6-12 months) is causing severe side effects and it smoothed the progress of the development of drug-resistant TB.

Study on *M. tuberculosis* P450s revealed that CYP125A1 can be a good drug target (Ouellet et al., 2010; Hudson *et al.*, 2012) and researchers are in progress in targeting this P450 by developing inhibitors. However, humans have 57 P450s and they oxidize cholesterol, a natural substrate for CYP125. If any inhibitor developed based on cholesterol have potential to cross reach with human P450s and may lead side-effects. If one can target promoter binding elements of CYP125 there is a chance of no cross reaction as promoter and its binding partners in eukaryotes and prokaryotes are entirely different. In this direction, this study will be the first of its kind on genome data mining and genome mapping of CYP125 in the genus *Mycobacterium*. Study results will pave the way to explore promoter and its binding elements of CYP125 of *M. tuberculosis* so that in future one can use them as novel drug target. If one can inhibit CYP125 expression means bacteria can be killed successfully and the drugs developed based on promoter and its binding elements may have no cross reaction with human P450s.

2.8.1. Aims and objectives

This study is aimed to perform genome wide data mining, identification, annotation and phylogenetic analysis of CYP125 P450s in 60 mycobacterial species. Furthermore, CYP125 P450s will be subjected to gene-cluster analysis as part of genome-mapping.

2.8. References

- Belin, P., Le Du, M.H., Fielding, A., Lequin, O., Jacquet, M., Charbonnier, J.B., Lecoq, A., Thai, R., Courçon, M., Masson, C. and Dugave, C., 2009. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in *Mycobacterium tuberculosis*. *Proceedings of the National Academy of Sciences*, 106(18), pp.7426-7431.
- Bernhardt, R., 2006. Cytochromes P450 as versatile biocatalysts. *Journal of biotechnology*, *124*(1), pp.128-145.
- Betts, J.C., McLaren, A., Lennon, M.G., Kelly, F.M., Lukey, P.T., Blakemore, S.J. and Duncan, K., 2003. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated *Mycobacterium tuberculosis*. *Antimicrobial agents and chemotherapy*, 47(9), pp.2903-2913.
- Bhambri, S., Bhambri, A. and Del Rosso, J.Q., 2009. Atypical mycobacterial cutaneous infections. *Dermatologic clinics*, 27(1), pp.63-73.
- Brosch, R., Pym, A.S., Gordon, S.V. and Cole, S.T., 2001. The evolution of mycobacterial pathogenicity: clues from comparative genomics. *Trends in microbiology*, 9(9), pp.452-458.
- Brown, B.A., Wallace, R.J., Onyi, G.O. and De Rosas, V., 1992. Activities of four macrolides, including clarithromycin, against *Mycobacterium fortuitum*, *Mycobacterium chelonae*, and *M. chelonae*-like organisms. *Antimicrobial Agents and Chemotherapy*, 36(1), pp.180-184.
- Chang, J.C., Harik, N.S., Liao, R.P. and Sherman, D.R., 2007. Identification of mycobacterial genes that alter growth and pathology in macrophages and in mice. *Journal of Infectious Diseases*, 196(5), pp.788-795.

- Chen, W., Lee, M.K., Jefcoate, C., Kim, S.C., Chen, F. and Yu, J.H., 2014. Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. *Genome biology and evolution*, 6(7), pp.1620-1634.
- Cole, S., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.3. and Tekaia, F., 1998. Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature*, *393*(6685), pp.537-544.
- Cole, S.T., 2002. Comparative and functional genomics of the *Mycobacterium tuberculosis* complex. *Microbiology*, *148*(10), pp.2919-2928.
- Myles, D.C. and Whitesides, G.M., 1990. Biotransformations in preparative organic chemistry, the use of isolated enzymes and whole cell systems in synthesis: By HG Davies, RH Green, DR Kelly, and Stanley M. Roberts. Academic Press, San Diego, 1989.
- Doty, S.L., Shang, T.Q., Wilson, A.M., Tangen, J., Westergreen, A.D., Newman, L.A., Strand, S.E. and Gordon, M.P., 2000. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. *Proceedings of the National Academy of Sciences*, 97(12), pp.6287-6291.
- Evans, W.E. and Relling, M.V., 1999. Pharmacogenomics: translating functional genomics into rational therapeutics. *science*, *286*(5439), pp.487-491.
- Fischer, M., Knoll, M., Sirim, D., Wagner, F., Funke, S. and Pleiss, J., 2007. The Cytochrome P450 Engineering Database: a navigation and prediction tool for the cytochrome P450 protein family. *Bioinformatics*, 23(15), pp.2015-2017.

- Furuya, T. and Kino, K., 2010. Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. *Applied microbiology and biotechnology*, 86(4), pp.991-1002.
- Garfinkel, D., 1958. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. *Archives of biochemistry and biophysics*, 77(2), pp.493-509.
- Girhard, M., Bakkes, P.J., Mahmoud, O. and Urlacher, V.B., 2015. P450
 Biotechnology. In *Cytochrome P450* (pp. 451-520). Springer International Publishing.
- Gomez-Escribano, J.P. and Bibb, M.J., 2014. Heterologous expression of natural product biosynthetic gene clusters in *Streptomyces coelicolor*: from genome mining to manipulation of biosynthetic pathways. *Journal of industrial microbiology & biotechnology*, 41(2), pp.425-431.
- Gonzalez, F.J. and Nebert, D.W., 1990. Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. *Trends in Genetics*, *6*, pp.182-186.
- Green, E.P., Tizard, M.L.V., Moss, M.T., Thompson, J., Winterbourne, D.J., McFadden, J.J. and Hermon-Taylor, J., 1989. Sequence and characteristics or IS900, an insertion element identified in a human Crohn's disease isolate or *Mycobacterium paratuberculosis*. *Nucleic Acids Research*, *17*(22), pp.9063-9073.
- Guengerich, F.P., 2003. Cytochromes P450, drugs, and diseases. *Molecular interventions*, *3*(4), p.194.
- Guengerich, F.P., 2015. Human cytochrome P450 enzymes. In *Cytochrome P450* (pp. 523-785). Springer International Publishing.
- Holsclaw, C.M., Sogi, K.M., Gilmore, S.A., Schelle, M.W., Leavell, M.D., Bertozzi,
 C.R. and Leary, J.A., 2008. Structural characterization of a novel sulfated

menaquinone produced by stf3 from *Mycobacterium tuberculosis*. ACS chemical biology, 3(10), pp.619-624.

- Hudson, S.A., McLean, K.J., Munro, A.W. and Abell, C., 2012. *Mycobacterium tuberculosis* cytochrome P450 enzymes: a cohort of novel TB drug targets. *Biochemical Society Transactions*, 40(3), pp.573-579.
- Jawallapersand, P., Mashele, S.S., Kovačič, L., Stojan, J., Komel, R., Pakala, S.B., Kraševec, N. and Syed, K., 2014. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target. *PloS one*, *9*(9), p.e107209.
- Kawahigashi, H., Hirose, S., Ohkawa, H. and Ohkawa, Y., 2005. Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. *Journal of agricultural and food chemistry*, *53*(22), pp.8557-8564.
- Kawahigashi, H., Hirose, S., Ohkawa, H. and Ohkawa, Y., 2006. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. *Journal of agricultural and food chemistry*, 54(8), pp.2985-2991.
- Kgosiemang, I.K.R., Mashele, S.S. and Syed, K., 2014. Comparative genomics and evolutionary analysis of cytochrome P450 monooxygenases in fungal subphylum Saccharomycotina. J. Pure Appl. Microbiol, 8, pp.291-302.
- Khan, A.A., Kim, S.J., Paine, D.D. and Cerniglia, C.E., 2002. Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, *Mycobacterium* sp. strain PYR-1, as *Mycobacterium vanbaalenii* sp. nov. *International Journal of Systematic and Evolutionary Microbiology*, 52(6), pp.1997-2002.
- Klingenberg, M., 1958. Pigments of rat liver microsomes. Archives of biochemistry and biophysics, 75(2), pp.376-386.
- Koch R., 1882. Die Äetiologie der Tuberkulose. Berliner klinische Wochenschrift, 15, pp.221–230.
- Lamb, D.C., Waterman, M.R. and Zhao, B., 2013. *Streptomyces* cytochromes P450: applications in drug metabolism. *Expert opinion on drug metabolism & toxicology*, 9(10), pp.1279-1294.
- Lamb, D.C., Waterman, M.R., Kelly, S.L. and Guengerich, F.P., 2007. Cytochromes P450 and drug discovery. *Current opinion in biotechnology*, *18*(6), pp.504-512.
- Lawn, S.D., Zumla, A.I., 2011. Tuberculosis. Lancet, 378(9785), pp.57–72.
- Lewis, D.F.V., Watson, E. and Lake, B.G., 1998. Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics. *Mutation Research/Reviews in Mutation Research*, 410(3), pp.245-270.
- Li, L., Bannantine, J.P., Zhang, Q., Amonsin, A., May, B.J., Alt, D., Banerji, N., Kanjilal, S. and Kapur, V., 2005. The complete genome sequence of *Mycobacterium avium* subspecies *paratuberculosis*. *Proceedings of the National Academy of Sciences* of the United States of America, 102(35), pp.12344-12349.
- McLean, K.J., Carroll, P., Lewis, D.G., Dunford, A.J., Seward, H.E., Neeli, R., Cheesman, M.R., Marsollier, L., Douglas, P., Smith, W.E. and Rosenkrands, I., 2008. Characterization of active site structure in CYP121 a cytochrome P450 essential for viability of *Mycobacterium tuberculosis* H37Rv. *Journal of Biological Chemistry*, 283(48), pp.33406-33416.
- McLean, K.J., Lafite, P., Levy, C., Cheesman, M.R., Mast, N., Pikuleva, I.A., Leys, D. and Munro, A.W., 2009. The structure of *Mycobacterium tuberculosis* CYP125 molecular basis for cholesterol binding in a P450 needed for host infection. *Journal of Biological Chemistry*, 284(51), pp.35524-35533.

- Migliori, G.B., Sotgiu, G., Gandhi, N.R., Falzon, D., DeRiemer, K., Centis, R., Hollm-Delgado, M.G., Palmero, D., Pérez-Guzmán, C., Vargas, M.H. and D'Ambrosio, L., 2012. Drug resistance beyond XDR-TB: results from a large individual patient data meta-analysis. *European Respiratory Journal*, pp.erj01363-2012.
- Mthakathi, N.T., Kgosiemang, I.K.R., Chen, W., Mohlatsane, M.E., Mojahi, T.J., Yu, J.H., Mashele, S.S. and Syed, K., 2015. Cytochrome P450 monooxygenase analysis in free-living and symbiotic microalgae *Coccomyxa* sp. C-169 and *Chlorella* sp. NC64A. *Algae*, 30(3), p.233.
- Murphy, D.J. and Brown, J.R., 2007. Identification of gene targets against dormant phase *Mycobacterium tuberculosis* infections. *BMC infectious diseases*, 7(1), p.1.
- Nebert, D. W.; Nelson, D. R.; Coon, M. J.; Estabrook, R. W.; Feyereisen, R.; Fujii-Kuriyama, Y.; Gonzalez, F. J.; Guengerich, F. P.; Gunsalus, I. C.; Johnson, E. F.; Loper, J. C.; Sato, R.; Waterman, M. R.; Waxman, D. J., 1991. The P450 superfamily: Update on new sequences, gene mapping and recommended nomenclature. *DNA and cell biology*, 10(1): pp. 1–14.
- Nebert, D.W., Adesnik, M., Coon, M.J., Estabrook, R.W., Gonzalez, F.J., Geungerich, F.P., Gunsaius., I.C., Johnson, E.F., Kemper, B., Levin, W., Phillips, I.R., and Sato, R., Waterman, M.R., 1987. The P450 gene superfamily: recommended nomenclature. *DNA*, 6(1), pp.1–11.
- Nelson, D.R., 1998. Metazoan cytochrome P450 evolution. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 121(1), pp.15-22.
- Nelson, D.R., 1999. Cytochrome P450 and the individuality of species. *Archives of biochemistry and biophysics*, *369*(1), pp.1-10.

- Nelson, D.R., 2006. Cytochrome P450 Nomenclature, 2004. Cytochrome P450 Protocols, pp.1-10.
- Nelson, D.R., 2009. The cytochrome p450 homepage. Human genomics, 4(1), p.1.
- Nelson, D.R., 2011. Progress in tracing the evolutionary paths of cytochrome P450. *Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics*, 1814(1), pp.14-18.
- Nelson, D.R., 2013. A world of cytochrome P450s. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 368(1612), p.20120430.
- Ortiz de Montellano, P. R., 2015. Cytochrome P450: Structure, mechanism and biochemistry. Springer International Publishing, Switzerland. ISBN: 978-3-319-12107-9. DOI: 10.1007/978-3-319-12108-6.
- Ouellet, H., Guan, S., Johnston, J.B., Chow, E.D., Kells, P.M., Burlingame, A.L., Cox, J.S., Podust, L.M. and De Montellano, P.R.O., 2010. *Mycobacterium tuberculosis* CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. *Molecular microbiology*, 77(3), pp.730-742.
- Park, J., Lee, S., Choi, J., Ahn, K., Park, B., Park, J., Kang, S. and Lee, Y.H., 2008.
 Fungal cytochrome P450 database. *BMC genomics*, 9(1), p.1.
- Parvez, M., Qhanya, L.B., Mthakathi, N.T., Kgosiemang, I.K.R., Bamal, H.D., Pagadala, N.S., Xie, T., Yang, H., Chen, H., Theron, C.W. and Monyaki, R., 2016. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s. *Scientific Reports*, 6.
- Qhanya, L.B., Matowane, G., Chen, W., Sun, Y., Letsimo, E.M., Parvez, M., Yu, J.H., Mashele, S.S. and Syed, K., 2015. Genome-wide annotation and comparative analysis of cytochrome P450 monooxygenases in Basidiomycete Biotrophic plant pathogens. *PloS one*, *10*(11), p.e0142100.

- Raviglione, M., Marais, B., Floyd, K., Lönnroth, K., Getahun, H., Migliori, G.B., Harries, A.D., Nunn, P., Lienhardt, C., Graham, S. and Chakaya, J., 2012. Scaling up interventions to achieve global tuberculosis control: progress and new developments. *The Lancet*, *379*(9829), pp.1902-1913.
- Reichenauer, T.G. and Germida, J.J., 2008. Phytoremediation of organic contaminants in soil and groundwater. *ChemSusChem*, *1*(8-9), pp.708-717.
- Rustad, T.R., Harrell, M.I., Liao, R. and Sherman, D.R., 2008. The enduring hypoxic response of *Mycobacterium tuberculosis*. *PloS one*, *3*(1), p.e1502.
- Sassetti, C.M. and Rubin, E.J., 2003. Genetic requirements for mycobacterial survival during infection. *Proceedings of the National Academy of Sciences*, 100(22), pp.12989-12994.
- Sassetti, C.M., Boyd, D.H. and Rubin, E.J., 2003. Genes required for mycobacterial growth defined by high density mutagenesis. *Molecular microbiology*, 48(1), pp.77-84.
- Schmeisser, C., Steele, H. and Streit, W.R., 2007. Metagenomics, biotechnology with non-culturable microbes. *Applied microbiology and biotechnology*, *75*(5), pp.955-962.
- Schulz, S., Girhard, M. and Urlacher, V.B., 2012. Biocatalysis: key to selective oxidations. *ChemCatChem*, 4(12), pp.1889-1895.
- Sello, M.M., Jafta, N., Nelson, D.R., Chen, W., Yu, J.H., Parvez, M., Kgosiemang, I.K.R., Monyaki, R., Raselemane, S.C., Qhanya, L.B. and Mthakathi, N.T., 2015. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes. *Scientific reports*, *5*.
- Sirim, D., Wagner, F., Lisitsa, A. and Pleiss, J., 2009. The cytochrome P450 engineering database: Integration of biochemical properties. *BMC biochemistry*, *10*(1), p.1.

- Sono, M., Roach, M.P., Coulter, E.D. and Dawson, J.H., 1996. Heme-containing oxygenases. *Chemical Reviews*, 96(7), pp.2841-2888.
- Stinear, T.P., Seemann, T., Pidot, S., Frigui, W., Reysset, G., Garnier, T., Meurice, G., Simon, D., Bouchier, C., Ma, L. and Tichit, M., 2007. Reductive evolution and niche adaptation inferred from the genome of *Mycobacterium ulcerans*, the causative agent of Buruli ulcer. *Genome research*, *17*(2), pp.192-200.
- Syed, K. and Mashele, S.S., 2014. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family. *PloS one*, 9(4), p.e95616.
- Syed, K. and Yadav, J.S., 2012. P450 monooxygenases (P450ome) of the model white rot fungus *Phanerochaete chrysosporium*. *Critical reviews in microbiology*, 38(4), pp.339-363.
- Syed, K., Nelson, D.R., Riley, R. and Yadav, J.S., 2013. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species *Bjerkandera adusta*, *Ganoderma* sp. and *Phlebia brevispora*. *Mycologia*, 105(6), pp.1445-1455.
- Syed, K., Shale, K., Nazir, K.N.H., Krasevec, N., Mashele, S.S. and Pagadala, N.S., 2014b. Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi *Thielavia terrestris* and *Myceliophthora thermophila*. *Genes & Genomics*, *36*(3), pp.321-333.
- Syed, K., Shale, K., Pagadala, N.S. and Tuszynski, J., 2014a. Systematic identification and evolutionary analysis of catalytically versatile cytochrome P450

monooxygenase families enriched in model basidiomycete fungi. PLoS One, 9(1), p.e86683.

- van Beilen, J.B., Duetz, W.A., Schmid, A. and Witholt, B., 2003. Practical issues in the application of oxygenases. *Trends in biotechnology*, *21*(4), pp.170-177.
- Ventura, A., Kirsch, D.G., McLaughlin, M.E., Tuveson, D.A., Grimm, J., Lintault, L., Newman, J., Reczek, E.E., Weissleder, R. and Jacks, T., 2007. Restoration of p53 function leads to tumour regression in vivo. *Nature*, 445(7128), pp.661-665.
- WHO, 2013. Tuberculosis. http://www.who.int/mediacentre/factsheets/fs104/en/.
 Accessed on 23 March 2014.
- Zhan, J., 2009. Biosynthesis of bacterial aromatic polyketides. *Current topics in medicinal chemistry*, 9(17), pp.1598-1610.

Chapter 3:

Annotation and phylogenetic analysis of cytochrome P450 monooxygenase CYP125 family in the genus *Mycobacterium*

3.1. Introduction

Cytochrome P450 monooxygenases (CYPs/P450s) are mixed function oxidoreductases ubiquitously distributed in species belong to all biological kingdoms (Nelson, 2013). P450s are well known for their role in essential cellular anabolic and catabolic processes. Genome sequencing analysis of deadliest human pathogen *Mycobacterium tuberculosis* revealed presence of 20 P450s in its genome (Cole *et al.*, 1998). Among *M. tuberculosis* P450s CYP125A1 has been found to be essential for *M. tuberculosis* survival on cholesterol (Sassetti and Rubin, 2003; McLean *et al.*, 2009; Ouellet *et al.*, 2010) and studies are in progress to explore this P450 as a novel drug target (Ouellet *et al.*, 2010; Hudson *et al.*, 2012). Below Table 3.1 shows properties of CYP125A1.

Microaaray/genetic analysis	References	Key facts	References
Essential for infection in	Sassetti and	Part of igr operon	Chang <i>et al.</i> , 2009;
mice and induced in	Rubin., 2003;	with fadE28,	Thomas <i>et al.</i> ,
macrophages	Schnappinger et	fadE29,	2011
	al., 2003	IgrD-E, and ltp2	
		(Rv3544c-3540c)	
In KstR reglon and igr	Kendall et al.,	Cholesterol/cholest-	McLean <i>et al.</i> ,

 Table 3.1. Properties of CYP125A1 (taken from McLean et al., 2015)

Chapter 3: Annotation and phylogenetic analysis of Cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

1 1 C	2007	1 2	2000
operon, essential gene for	2007;	4-en-3-one	2009;
growth and virulence in	Thomas et al.,	26-oxidase.	Ouellet et al.,
macrophages and mice	2011	Structurally	2010
		characterized	
Expressed in dormancy	Murphy and		
model and upregulated	Brown, 2007;		
during infection of dendritic	Tailleux et al.,		
cells	2008		

CYP125A1 catalyze C26 ω -hydroxylation(s) of the side chain of cholesterol, and of its ketone derivative cholest-4-en-3-one (McLean *et al.*, 2009; Capyk *et al.*, 2009; Driscoll *et al.*, 2010; Ouellet *et al.*, 2010; Johnston *et al.*, 2010) (Figure 3.1a.). CYP125A1 also found to produce five additional products, resulting from deformylation of the aliphatic cholesterol side-chain aldehyde intermediate (Sivaramakrishnan *et al.*, 2012) (Figure 3.1b).

Figure 3.1. The oxidation of cholesterol and cholesten-4-en-3-one (taken from McLean *et al.*, 2015). (a) The CYP125A1/CYP142A1 (and CYP124A1)-dependent conversion of cholesterol and cholesten-4-en-3-one through C26-oxidation reactions to the acid via the hydroxyl and aldehyde forms (McLean *et al.*, 2009; Capyk *et al.*, 2009; Driscoll *et al.*, 2010; Ouellet *et al.*, 2010; Johnston *et al.*, 2010). (b) CYP125A1-catalyzed deformylation of the side chain of cholesterol andcholesten-4-en-3-one (chol.) *via* a peroxyhemiacetal adduct, predicted to be derived from the reaction of the heme iron ferric–peroxo anion (Fe³⁺O₂) species with the aldehyde intermediate, leading to C–C bond cleavage.

In addition to functional analysis, structural analysis of CYP125A1 has been thoroughly studied (McLean *et al.*, 2009). However, to date, CYP125A1 distribution across mycobacterial species has not been carried out. Hence, in this study, the aim is to conduct, genome wide CYP125 P450 identification, annotation and phylogenetic analysis in 60 mycobacterial species.

3.2. Methods

3.2.1. Species used in the study

Mycobacterial species genomes that are published and are publicly available were used in this study. A total of 60 mycobacterial species belonging to six different mycobacterial categories (Parvez *et al.*, 2016) were selected and analysed for this study (Table 3.2). The six categories include *Mycobacterium tuberculosis* complex (MTBC) (27 species), *M. chelonae-abscessus complex* (MCAC) (6 species), *M. avium* complex (MAC) (8 species), Mycobacteria causing leprosy (MCL) (2 species), Nontuberculous mycobacteria (NTM) (6 species) and Saprophytes (SAP) (11 species).

3.2.2. Genome data mining and annotation of CYP125 in Mycobacterium

Mycobacterial genomes that are publicly available at different genome databases as listed in Table 3.2 were mined for CYP125 as described elsewhere (Syed *et al.*, 2013; Syed and

Chapter 3: Annotation and phylogenetic analysis of cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

Mashele, 2014; Syed *et al.*, 2014a; Syed *et al.*, 2014b; Jawallapersand *et al.*, 2014; Kgosiemang *et al.*, 2014; Sello *et al.*, 2015; Mthakathi *et al.*, 2015; Qhanya *et al.*, 2015; Parvez *et al.*, 2016). Briefly, CYP125A1 of *M. tuberculosis* (McLean *et al.*, 2009) is blasted against other mycobacterial species genomes. The proteins that showed >40% identity were selected and subjected to BLAST analysis against bacterial P450s at the Cytochrome P450 Homepage (Nelson, 2009). Based on the International P450 Nomenclature Committee rule, proteins with >55% identity were grouped under the same subfamily. Some mycobacterial CYP125 P450s were annotated and made available at the Cytochrome P450 Homepage (Nelson, 2009). In this case, the same nomenclature for CYP125 P450s was continued. The CYP125 P450s that showed less than 55% identity to known CYP125 P450s at the Cytochrome P450 Homepage (Nelson, 2009) were assigned to new P450 subfamilies (NS). Annotated CYP125 P450 sequences are listed under Appendix.

3.2.3. Phylogenetic analysis of mycobacterial CYP125 P450s

The phylogenetic analysis of CYP125 P450s was carried out as described elsewhere (Sello *et al.*, 2015). Briefly, the evolutionary history the evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The evolutionary distances were computed using the Poisson correction method (Zuckerkandl and Pauling, 1965) and are in the units of the number of amino acid substitutions per site. Evolutionary analyses were conducted in MEGA6 (Tamura *et al.*, 2013).

Table 3.2. Information on mycobacterial species with codes in parenthesis and their respective genome database links used in the study.

Species name	Database	Weblink
Mycobacterium tuberculosis C(TBCG);	TB Database	http://genome.tbdb.org
Mycobacterium tuberculosis F11(TBFG);		/tbdb_sysbio/Genomes
Mycobacterium tuberculosis H37Ra(MRA);		Index.html
Mycobacterium tuberculosis H37Rv(Rv);		
Mycobacterium tuberculosis Haarlem(TBHG);		
Mycobacterium tuberculosis KZN		
1435(TBMG); Mycobacterium tuberculosis		
KZN 605(TBXG); Mycobacterium tuberculosis		
KZN 4207(TBSG); Mycobacterium tuberculosis		
RGTB327(MRGA); Mycobacterium		
tuberculosis strains CCDC5079(CCDC);		
Mycobacterium tuberculosis 7199-99(MT);		
Mycobacterium tuberculosis		
Beijing/NITR203(J111); Mycobacterium		
tuberculosis CAS/NITR204(J113);		
Mycobacterium tuberculosis EAI5(M943);		
Mycobacterium tuberculosis		
EAI5/NITR206(J114); Mycobacterium		
tuberculosis Erdman= ATCC		
35801(ERDMAN); Mycobacterium abscessus		
ATCC 19977(MAB); Mycobacterium Avium		
104(MAV); Mycobacterium Avium subsp.		

paratuberculosis K10(MAP); Mycobacterium		
ulcerans Agy99(MUL); Mycobacterium		
Marinum(MMAR); Mycobacterium sp.		
MCS(Mmcs); Mycobacterium vanbaalenii PYR-		
1(Mvan); Mycobacterium smegmatis		
MC2 155(MSMEG); Mycobacterium chubuense		
NBB4 (Mycch)		
Mycobacterium tuberculosis CDC1551(MT);	Xbase	http://www.xbase.ac.u
Mycobacterium bovis AF 2122/97(Mb);		<u>k/mycodb/</u>
Mycobacterium sp. KMS(Mkms);		
Mycobacterium gilvum PYR-GCK(Mflv)		
Mycobacterium africanum GM041182(MAF);	KEGG	http://www.kegg.jp/ke
Mycobacterium tuberculosis UT205(UDA);		<u>gg-</u>
Mycobacterium canetii CIPT		bin/show_organism?or
140010059(MCAN); Mycobacterium canetii		<u>g=maf</u>
CIPT 140060008(BN44); Mycobacterium		
canetii CIPT 140710010(BN42);		
Mycobacterium bovis BCG Pasteur		
1173P2(BCG); Mycobacterium bovis BCG		
Korea 1168P(K60); Mycobacterium bovis BCG		
Mexico(BCGMEX); Mycobacterium bovis BCG		
Tokyo 172(JTY); Mycobacterium abscessus		
subsp. bolletii 50594(MASS); Mycobacterium		
avium subsp. paratuberculosis MAP4(MAP4);		
Mycobacterium intracellulare ATCC		
	1	

12050/0700 1/1 / / / / / / / /	[
13950(OCU); Mycobacterium intracellulare		
MOTT-02(OCO); Mycobacterium Intracellulare		
MOTT-64(OCQ); Mycobacterium intracellulare		
MOTT-36Y(W7S); Mycobacterium Indicus		
pranii MTCC 9506(MIP); Mycobacterium		
leprae Br4923(MLBR); Mycobacterium Leprae		
TN(ML); Mycobacterium sp.		
JDM601(JDM601); Mycobacterium liflandii		
128FXT(MULP); Mycobacterium		
massiliense(MYCMA); Mycobacterium kansassii		
ATCC 12478(MKAN); Mycobacterium sp.		
JLS(Mjls); Mycobacterium gilvum		
Spyr1(Mspyr1); Mycobacterium smegmatis		
JS623(Mycrhn); Mycobacterium rhodesiae		
NBB3; Mycobacterium neoaurum VKM Ac-		
1815D(d174)		
Mycobacterium abscessus 47J26(MYCAB);	UniProt	http://www.uniprot.org
Mycobacterium abscessus103(LA61);		<u>/taxonomy/36809</u>
Mycobacterium abscessus subsp. bolletiiMA		
1948(LA62); Mycobacterium abscessus		
VO6705(MYCAB)		

Notes on databases

TB database: TBDB contains annotated genome and expression (microarray and RT–PCR) data and a suite of data analysis tools designed to serve as a unique resource for TB research and for the discovery of new drugs, vaccines and biomarkers

UniProt: The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data. It contains high-quality manually annotated and non-redundant protein sequence records. Manual annotation consists of analysis, comparison and merging of all available sequences for a given protein, as well as a critical review of associated experimental and predicted data. UniProt curators extract biological information from the literature and perform numerous computational analyses.

KEGG: A database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies

xBASE: A genome database aimed at helping laboratory-based bacteriologists make best use of bacterial genome sequence data, with a particular emphasis on comparative genomics. The latest version, xBASE 2.0 (http://xbase.bham.ac.uk), now provides comprehensive coverage of all bacterial genomes and features an updated modularized backend and an improved user interface, which includes a taxonomy browser and a powerful full-text search facility.

3.3. Results and Discussion

Genome-wide data mining and annotation of CYP125 P450s in 60 mycobacterial species belonging to six different categories revealed presence of 120 P450s belong to five different subfamilies i.e. A, D, E. F and NS (Table 3.3).

Table 3.3. Genome data mining and annotation of CYP125 P450s in 60 mycobacterial

species.

Name of the species	P450 count	Subfamilies				
		A	D	E	F	NS
Mycobacterium tuberculosis complex (MTBC)	I					<u> </u>
Mycobacterium africanum GM041182	1	1	0	0	0	0
Mycobacterium tuberculosis C	1	1	0	0	0	0
Mycobacterium tuberculosis F11	1	1	0	0	0	0
Mycobacterium tuberculosis H37Ra	1	1	0	0	0	0
Mycobacterium tuberculosis H37Rv	1	1	0	0	0	0
Mycobacterium tuberculosis Haarlem	1	1	0	0	0	0
Mycobacterium tuberculosis KZN 1435	1	1	0	0	0	0
Mycobacterium tuberculosis KZN 605	1	1	0	0	0	0
Mycobacterium tuberculosis KZN 4207	1	1	0	0	0	0
Mycobacterium tuberculosis RGTB327	0	0	0	0	0	0
Mycobacterium tuberculosis CDC1551	1	1	0	0	0	0
Mycobacterium tuberculosis strains CCDC5079	1	1	0	0	0	0
Mycobacterium tuberculosis 7199-99	1	1	0	0	0	0
Mycobacterium tuberculosis Beijing/NITR203	1	1	0	0	0	0

Chapter 3: Annotation and phylogenetic analysis of cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

Mycobacterium tuberculosis CAS/NITR204	1	1	0	0	0	0	
Mycobacterium tuberculosis EAI5	0	0	0	0	0	0	
Mycobacterium tuberculosis EAI5/NITR206	1	1	0	0	0	0	
Mycobacterium tuberculosis Erdman= ATCC 35801	1	1	0	0	0	0	
Mycobacterium tuberculosis UT205	1	1	0	0	0	0	
Mycobacterium canetii CIPT 140010059	1	1	0	0	0	0	
Mycobacterium canetii CIPT 140060008	1	1	0	0	0	0	
Mycobacterium canetii CIPT 140710010	1	1	0	0	0	0	
Mycobacterium bovis AF 2122/97	1	1	0	0	0	0	
Mycobacterium bovis BCG Pasteur 1173P2	1	1	0	0	0	0	
Mycobacterium bovis BCG Korea 1168P	1	1	0	0	0	0	
Mycobacterium bovis BCG Mexico	1	1	0	0	0	0	
Mycobacterium bovis BCG Tokyo 172	1	1	0	0	0	0	
Mycobacterium chelonae-abscessus complex (MCAC)							
Mycobacterium abscessus ATCC 19977	4	4	0	0	0	0	
Mycobacterium abscessus subsp. bolletii 50594	3	3	0	0	0	0	
Mycobacterium abscessus 47J26	4	4	0	0	0	0	
Mycobacterium abscessus103	4	4	0	0	0	0	
Mycobacterium abscessus subsp. Bolletii MA1948	4	4	0	0	0	0	
Mycobacterium abscessus VO6705	4	4	0	0	0	0	
Mycobacterium avium complex (MAC)							
Mycobacterium Avium 104	3	2	0	0	0	1	
Mycobacterium Avium subsp. paratuberculosis K10	4	2	0	0	1	1	
Mycobacterium avium subsp. paratuberculosis MAP4	4	2	0	0	1	1	

Chapter 3: Annotation and phylogenetic analysis of cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

Mycobacterium intracellulare ATCC 13950	2	1	0	1	0	0
Mycobacterium intracellulare MOTT-02	2	1	1	0	0	0
Mycobacterium Intracellulare MOTT-64	2	1	1	0	0	0
Mycobacterium intracellulare MOTT-36Y	2	1	1	0	0	0
Mycobacterium Indicus pranii MTCC 9506	5	3	1	0	0	1
Mycobacteria causing Leprosy (MCL)						
Mycobacterium leprae Br4923	0	0	0	0	0	0
Mycobacterium Leprae TN	0	0	0	0	0	0
Nontuberculous mycobacteria (NTM)						
Mycobacterium sp. JDM601	5	5	0	0	0	0
Mycobacterium liflandii 128FXT	2	2	0	0	0	0
Mycobacterium ulcerans Agy99	1	1	0	0	0	0
Mycobacterium Marinum	2	2	0	0	0	0
Mycobacterium massiliense	0	0	0	0	0	0
Mycobacterium kansassii ATCC 12478	1	0	1	0	0	0
Saprophytes (SAP)						
Mycobacterium sp. JLS	3	3	0	0	0	0
Mycobacterium sp. KMS	3	3	0	0	0	0
Mycobacterium sp. MCS	3	3	0	0	0	0
Mycobacterium vanbaalenii PYR-1	4	3	0	0	1	0
Mycobacterium smegmatis MC2 155	3	3	0	0	0	0
Mycobacterium chubuense NBB4	4	3	0	0	1	0
Mycobacterium gilvum PYR-GCK	4	3	0	0	1	0
Mycobacterium gilvum Spyr1	4	3	0	0	1	0

Chapter 3: Annotation and phylogenetic analysis of Technology Stock Transformer P450 monooxygenase CYP125 family in the genus Mycobacterium

Mycobacterium smegmatis JS623	4	3	0	0	1	0
Mycobacterium rhodesiae NBB3	5	4	0	0	0	1
Mycobacterium neoaurum VKM Ac-1815D	0	0	0	0	0	0

Analysis of CYP125 P450s distribution in different categories revealed that MTBC species showed lowest copies of CYP125 in their genomes compared to other categories (Table 3.4). This study revealed that CYP125 P450 is not present in MCL species. MAC and SAP species showed highest number of CYP125 subfamilies in their genomes (Table 3.4).

Category	No of species used	Range (min-max)	Number of
	for analysis		subfamilies
MTBC	27	0-1	1
MCAC	6	3-4	1
MAC	8	2-5	5
MCL	2	0	0
NTM	6	0-5	2
SAP	11	0-5	5

Table 3.4. Analysis of CYP125 P450 family in different mycobacterial categories.

Analysis of subfamily patterns in mycobacterial categories revealed MAC species have highest diversity of CYP125 subfamilies followed by species belong to SAP and NTM (Tables 3.3 and 3.4). Among subfamilies, subfamily A is more dominant across mycobacterial species. Subfamily D is present only in species belonging to MAC and NTM. Subfamily E is present only in species belonging to MAC. Subfamily F and NS is present in MAC and SAP. Phylogenetic analysis of CYP125 P450s revealed that CYP125 P450s belonging to the same mycobacterial group were clustered together in the tree showing conservation of CYP125 as per category (Figure 3.2). Alignment of CYP125 P450s belongs to the same subfamily together further authenticate that annotation of P450s in this study are correct. Presence of more than one copy of CYP125 in some mycobacterial categories suggests important role of this P450s in their physiology.

Figure 3.2. Phylogenetic analysis of CYP125 P450s in mycobacterial species. The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The optimal tree with the sum of branch length = 28.32425881 is shown. The evolutionary distances were computed using the Poisson correction method (Zuckerkandl and Pauling, 1965) and are in the units of the number of amino acid substitutions per site. The analysis involved 119 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 406 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura *et al.*, 2013). Colour codes: red-MTBC; pink-MCAC; yellow-MAC; sky blue-NTM; navy blue-SAP.

3.4. Conclusion

Annotation of CYP125 P450 across 60 mycobacterial species has revealed a total number of 120 CYP125 P450s grouped into five subfamilies. Analysis of CYP125 P450s distribution in different categories revealed that MTBC species showed lowest copies of CYP125 in their genomes compared to other categories. This study revealed that CYP125 P450 is not present in MCL species. MAC and SAP species showed highest number of CYP125 subfamilies in their genomes. Analysis of CYP125 P450 subfamily patterns in mycobacterial categories revealed MAC species have highest diversity of CYP125 subfamilies followed by species belong to SAP and NTM. Presence of more than one copy of CYP125 in some mycobacterial categories suggests important role of this P450s in their physiology.

3.5. References

- Capyk, J.K., Kalscheuer, R., Stewart, G.R., Liu, J., Kwon, H., Zhao, R., Okamoto, S., Jacobs, W.R., Eltis, L.D. and Mohn, W.W., 2009. Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. *Journal of Biological Chemistry*, 284(51), pp.35534-35542.
- Chang, J.C., Miner, M.D., Pandey, A.K., Gill, W.P., Harik, N.S., Sassetti, C.M. and Sherman, D.R., 2009. *igr* Genes and *Mycobacterium tuberculosis* cholesterol metabolism. *Journal of bacteriology*, *191*(16), pp.5232-5239.
- Cole, S., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.3. and Tekaia, F., 1998. Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature*, *393*(6685), pp.537-544.
- Driscoll, M.D., McLean, K.J., Levy, C., Mast, N., Pikuleva, I.A., Lafite, P., Rigby, S.E., Leys, D. and Munro, A.W., 2010. Structural and biochemical characterization of Mycobacterium tuberculosis CYP142 evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. *Journal of Biological Chemistry*, 285(49), pp.38270-38282.
- Hlavica, P., 2015. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. In *Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450* (pp. 247-297). Springer International Publishing.
- Hudson, S.A., McLean, K.J., Munro, A.W. and Abell, C., 2012. Mycobacterium tuberculosis cytochrome P450 enzymes: a cohort of novel TB drug targets. *Biochemical Society Transactions*, *40*(3), pp.573-579.

- Jawallapersand, P., Mashele, S.S., Kovačič, L., Stojan, J., Komel, R., Pakala, S.B., Kraševec, N. and Syed, K., 2014. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target. *PloS one*, *9*(9), p.e107209.
- Johnston, J.B., Ouellet, H. and de Montellano, P.R.O., 2010. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. *Journal of Biological Chemistry*, 285(47), pp.36352-36360.
- Kendall, S.L., Withers, M., Soffair, C.N., Moreland, N.J., Gurcha, S., Sidders, B., Frita, R., Ten Bokum, A., Besra, G.S., Lott, J.S. and Stoker, N.G., 2007. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. *Molecular microbiology*, 65(3), pp.684-699
- Kgosiemang, I.K.R., Mashele, S.S. and Syed, K., 2014. Comparative genomics and evolutionary analysis of cytochrome P450 monooxygenases in fungal subphylum Saccharomycotina. J. Pure Appl. Microbiol, 8, pp.291-302.
- McLean, K. J., Leys, D. & Munro, A. W., 2015. Microbial cytochrome P450s *In* Cytochrome P450: Structure, mechanism, and biochemistry.*4th edn*. (eds Oritz de Montellano, P. R.). *Springer International Publishing*, Ch. 6, 261–407.
- McLean, K.J., Lafite, P., Levy, C., Cheesman, M.R., Mast, N., Pikuleva, I.A., Leys, D. and Munro, A.W., 2009. The structure of Mycobacterium tuberculosis CYP125 molecular basis for cholesterol binding in a P450 needed for host infection. *Journal of Biological Chemistry*, 284(51), pp.35524-35533.
- Mthakathi, N.T., Kgosiemang, I.K.R., Chen, W., Mohlatsane, M.E., Mojahi, T.J., Yu, J.H., Mashele, S.S. and Syed, K., 2015. Cytochrome P450 monooxygenase analysis in

free-living and symbiotic microalgae Coccomyxa sp. C-169 and Chlorella sp. NC64A. *Algae*, *30*(3), p.233.

- Murphy, D.J. and Brown, J.R., 2007. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. *BMC infectious diseases*, 7(1), p.1.
- Nelson, D.R., 2009. The cytochrome p450 homepage. *Human genomics*, 4(1), p.1.
- Nelson, D.R., 2013. A world of cytochrome P450s. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 368(1612), p.20120430.
- Ouellet, H., Guan, S., Johnston, J.B., Chow, E.D., Kells, P.M., Burlingame, A.L., Cox, J.S., Podust, L.M. and De Montellano, P.R.O., 2010. Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. *Molecular microbiology*, 77(3), pp.730-742.
- Parvez, M., Qhanya, L.B., Mthakathi, N.T., Kgosiemang, I.K.R., Bamal, H.D., Pagadala, N.S., Xie, T., Yang, H., Chen, H., Theron, C.W. and Monyaki, R., 2016. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s. *Scientific Reports*, 6.
- Qhanya, L.B., Matowane, G., Chen, W., Sun, Y., Letsimo, E.M., Parvez, M., Yu, J.H., Mashele, S.S. and Syed, K., 2015. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens. *PloS one*, *10*(11), p.e0142100.
- Saitou, N. and Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular biology and evolution*, 4(4), pp.406-425.
- Sassetti, C.M. and Rubin, E.J., 2003. Genetic requirements for mycobacterial survival during infection. *Proceedings of the National Academy of Sciences*, 100(22), pp.12989-12994.

- Sassetti, C.M., Boyd, D.H. and Rubin, E.J., 2003. Genes required for mycobacterial growth defined by high density mutagenesis. *Molecular microbiology*, 48(1), pp.77-84.
- Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., Dolganov, G., Efron, B., Butcher, P.D., Nathan, C. and Schoolnik, G.K., 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages insights into the phagosomal environment. *The Journal of experimental medicine*, *198*(5), pp.693-704.
- Sello, M.M., Jafta, N., Nelson, D.R., Chen, W., Yu, J.H., Parvez, M., Kgosiemang, I.K.R., Monyaki, R., Raselemane, S.C., Qhanya, L.B. and Mthakathi, N.T., 2015. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes. *Scientific reports*, 5.
- Sivaramakrishnan, S., Ouellet, H., Matsumura, H., Guan, S., Moënne-Loccoz, P., Burlingame, A.L. and Ortiz De Montellano, P.R., 2012. Proximal ligand electron donation and reactivity of the cytochrome P450 ferric–peroxo anion. *Journal of the American Chemical Society*, *134*(15), pp.6673-6684.
- Syed, K. and Mashele, S.S., 2014. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family. *PloS one*, *9*(4), p.e95616.
- Syed, K. and Yadav, J.S., 2012. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. *Critical reviews in microbiology*, 38(4), pp.339-363.
- Syed, K., Nelson, D.R., Riley, R. and Yadav, J.S., 2013. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore

species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. *Mycologia*, 105(6), pp.1445-1455.

- Syed, K., Shale, K., Nazir, K.N.H., Krasevec, N., Mashele, S.S. and Pagadala, N.S., 2014. Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi Thielavia terrestris and Myceliophthora thermophila. Genes & Genomics, 36(3), pp.321-333.
- Syed, K., Shale, K., Nazir, K.N.H., Krasevec, N., Mashele, S.S. and Pagadala, N.S., 2014b. Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi *Thielavia terrestris* and *Myceliophthora thermophila*. Genes & Genomics, 36(3), pp.321-333.
- Syed, K., Shale, K., Pagadala, N.S. and Tuszynski, J., 2014a. Systematic identification and evolutionary analysis of catalytically versatile cytochrome P450 monooxygenase families enriched in model basidiomycete fungi. PLoS One, 9(1), p.e86683.
- Tailleux, L., Waddell, S.J., Pelizzola, M., Mortellaro, A., Withers, M., Tanne, A., Castagnoli, P.R., Gicquel, B., Stoker, N.G., Butcher, P.D. and Foti, M., 2008. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. *PloS one*, *3*(1), p.e1403.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecular biology and evolution*, 30(12), pp.2725-2729.

- Thomas, S.K., Iravatham, C.C., Moni, B.H., Kumar, A., Archana, B.V., Majid, M., Priyadarshini, Y., Rani, P.S., Valluri, V., Hasnain, S.E. and Ahmed, N., 2011. Modern and ancestral genotypes of Mycobacterium tuberculosis from Andhra Pradesh, India. *PloS one*, 6(11), p.e27584.
- Zuckerkandl, E. and Pauling, L., 1965. Evolutionary divergence and convergence in proteins. *Evolving genes and proteins*, 97, pp.97-166.

APPENDIX

>CYP125A(MAB_0611)

MVQAQHPHLPDGIDFTDPELFVHGIPERELAELRHTEPIWWNHTERGVAGFDDDGFWVVSKHKDVKEVSLRCEVFSSEQNTAIPRYLPTTPRER IDATRLIMLNMDPPRHSRLRHIISRGFTPRAISRLRDDLNARAQGIARAAAQLRHGDFVEQVACELPLQAIAGLMGTPLDEREQLFDWSNRLVG SSDGEDDSAVASAELLMYAMGVAARKTAEPGADICTDLVNADIDGQKLSDDEFGFFVMLLAVAGNETTRNSITHGMHAFTQFPEQWELYKKTRP ETAADEIVRWATPVTSFQRTALEDTELGGVRIKKGQRVVMMYRSANFDEEVFENPFTFDIMRDPNPHVGFGGNGEHHCVGANLARMTINLMFNA IADHMPDLASAGEPDRLRSGWLNGVKHWEVDFCPAGYGRAS*

>CYP125A(MAB 0613)

MVHPSLPAGFDFTDPEIYAERLPVEELKELRKTAPIWWQEQPDGVGGFNDGGYWVVTKHKDVKEVSLRSDVFSSWENTAIPRFQDDITREAIEL QRYVMLNMDAPHHTRLRKIISRGFTPRAIGRLRDELNERAQEIAKAAAASGTGDFVEQVSCELPLQAIAGLLGVPIEDRGKLFNWSNEMTSYDD PEYADIDPAASSMEILAYSMEMAKQKAENPGEDIVTTLINAEVEGEGKLSDDEFGFFVIMLAVAGNETSRNSITQGMMAFTQFPEQWELYKKER PETAADEIVRWATPVTSFQRTALEDTELDGVKIKKGQRVVMMYRSANFDEDVFEDPFSFNIMRNPNPHMGFGGSGAHYCIGANLARLTINLMFN AIADHMPNLAPAGDFKRLQSGWLNGIKHWQVDFTGASGCPVLQ*

>CYP125A(MAB 1211c)

MTAMKTAAELGLPEGFDFTDPELYGNRMPHEEFATLRREAPVWWNPQPRTVGGFADEGYWVISKHRDVREVSLHTDTFSSGRKGAIPRLEDHIS PEEFQATLSVLINKDAPEHTQLRGLVSRMFTPRSIAALRITLEERAERIVRAALEGGHGEFVREVASELPMQAIAELIGVPEEDRVKLFEWSNQ MTGYDEADVEIDPRVGAAQILGYSYQLAEQRRDCPGNDVVSRLLTGTVDGEQLTPEQFGFFVVMLSVAGNETTRNATTMGMMAFLEHPGQWELF KSARPSTTVDEIVRYTSPLISQQRTALQDTVISDVRIRAGERVVMLYPSANFDEEVFENPHTFDITRDPNPHLGFGGTGAHYCLGANLAKAELE IIFNKIADRMPDISRIGDAPRFHSGWINGIKKFDTAYCPVTH*

>CYP125A(MAB 0101)

MTTCPFTPGFDFTDPDLIQHRIPAEEFAYLRKTEPIWWNAQPRGVAGFDDDGYWVVTKHADVKEVSRLNEVFSNSVNTTVVRYNEDITAEQLEI QRENLLIDMDEPKHRILRRIVSPLFTPKAVNGLHARLVERAHGIVEEAAEKSSGNFVSDIASVLPMHAIADLVGIPESDRQQVLDWTNQMFAYD DPAIGRDTATTATVSMLGYAYAMAEERQLNPQDDILTGLVRGAYDDRPLTPLEFAYFVIQLMVAGNETSRNAITHGVLAFADNPAQWRLYRERR PSTAADEIIRWASPIIAFQRTALQDVELGGVQIRKDQRVGMFYASANFDEDVFDDPFAFNIERDPNPHLAFGGHGIHY CLGANLARLEIGIMFDALADRLPDLMPTGAPTRFRSGWINGVVALPANYHGSGPRG*

>CYP125A1 (MAF 35570)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125NS (MAV 1637)

MNVNAATAACGDDPAERGLAMTTAAVDLSDFSLWCNGFPDELFTELRRTRPLFHHDLTPGVAATVHRDFWVATKHRHAVRLHRDTESFTAADGP LIQPVAMFSSSPTIITMDPPELNKRRKLISNAFNPRAIAKLEDGIRARAARMIDNLLAHGGGDWIEDVADALPMTVIGDILGIPERDRPRIFDL FDRILKALAPDAHPRGGVELELFASVFDYAMQLTADKRRNPTGDIWSTLATAVITGEDGEEFRLPANELEFFFFVLAFAGSDTTKNALAIGLQA FLANPGQVERYRADEALRPTAVEEVLRWASPVAYWTRTAKVDVEMDGQRIAKGERVVSMLRSANRDEEVFDAPFTFDIGRQPNPHVAFGGGGPH HCLGAMLARAELRAVFDELLLRCDDIEIGPAKAAYPNLITNMSIYDEMPISLRRR*

>CYP125A(MAV 0616)

MPSPNLPPGFDLLDPDVCVKGLPVAELAELRKSAPIYWMDVPGGTGGFGDKGYWAITKHKDVKEISVRSDIFSSQQDCAIPVWPKEMTREQIDL QRNVMLNMDAPHHTRLRKIISRGFTPRAVGRLRDELDARAQNIAKTAAAAGAGDFVEQVSCELPLQAIAGLLGVPQEDRDKIFRWSNEMTGNED PEYAHIDPAMSSAELIMYAMKMAEERAKNPGDDIVTQLIQADLDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFADNPDQWELFKKERP ETAPDEIVRWATPVTAFQRTALEDYELSGVQIKKGQRVVMFYRSANFDEEVFEDPHRFNILRNPNPHVGFGGTGAHYCIGANLARMTISLIFNA VADHMPDLKPLSAPERLRSGWLNGIKHWQVDYTGKCPVAH*

>CYP125A(MAV 2811)

MATVEPTTKPVPNLPPGFDFTDPDIYAERLPVEELAEMRRVAPIWWNEQPIGAGGFDDGGFWVVTKHKDVKEVSLRSDVFSSLQKTALPRYKDG TVAEQVERGKFVLLNMDAPQHTRLRKIISRAFTPRAVERLRDDLRERARRIVEAAAAEGSGDFVEQVSCELPLQAIASLMGVPQEDRKKLFHWS NEMVGDQDPEFASNDAITASVELIMYGMQMAADRAKNPGEDLVTKLVQADIDGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQW ELFKRERPATAADEIVRWATPVTSFQRTALQDYELSGVKIKKGQRVVMFYRSANFDEDVFDDPFTFNILRDPNPHVGFGGTGAHYCIGANLARM TIDLMFNAIADAMPDLESIGKPERLRSGWLNGIKHWQVDYHTNGSSKCPVAH*

>CYP125NS (MAP2344)

MNVNAATAACGDDPAERGSAMTTAAVDLSDFSLWCNGFPDELFAELRRTRPLFHHDLTPGVAATVHRDFWVATKHRHAVRLHRDTESFTAADGP LIQPVAMFSSSPTIITMDPPELNKRRKLISNAFNPRAIAKLEDGIRARAARMIDSLLAHGGGDWIEDVADALPMTVIGDILGIPERDRPRIFDL FDRILKALAPEAHPRGGVELELFASVFDYAMQLTADKRRNPTGDIWSTLATAVITGEDGEEFRLPANELEFFFFVLAFAGSDTTKNALAIGLQA FLANPEQVERYCADEALRPTAVEEVLRWASPVAYWTRTAKVDVEMDGQRIAKGERVVSMLRSANRDEEVFDAPFTFDIGRQPNPHVAFGGGGPH HCLGAMLARAELRAVFDELLLRCDDIEIGPAKAAYPNLITNMSIYDEMPISLRRR*

>CYP125A(MAP1614c)

MATVEPTTKPVPNLPPGFDFTDPDIYAERLPVEELAEMRRVAPIWWNEQPIGAGGFDDGGFWVVTKHKDVKEVSLRSDVFSSLQKTALPRYKDG TVAEQVERGKFVLLNMDAPQHTRLRKIISRAFTPRAVERLRDDLRERARRIVEAAAAEGSGDFVEQVSCELPLQAIAGLMGVPQEDRKKLFHWS NEMVGDQDPEFASNDAITASVELIMYGMQMAADRAKNPGEDLVTKLVQADIDGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQW ELFKRERPATAADEIVRWATPVTSFQRTALQDYELSGVKIRKGQRVVMFYRSANFDEDVFDDPFTFNILRDPNPHVGFGGTGAHYCIGANLARM TIDLMFNAIADAMPDLESIGKPERLRSGWLNGIKHWQVDYHTNGSSKCPVAH*

>CYP125A(MAP0522)

MPSPNLPPGFDLLDPDVCVKGLPVAELAELRKSAPIYWVDVPGGTGGFGDKGYWAITKHKDVKEISVRSDIFSSQQDCAIPVWPKEMTREQIDL QRNVMLNMDAPHHTRLRKIISRGFTPRAVGRLRDELDARAQNIAKTAAAAGAGDGFVEQVSCELPLQAIAGLLGVPQEDRDKIFRWSNEMTGNED PEYAHIDPAMSSAELIMYAMKMAEERAKNPGDDIVTQLIQADLDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFADNPDQWELFKKERP ETAPDEIVRWATPVTAFQRTALEDYELSGVQIKKGQRVVMFYRSANFDEEVFEDPHRFNILRNPNPHVGFGGTGAHYCIGANLARMTISLIFNA VADHMPDLKPLSAPERLRSGWLNGIKHWQVDYTGKCPVAH*

>CYP125F1 (MAP3818)

MRTPVTVGQHRHPFGRDIYVGRSGYVTEDAISIGGVNLADPDTYRAGMPYGAFRKLRERAPVAWHPQKDGSGFWALTGYEEIHAVSRDSATWSS QINGAMFDAPPPGEVPPVMIFMDPPQHTALRKLINKGFTPRQVTRLNEHIVEMAKQIVDDVIERGECEFADDVAGALPSYVIAEMLGIPLEDGR RLYQITEILHTGSVGDSDDERQQAMVEMFQYGVELAVRKRAEPGDDIATSLLHAEVDGQSLSDLEFNLFFMLLIDAGGDTTRNLVAAGILALLE HPQELQRLKADPSLMPTAIEEMLRYTSPVTAFLRTATKDTELRGVPVKAGERVAMFYPSGNRDDSHFADPDRLDVGRAPNPHLAFGGGGTHFCL GANLARVEASAMVPEVLSRMNDLELAGPVERLRSDLINGIRSMPVRFTPGKRLGTA*

>CYP125A1 (MbovAF2122/97,NP 857214.1)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH*

>CYP125A1 (MbovBCG)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQD RGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMMA FAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHYC IGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH*

>CYP125A(MIP 04041)

MSTVEPSTKSVPNLPPGFDFTDPDIHAERLPVEELAELRRTAPIWWNEQPIGAGGFDDGGFWVVSKHKDVKEVSLRSDVFSSLQKTALPRYKDG TVGEQIERGKFVLLNMDAPQHTRLRKIISRAFTPRAIERLREDLAERARHIVEQAAAEGRGDFVEQVSCELPLQAIAGLMGVPQEERKKLFHWS NEMVGDQDPEFANSDAITASVELIMYGMQMAAERTKNPGEDLVTKLVQADIDGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQW ELFKKERPGTAADEIVRWATPVTSFQRTALEDYELSGVRIKKGQRVVMVYRSANFDEDVFDDPFTFNILRDPNPHVGFGGTGAHYCIGANLARM TIDLMFNAIADGIPDLESIGKPERLRSGWLNGIKHWQVDYHTDGKAKAPAAH

>CYP125A(MIP 00975)

MPSPNLPPGFDFLDPDVSVKGLPVAELAEVRKSEPIFWVDVPGGTGGFGDKGYWAITKHKDVKEISVRSDIFSSQQDCAIPVWPQEMTREQIDL QRNVMLNMDAPHHTRLRKIISRGFTPRAIGRLRDELDARAQNIAKTAASSGSGDFVEQVSCELPLQAIAGLLGVPQEDRDKIFRWSNEMTGNED PEYAHIDPAMSSAELIMYAMKMAEERAKNPGDDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFADNPDQWELFKKERP DTAPDEIVRWATPVTAFQRTALEDYELSGVQIKKGQRVVMFYRSANFDEEVFEDPHSFNIMRNPNPHVGFGGTGAHYCIGANLARMTISLIFNA VADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGKCPVAH

>CYP125NS (MIP 02350)

MTAAAVDLSDLSLWCNGFPDDLFAELRRSSPLFRHELTPGVAQTVHRDFWMATKHRHAVRLHRDTESFTAADGPLIQPVAMFSSFPTIITLDPP ELNRRKLISNAFNPRAIAKLEEGIRARAARMIDDLLAAGGGDWIEDVADALPMSVIGDIIGIPDEDRPRIFGNFDQILKALAPEAHPSGRVEL DLFASVFRYAMELTAEKRNPTDDIWSTLATAVITGEDGERFSLPENELEFFFFVLAFAGSDTTKNALAIGLQAFVRNPQQIERYRAQEALRPG AVEEVLRWASPVAYWTRTAKVDVEMDGQRIAKGERVVSMLRSANRDEEVFDSPFVFDIGRQPNPHVAFGGGGPHHCLGAMLARAELRAVFDELL LRCDDIEIGPAKAAHPNLTTNMSIYDEMAISLRERR

>CYP125D(MIP 02985)

MSIAKPTLVKSLVPQNLDTAADRDAAAVLDPDTFVTGAPYDAMTRLRAASPVHPVQLPGLPRAWLLTKHADVRLVSRDTDTFTSSKGNTLVEAE AGPNSAMLPGIDPPRHVHFRKLINQGFTVRNVQRLEPRMRQVARGIVAAITDKREFDAVTDISAEMSLQVIADVLGVPAEDRMDVFRWSNAIGS LGIEDPDYAPTPEALGQAAAEMFAYCGELVEHRRKHGLTDDILSALLAAEVDGEKLNRDQLNEFFLLLAIAGNETTRNTLSHGILALAERPEQQ Chapter 3: Annotation and phylogenetic analysis of Chapter 3: Annotation and phylogenetic analysis of the genus Mycobacterium

ALLARDPAAIKPAVEELLRWATPVMHFRRTVVRDVEIRGQRIPSGDWVLMHYLSANRDEEVFDRPDQFDVTRPDAGHAAFGGGGVHFCLGAQLA RLELRVMLEELYANVPGLAVTGPPDRLRSSFFHGIKRLPCTT

>CYP125A(MIP 06760)

MATPNLPPGFDFTDPDIYAHRLPVREFAELRATEPVWWNEQAPDKGGFGDGGYWAVTKHRDIRDVSLRSDVFSSAAKSIVPRYREDLAAGQIEA GRASMIMMDDPEHSRLRRIVSRAFTPRAVERLRAELSERARCIVTEAAAAGSGDFVRQVACELPLQAISALLGVPHEDYDKLFDWTNNMIGSDD PEFAGNDALTSAGELMWYAMQLAARKAEEPGDDIVTTLIQADADGQRLSEAEFGMFVVTLAVAGNETTRNSITQGMMAFTDYPVQWELFKARRP KTAADEIIRWATPITAFQRTAREDTELGGVAIREGQRVVLFYRSANFDEEVFDDPFTFDILRSPNPHLGFGGTGAHYCIGANLARMTIDVMFNA LADRLPDLAPLGNPERLRSSFINGIKHWPVDYRGGHPVAS

>CYP125A6(MMAR 2783)

MPAAEPTATSVPNLPPGFDFTDPDIYAERLPVAELAEMRRSAPIWWNEQPTGCGGFDDGGFWVVTKHKDVKEISLRSDVFSSLQKTALPRYKDG TVDEQIERGKFVLLNMDAPQHTRLRKIVSRAFTPRAVERLRDDLRERARRIVEAAAAEGRGDFVEQVSCELPLQAIAGLMGVPQEDRKKLFHWS NEMVGDQDPEFATNDALTASVELIMYGMQMAADRAKNPGQDLVTKLVEADIDGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQW ELYKRERPVTTADEIVRWATPVTSFQRTALQDYELSGVRIKKGQRVVMFYRSANFDEDVFDDPYTFNILRDPNPHVGFGGTGAHYCIGANLARM TIDLMFNAIADVMPDLESISQPERLRSGWLNGIKHWQVDYHSDSSGKCPVAH*

>CYP125A7 (MMAR 5032)

MPCPNLPPGFDFTDPDIYAERLPVEEFAELRSSEPIWWDEQLPGQGGGFHDGGFWAITKLKDVKEVSRRSDVFSSYENGVIPRFKNDIAREDID VQRFVMLNMDAPHHTRLRKIISRGFTPRAIGRLHDELNDRAQNIAKAAAAAGSGDFVEQVSCELPLQAIAGLLGIPQEDRGKLFDWSNEMTGTE DPEFAHIDAKASSVELIGYAMKMAEEKAKNPGDDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMMAFADNPEQWELYKRER PETAADEIVRWATPVTSFQRTALEDYELSGVQIKKGQRVLMFYRSANFDEEVFEDPFSFNILRNPNPHVGFGGTGAHYCIGANLARMTINLIFN AVADHMPDLTPIAAPERLRSGWLNGIKHWQVDYTGKCPVSH*

>CYP125A5P(MSMEG 5853)

MATMNTCPFGNGYDFTDPDVLFRGIPVEEFAVLRKTAPVWWNQQGESIFDDGGYWVISRHEDIKTISRDGGEVWSTNAKGAVMRLPDGVTAEQL DLTKALLINHDAPEHTRLRKLVSRLFTPRSVAALEEKLAVAAHDIVAEAKAEGSGNFVEDIAMKLPLLAIADLIGVPEADREKIFAWSNAIINT DDPDFDSDPTVANAELMGYAYTMAEERRRCPADDIVTRLVQADVSGESLGEVEFAFFVILLAVAGNETTRNAITHGMNAFFENPDQWELFKRER PITAVDEIVRWATPVHCFQRTAVVDTEIGGVPIKAGQRAGLFYSSANYDEDVFDDPFRFDILRDPNPHLGFGGNGAHYCIGANLARMEIRLMFD EIADQIPDITKVGEPQRLRSGWINGVKDLQVSYRG*

>CYP125A4 (MSMEG 3524)

MVMSDSALHLPAGFDFTDPDIYAERLPVDELAELRRVAPIWWNAQPIGAGGFDDGGFWVVTKHKDVKEISLRSDVFSSLEKTALPRYPEGTVQD QIEQGRFVLLNMDAPHHTHLRKIISRAFTPRAVERLRDDLAERARAIVRAAAEEGSGDFVEQVACELPLQAIAGLMGVPQEDRRKLFDWSNQMV GNQDPEFVANDGASAAVELITYGMQLAAQRAAAPGDDLVTKLVQADVEGHKLSDDEFGFFVVLLAVAGNETTRNSITQGMMAFTDHRDQWELFK RERPVTTADEIVRWATPVTSFQRTALADTEVSGVRIKKGQRVVMFYRSANFDEDVFTDPYRFDILRDPNPHVGFGGTGAHYCIGANLARMTIDL IFNAIADEMPDLTPISEPVRLRSGWLNGIKHWQVDYRGDAAKHRAAQASSQADR*

>CYP125A3 (MSMEG 5995)

MPTPNIPSDFDFLDATLNLERLPVEELAELRKSEPIHWVDVPGGTGGFGDKGYWLVTKHADVKEVSRRSDVFGSSPDGAIPVWPQDMTREAVDL QRAVLLNMDAPQHTRLRKIISRGFTPRAIGRLEDELRSRAQKIAQTAAAQGAGDFVEQVSCELPLQAIAELLGVPQDDRDKLFRWSNEMTAGED PEYADVDPAMSSFELISYAMKMAEERAVNPTEDIVTKLIEADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFAQNPDQWELYKKERP ETAADEIVRWATPVSAFQRTALEDVELGGVQIKKGQRVVMSYRSANFDEEVFEDPHTFNILRSPNPHVGFGGTGAHYCIGANLARMTINLIFNA IADNMPDLKPIGAPERLKSGWLNGIKHWQVDYTGAGKASVSGAPGTCPVAH*

>CYP125A(Mjls 2753)

MSSDRLRPNLPPGFDFTDPDIYAERLPVEELAEMRRVAPVWWNEQPIGAGGFDDGGFWVVTKHKDVKEVSRRSDVFSSLEKTALPRYRDGTVGE QIERGKYVLLNQDAPHHTHLRQIVSRAFTPRAVERLRAELDARAQQIARTAREQGSGDFVEQVSCELPLQAIAGLMGVPQEDRKKLFDWSNQMV GDQDPEFAGNDAIGASVELIMYGMQMAADRVANPGDDLVTKLVQADVEGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQWELFK RERPATAADEIVRWATPVTSFQRTALCDTELSGVTIKKGQRVVMFYRSANFDEDVFTDPYSFGILRDPNPHVGFGGTGAHYCIGANLARMTIDL MFNAIADHMPDLTPVGKPERLRSGWLNGIKHWQVDYTGSAAKPPAAQ

>CYP125A(Mkms 4660)

MTTMESRCPFGPGFDFTDPDVLVQGIPVNEFAQLRKTAPVWWNEQQESIFDDGGYWVISRHEDIKSISRNGDLWSTNAKGAVMRLPEGVTAEQL DLTKALLINHDAPEHTRLRKIVSRLFTPRSVAALEEKLAISARQIVAAAREKGSGDFVTDIAMSLPLQAIADLIGVPEADREKLFHWTNCIMNT DDPDFDSDPTVANAELMGYAYNMAEERRRCPADDIVTRLIQADIDGESLGDVEFAFFVILLAVAGNETTRNAMTHGMNAFFEHPDQWELFVRER PETAVDEIVRWATPVHCFQRTALADVELGGVTIREGQRAGLFYSSANYDEDVFQSPFEFDILRDPNPHLGFGGNGAHYCIGANLARMEIKLIFN ELADQIPDIAKLGEPQRLRSGWINGVKELPVSYRG*

>CYP125A(Mkms 2767)

MSSDRLRPNLPPGFDFTDPDIYAERLPVEELAEMRRVAPIWWNEQPIGAGGFDDGGFWVVTKHKDVKEVSRRSDVFSSLEKTALPRYRDGTVGE QIERGKYVLLNQDAPHHTHLRQIVSRAFTPRAVERLRAELDARAQQIARTAREQGSGDFVEQVSCELPLQAIAGLMGVPQEDRKKLFDWSNQMV GDQDPEFAGNDAIGASVELIMYGMQMAADRVANPGDDLVTKLVQADVEGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQWELFK Chapter 3: Annotation and phylogenetic analysis of Cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

RERPATAADEIVRWATPVTSFQRTALCDTELSGVTIKKGQRVVMFYRSANFDEDVFTDPYSFDILRDPNPHVGFGGTGAHYCIGANLARMTIDL MFNAIADHMPDLTPVGKPERLRSGWLNGIKHWQVDYTGSAAKPPAAQ*

>CYP125A(Mkms_4763)

MPGPNSCPIAPDFDFLDANLNLERLPVAELAELRKSEPVHWVDVPGGTGGFGDKGYWLVTKHADVKDVSKRNDVFGSSPDGAIPVWPQDMTRDA IDLQKAVLLNMDAPQHTRLRKIISRGFTPRAVGRLEDELRARAQKIAETAAAEGAGDFVEQVSCELPLQAIAELLGVPQDDRDKLFRWSNEMTA GEDPEYADVDPAMSSFELITYAMKMAEERAKNPTEDIVTKLIEADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFSQNPDQWELYKE RPETAADEIVRWATPVSAFQRTALEDTELGGVQIKKGQRVVMSYRSANFDEEVFENPYQFDILRNPNPHVGFGGTGAHYCIGANLAKMTINLIF NAIADKMPDLKPIGQPERLKSGWLNGIKHWQVDYTGAGGPAIEQKCPVAH*

>CYP125A(Mmcs 4572)

MTTMESRCPFGPGFDFTDPDVLVQGIPVNEFAQLRKTAPVWWNEQQESIFDDGGYWVISRHEDIKSISRNGDLWSTNAKGAVMRLPEGVTAEQL DLTKALLINHDAPEHTRLRKIVSRLFTPRSVAALEEKLAISARQIVAAAREKGSGDFVTDIAMSLPLQAIADLIGVPEADREKLFHWTNCIMNT DDPDFDSDPTVANAELMGYAYNMAEERRRCPADDIVTRLIQADIDGESLGDVEFAFFVILLAVAGNETTRNAMTHGMNAFFEHPDQWELFVRER PETAVDEIVRWATPVHCFQRTALADVELGGVTIREGQRAGLFYSSANYDEDVFQSPFEFDILRDPNPHLGFGGNGAHYCIGANLARMEIKLIFN ELADQIPDIAKLGEPQRLRSGWINGVKELPVSYRG*

>CYP125A(Mmcs 2723)

MSSDRLRPNLPPGFDFTDPDIYAERLPVEELAEMRRVAPIWWNEQPIGAGGFDDGGFWVVTKHKDVKEVSRRSDVFSSLEKTALPRYRDGTVGE QIERGKYVLLNQDAPHHTHLRQIVSRAFTPRAVERLRAELDARAQQIARTAREQGSGDFVEQVSCELPLQAIAGLMGVPQEDRKKLFDWSNQMV GDQDPEFAGNDAIGASVELIMYGMQMAADRVANPGDDLVTKLVQADVEGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQWELFK RERPATAADEIVRWATPVTSFQRTALCDTELSGVTIKKGQRVVMFYRSANFDEDVFTDPYSFDILRDPNPHVGFGGTGAHYCIGANLARMTIDL MFNAIADHMPDLTPVGKPERLRSGWLNGIKHWQVDYTGSAAKPPAAQ*

>CYP125A(Mmcs 4677)

MPGPNSCPIAPDFDFLDANLNLERLPVAELAELRKSEPVHWVDVPGGTGGFGDKGYWLVTKHADVKDVSKRNDVFGSSPDGAIPVWPQDMTRDA IDLQKAVLLNMDAPQHTRLRKIISRGFTPRAVGRLEDELRARAQKIAETAAAEGAGDFVEQVSCELPLQAIAELLGVPQDDRDKLFRWSNEMTA GEDPEYADVDPAMSSFELITYAMKMAEERAKNPTEDIVTKLIEADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFSQNPDQWELYKK ERPETAADEIVRWATPVSAFQRTALEDTELGGVQIKKGQRVVMSYRSANFDEEVFENPYQFDILRNPNPHVGFGGTGAHYCIGANLAKMTINLI FNAIADKMPDLKPIGQPERLKSGWLNGIKHWQVDYTGAGGPAIEQKCPVAH*

>CYP125A1(TBCG 03474.1)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH*

>CYP125A1 (TBFG 13578.4)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH*

>CYP125A1(MRA 3584)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH*

>CYP125A1 (Rv3545c)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH*

>CYP125A1(TBHG_03485.1)

MSGNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM Chapter 3: Annotation and phylogenetic analysis of Cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH*

>CYP125A1 (TBMG 03584)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNTLRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A7 (MUL 4106)

MPCPNLPPGFDFTDPDIYAERLPVEEFAELRSSEPIWWDEQFPGQGGGFHDGGFWAITKLKDVKEVSRRSDVFSSYENGVIPRFKNDIAREDID VQRFVMLNMDAPHHTRLRKIISRGFTPRAIGRLHDELNDRAQNIAKAAAAAGSGDFVEQVSCELPLQAIAGLLGIPQEDRGKLFDWSNEMTGTE DPEFAHIDAKASSVELIGYAMKMAEEKAKNPGDDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMMAFADNPEQWELYKRER PGTAADEIVRWATPVTSFQRTALEDYELSGVQIKKGQRVLMFYRSANFDEEVFEDPFSFNILRNPNPHVGFGGTGAHYCIGANLARMTINLIFN AVADHMPDLKPIAAPERLRSGWLNGIKHWQVDYTGKCPVSH*

>CYP125F2(Mvan 0246)

MATDAISIGGVDLADPDTYVGGMPHGAFRELRRHAPVAWHPYGDNPGFWALTGYDEVLAVSRDSRTWSSQTTGVFLDVPAPEDSYQLSLMMLTM DPPRHTALRALVSRGFTPRHLARLNARTADMARDILDAALQRGECEFVDDVAGALPSYVIAELLGIPLDDGRRLYALTEIMNTRPLHDPELMQT QVELFGYAGDLAASKRAAPGDDIATALLHAEVDGQRLTDLEFNLFFMLLLNAGGDTTRNLVAAGTLALIEHPEQWARLAADPSLMPTAIEEMLR WTSPVNVFTRTATRDTEVGGVPLRAGERVAMFYPSANRDEKHFADPDRFDIGRAPNHHLAFGGGGTHFCLGASLARVEATAIFGEILTRTAHIE LAGPVERVRSVLMNGIRSMPVRLTPASVPA*

>CYP125A10(Mvan 3012)

MATPTLPPGFDFTDPDLNLERLPVEELAELRRCAPIWWNEQTSGGAGPFGDGGYWVVTKHRDVKEISKHSEVFSSQQKTALPRYPEGSTTEQVE TGSLVLLNMDAPRHTHLRKIISRGFTPRAVERLREDLAQRAHNIAKSAAAAGAGDFVEQVSCELPLQAIAGLLGVPLEDRKKLFDWSNQMVSDD DPEFAHYDNRNAATELIMYAMQLAALRAEQPGEDIVTKLIEADVDGHKLTDDEFGFFMVLLAVAGNETTRNSITHGMIAFTEHPDQWELFKRER PATAVDEIVRWATPVTSFQRTALRDYELSGVQIKKGQRVVMSYRSANFDEEVFDDPFTFDIMRDPNPHVGFGGTGAHYCIGANLARMTIDLMFN AIADHLPDLSSAGTPDRLRSGWLNGIKHWQVDYTGPSGCPVAH*

>CYP125A11(Mvan 5151)

MTATQSCPFLPHGYDFTDPDVLLKGIPVTEFAELRRTAPVWWNEQADSIFDDGGYWVISRHEDVKAISRNSTQWSTNTKGAVMRLPDGVTAEQL DLTKALLINHDAPEHTRLRKIVSRLFTPRAIAGMEDRLADAAREIVRSAAEKDSGDFVDDVAMMLPLQAIADLIGVPEEDREKLFHWTNAIMNT DDPEFDADPTMANAELMGYAYSMAEERRRCPADDIVTRLVQADIDGESLGEVEFAFFVILLAVAGNETTRNAMTHGMNAFFDNPAQWELFKRER PETAIDEIIRWATPVHCFQRTALEDVEVGGVTIAEGQRVGLFYSSANFDEDVFDRPFDFDILRDPNPHLAFGGNGAHFCIGANLARMEIKLMFN EIADQIPDISKLAEPQRLRSGWINGVKNLQVAYR*

>CYP125A9(Mvan 5258)

MPGPNSCPISPEFDFLDASLNLERLPVEELAELRKSEPVHWVDVPGGTGGFGDRGYWLVTKHADVKEVSKHNEIFGSSPDGAIPVWPQEMTREA IDLQKAVLLNMDAPQHTRLRKIISRGFTPRAVGRLEDELRARAQRIAATAATEGSGDFVEQVSCELPLQAIAELLGVPQEDRDKLFRWSNEMTA GEDPEYADVDPAMSSFELITYAMKMAEERAKNPTEDIVTKLIEADIEGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFSRNPDQWELYKK ERPETAADEIVRWATPVSAFQRTALEDTELGGVQIKKGQRVVMSYRSANFDEEVFENPHSFDIMRNPNPHVGFGGTGAHYCIGANLAKMTINLM FNAIADAMPDLKPIGDPERLKSGWLNGIKHWQVDYTGQCPVQH*

>CYP125A1 (MRGA423 22410)

MPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYENGVIPRFKNDIAREDIE VQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAGSGDFVEQVSCELPLQAIAGLLGVPQEDRGKLFHWSNEMTGNE DPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMMAFAEHPDQWELYKKVR PETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHYCIGANLARMTINLIFN AVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1 (CCDC5079 3286)

MPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYENGVIPRFKNDIAREDIE VQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAGSGDFVEQVSCELPLQAIAGLLGVPQEDRGKLFHWSNEMTGNE DPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMMAFAEHPDQWELYKKVR PETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHYCIGANLARMTINLIFN AVADHMPDLKFISAPERLRSGWLNGIKHWOVDYTGRCPVAH

>CYP125A(MASS 0104)

MTACPFTPGFDFTDPDLIQHRIPAEEFAYLRKTEPIWWNAQPRGVAGFDDDGYWVVTKHADVKEVSRLNEVFSNSVNTTVVRYNEDITAEQLEI QRENLLIDMDEPKHRILRRIVSPLFTPKAINGLHSRLVERAHSIVEEAAEKSSGNFVSDIASVLPMHAIADLVGIPESDRQQVLDWTNQMFAYD DPAIGRDTATAATVSMLGYAYAMAEERQLNPQDDILTGLVRGAYDDRPLTPLEFAYFVIQLMVAGNETSRNAITHGVLAFADNPAQWRLYRERR Chapter 3: Annotation and phylogenetic analysis of the genus Mycobacterium

PATAADEIIRWASPIIAFQRTALQDVELGGVQICKDQRVGMFYASANFDEDVFDDPFTFNIERDPNPHLAFGGHGIHYCLGANLARLEIGIMFD ALADRLPDLMPTGAPTRFRSGWINGVVALPANYLGAGPRG

>CYP125A(MASS 0581)

MVQAQHPHLPDGIDFTDPELFVHGIPERELAELRHTEPIWWNHTERGVAGFDDDGFWVVSKHKDVKEVSLRCEVFSSEQNTAIPRYLPTTPRER IDATRLIMLNMDPPRHSRLRHIISRGFTPRAISRLRDDLNARAQGIAKAAAQLRHGDFVEQVACELPLQAIAGLMGTPLDEREQLFDWSNRLVG SSDGEDDSAVASAELLMYAMGVAARKTAEPGADICTDLVNADIDGQKLSDDEFGFFVMLLAVAGNETTRNSITHGMHAFTQFPEQWELYKKTRP ETAADEIVRWATPVTSFQRTALEDTELGGVRIKKGQRVVMMYRSANFDEEVFENPFTFDIMRDPNPHVGFGGNGEHHCVGANLARMTINLMFNA IADHMPDLASAGEPDRLRSGWLNGVKHWEVDFCPAGYGRAS

>CYP125A(MASS 0583)

MVHPSLPAGFDFTDPEIYAERLPVEELKELRKTAPIWWQEQPDGVGGFNDGGYWVVTKHKDVKEVSLRSDVFSSWENTAIPRFQDDITREAIEL QRYVMLNMDAPHHTRLRKIISRGFTPRAIGRLRDELNERAQEIAKAAAASGTGDFVEQVSCELPLQAIAGLLGVPIEDRGKLFNWSNEMTSYDD PEYADIDPAASSMEILAYSMEMAKQKAENPGEDIVTTLINAEVEGEGKLSDDEFGFFVIMLAVAGNETSRNSITQGMMAFTQFPEQWELYKKER PETAADEIVRWATPVTSFQRTALEDTELDGVKIKKGQRVVMMYRSANFDEDVFEDPFSFNIMRNPNPHMGFGGSGAHYCIGANLARLTINLMFN AIADHMPNLAPAGDPKRLQSGWLNGIKHWQVDFTGASGCPVLQ

>CYP125NS (MAP4 1479)

MNVNAATAACGDDPAERGSAMTTAAVDLSDFSLWCNGFPDELFAELRRTRPLFHHDLTPGVAATVHRDFWVATKHRHAVRLHRDTESFTAADGP LIQPVAMFSSSPTIITMDPPELNKRRKLISNAFNPRAIAKLEDGIRARAARMIDSLLAHGGGDWIEDVADALPMTVIGDILGIPERDRPRIFDL FDRILKALAPEAHPRGGVELELFASVFDYAMQLTADKRRNPTGDIWSTLATAVITGEDGEEFRLPANELEFFFFVLAFAGSDTTKNALAIGLQA FLANPEQVERYCADEALRPTAVEEVLRWASPVAYWTRTAKVDVEMDGQRIAKGERVVSMLRSANRDEEVFDAPFTFDIGRQPNPHVAFGGGGPH HCLGAMLARAELRAVFDELLLRCDDIEIGPAKAAYPNLITNMSIYDEMPISLRRR

>CYP125A(MAP4 2225)

MATVEPTTKPVPNLPPGFDFTDPDIYAERLPVEELAEMRRVAPIWWNEQPIGAGGFDDGGFWVVTKHKDVKEVSLRSDVFSSLQKTALPRYKDG TVAEQVERGKFVLLNMDAPQHTRLRKIISRAFTPRAVERLRDDLRERARRIVEAAAAEGSGDFVEQVSCELPLQAIAGLMGVPQEDRKKLFHWS NEMVGDQDPEFASNDAITASVELIMYGMQMAADRAKNPGEDLVTKLVQADIDGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQW ELFKRERPATAADEIVRWATPVTSFQRTALQDYELSGVKIRKGQRVVMFYRSANFDEDVFDDPFTFNILRDPNPHVGFGGTGAHYCIGANLARM TIDLMFNAIADAMPDLESIGKPERLRSGWLNGIKHWQVDYHTNGSSKCPVAH

>CYP125A(MAP4_3345)

MPSPNLPPGFDLLDPDVCVKGLPVAELAELRKSAPIYWVDVPGGTGGFGDKGYWAITKHKDVKEISVRSDIFSSQQDCAIPVWPKEMTREQIDL QRNVMLNMDAPHHTRLRKIISRGFTPRAVGRLRDELDARAQNIAKTAAAAGAGDFVEQVSCELPLQAIAGLLGVPQEDRDKIFRWSNEMTGNED PEYAHIDPAMSSAELIMYAMKMAEERAKNPGDDIVTQLIQADLDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFADNPDQWELFKKERP ETAPDEIVRWATPVTAFQRTALEDYELSGVQIKKGQRVVMFYRSANFDEEVFEDPHRFNILRNPNPHVGFGGTGAHYCIGANLARMTISLIFNA VADHMPDLKPLSAPERLRSGWLNGIKHWQVDYTGKCPVAH

>CYP125F1 (MAP4 3931)

MRTPVTVGQHRHPFGRDIYVGRSGYVTEDAISIGGVNLADPDTYRAGMPYGAFRKLRERAPVAWHPQKDGSGFWALTGYEEIHAVSRDSATWSS QINGAMFDAPPPGEVPPVMIFMDPPQHTALRKLINKGFTPRQVTRLNEHIVEMAKQIVDDVIERGECEFADDVAGALPSYVIAEMLGIPLEDGR RLYQITEILHTGSVGDSDDERQQAMVEMFQYGVELAVRKRAEPGDDIATSLLHAEVDGQSLSDLEFNLFFMLLIDAGGDTTRNLVAAGILALLE HPQELQRLKADPSLMPTAIEEMLRYTSPVTAFLRTATKDTELRGVPVKAGERVAMFYPSGNRDDSHFADPDRLDVGRAPNPHLAFGGGGTHFCL GANLARVEASAMVPEVLSRMNDLELAGPVERLRSDLINGIRSMPVRFTPGKRLGTA

>CYP125A1(K60 036830)

MSWNHQSVEIAVRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1 (BCGMEX 3607c)

MSWNHQSVEIAVRRTT^V GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1(JTY_3610)

MSWNHQSVEIAVRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM in cylinger free State

>CYP125A1(BN44 110037)

>CYP125A1 (MCAN 35561)

Chapter 3: Annotation and phylogenetic analysis

CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE ${\tt DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM}$ AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRSPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

the genus Mycobacterium

AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE

>CYP125A1 (BN42 90040)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE ${\tt DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM}$ AFAEHPDQWELYKKERPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVLFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISEPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A(Mycch 2866)

MPTPTLPPGFDFTDPDLNRDRLPVEELAELRRTAPIWWNEQTAGGAGPFGDGGYWVVTKHRDVKEISKRSDVFSSLEKTALPRYPEGSTGEQIE ${\tt TGKFVLLNMDAPHHTHLRKIISRGFTPRAVERLRDDLRNRAQAIAKQAAAEGSGDFVEQVSCELPLQAIAGLIGVPLEDRKKLFDWSNQMVSDD$ PFTAIDEIVRWATPVSSFQRTALTDYELSGTLIKKGQRVVMSYRSANFDEDVFDDPFTFNILRDPNPHVGFGGTGAHYCIGANLARMTIELMFN AIADHIPDLTALTAPDRLRSGWLNGIKHWOVDYTGRSGCPVAH

>CYP125F(Mycch 4146)

MIEDAISIGGVDLTDPNSYLTGPPLDAFRKLRERAPVAWHPFQEGPGFLALTGYDEVVAVSRDSATWSSETDGVYFEAPGPDSPADMRGVMMLT MDPPRHTALRKLVNKGFTPRQVARLNERIAEMARDLVDNVIEQGECDFVQQVAGALPSYVISEMLGIPLEDGFRLYELTEITNAGQVQDARIAE ${\tt AGMQIFAYAAELAARKRVEPGDDIATSLLNAEINGQGLTDMEFNFFFILLLNAGGDTTRNLVAGGMLALMENPAELAKLEKDTSMMSTAVEEML}$ $RY {\tt ISPVMw} FLRTATRDTEVRGMPVEKGGRVAMFY {\tt PSANRDETKFPDPDTFDITRTPNPHVAFGGGGTHFCLGANLARVESSALLSEVLARMKNV}$ ELAGPVORMOSMFINGIHSMPVRFTPAHRLGRR

>CYP125A(Mycch 4512)

MTTTDTGPQSCPFLPSGYDFTDPDVLLAGIPVAEFAQLRKTAPVWWNAQAESIFDDGGYVISRHEDIKSISRNSAAWSTNANGAVMRLPDGVTA ${\tt EQLDLTKALLINHDAPEHTRLRKIISRLFTPRAIAGMEEKLAVSAREIVRTAAEKDTGNFVQDVAMLLPLQAIADLIGVPEADRGKLFGWTNAI$ ${\tt MNTDDPEFDSDPTTANAELMGYAYTMAEQRRRCPADDIVTRLIQADIDGEALGDVEFAFFVILLAVAGNETTRNAMTHGMNAFFDNPDQWELFR}$ MFDEIADQIPDISKLAEPQRLRSGWINGVKDLQVSYH

>CYP125A9(Mycch 4638)

MPGPNSCPISPDFDFLDASLNLERLPVEELAELRKSEPIHWVDVPGGTGGFGDKGYWLVTKHADVKEVSKRNDIFGSSPDGAIPTWPQDMTRDA IDLQKAVLLNMDAPQHTRLRKIISRGFTPRAIGRLEDELRARAQKIAETAKAEGSGDFVEQVSCELPLQAIAELLGVPQDDRDKIFRWSNEMTA GEDPEYAEVDPAMSSFELIQYAMKMAEERAKNPTEDIVTKLIEADIEGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFSQNPEQWELFKK ${\tt DRPETAADEIVRWATPVSAFQRTALEDTELGGVKIKKGERVVMSYRSANFDEEVFDDPHSFNILRSPNPHVGFGGTGAHYCIGANLAKMTINLIINTATPVSAFQRTALEDTELGGVKIKKGERVVMSYRSANFDEEVFDDPHSFNILRSPNPHVGFGGTGAHYCIGANLAKMTINLIINTATPVSAFQRTALEDTELGGVKIKKGERVVMSYRSANFDEEVFDDPHSFNILRSPNPHVGFGGTGAHYCIGANLAKMTINLIINTATPVSAFQRTALEDTELGGVKIKKGERVVMSYRSANFDEEVFDDPHSFNILRSPNPHVGFGGTGAHYCIGANLAKMTINLIINTATPVSAFQRTALEDTELGGVKIKKGERVVMSYRSANFDEEVFDDPHSFNILRSPNPHVGFGGTGAHYCIGANLAKMTINLIINTATPVSAFQRTALEDTELGGVKIKKGERVVMSYRSANFDEEVFDDPHSFNILRSPNPHVGFGGTGAHYCIGANLAKMTINLIINTATPVSAFQRTALEDTELGGVKIKKGERVVMSYRSANFDEEVFDDPHSFNILRSPNPHVGFGGTGAHYCIGANLAKMTINLIINTATPVSAFQRTATPVSAFQTTPVSAFQRTATPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFTPVSAFQTTPVSAFQTTPVSAFQTTPVSAFQ$ FNAVADHMPDLKPVGEPERLKSGWLNGIKHWOVDYTGOCPVSH

>CYP125A(Mflv 1508)

MPGTNSCPISPDFDFLDATLNLERLPVEELAELRHSEPVHWVDVPGGTGGFGDKGYWLVTKHADVKEVSKRNDIFGSSPDGAIPVWPQDMTRDA FNAIADAMPDLKPIGEPERLKSGWLNGIKHWOVDYSGKGCPVSH

IDLOKAVLLNMDAPOHTRLRKI ISRGFTPRAVGRLEDELRARAORIAETAAAAGSGDFVEOVSCELPLOAIAELLGVPODDRDKLFRWSNEMTA GEDPEYADVDPAMSSFELITYAMKMAEERAKNPTEDIVTKLIEADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFSQNPEQWELYKK ERPETAADEIVRWATPVSAFQRTALEDTELGGVQIKKGQRVVMSYRSANFDDEVFDNPHSFDITRNPNPHVGFGGTGAHYCIGANLAKMTINLI

>CYP125A(Mflv 1607)

AEQLDLTKALLINHDAPEHTRLRKIVSRLFTPRAIAGMEAKLADSARQIVGEAADKAGGNFVDDVATLLPLQAIADLIGVPEEDREKLFHWSNA

>CYP125A(Mspyr1 09930) MTAEDARAQSCPFLPDGYDFTDPDVLLEGVPVAEFAQLRRTAPVWWNAQQESIFDDGGYWVVSRHEDIKSISRNSALWSTNAKGAVMRLPDGVT AEQLELTKALLINHDAPEHTRLRKIVSRLFTPRAIAGMEAKLADSARQIVGEAADKDGGNFVDDVATLLPLQAIADLIGVPEEDREKLFHWSNA

the genus Mycobacterium

KRERPETAIDEIIRWATPVHCFQRTALDDVEIGGVTVARGQRVGLFYSSANFDEDVFDNFDILRNPNPHLAFGGNGAHYCIGANLARMEIKFGANGAFGANGAFFGANGAFFGANGAFFGANGAFFGANGAFGANGAFGANGAFFGANGAFGANGAFGANGAFFGANGAFFGANGAFFGANGAFGANGAFGANGAFFGANGAFGANGAFFGANGAFFGANGAFGANGAFGANGAFGANGAFGANGAFFGANGAFFGANGAFFGANGAFFGANGAFFGANGAFGANGAFGANGAFGANGAFGANGAFGANGAFGANGAFGANGAFFGANGAFG

MPADAITLGGADLADPDTYLAGMPYDAFRTLRREAPVAWHPQVDKPGFWALTGYDEIYAVSRDSETWSSQATGVFLDVPAPEDSYQLALMMLTM ${\tt DPPRHTALRALVSRGFTPRHVARLGARTADMARAIVDDALAHGQCEFVDEVAGALPSYVIAELLGIPLEDGRRLYTLTDIMNTRPLHDPELVAA$ $\label{eq:momentum} QMQMFEYAAELAARKRSEPGDDIATALLHAEVDGRRLTDLEFNLFFLLLINAGGDTTRNLVAAGTLALIEHPDQWRRLAADPSLMPTAVEEMLRRTPRODUCTION CONTACT AND A CONTACT AND A$ WTSPVTVFSRTATRDTDVGGIRLREGERVAMFYPSANRDEKHFADPDRFDIGRMPNPHLAFGGGGTHFCLGASLARVEAAAIFRELITRTREIG

MATPTLPPGFDFTDPDLNRERLPVEELAELRRCAPIWWNEQPDGIGGFGDGGFWVVTKHHDVKEISKRSDVFSSEVKTALPRYPEGSTGEQIET GSLVLLNMDAPRHTHLRKIISRGFTPRAVERLRDDLNARAQNIAKTAASAGSGDFVEQVSCELPLQAIAGLLGVPVDDRKKLFDWSNQMVSDDD PEYAHYDNRNAATELIMYAMQLAAVRAEQPGEDIVTKLIEADVDGHKLSDDEFGFFMVLLAVAGNETTRNSITHGMIAFTEHPDQWELYKRERP ITAVDEIVRWATPVTSFQRTALTDYELSGVQITKGQRVVMSYRSANFDEEVFDDPFTFDILRDPNPHVGFGGTGAHYCIGANLARMTIDLMFNA

 ${\tt PPRHTALRALVSRGFTPRHVARLGARTADMARAIVDDALAHGQCEFVDEVAGALPSYVIAELLGIPLEDGRRLYTLTDIMNTRPLHDPELVAAQ}$ MOMFEYAAELAARKRSEPGDDIATALLHAEVDGRRLTDLEFNLFFLLLINAGGDTTRNLVAAGTLALIEHPDOWRRLAADPSLMPTAVEEMLRW ${\tt TSPVTVFSRTATRDTDVGGIRLREGERVAMFYPSANRDEKHFADPDRFDIGRMPNPHLAFGGGGTHFCLGASLARVEAAAIFRELITRTREIGL$

MPGTNSCPISPDFDFLDATLNLERLPVEELAELRHSEPVHWVDVPGGTGGFGDKGYWLVTKHADVKEVSKRNDIFGSSPDGAIPVWPQDMTRDA IDLQKAVLLNMDAPQHTRLRKIISRGFTPRAVGRLEDELRARAQKIAETAAAAGSGDFVEQVSCELPLQAIAELLGVPQGDRDKLFRWSNEMTA ${\tt GEDPEYADVDPAMSSFELITYAMKMAEERAKNPTEDIVTKLIEADIEGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFSQNPEQWELYKK$

provide the state of the state

IMNTDDPDFDSDPTIANAELMGYAYTMAEQRRRCPADDIVTRLVEADLDGDLGEVEFAFFVILLAVAGNETTRNAMTHGMNAFLDHPDQWELYKRERPETAIDEIIRWATPVHCFQRTALDDVEIGGVTVARGQRVGLFYSSANFDEDVFDNFDILRNPNPHLAFGGNGAHYCIGANLARMEIKL

MFEAIADRLPDISKRAEPQRLRSGWINGVKDLQVAYR

>CYP125A(Mspyr1 26180)

Chapter 3: Annotation and phylogenetic analysis

LMFEAIADRLPDISKRAEPQRLRSGWINGVKDLQVAYR*

IADHMPDLSAIGSPDRLRSGWLNGIKHWQVDYSGRGCPVAH*

FNAIADAMPDMKPIGDPERLKSGWLNGIKHWQVDYTGKGCPVSH

LVGPVERVRSVLMNGIRSMPAQFTPAVVPA*

>CYP125F3(Mflv 0425)

>CYP125A(Mflv 3290)

>CYP125F3 (Mspyr1 03290)

>CYP125A(Mspyr1 08920)

VGPVERVRSVLMNGIRSMPVQFTPAVVPA

MATPTLPPGFDFTDPDLNRERLPVEELAELRRCAPIWWNEQPDGIGGFGDGGYWVVTKHHDVKEISKRSDVFSSEVKTALPRYPEGSTGEQIET GSLVLLNMDAPRHTHLRKIISRGFTPRAVERLRDDLNARAQNIAKTAASAGSGDFVEQVSCELPLQAIAGLLGVPVDDRKKLFDWSNQMVSDDD ITAVDEIVRGATPVTSFQRTALTDYELSGVQITKGQRVVMSYRSANFDEEVFDDPFTFDILRDPNPHVGFGGTGAHYCIGANLARMTIDLMFNAIADHMPDLSAIGSPDRLRSGWLNGIKHWQVDYSGRGCPVAH

>CYP125E(OCU 21370)

MSIAKPTLVKSLVPQNLDTAADRDAAAVLDPDTFVTGAPYDAMTRLRATSPVHPVQLPGL PRSWLLTKHADVRLVSRDTDTFTSSKGNTLVEAEAGPNSAMLPGIDPPRHVHFRKLINQG FTVRNVQRLEPRMRLVTRDIVDTIIDKGEFDAVTDISAEMSLQVIADVLGVPAEDRMNVF RWSNAIGSLGIEDPDYAPTPEALGQAAAEMFAYCGELVEHRRKHGLTDDILSALLAAEVD GEKLNRDQLNEFFLLLAIAGNETTRNTLSHGILALAEHPEQQAQLARDPAAIKPAVEELL RWATPVMHFRRTVVRDVEIRGQRIPCGDWVLMHYLSANRDEEVFDRPDQFDVTRPDAGHA AFGGGGVHFCLGAQLARLELRVMLEELYANVPGLAVTGPPDRLRSSFFHGIKRLPCTT

>CYP125A(OCU 44240)

MATPNLPPGFDFTDPDIYAHRLPVREFAELRATEPVWWNE0APDKGGFGDGGYWAVTKHRDIRDVSLRSDVFSSAAKSIVPRYREDLAAG0IEA GRASMIMMDDPEHSRLRRIVSRAFTPRAVERLRAELSERARCIVTEAAAAGSGDFVRQVACELPLQAISALLGVPHEDYDKLFDWTNNMIGSDD PEFAGNDALTSAGELMWYAMQLAARKAEEPGDDIVTTLIQADADGQRLSEAEFGMFVVTLAVAGNETTRNSITQGMMAFTDYPVQWELFKARRP

LADRLPDLAPLGNPERLRSSFINGIKHWPVDYRGGHPVAS

AGPNSAMLPGIDPPRHVHFRKLINQGFTVRNVQRLEPRMRLVARDIVDTIIDKGEFDAVTDISAEMSLQVIADVLGVPAEDRMNVFRWSNAIGS $\tt LGIEDPDYAPTPEALGQAAAEMFAYCGELVEHRRKHGLTDDILSALLAAEVDGEKLNRDQLNEFFLLLAIAGNETTRNTLSHGILALAEHPEQQ$

>CYP125D(OCO 21130)

 ${\tt MSIAKPTLVKSLVPQNLDTAADRDAAAVLDPDTFVTGAPYDAMTRLRATSPVHPVQLPGLPRSWLLTKHADVRLVSRDTDTFTSSKGNTLVEAE}$

Chapter 3: Annotation and phylogenetic analysis of Cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

AQLARDPAAIKPAVEELLRWATPVMHFRRTVVRDVEIRGQRIPCGDWVLMHYLSANRDEEVFDRPDQFDVTRPDAGHAAFGGGGVHFCLGAQLA RLELRVMLEELYANVPGLAVTGPPDRLRSSFFHGIKRLPCTT

>CYP125A(OCO 44490)

MATPNLPPGFDFTDPDIYAHRLPVREFAELRATEPVWWNEQAPDKGGFGDGGYWAVTKHRDIRDVSLRSDVFSSAAKSIVPRYREDLAAGQIEA GRASMIMMDDPEHSRLRKIVSRAFTPRAVERLRAELSERAQRIVTEAAAAGSGDFVRQVACELPLQAISALLGVPHEDYDKLFDWTNNMIGSDD PEFAGNDALTSAGELMWYAMQLAARKAEEPGDDIVTTLIQADADGQRLSEAEFGMFVVTLAVAGNETTRNSITQGMMAFTDHPQQWELFKAQRL KTAADEIIRWATPITAFQRTAREDTELGGVAIREGQRVVLFYRSANFDEEVFDDPFTFDILRSPNPHLGFGGTGAHYCIGANLARMTIDVMFNA LADRLPDLAPLGNPERLRSSFINGIKHWPVDYRGGHPVAS

>CYP125D(OCQ 20030)

MSIAKPTLVKSLVPQNLDTAADRDAAAVLDPDTFVTGAPYDAMTRLRATSPVHPVQLPGLPRAWLLTKHADVRLVSRDTDTFTSSKGNTLVEAE AGPNSAMLPGIDPPRHVHFRKLINQGFTVRNVQRLEPKMRQVARGIVAAITDKREFDAVTDISAEMSLQVIADVLGVPAEDRMDVFRWSNAIGS LGIEDPDYAPTPEALGQAAAEMFAYCGELVEHRRKHGLTDDILSALLAAEVDGEKLNRDQLNEFFLLLAIAGNETTRNTLSHGILALAERPEQQ ALLARDPAAIKPAVEELLRWATPVMHFRRTVVRDVEIRGQRIPSGDWVLMHYLSANRDEEVFDRPDQFDVTRPDAGHAAFGGGGVHFCLGAQLA RLELRVMLEELYANVPGLAVTGPPDRLRSSFFHGIKRLPCTT

>CYP125A(OCQ 45630)

MATPNLPPGFDFTDPDIYAHRLPVREFAELRATEPVWWNEQAPDKGGFGDGGYWAVTKHRDIRDVSLRSDVFSSAAKSIVPRYREDLAAGQIEA GRASMIMMDDPEHSRLRRIVSRAFTPRAVERLRAELSERARCIVTEAAAAGSGDFVRQVACELPLQAISALLGVPHEDYDKLFDWTNNMIGSDD PEFAGNDALTSAGELMWYAMQLAARKAEEPGDDIVTTLIQADADGQRLSEAEFGMFVVTLAVAGNETTRNSITQGMMAFTDYPVQWELFKARRP KTAADEIIRWATPITAFQRTAREDTELGGVAIREGQRVVLFYRSANFDEEVFDDPFTFDILRSPNPHLGFGGTGAHYCIGANLARMTIDVMFNA LADRLPDLAPLGNPERLRSSFINGIKHWPVDYRGGHPVAS

>CYP125D(MKAN 03940)

MSTPKLSSLIVENQDSMAGRDAAVVLNPDTYLAGAPFDALARLRAHAPVHPMQLSGLPTTWLLTRHSDVRLVSRDSETFASSTGNTLVKVEAAP TSAMLPGIDPPRHVHYRKLINQGFTARNVLRLEPRMRQVARDIVANIVDKGEFDAVTDISAEISLQVIADILGVPAEDRMNVFRWSNAIGSLGI EDPDYAPTPEALGQAAAEMFAYCGELVAHRQKHGLTDDILSALLAAEVDGDRLNRDQLNEFFLLLAIAGNETTRNTLSHGILALSEHPDQQATL ARDRDAVQPAVEELLRWATPVMHFRRTVTRDVVIRGQHIPAGDWVLMHYLSANRDEDVFERAAEFDISRPDADHVAFGGGGVHFCLGAQLARLE LRVMLEELYPCVPGLTVTGPPDRLRSSFFHGIKRLPCAVG

>CYP125A6 (MULP 02541)

MPAAEPTATSVPNLPPGFDFTDPDIYAERLPVAELAEMRRSAPIWWNEQPTGCGGFDDGGFWVVTKHKDVKEISLRSDVFSSLQKTALPRYKDG TVDEQIERGKFVLLNMDAPQHTRLRKIVSRAFTPRAVERLRDDLRERARRIVEAAAAEGRGDFVEQVSCELPLQAIAGLMGVPQEDRKKLFHWS NEMVGDQDPEFATNDALTASVELIMYGMQMAADRAKNPGQDLVTKLVEADIDGHKLSDDEFGFFVILLAVAGNETTRNSITQGMMAFTDFPDQW ELYKRERPVTTADEIVRWATPVTSFQRTALEDYELSGVRIKKGQRVVMFYRSANFDEDVFDDPYTFNILRDPNPHVGFGGTGAHYCIGANLARM TIDLMFNAIADVMPDLESISRPERLRSGWLNGIKHWQVDYHSDSSGKCPVAH

>CYP125A7 (MULP 05284)

MPCPNLPPGFDFTDPDIYAERLPVEEFAELRSSEPIWWDEQLPGQGGGFHDGGFWAITKLKDVKEVSRRSDVFSSYENGVIPRFKNDIAREDID VQRFVLLNMDAPHHTRLRKIISRGFTPRAIGRLHDELNDRAQNIAKAAAAAGSGDFVEQVSCELPLQAIAGLLGIPQEDRGKLFDWSNEMTGTE DPEFAHIDAKASSVELIGYAMKMAEEKAKNPGDDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMMAFADNPEQWELYKRER PETAADEIVRWATPVTSFQRTALEDYELSGVQIKKGQRVLMFYRSANFDEEVFEDPFSFNILRNPNPHVGFGGTGAHYCIGANLARMTINLIFN AVADHMPDLKPIAAPERLRSGWLNGIKHWQVDYTGKCPVSH

>CYP125A(MycrhN 0940)

MAAPNLPVG⁻DFTDPDIYATRVPTEEFAEVRRAAPIWWNDQAPDVGGYGDGGFWVVSKHRDVREVSLRSDVFSAAAKTVVPHFKPSVDVEGQIQ ASKLSLLMMDDPEHARLRKIVSRGFTPRAVERLRAELNERAQRIAAEAASHASGDFVLEVSRELPLQAIAGLLGVPLEDREKLFDWSNKMVGGD DPEFEEHNSLEAVIELIGYAMELAKLKEKEPGEDIVSTLIDSEADGQLTEAEFGMFVVTLAVAGNETSRNSITQGMMAFTDFPDQWELFKRERP KTAADEIIRWASPITAFQRTALADTELSGVPIKKGQRLVLFYRSANFDEDVFDDPYTFDILRDPNPHLGFGGTGAHYCVGANLARMTIDLMFNA IADHIPHLKPVSEPQRLRSSFINGIKHWQVAYQPS

>CYP125A(MycrhN 2286)

MAPLKIPADFDFLDATLNLERLPVEELAELRASEPVHWVDVPGGTGGFGDKGYWLVTKHADVKEVSKRSDIFGSSPDGAIPTWPQDMTRDAIDL QKAVLLNMDAPQHTRLRKIISRGFTPRAIGRLEDELRARAQKIAETAAAEGSGDFVEQVSCELPLQAIAELLGVPQDDRDKLFRWSNEMTAGED PEYADVDPAISSFELIQYAMKMAEERAKNPTEDIVTKLIEADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFSQHPQQWELYKKERP STAADEIIRWATPVSAFQRTALEDTELAGVKIKKGERVVMSYRSANFDDEVFENPHDFDILRDPNPHVGFGGTGAHYCIGANLARMTINLIFNA VADKMPDLKPISEPERLMSGWLNGIKHWQVDYKGTSA

>CYP125A(MycrhN_2423)

MTQSTCPFGPAFDFTDPDVLLQGIPVTEFAELRKTAPVWWNDQQESIFDDGGYWVITRHEDIKAISRNGDLWSTNRKGAVMRLPDGVTAEQLDL TKALLINHDAPEHTRLRKIVSRLFTPRSVAALEEKLAVAAHQIVGAAKERDFGNFVDDVAMPLPLLAIADLIGVPEADREKLFHWTNSIMNTDD PDFDSDPTTANAELMGYAYTMAEERRRCPADDIVTRLIQADIDGESLGDVEFAFFVILLAVAGNETTRNAMTHGMNAFFENPGQWELFKRERPE Chapter 3: Annotation and phylogenetic analysis of Cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

TAVDEIIRWATPVHCFQRTALADNEIGGVTIREGQRVGLFYSSANFDEDVFESPFEFDILRNPNPHLSFGGNGAHFCIGANLARMEIKLIFNEL ADQIPDIAKLEEPQRLRSGWINGVKALPVSYRG

>CYP125NS (MycrhN 4756)

MPTTTPVDLSDSALWQNGFPDDLFAHWRRELPIFHHELTEGVAQTVKRDFWMTTKHRHAQRIHRDTDAFTAADGPLIQGIGPIGAFPNVITMDP PVLTKRRVMSHAFTPKAIGKLEEGIRRRAAAMIDRLLESGGGDWIEDVADVLPMSVIGDIVGIPDEDRPHIFDTLDRILKTNEADDQTKPEEH YELFGQIFTYATELTASKRRNPTDDIWSTLTTAVVTDETGQELSIPASELEIFFFVLTLAGSDTTKNALAGGLQAFVANPAEMERYRDDESIRA RAVEEVLRWSSPVAFWTRTTKVDVEMDGVIIPAGDRVVSMLRSANRDEEVFDDPFVFDIGRTDNPHVTFGGGGPHHCLGAMLARAEIRAALDEL LLRADDIRLGPPKVTHPNLANNMSIFDGMSISLTRS

>CYP125A(MycrhN 4947)

MPTPNLPPGFDFTDPDIYAERLPIEELAHMRKVAPIWWQKQERGNLAFGDDGFWVVTKHKDVKEVSRRSDVFSSNKKTALPRYRDEADPASLEA GKVVLLNQDAPHHTHLRKIISRAFTPRAIESLREELRLRARDIVKRAAAEGSGDFVEQVSCELPLQAIAGLMGVPQEDRMKLFEWSNQMVGDQD PEYGRNDPTAASVELIMYGMQMAAERGKNPGDDLVTKLVQADVEGHKLTDDEFGFFVILLAVAGNETTRNSITQGMMAFTEFPDQWELFKRERP ATAADEIVRWATPVTSFQRTALEDTELSGVKIKKDDRVVIFYRSANFDEDVFDDPYTFNILRDPNPHVGFGGTGAHYCIGANLARMTIDLIFNA IADEMPDLTPISAPERLRSGWLNGIKHWQVDYTGAGAT

>CYP125D(Mycsm_03179)

MPITTPVDLSDSALWQNGFPDELFAELRRERPIFHHERTDGVAKTVHRDFWMTTKHRHAQRIHRDTDSFTAVDGPLIQTIGVMTDFPTIIHMDP PELTKRRVMSHAFTPKAIARLEEGIRTRATSLVDRLLTAGSGDWIEDVADVLPMSVIGDIIGIPDGDRPQIFDTLDRILKSANGQDATATEQE QLELFGKVFTYALELTAEKRRNPTDDIWSTLATAVVTDENGEQLSIPANELEIFFYVLTFAGSDTTKNALAFGLQAFVANPSEIARYRADEAIR SSAVEEVLRWATPVAFWTRSTKVDVQMDGVTIPKGERVVSMLRSANRDEEVFDDPFTFDIGRAENQHVTFGGGGPHHCLGAMLARAEIRAVLDE LLCRADDIELGQPTVSYPNLTNNMSIFDAMPISLRAR

>CYP125A(Mycsm 03408)

MASPDLPPGFDFTDPDIYAERLPVEELAHMRKVAPIWWNAQTKGNAAFGDDGYWVVTKHKDVKEVSLRSDVFSSNKKTALPRYREDADPESLER GKVVLLNQDAPHHTHLRKIISRAFTPRAVESLRDELRERAHNIAKAAAAEGSGDFVEQVSCELPLQAIAGLMGVPQDDRKKLFDWSNQMVGDQD PEFGSNDPMAASIELIMYGMQMAAERSKNPGDDLVTKLVQADVEGHKLTDDEFGFFVILLAVAGNETTRNSITQGMMAFTEFPDQWELFKKERP ATAADEIVRWATPVTSFQRTALEDTELSGVKIKKGERVVIFYRSANFDEDVFDDPYTFNILRDPNPHVGFGGTGAHYCVGANLARMTIDLIFNA IADEMPNLTPISPPERLRSGWLNGIKHWQVDYTGKSAVAQ

>CYP125A(Mycsm_05668)

MTQTTCPFGQGFDFTDPDVLLKGIPVTEFAELRKTAPVWWNEQSDSIFDDGGCWVISRHEDIKEISRNGDLWSTNRKGVVMRMPEGTDAEQLEL TKALLINHDAPEHTRLRKLVSRLFTPRAVATLEGKLAVAAREIVAAAKEKDSGNFVDDIAMKLPLLAIADLIGVPEVDRDKLFHWTNAIMNTED PDFEADYVAANAELMGYAYTMAEERRRCPADDIVTRLVQADIDGESMEDVEFAFFVILLAVAGNETTRNAMTHGMNAFFENPEQWEIFKRDRPE TTADEIVRWATPVHCFQRTALADNELGGVTIREGQRVGLFYSSANYDDEVFDRPFEFNILRDPNPHLGFGGNGAHFCIGANLARMEIKLIFNEI AEQIPDISKLSEPQRLRSGWLNGVKRLQVAYRG

>CYP125A(Mycsm 05807)

MPCPISADFDFLDAELNRAGLPVAELAELRKSEPVHWVDVPGGTGGFGDKGYWLVTKHADVKEVSKRNEVFGSSPDGAIPVWPQEMTRDAIDLQ RSVLLNMDAPQHTRLRKIISRGFTPRAVGRLEDELRIRAQKIAETAAAQESGDFVEQVSCELPLQAIAGLLGVPQDDRDKLFRWSNEMTAGEDP EYAHIDPAMSSIELIQYAMQMAAERAKNPTEDIVTQLIEADIEGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIGFSQNPDQWELYKRERPE TAADEIVRWATPVSAFQRTALEDVELGGVQIKKGQRVVMSYRSANFDEDVFEDPHTFNILRSPNPHVGFGGTGAHYCIGANLAKMTINLIFSAI ADHMPDLKPIGEPERLKSGWLNGIKHWQVDYTGKCPVAH

>CYP125A(JDM601 2803)

MTETPHLLPEGFDFTDPALIGERIPHEEFALLRRTEPIWWNAQPFGVSGYPDEGYWVVTKHADVRAVSLQDDVFSSHENTSLIRTNTTSNQDLH EASRDNIMLFLDGPKHAKLRRIVSRGFTPRVVAGMRDSLDRQAREIVAAAAEHDTGDFVTEVASRLPLATICELIGVPAAERQQVFDWSNRLVG GGNGDPQAAADGMQASAELLGYAYQMAEDRKARPRDDIATALVTATIDGEALTALEFGYYVMMLMVAGNETTRNATSQGMVAFFDHPDQWRLFV AERPATMVDEVVRWATPVISFQRTALRDVELGGVHIAKGQRVGMFYGSANYDEEVFDEPFTFDIRRSPNPHLGFGAPGAHYCIGANLARMQINL IFGALADIMPDIRRLDRASRSVLPWINGIDAMPVEFGGAAMSTGSR

>CYP125A(JDM601 3609)

MFVLTSTQPACPFGPGFDFTDPDVLLHGMPIAQFAELRKTAPVWWNEQPAHSNIFDDGGYWVVSKHQHIKEISRDNEVWSTNAKGAVMRLPDGI TADQLELTKALLINHDPPEHTRLRKLVSRLFTPRSVGALEEKLAQSARDIVAAAAEKDSGNFVDDIAMKLPLLAIADLIGVPEADRERLFHWTN SIMNTDDPDFDSDPAMANAELMGYAYTMAEQRRRCPADDIVTRLVQADMDGESLGETEFAFFVILLAVAGNETTRNAMTHGINAFAENPDQWEL YKRERPETAVDEIVRWATPVHCFQRTAKIDTELGGVAISKGQRVGLFYSSANYDEEVFERPFAFDVLRDPNPHLAFGGQGTHYCIGANLARMEI RLMFDEIANQLPDITKLAEPQRLRSGWINGVKDLQVAYHG

>CYP125A(JDM601_3682)

MASPTARSASSIPAGFDPTDPEIWAERIPNAELAALRENEPIKWIEQPDGVGGFNDGGYWAVTRHADVKEISRLDDVFSSEINTAIPRFNDDIQ REQIDQQRLIMLNQDAPRHTRLRRIVSRGFTPRHILPLHDELQERAQAIAKEALAKGSGDFVVEVASELPLQAIAGLMGVPQSDRGKLFNWTNQ MTGYDDPEYTEKYDPATSAMEIIAYGLQLAEMKRQNPGSDIVTTLIEADIDGEKLNDDELGFFIILLAVAGSETTRNSITQGMMAFVDHPDQWE
Chapter 3: Annotation and phylogenetic analysis of Cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

LFKKERPETAADEIVRWASPVSSFQRTATRDYNLNGTQIKEGQRVVMFYRAANFDPEVFDNPQQFNILRDPNPHVGFGGTGAHYCIGTHLARMT IGLMFNAIADHIPDLKPLDAPSRLQSGWLNAIKRWPVDYTGKA

>CYP125A(JDM601 3692)

MSTLPAGFDFLNPDLIVEGIPEKEFAQLRKTAPVCWIEQAPGKGGGFNDGGYWAVTKLADVKEVSLRSDVFSSYENCVIPRFSDDMQRENIEVQ RFVMLNMDAPHHTRLRRIISRGFTPRAIGRLRDELHERAQAIVKAAAEAGSGDFVEQVSCELPLQAIAGLLGVPQEDRDKLFQWSNEMTGSEDP EYADIDPQASSFELITYAMQLAAAKAENPGEDIVTTLINADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITHGMIAFSEHPEQWELFKSERPA TTADEIVRWASPVICFQRTALEDYELSGAQIKKGQRVVMFYRSANFDEDAFDEPNKFNILRDPNPHVGFGGTGAHYCIGTHLARLTIDLIFNAV ADHVPDLAPLAKPERLRSGWLNGIKHWQMDYTGKCPVAH

>CYP125A(JDM601 3693)

MSSVKVPPGFDFTDPEIYAERLPDAEFARVRAAAPVTWIDQPDDKSGGFKDGGYWAITSHHDVKEVSRLDEVFSSEINGAIPRYNDDIERENID VGRLLMLNQDAPRHTRLRRIVSRGFTPRHILPLHDDLERRAQNIAKEALARGTGDFVVEVASELPLQAIAGLMGVPLEDRGKLFNWTNQMTSYD DPEYAHYDPKTSSMEIISYGLQLAEMKRHNPGNDIVTTLIEADIDGEKLGDELGFFIILLAVAGSETTRNSITQGMMAFTEFPEQWELFRRERP ETTADEVVRWATPVTSFQRTATRDYELSGVQIKKGQRVVMFYRAANFDPEVFDNPQQFDILRDPNPHVGFGGTGAHYCIGTHLARMSVNLMFNA IADHIPDLKPLDKPDRLKSGWLNGIKHWRVDYTGKSA

>CYP125D(W7S 09920)

MSIAKPTLVKSLVPQNLDTAADRDAAAVLDPDTFVTGAPYDAMTRLRATSPVHAVQLPGLPRAWLLTKHADVRLVSRGTDTFTSSKGNTLVEAE AGPNSAMLPGIDPPRHVHFRKLINQGFTVRNVQRLEPKMRQVARGIVAAITDKREFDAVTDISAEMSLQVIADVLGVPAEDRMDVFRWSNAIGS LGIEDPDYAPTPEALGQAAAEMFAYCGELVDHRRKHGLTDDILSALLAAEVDGEKLNRDQLNEFFLLLAIAGNETTRNTLSHGILALAEHPEQQ ALLARDPAAIKPAVEELLRWATPVMHFRRTVTRDVEIRGQRIPSGDWVLMHYLSANRDAEVFDRPDQFDVTRPDAGHAAFGGGGVHFCLGAQLA RLELCVMLEELYANVPGLAVTGPPDRLRSSFFHGIKRLPCTT

>CYP125A(W7S 22405)

MATPNLPPGFDFTDPDIYAHRLPVREFAELRATEPVWWNEQAPDKGGFGDGGYWAVTKHRDIRDVSLRSDVFSSAAKSIVPRYREDLAAGQIEA GRASMIMMDDPEHSRLRKIVSRAFTPRAVERLRAELSERARCIVTEAAAAGSGDFVRQVACELPLQAISALLGVPHEDYDKLFDWTNNMIGSDD PEFAGNDALTSAGELMWYAMQLAARKAEEPGDDIVTTLIQADADGQRLSEAEFGMFVVTLAVAGNETTRNSITQGMMAFTDYPDQWELFRARRP KTAADEIIRWATPITAFQRTAREDTELGGVAIREGQRVVLFYRSANFDEEVFDDPFTFDILRSPNPHLGFGGTGAHYCIGANLARMTIDVMFNA LADRLPDLAPLGNPERLRSSFINGIKHWPVDYRGGHPVAS

>CYP125A1(MT7199 3607)

MSGNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1(J112 19085)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTNSITQGMMA FAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHYC IGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1(J113 24790)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1(J114 18960)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1 (ERDMAN_3890)

MPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYENGVIPRFKNDIAREDIE VQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAGSGDFVEQVSCELPLQAIAGLLGVPQEDRGKLFHWSNEMTGNE DPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMMAFAEHPDQWELYKKVR Chapter 3: Annotation and phylogenetic analysis of Cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

PETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHYCIGANLARMTINLIFN AVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1(TBXG 003560)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNTLRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1 (TBSG 03611)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNTLRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A1(UDA 3545c)

MSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAELRSAAPIWWNGQDPGKGGGFHDGGFWAITKLNDVKEISRHSDVFSSYEN GVIPRFKNDIAREDIEVQRFVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAGSGDFVEQVSCELPLQAIAGLLGVPQE DRGKLFHWSNEMTGNEDPEYAHIDPKASSAELIGYAMKMAEEKAKNPADDIVTQLIQADIDGEKLSDDEFGFFVVMLAVAGNETTRNSITQGMM AFAEHPDQWELYKKVRPETAADEIVRWATPVTAFQRTALRDYELSGVQIKKGQRVVMFYRSANFDEEVFQDPFTFNILRNPNPHVGFGGTGAHY CIGANLARMTINLIFNAVADHMPDLKPISAPERLRSGWLNGIKHWQVDYTGRCPVAH

>CYP125A(OEM 44690)

MATPNLPPGFDFTDPDIYAHRLPVREFAELRATEPVWWNEQAPDKGGFGDGGYWAVTKHRDIRDVSLRSDVFSSAAKSIVPRYREDLAAGQIEA GRASMIMMDDPEHSRLRKIVSRAFTPRAVERLRAELSERARCIVTEAAAAGSGDFVRQVACELPLQAISALLGVPHEDYDKLFDWTNNMIGSDD PEFAGNDALTSAGELMWYAMQLAARKAEEPGDDIVTTLIQADADGQRLSEAEFGMFVVTLAVAGNETTRNSITQGMMAFTDYPDQWELFRARRP KTAADEIIRWATPITAFQRTAREDTELGGVAIREGQRVVLFYRSANFDEEVFDDPFTFDILRSPNPHLGFGGTGAHYCIGANLARMTIDVMFNA LADRLPDLAPLGNPERLRSSFINGIKHWPVDYRGGHPVAS

>CYP125A(G6XE67 MYCAB)

MVQAQHPHLPDGIDFTDPELFVHGIPERELAELRHTEPIWWNHTERGVAGFDDDGFWVVSKHKDVKEVSLRCEVFSSEQNTAIPRYLPTTPRER IDATRLIMLNMDPPRHSRLRHIISRGFTPRAISRLRDDLNARAQGIAKAAAQLRHGDFVEQVACELPLQAIAGLMGTPLDEREQLFDWSNRLVG SSDGEDDSAVASAELLMYAMGVAARKTAEPGADICTDLVNADIDGQKLSDDEFGFFVMLLAVAGNETTRNSITHGMHAFTQFPEQWELYKKTRP ETAADEIVRWATPVTSFQRTALEDTELGGVRIKKGQRVVMMYRSANFDEEVFENPFTFDIMRDPNPHVGFGGNGEHHCVGANLARMTINLMFNA IADHMPDLASAGEPDRLRSGWLNGVKHWEVDFCPAGYGRAS

>CYP125A(G6XE69 MYCAB)

MVHPSLPAGFDFTDPEIYAERLPVEELKELRKTAPIWWQEQPDGVGGFNDGGYWVVTKHKDVKEVSLRSDVFSSWENTAIPRFQDDITREAIEL QRYVMLNMDAPHHTRLRKIISRGFTPRAIGRLRDELNERAQEIAKAAAASGTGDFVEQVSCELPLQAIAGLLGVPIEDRGKLFNWSNEMTSYDD PEYADIDPAASSMEILAYSMEMAKQKAENPGEDIVTTLINAEVEGEGKLSDDEFGFFVIMLAVAGNETSRNSITQGMMAFTQFPEQWELYKKER PETAADEIVRWATPVTSFQRTALEDTELDGVKIKKGQRVVMMYRSANFDEDVFEDPFSFNIMRNPNPHMGFGGSGAHYCIGANLARLTINLMFN AIADHMPNLAPAGDPKRLQSGWLNGIKHWQVDFTGASGCPVLQ

>CYP125A(G6XAE6 MYCAB)

MTACPFTPGFDFTDPDLIQHRIPAEEFAYLRKTEPIWWNAQPRGVAGFDDDGYWVVTKHADVKEVSRLNEVFSNSVNTTVVRYNEDITAEQLEI QRENLLIDMDEPKHRILRRIVSPLFTPKAVNGLHSRLVERAHSIVEEAAEKSSGNFVSDIASVLPMHAIADLVGIPESDRQQVLDWTNQMFAYD DPAIGRDTATAATVSMLGYAYAMAEERQLNPQDDILTGLVRGAYDDRPLTPLEFAYFVIQLMVAGNETSRNAITHGVLAFADNPAQWRLYRER PATAADEIIRWASPIIAFQRTALQDVELGGVQICKDQRVGMFYASANFDEDVFDDPFTFNIERDPNPHLAFGGHGIHYCLGANLARLEIGIMFD ALADRLPDLMPTGAPTRFRSGWINGVVALPANYLGAGPRG

>CYP125A(G6X7Y6_MYCAB)

MTAMKTAAELGLPEGFDFTDPELYGNRMPHEEFATLRREAPVWWNPQPRTVGGFADEGYWVISKHRDVREVSLHTDIFSSGRKGAIPRLEDHIS PEEFQATLSVLINKDAPEHTQLRGLVSRMFTPRSIAALRITLEERAERIVRAALEGGHGEFVREVASELPMQAIAELIGVPEEDRVKLFEWSNQ MTGYDEADVEIDPRIGAAQILGYSYQLAEQRRDCPGNDVVSRLLTGTVDGEQLTPEQFGFFVVMLSVAGNETTRNATTMGMMAFLEHPDQWELF

© Central University of Technology, Free State

>CYP125A(T0B0P1_MYCAB) MVQAQHPHLPDGIDFTDPELFVHGIPERELAELRHTEPIWWNHTERGVAGFDDDGFWVVSKHKDVKEVSLRCEVFSSEQNTAIPRYLPTTPRER IDATRLIMLNMDPPRHSRLRHIISRGFTPRAISRLRDDLNARAQGIARAAAQLRHGDFVEQVACELPLQAIAGLMGTPLDEREQLFDWSNRLVG SSDGEDDSAVASAELLMYAMGVAARKTAEPGADICTDLVNADIDGQKLSDDEFGFFVMLLAVAGNETTRNSITHGMHAFTQFPEQWELYKKTRP

IADHMPDLASAGEPDRLRSGWLNGVKHWEVDFCPAGYGRAS

>CYP125A(X8D7U8_MYCAB) MVQAQHPHLPDGIDFTDPELFVHGIPERELAELRHTEPIWWNHTERGVAGFDDDGFWVVSKHKDVKEVSLRCEVFSSEQNTAIPRYLPTTPRER IDATRLIMLNMDPPRHSRLRHIISRGFTPRAISRLRDDLNARAQGIARAAAQLRHGDFVEQVACELPLQAIAGLMGTPLDEREQLFDWSNRLVG SSDGEDDSAVASAELLMYAMGVAARKTAEPGADICTDLVNADIDGQKLSDDEFGFFVMLLAVAGNETTRNSITHGMHAFTQFPEQWELYKKTRP ETAADEIVRWATPVTSFQRTALEDTELGGVRIKKGQRVVMMYRSANFDEEVFENPFTFDIMRDPNPHVGFGGNGEHHCVGANLARMTINLMFNA

AIADHMPNLAPAGDPKRLQSGWLNGIKHWQVDFTGASGCPVLQ

>CYP125A(X8D8Q9_MYCAB) MVHPSLPAGFDFTDPEIYAERLPVEELKELRKTAPIWWQEQPDGVGGFNDGGYWVVTKHKDVKEVSLRSDVFSSWENTAIPRFQDDITREAIEL QRYVMLNMDAPHHTRLRKIISRGFTPRAIGRLRDELNERAQEIAKAAAASGTGDFVEQVSCELPLQAIAGLLGVPIEDRGKLFNWSNEMTSYDD PEYADIDPAASSMEILAYSMEMAKQKAENPGEDIVTTLINAEVEGEGKLSDDEFGFFVIMLAVAGNETSRNSITQGMMAFTQFPEQWELYKKER PETAADEIVRWATPVTSFQRTALEDTELDGVKIKKGQRVVMMYRSANFDEDVFEDPFSFNIMRNPNPHMGFGGSGAHYCIGANLARLTINLMFN

ALADRLPDLMPTGAPTRFRSGWINGVVALPANYHGSGPRG

>CYP125A(X8D810_MYCAB) MTTCPFTPGFDFTDPDLIQHRIPAEEFAYLRKTEPIWWNAQPRGVAGFDDDGYWVVTKHADVKEVSRLNEVFSNSVNTTVVRYNEDITAEQLEI QRENLLIDMDEPKHRILRRIVSPLFTPKAVNGLHARLVERAHGIVEEAAEKSSGNFVSDIASVLPMHAIADLVGIPESDRQQVLDWTNQMFAYD DPAIGRDTATTATVSMLGYAYAMAEERQLNPQDDILTGLVRGAYDDRPLTPLEFAYFVIQLMVAGNETSRNAITHGVLAFADNPAQWRLYRERR PSTAADEIIRWASPIIAFQRTALQDVELGGVQIRKDQRVGMFYASANFDEDVFDDPFAFNIERDPNPHLAFGGHGIHYCLGANLARLEIGIMFD

IFNKIADRMPDISRIGDAPRFHSGWINGIKKFDTAYCPVTH

>CYP125A(X8D963_MYCAB) MTAMKTAAELGLPEGFDFTDPELYGNRMPHEEFATLRREAPVWWNPQPRTVGGFADEGYWVISKHRDVREVSLHTDTFSSGRKGAIPRLEDHIS PEEFQATLSVLINKDAPEHTQLRGLVSRMFTPRSIAALRITLEERAERIVRAALEGGHGEFVREVASELPMQAIAELIGVPEEDRVKLFEWSNQ MTGYDEADVEIDPRVGAAQILGYSYQLAEQRRDCPGNDVVSRLLTGTVDGEQLTPEQFGFFVVMLSVAGNETTRNATTMGMMAFLEHPGQWELK SARPSTTVDEIVRYTSPLISQQRTALQDTVISDVRIRAGERVVMLYPSANFDEEVFENPHTFDITRDPNPHLGFGGTGAHYCLGANLAKAELEI

AIADHMPNLAPAGDPKRLQSGWLNGIKHWQVDFTGASGCPVLQ

>CYP125A(X8EM53_MYCAB) MVHPSLPAGFDFTDPEIYAERLPVEELKELRKTAPIWWQEQPDGVGGFNDGGYWVVTKHKDVKEVSLRSDVFSSWENTAIPRFQDDITREAIEL QRYVMLNMDAPHHTRLRKIISRGFTPRAIGRLRDELNERAQEIAKAAAASGTGDFVEQVSCELPLQAIAGLLGVPIEDRGKLFNWSNEMTSYDD PEYADIDPAASSMEILAYSMEMAKQKAENPGEDIVTTLINAEVEGEGKLSDDEFGFFVIMLAVAGNETSRNSITQGMMAFTQFPEQWELYKKER PETAADEIVRWATPVTSFQRTALEDTELDGVKIKKGQRVVMMYRSANFDEDVFEDPFSFNIMRNPNPHMGFGGSGAHYCIGANLARLTINLMFN

>CYP125A(X8EN49_MYCAB) MTTCPFTPGFDFTDPDLIQHRIPAEEFAYLRKTEPIWWNAQPRGVAGFDDDGYWVVTKHADVKEVSRLNEVFSNSVNTTVVRYNEDITAEQLEI QRENLLIDMDEPKHRILRRIVSPLFTPKAVNGLHARLVERAHGIVEEAAEKSSGNFVSDIASVLPMHAIADLVGIPESDRQQVLDWTNQMFAYD DPAIGRDTATTATVSMLGYAYAMAEERQLNPQDDILTGLVRGAYDDRPLTPLEFAYFVIQLMVAGNETSRNAITHGVLAFADNPAQWRLYRER PSTAADEIIRWASPIIAFQRTALQDVELGGVQIRKDQRVGMFYASANFDEDVFDDPFAFNIERDPNPHLAFGGHGIHYCLGANLARLEIGIMFD ALADRLPDLMPTGAPTRFRSGWINGVVALPANYHGSGPRG

IADHMPDLASAGEPDRLRSGWLNGVKHWEVDFCPAGYGRAS

IIFNKIADRMPDISRIGDAPRFHSGWINGIKKFDTAYCPVTH

>CYP125A(X8EQ35_MYCAB) MVQAQHPHLPDGIDFTDPELFVHGIPERELAELRHTEPIWWNHTERGVAGFDDDGFWVVSKHKDVKEVSLRCEVFSSEQNTAIPRYLPTTPRER IDATRLIMLNMDPPRHSRLRHIISRGFTPRAISRLRDDLNARAQGIARAAAQLRHGDFVEQVACELPLQAIAGLMGTPLDEREQLFDWSNRLVG SSDGEDDSAVASAELLMYAMGVAARKTAEPGADICTDLVNADIDGQKLSDDEFGFFVMLLAVAGNETTRNSITHGMHAFTQFPEQWELYKKTRP ETAADEIVRWATPVTSFQRTALEDTELGGVRIKKGQRVVMMYRSANFDEEVFENPFTFDIMRDPNPHVGFGGNGEHHCVGANLARMTINLMFNA

>CYP125A(X8ER31_MYCAB) MKTAAELGLPEGFDFTDPELYGNRMPHEEFATLRREAPVWWNPQPRTVGGFADEGYWVISKHRDVREVSLHTDTFSSGRKGAIPRLEDHISPEE FQATLSVLINKDAPEHTQLRGLVSRMFTPRSIAALRITLEERAERIVRAALEGGHGEFVREVASELPMQAIAELIGVPEEDRVKLFEWSNQMTG YDEADVEIDPRVGAAQILGYSYQLAEQRRDCPGNDVVSRLLTGTVDGEQLTPEQFGFFVVMLSVAGNETTRNATTMGMMAFLEHPGQWELFKSA RPSTTVDEIVRYTSPLISQQRTALQDTVISDVRIRAGERVVMLYPSANFDEEVFENPHTFDITRDPNPHLGFGGTGAHYCLGANLAKAELEIIF NKIADRMPDISRIGDAPRFHSGWINGIKKFDTAYCPVTH

Chapter 3: Annotation and phylogenetic analysis of Cybernet University of Cybernet P450 monooxygenase CYP125 family in the genus Mycobacterium

KSARPSTTVDEIVRYTSPLISQQRTALQDTVIGDVRIRAGERVVMLYPSANFDEEVFENPHAFDITRDPNPHLGFGGTGAHYCLGANLAKAELE

Chapter 3: Annotation and phylogenetic analysis of cytochrome P450 monooxygenase CYP125 family in the genus Mycobacterium

ETAADEIVRWATPVTSFQRTALEDTELGGVRIKKGQRVVMMYRSANFDEEVFENPFTFDIMRDPNPHVGFGGNGEHHCVGANLARMTINLMFNA IADHMPDLASAGEPDRLRSGWLNGVKHWEVDFCPAGYGRAS

>CYP125A(T2R8E5 MYCAB)

MTAMKTAAELGLPEGFDFTDPELYGNRMPHEEFATLRREAPVWWNPQPRTVGGFADEGYWVISKHRDVREVSLHTDTFSSGRKGAIPRLEDHIS PEEFQATLSVLINKDAPEHTQLRGLVSRMFTPRSIAALRITLEERAERIVRAALEGGHGEFVREVASELPMQAIAELIGVPEEDRVKLFEWSNQ MTGYDEADVEIDPRVGAAQILGYSYQLAEQRRDCPGNDVVSRLLTGTVDGEQLTPEQFGFFVVMLSVAGNETTRNATTMGMMAFLEHPGQWELF KSARPSTTVDEIVRYTSPLISQQRTALQDTVISDVRIRAGERVVMLYPSANFDEEVFENPHTFDITRDPNPHLGFGGTGAHYCLGANLAKAELE IIFNKIADRMPDISRIGDAPRFHSGWINGIKKFDTAYCPVTH

>CYP125A(T2R8J5 MYCAB)

MTTCPFTPGFDFTDPDLIQHRIPAEEFAYLRKTEPIWWNAQPRGVAGFDDDGYWVVTKHADVKEVSRLNEVFSNSVNTTVVRYNEDITAEQLEI QRENLLIDMDEPKHRILRRIVSPLFTPKAVNGLHARLVERAHGIVEEAAEKSSGNFVSDIASVLPMHAIADLVGIPESDRQQVLDWTNQMFAYD DPAIGRDTATTATVSMLGYAYAMAEERQLNPQDDILTGLVRGAYDDRPLTPLEFAYFVIQLMVAGNETSRNAITHGVLAFADNPAQWRLYRER PSTAADEIIRWASPIIAFQRTALQDVELGGVQIRKDQRVGMFYASANFDEDVFDDPFAFNIERDPNPHLAFGGHGIHYCLGANLARLEIGIMFD ALADRLPDLMPTGAPTRFRSGWINGVVALPANYHGSGPRG

>CYP125A(S9ZVJ7_MYCAB)

MVHPSLPAGFDFTDPEIYAERLPVEELKELRKTAPIWWQEQPDGVGGFNDGGYWVVTKHKDVKEVSLRSDVFSSWENTAIPRFQDDITREAIEL QRYVMLNMDAPHHTRLRKIISRGFTPRAIGRLRDELNERAQEIAKAAAASGTGDFVEQVSCELPLQAIAGLLGVPIEDRGKLFNWSNEMTSYDD PEYADIDPAASSMEILAYSMEMAKQKAENPGEDIVTTLINAEVEGEGKLSDDEFGFFVIMLAVAGNETSRNSITQGMMAFTQFPEQWELYKKER PETAADEIVRWATPVTSFQRTALEDTELDGVKIKKGQRVVMMYRSANFDEDVFEDPFSFNIMRNPNPHMGFGGSGAHY CIGANLARLTINLMFNAIADHMPNLAPAGDPKRLQSGWLNGIKHWQVDFTGASGCPVLQ

Chapter 4

CYP125 P450 gene mapping and gene-cluster analysis in the genus Mycobacterium

4.1. Introduction

Since their identification five decades ago, quite a large number of cytochrome P450 monooxygenases (CYPs/P450s) have been identified in species across biological kingdoms, especially due to the current genome sequencing rush (Nelson, 2009). Studies on P450 enzymes have been reported from animals owing to their role in drug metabolism (particularly from mammals) (Guengerich, 2015) or analysis of diversity (Nelson, 2013; Sezutsu *et al.*, 2013); from fungi owing to their role as drug targets (Kelly and Kelly, 2013; Jawallapersand et al., 2014) and for evolutionary analysis (Moktali et al., 2012; Chen et al., 2014; Syed et al., 2014); from bacteria owing to P450 structure-functional analysis (Poulos and Johnson., 2015) and generation of products valuable to humans (McLean et al., 2015) and from plants owing to their roles in key cellular processes and defence mechanisms (Mizutani and Ohta, 2010; Hamberger and Bak, 2013; Schuler, 2015). Irrespective of their origins, P450s from all organisms have been exploited for their biotechnological potential (Girhard et al., 2015). Although quite a large number of P450s have been identified to date (Nelson, 2009), genome annotation of P450s in recently elucidated organisms genomes has led to the discovery of a novel P450 family containing a novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain (Sello et al., 2015), suggesting that much remains to be explored and understood about the evolution of these enzymes.

The above facts suggest that, to date, evolutionary analysis of bacterial P450s has not been reported. This chapter is dedicated to perform genome mapping and gene-cluster analysis of CYP125 P450 in the genus *Mycobacterium*. As part of this chapter, the physical localization (Synteny) of CYP125 P450 genes on the chromosome of different mycobacterial species was mapped along with up-stream and down-stream genes with respect to CYP125 P450 to understand the gene-cluster analysis and evolutionary pattern of CYP125 in the genus *Mycobacterium*.

Synteny analysis provides excellent information on genome-duplication of P450s where localization of P450s belongs to the same family on same chromosome next to each other is a direct indication that these P450s are possibly duplicated during the evolution (Qhanya *et al.*, 2015; Sello *et al.*, 2015). Genome mapping of P450s refer to the identification of neighbouring genes with respect to P450s. Genome mapping reveals information on possible role of P450s in a physiological function by involving in a metabolic pathway. For example, CYP128A1 of *Mycobacterium tuberculosis* function is predicted based on its physical localization with genes involved in biosynthesis of menaquinone-like molecule (Holsclaw *et al.*, 2008). In addition, CYP121A1 of *M. tuberculosis* function identified based on its operonic arrangement with genes involved in biosynthesis of cyclodipeptide cyclo(L-Tyr-L-Tyr) (cYY) molecule (Belin *et al.*, 2009).

4.2. Methodology

4.2.1. P450s

CYP125 genes that are annotated as part of Chapter 3 were used in this study.

4.2.2. Genome mapping and gene-cluster analysis of CYP125

Genome localization of CYP125 P450s was carried out using protein IDs at respective mycobacterial species database located at the KEGG website (http://www.genome.jp/kegg-bin/show_organism?category=Mycobacterium). Three genes upstream of the CYP125 P450 were selected and another three genes downstream were selected and put in a table along with their KEGG gene codes. The genome map was also downloaded and all results were

presented in a table. The direction of the genes was also given in the table. Based on the direction and function of up-stream and down-stream genes, CYP125 P450s were classified into different clusters. The word "order of genes" refer such that they are the same genes/proteins (having the same function) and also the same gene transcription direction.

4.2.3. Visualization of gene-cluster maps

pDRAW32 (<u>http://www.acaclone.com/</u>) programme was used to generate gene-cluster maps. The DNA sequence of entire CYP125 gene along with up-stream and down-stream parts were downloaded from KEGG and used to deduce gene-cluster maps. The genes were then annotated according to their size by analysing the whole downloaded sequence. The genes were assigned to different colours according to KEGG colour codes expect CYP125 gene.

4.3 Results and discussion

Genome mapping and gene cluster analysis of CYP125 is carried out in order to identify same gene-clusters in different mycobacterial species to understand its evolution and also in future when promoter identification is carried out only one gene cluster can be used. Genome mapping and gene-cluster analysis revealed presence of 29 CYP125 gene clusters in 56 mycobacterial species (Figures 4.1 and 4.2). Information on genes, their direction and function along with KEGG gene map is presented in the Appendix. Characteristics feature of gene clusters were presented below:

Cluster 1:

Cluster 1 comprised of 23 CYP125 P450s belong to *Mycobacterium tuberculosis* complex (MTBC species). The order of genes downstream of CYP125 is: acyl-CoA dehydrogenase (fadE28), acyl-CoA dehydrogenase (fadE29) and uncharacterized protein and the order of

genes upstream of CYP125 is: acetyl-CoA acetyltransferase, deazaflavin-dependent nitroreductase and short-chain type dehydrogenase/reductase (Figure 4.1 and Table 4.1).

Cluster 2

Cluster 2 comprised of 5 CYP125 P450s that are exclusively found in *Mycobacterium avium* complex (MAC) (Figure 4.1 and Table 4.1). These CYP125 were from the 5 different species belong to the MAC. The order genes upstream of CYP125 is: TetR family transcriptional regulator, hypothetical protein and hypothetical protein and the order of genes downstream is: thiosulfate/3-mercaptopyruvate sulfurtransferase, alpha-1,6-mannosyltransferase and hydroxylase.

Figure 4.1. CYP125 gene-clusters (clusters 1 to 20) analysis in the genus Mycobacterium.

Table 4.1. Analysis of CYP125 gene clusters in the genus *Mycobacterium*. Abbreviations:

MTBC: Mycobacterium tuberculosis complex; MAC: Mycobacterium avium complex; SAP:

Saprophytes; NTM: Nontuberculous mycobacteria; MCAC: Mycobacterium chelonae-

abscessus complex.

Cluster	Category	Number of	Candidate CYP125 P450s
		P450s	
1	MTBC	22	CYP125A1(MAF 35570), CYP125A1(J114 18960),
			CYP125A1(TBHG 03485.1),
			CYP125A1(ERDMAN_3890),
			CYP125A1(MT7199 3607), CYP125A1(UDA 3545c),
			CYP125A1(TBFG_13578.4),
			CYP125A1(BN44_110037), CYP125A1(MRA_3584),
			CYP125A1(BN42_90040), CYP125A1(Rv3545c),
			CYP125A1(MbovBCG)(BCG_3609c,
			CYP125A1(TBMG_03584),
			CYP125A1(MbovAF2122/97,NP_857214.1)(Mb3575c),
			CYP125A1(TBXG_003560), CYP125A1(K60_036830),
			CYP125A1(TBSG_03611),
			CYP125A1(BCGMEX_3607c),
			CYP125A1(CCDC5079_3286), CYP125A1(JTY_3610),
			CYP125A1(J112 19085), CYP125A1(J113 24790).
2	MAC	5	CYP125E(OCU_21370), CYP125D(OCQ_20030),
			CYP125D(OCQ_20030), CYP125D(W7S_09920),
			CYP125D(OCO 21130)
3	MAC	5	CYP125A(W7S_22405), CYP125A(OCO_44490),
			CYP125A(OCQ_45630), CYP125A(MIP_06760),
			CYP125A(OCU 44240).
4	MAC	4	CYP125A(MAP_0522), CYP125A(MAV_0616),
			CYP125A(MIP 00975), CYP125A(MAP4 3345).
5	MAC	4	CYP125NS(MAP4_1479), CYP125NS(MAV_1637),
			CYP125NS(MIP_02350), CYP125NS(MAP2344)
6	MAC	4	CYP125A(MAP_1614c), CYP125A(MIP_04041),
	<u></u>		CYP125A(MAV_2811), CYP125A(MAP4_2225)
7	SAP	8	CYP125A4(MSMEG_3524), CYP125A(MJIs_2753),
			CYP125A(Mkms_2767), CYP125A(Mmcs_2723),
			CYP125A(Mflv_3290), CYP125A(Mspyr1_26180),
	<u></u>		CYP125A10(Mvan 3012), CYP125A(Mycch 2866)
8	SAP	8	CYP125A(Mkms_4660), CYP125A11(Mvan_5151),
			CYP125A(MJIs_4955), CYP125A(Mmcs_4572),
			CYP125A5P(MSMEG_5853),
			CYP125A(Mspyr1_09930), CYP125A(Mflv_1607),
		-	CYP125A(Mycch_4512)
9	SAP	7	CYP125A(Mycsm_05807), CYP125A9(Mvan_5258),
			CYP125A9(Mycch_4638), CYP125A(MycrhN_2286),
			CYP125A(Mmcs_4677), CYP125A(Mkms_4763),

			CYP125A(Mjls_5062)
10	SAP	2	CYP125D(Mycsm 03179), CYP125NS(MycrhN 4756)
11	SAP	2	CYP125A(Mycsm_03408), CYP125A(MycrhN_4947)
12	SAP	3	CYP125A(Mspyr1_08920), CYP125A(Mflv_1508), CYP125A3(MSMEG_5995)
	NTM	5	CYP125A7(MULP_05284), CYP125A7(MMAR_5032), CYP125A7(MUL_4106), CYP125A(JDM601_3693), CYP125A(JDM601_3692)
13	NTM	2	CYP125A6(MMAR 2783), CYP125A6(MULP 02541)
14	MCAC	4	CYP125A(MASS_0581), CYP125A(MAB_0611), CYP125A(LA61_03005), CYP125A(LA62_03090)
15	MCAC	3	CYP125A(MAB_1211c), CYP125A(LA62_06150), CYP125A(LA61_06055)
16	MCAC	4	CYP125A(LA62_03100), CYP125A(LA61_03015), CYP125A(MAB_0613), CYP125A(MASS_0583)
17	MCAC	4	CYP125A(MAB_0101), CYP125A(LA61_00515), CYP125A(LA62_00510), CYP125A(MASS_0104)
18	SAP	2	CYP125A(Mycsm_05668), CYP125A(MycrhN_2423)
19	SAP	2	CYP125A(MycrhN 0940), CYP125F(Mycch 4146)
20	SAP	2	CYP125F3(Mspyr1 03290),CYP125F3(Mflv 0425)
Unique	MAC	3	CYP125F1(MAP3818), CYP125F1(MAP4_3931),
cluster			CYP125D(MKAN_03940)
S	NTM	3	CYP125A(JDM601_3682), CYP125A(JDM601_3609),
			CYP125A(JDM601 2803)
	SAP	1	CYP125F2(Mvan_0246).
	MTBC	1	CYP125A1(MCAN_35561)

Cluster 3

Cluster 3 comprised of 5 CYP125 P450s exclusively found in MAC species. The order of genes upstream of CYP125 is : hypothetical protein, UDPglucose--hexose-1-phosphate uridylyltransferase and galactokinase and the order of genes downstream is : hypothetical protein, dihydrolipoyllysine-residue acetyltransferase component of acetoincleaving system and hypothetical protein (Figure 4.1 and Table 4.1).

Cluster 4

Cluster 4 comprised of 4 CYP125 P450 belong to MAC species. The order of genes upstream of CYP125 is: acetyl-CoA C-acetyltransferase, hypothetical protein and hypothetical protein and the order of genes downstream is: FadE28 and FadE29 (involved in geraniol degradation) and uncharacterized protein.

Cluster 5

Cluster 5 comprised of 4 CYP125 P450s belong to MAC species (Figure 4.1 and Table 4.1). The order of genes downstream of CYP125 is: ferredoxin; putative CoA-transferase family protein, Transcriptional regulator, GntR family and the order of genes upstream is: hypothetical protein (oxidoreductase Rieske 2Fe-2S domain protein), putative AMP-binding enzyme (crotonobetaine/carnitine-CoA ligase) and hypothetical protein (Figure 4.1 and Table 4.1).

Cluster 6

Cluster 6 comprised of 4 CYP125 P450s belong to MAC species. The order of the genes downstream of CYP125 is: alcohol dehydrogenase, hypothetical protein, and hypothetical protein and the order of genes upstream of CYP125 is: hypothetical protein, hypothetical protein and hypothetical protein. Two P450s, CYP125A (MAP_1614c) and CYP125A(MIP_04041) has the above mentioned gene arrangements whereas the other two P450s namely, CYP125A(MAV_2811) and CYP125A(MAP4_2225) has the reverse complement arrangement of genes (Figure 4.1 and Table 4.1).

Cluster 7

Cluster 7 was found to be comprised of 8 CYP125 P450s belong to SAP species. The order of genes upstream of CYP125 is: hypothetical protein, formate dehydrogenase and TetR family

transcriptional regulator and the order of the genes downstream of CYP125 P450 is: hypothetical protein, XRE family transcriptional regulator and hypothetical protein (Figure 4.1 and Table 4.1).

Cluster 8

Cluster comprised of 8 CYP125 P450s belong to SAP species. The order of genes downstream of CYP125 is: transcriptional regulator TetR family; hypothetical protein; hypothetical protein and the order of genes upstream is: phosphoribosylamine-glycine ligase; putative esterase; putative transcriptional regulator TetR family (Figure 4.1 and Table 4.1).

Cluster 9

Cluster 9 comprised of 7 CYP125 belong to the SAP species. The order of genes downstream of CYP125 is: acyl-CoA dehydrogenase, acyl-CoA dehydrogenase and putative nucleic-acid-binding protein and the order of genes upstream is : acetyl-CoA C-acetyltransferase, hypothetical protein and deazaflavin-dependent nitroreductase family protein (Figure 4.1 and Table 4.1).

Cluster 10

Cluster 10 comprised of 4 CYP125 P450s belong to SAP species. The order of genes downstream is: putative acyl-CoA transferase; transcriptional regulator; short-chain alcohol dehydrogenase and the order of genes upstream is: Rieske (2Fe-2S) domain-containing protein, acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II, hypothetical protein.

Cluster 11

Cluster 11 comprised of 2 CYP125 P450s belong to the SAP. The order of genes downstream of CYP125 is: hypothetical protein; protein of unknown function (DUF732) and

putative transcriptional regulator and the order of genes upstream is: hypothetical protein, protein of unknown function (DUF2867) and protein of unknown function (DUF2867).

Cluster 12

Cluster 12 comprised of 8 CYP125 belong to the SAP (3 P450s) and Nontuberculous mycobacteria (NTM) (5 P450s). The order of genes upstream is: acetyl-CoA C-acetyltransferase, hypothetical protein and hypothetical protein and the order of genes downstream is: acyl-CoA dehydrogenase domain protein, acyl-CoA dehydrogenase domain protein and predicted nucleic-acid-binding protein containing a Zn-ribbon.

Cluster 13

Cluster 14 comprised of 2 CYP125 P450s belong to the NTM. In both CYP125 P450s the order of genes downstream of P450s is considered. The order of genes downstream is: NADP-dependent alcohol dehydrogenase AdhC; conserved hypothetical membrane protein; conserved hypothetical protein]. The order of genes upstream is different in both P450s.

Cluster 14

Cluster 14 comprised of 4 CYP125 P450s belong to *Mycobacterium chelonae-abscessus* complex (MCAC). The order of genes downstream is: hypothetical protein, hypothetical protein and probable short-chain dehydrogenase/reductase and the order of genes upstream is: probable short-chain dehydrogenase/reductase, putative cytochrome P450 (cholest-4-en-3-one 26-monooxygenase) and probable acyl-CoA dehydrogenase.

Cluster 15

Cluster 15 comprised of 3 CYP125 P450s belong to the MCAC species. The order of genes downstream is: putative short chain dehydrogenase/reductase, probable short-chain Z-

isoprenyl diphosphate synthetase and conserved hypothetical protein and the order of genes upstream is: hypothetical protein, putative ferredoxin, cytochrome P450 (sterol 14demethylase).

Cluster 16

Cluster 16 comprised of 4 CYP125 P450s belong to the MCAC species. The order of genes upstream is: probable acetyl-CoA acetyltransferase, putative cytochrome P450 (cholest-4-en-3-one 26-monooxygenase) and hypothetical protein and the order of genes downstream is: probable acyl-CoA dehydrogenase, putative acyl-CoA dehydrogenase and hypothetical protein.

Cluster 17

Cluster 17 comprised of 4 CYP125 P450s belong to the MCAC species. The order of genes upstream is: putative short chain dehydrogenase/reductase, probable monooxygenase and putative TetR-family transcriptional regulator and the order of genes downstream is: methyltransferase, probable monooxygenase and probable enoyl-CoA hydratase/isomerase.

Cluster 18

Cluster 18 comprised of 2 CYP125 P450s belong to the SAP species. These two P450s has same order of upstream genes i.e. : N-dimethylarginine,dimethylaminohydrolase, phosphoribosylamine-glycine ligase and putative esterase. The order of genes downstream is different.

Cluster 19

Cluster 19 comprised of 2 CYP125 P450s belong to the SAP species. In both P450s only the order of genes downstream is conserved i.e.: pseudogene, anti-anti-sigma regulatory factor, 2-polyprenyl-6-methoxyphenol hydroxylase-like oxidoreductase.

Cluster 20

Cluster 20 comprised of 2 CYP125 P450s belong to the SAP species. In both P450s the order of genes downstream is conserved i.e.: glycosyltransferase, methyltransferase and aldehyde dehydrogenase.

Unique clusters (21-28)

Eight CYP125 P450s have unique order of upstream and downstream genes hence they were grouped under unique clusters (clusters 21-28) (Figure 4.2). CYP125 in the unique clusters belong to MAC and NTM (3 P450s each) and SAP and MTBC (1 P450 each) (Table 4.1.).

	CYP125		
			
CLUSTER 21		•	
	CYP125		HP
MP			
CLUSTER 22			
ATP bp araD		[Fadi araD
	CYP125	PBL	
CLUSTER 23	•		
LuxR	P450		
RP		EYP125	СНР
CLUSTER 24		•	·
	YP125	ноа р	
CLUSTER 25	CVP125		
			CHP
CLUSTER 26		\$	۲ آم
		r A	
	CYP125	TetR]
	CY	125	
	J	₹	۹
CLUSTER 28			

Mycobacterium.

4.4. Conclusion

Analysis of CYP125 gene clusters in the genus *Mycobacterium* revealed presence of 28 CYP125 gene-clusters. Gene clusters 1 to 20 comprised of quite a number of P450s ranging from 2 to 23 and gene clusters 21 – 28 named a unique gene clusters considering each of the P450 in this cluster have different genes both in the upstream and downstream of CYP125. Overall, SAP species showed highest CYP125 gene cluster diversity (10 clusters including 1 unique cluster) followed by MAC (8 clusters including 3 unique clusters), NTM (5 clusters including 3 unique clusters), MCAC (4 clusters) and MTBC (2 clusters including 1 unique cluster). This study is first of its kind on analysis of gene-clusters in prokaryote P450s. Some of the CYP125 P450s in different clusters have reverse complement arrangement of genes compared to other CYP125s in the same cluster. These P450s are under investigation for further analysis of possible gene rearrangement events in the chromosome.

4.5. References

- Belin, P., Le Du, M.H., Fielding, A., Lequin, O., Jacquet, M., Charbonnier, J.B., Lecoq, A., Thai, R., Courçon, M., Masson, C. and Dugave, C., 2009. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in *Mycobacterium tuberculosis*. *Proceedings of the National Academy of Sciences*, 106(18), pp.7426-7431.
- Chen, W., Lee, M.K., Jefcoate, C., Kim, S.C., Chen, F. and Yu, J.H., 2014. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. *Genome biology and evolution*, 6(7), pp.1620-1634.
- Girhard, M., Bakkes, P.J., Mahmoud, O. and Urlacher, V.B., 2015. P450
 Biotechnology. In *Cytochrome P450* (pp. 451-520). Springer International Publishing.
- Guengerich, F.P., 2015. Human cytochrome P450 enzymes. In *Cytochrome P450* (pp. 523-785). Springer International Publishing.
- Hamberger, B. and Bak, S., 2013. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *368*(1612), p.20120426.
- Holsclaw, C.M., Sogi, K.M., Gilmore, S.A., Schelle, M.W., Leavell, M.D., Bertozzi, C.R. and Leary, J.A., 2008. Structural characterization of a novel sulfated menaquinone produced by stf3 from *Mycobacterium tuberculosis*. ACS chemical biology, 3(10), pp.619-624.
- Jawallapersand, P., Mashele, S.S., Kovačič, L., Stojan, J., Komel, R., Pakala, S.B., Kraševec, N. and Syed, K., 2014. Cytochrome P450 monooxygenase CYP53 family

in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target. *PloS one*, *9*(9), p.e107209.

- Kelly, S.L. and Kelly, D.E., 2013. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?. *Phil. Trans. R. Soc. B*, *368*(1612), p.20120476.
- McLean, K. J., Leys, D. & Munro, A. W., 2015. Microbial cytochrome P450s In Cytochrome P450: Structure, mechanism, and biochemistry.*4th edn*. (eds Oritz de Montellano, P. R.). *Springer International Publishing*, Ch. 6, 261–407.
- Mizutani, M. and Ohta, D., 2010. Diversification of P450 genes during land plant evolution. *Annual review of plant biology*, *61*, pp.291-315.
- Moktali, V., Park, J., Fedorova-Abrams, N.D., Park, B., Choi, J., Lee, Y.H. and Kang, S., 2012. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. *BMC genomics*, *13*(1), p.525.
- Nelson, D.R., 2009. The cytochrome p450 homepage. *Human genomics*, 4(1), p.1.
- Nelson, D.R., 2013. A world of cytochrome P450s. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 368(1612), p.20120430.
- Poulos, T. L. & Johnson, E. F., 2015. Structures of cytochrome P450 enzymes In Cytochrome P450 (Ch. 1, 3–32). Springer International Publishing.
- Qhanya, L.B., Matowane, G., Chen, W., Sun, Y., Letsimo, E.M., Parvez, M., Yu, J.H., Mashele, S.S. and Syed, K., 2015. Genome-wide annotation and comparative analysis of cytochrome P450 monooxygenases in Basidiomycete Biotrophic plant pathogens. *PloS one*, *10*(11), p.e0142100.

- Schuler, M. A., 2015 P450s in plants, insects, and their fungal pathogens. In *Cytochrome P450* (Ch. 7, 409–449). Springer International Publishing.
- Sello, M.M., Jafta, N., Nelson, D.R., Chen, W., Yu, J.H., Parvez, M., Kgosiemang, I.K.R., Monyaki, R., Raselemane, S.C., Qhanya, L.B. and Mthakathi, N.T., 2015. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes. Scientific reports, 5.
- Sezutsu, H., Le Goff, G. and Feyereisen, R., 2013. Origins of P450 diversity. *Phil. Trans. R. Soc. B*, 368(1612), p.20120428.
- Syed, K., Shale, K., Pagadala, N.S. and Tuszynski, J., 2014. Systematic identification and evolutionary analysis of catalytically versatile cytochrome P450 monooxygenase families enriched in model basidiomycete fungi. *PLoS One*, *9*(1), p.e86683.

<u>APPENDIX</u>

Gene	Gene code	Upstream gene	Direction	Gene code	Downstream gene	Directio	Genetic Map
		My	ycobacterium a	fricanum GM0411	82	п	I
cyp125; cvtochrome P450	MAF_35570	N/A	N/A	N/A	N/A	N/A	MAF_35590 M
	MAF_35560	fadE28; acyl-CoA dehydrogenase	→ 	MAF_35580	fadA5; acetyl-CoA acetyltransferase K00626 acetyl-CoA C- acetyltransferase	→ 	15520 HAF_35570 HAF_35600
	MAF_35550	fadE29; acyl-CoA dehydrogenase	←	MAF_35590	hypothetical protein	\rightarrow	- NHF_30040 - NHF_30 - MOF 35550
	MAF_35540	hypothetical protein; uncharacterized	←	MAF_35600	short-chain dehydrogenase/reductase	←	MAF_35560
		M	vcobacterium t	uberculosis Haarle	m		
			ycobucterium .				
cyp125; cytochrome p450	TBHG_03485.1	N/A	N/A	N/A	N/A	N/A	
	TBHG_03484	acyl-CoA dehydrogenase FadE28	<i>←</i>	TBHG_03486	acetyl-CoA acetyltransferase FadA5	\rightarrow	
	TBHG_03483	acyl-CoA dehydrogenase FadE29	<i>←</i>	TBHG_03487	deazaflavin-dependent nitroreductase Ddn	\rightarrow	TBHG_03487 TE TBHG_03486 TBHG,
	TBHG_03482	hypothetical protein; K07068 uncharacterized protein	← 	TBHG_03487	Oxidoreductase	← 	03480 TBHG_03484 TBHG_03488 BHG_03481 TBHG_03485 TBHG_03 TBHG_03482 TBHG_03483
		M	ycobacterium	tuberculosis 7199-9	9		
cyp125; cytochrome p450	MT7199_3607	N/A	N/A	N/A	N/A	N/A	
	MT7199_3606	putative ACYL-CoA DEHYDROGENASE FADE28	<i>←</i>	MT7199_3608	putative ACETYL-CoA ACETYLTRANSFERASE FADA5 (ACETOACETYL- CoA THIOLASE)	→	
	MT7199_3605	putative ACYL-CoA DEHYDROGENASE FADE29	<i>←</i>	MT7199_3609	ddn; DEAZAFLAVIN- DEPENDENT NITROREDUCTASE DDN	\rightarrow	

	MT7199_3604	hypothetical protein; K07068 uncharacterized protein	←	MT7199_3610	putative SHORT-CHAIN TYPE DEHYDROGENASE/REDUC TASE	<i>←</i>	
			Mycobacteriu	m tuberculosis F11			
cyp125;cytochrome p450	TBFG_13578	N/A	N/A	N/A	N/A	N/A	
	TBFG_13577	acyl-CoA dehydrogenase fadE28	<i>←</i>	TBFG_13579	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	: TBFG_13580TB <u>TBFG_13579 TBFG</u>
	TBFG_13576	acyl-CoA dehydrogenase fadE29	←	TBFG_13580	conserved hypothetical protein	\rightarrow	K K 13573 TBFG_13577 BFG_13574 TBFG_13578 TBFG_13574 TBFG_13578
	TBFG_13575	conserved hypothetical protein; K07068 uncharacterized protein	~	TBFG_13581	hypothetical short-chain type dehydrogenase/reductase	← 	TBFG_13575 TBFG_13576
		ľ	Mycobacterium	tuberculosis H37Ra	a		
cyp125;cytochrome p450	MRA_3584	N/A	N/A	N/A	N/A	N/A	100.0500
	MRA_3583	fadE28; acyl-CoA dehydrogenase	<i>←</i>	MRA_3585	fadA5; acetyl-CoA acetyltransferase K00626; acetyl-CoA C- acetyltransferase	\rightarrow	
	MRA_3582	fadE29; acyl-CoA dehydrogenase	←	MRA_3586	hypothetical protein	←	MRA_3581 MRA_3584
	MRA_3581	hypothetical protein; uncharacterized protein	←	MRA_3587	short chain dehydrogenase	~	MRA_3583 MRA_3
	·	N	Mycobacterium	tuberculosis H37Rv	7	·	·
cyp125;cytochrome p450	Rv3545c	N/A	N/A	N/A	N/A	N/A	
	Rv3544c	fadE28; acyl-CoA dehydrogenase	<i>←</i>	Rv3546	fadA5; acetyl-CoA acetyltransferase	\rightarrow	

	Rv3543c	fadE29; acyl-CoA dehydrogenase	~	Rv3547	ddn; deazaflavin-dependent nitroreductase	\rightarrow	
	RV3542c	hypothetical protein; K07068 uncharacterized protein	←	Rv3548c	short-chain type dehydrogenase/reductase		
		Г Т	Aycobacterium tu	uberculosis KZN 143	35		
cyp125;cytochrome p450	TBMG_03584	N/A	N/A	N/A	N/A	N/A	
	TBMG_04117	acyl-CoA dehydrogenase	<i>←</i>	TBMG_03585	acetyl-CoA acetyltransferase	\rightarrow	TBHG_03586 TB TBHG_03585 TBHG,
	TBMG_03583	acyl-CoA dehydrogenase	←	TBMG_03586	hypothetical protein	\rightarrow	33580 TBHG_04117 TBHG_03587 3HG_03581 TBHG_03584 TBHG_03 TBHG_03582 TBHG_03583
	TBMG_03582	hypothetical protein; K07068 uncharacterized protein	~	TBMG_03587	short chain dehydrogenase	<i>←</i>	
		•	Mycobacterium t	uberculosis KZN 60	95		•
cyp125; cytochrome p450	TBXG_003560	N/A	N/A	N/A	N/A	N/A	TB×G_003562
	TBXG_003559	acyl-CoA dehydrogenase fadE28	<i>←</i>	TBXG_003561	acetyl-CoA acetyltransferase fadA5	\rightarrow	TBXG_003561 TBXG_
	TBXG 003558	acyl-CoA dehydrogenase fadE29	<i>→</i>	TBXG 003562	hypothetical protein	\rightarrow	
	1BXG_003557	hypothetical protein; K07068 uncharacterized protein	~	1BXG_003563	short-chain type dehydrogenase/reductase	~	003555 TBXG_003559 TBXG_003563 BXG_003556 TBXG_003560 TBXG_003 TBXG_003557 TBXG_003558
	1	1	Aycobacterium tu	uberculosis KZN 420	07	T	
cyp125; cytochrome p450	TBSG_03611	N/A	N/A	N/A	N/A	N/A	TBSG_03613TB TBSG_03612 TBSG_
	TBSG_03610	acyl-CoA dehydrogenase fadE28		TBSG_03612	acetyl-CoA acetyltransferase fadA5	\rightarrow	
	TBSG_03609	acyl-CoA dehydrogenase fadE29	→ 	TBSG_03613	conserved hypothetical protein	\rightarrow	03606 TBSG_03610 TBSG_03614 BSG_03607 TBSG_03611 TBSG_031 TBSG_03608 TBSG_03609

	TBSG_03608	conserved hypothetical protein; K07068 uncharacterized protein	← 	TBSG_03614	short-chain type dehydrogenase/reductase	~					
	Mycobacterium tuberculosis RGTB327										
cyp125; cytochrome p450	MRGA423_2241 0	N/A	N/A	N/A	N/A	N/A	MRGA423_22420MR				
	MRGA423_2248 5	hypothetical protein; K07068 uncharacterized protein	←	MRGA423_2241 5	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	23_22370 HRGA423_22415 HRGA4				
	MRGA423_2248 0	hypothetical protein	<i>←</i>	MRGA423_2242 0	hypothetical protein	\rightarrow	MRGA423_22375 MRGA423_22410 MRGA423_22				
	MRGA423_2247 5	lipid-transfer protein	←	MRGA423_2242 5	short chain dehydrogenase	<i>←</i>	MRGA423_22385				
		Mycoba	cterium tubero	culosis strains CCDC	5079	•					
cyp125; cytochrome p450	CCDC5079_328 6	N/A	N/A	N/A	N/A	N/A	CCDC5079_3288CC CCDC5079_3287 CCDC5				
	CCDC5079_328 5	acyl-CoA dehydrogenase	<i>←</i>	CCDC5079_328 7	K00626 acetyl-CoA C- acetyltransferase	\rightarrow					
	CCDC5079_328 4	acyl-CoA dehydrogenase FADE29	<i>←</i>	CCDC5079_328 8	hypothetical protein	\rightarrow	079_3281 CCDC5079_3286 CCDC5079_3 CDC5079_3282 CCDC5079_3289				
	CCDC5079_328 3	hypothetical protein; K07068 uncharacterized protein	←	CCDC5079_328 9	short chain dehydrogenase	←	CCDC5079_3283 CCDC5079_3284 CCDC5079_3285				
		Mycob	acterium tuber	culosis Beijing/NITI	R203						
cyp125; cytochrome p450	J112_19085	N/A	N/A	N/A	N/A	N/A	J112_19095 J1 J112_19090 J112,				
	J112_19080	acyl-CoA dehydrogenase	← 	J112_19090	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	K K 19060 J112_19080 J112_19100 112_19065 J112_19085 J112_19				
	J112_19075	acyl-CoA dehydrogenase	←	J112_19095	hypothetical protein	\rightarrow	J112_19070 J112_19075				

	J112_19070	hypothetical protein; K07068 uncharacterized protein	←	J112_19100	short chain dehydrogenase	←	
	1	Мусо	bacterium tub	erculosis CAS/NIT	`R204		
cyp125; cytochrome p450	J113_24790	N/A	N/A	N/A	N/A	N/A	
	J113_24785	acyl-CoA dehydrogenase	←	J113_24805	hypothetical protein	\rightarrow	J113_24805 J11 KKKK L_24765 J113_24785 J113_24810
	J113_24780	acyl-CoA dehydrogenase	←	J113_24810	short chain dehydrogenase	\rightarrow	J113_24770 J113_24790 J113_24815 J113_24775 J113_248 J113_24780
	J113_24775	hypothetical protein; K07068 uncharacterized protein	<i>←</i>	J113_24815	short chain dehydrogenase	←	
	1	Мусо	bacterium tub	erculosis EAI5/NIT	FR206		
cyp125; cytochrome p450	J114_18960	N/A	N/A	N/A	N/A	N/A	
	J114_18955	acyl-CoA dehydrogenase	~	J114_18965	acetyl-CoA C-acetyltransferase	\rightarrow	
	J114_18950	acyl-CoA dehydrogenase	←	J114_18970	hypothetical protein	\rightarrow	
	J114_18945	K00626 acetyl-CoA C-acetyltransferase	← 	J114_18975	short chain dehydrogenase	←	J114_18945J114_18960J114_18975 J114_18950J114_18 J114_18955J
		Mycobact	erium tubercu	losis Erdman= AT	CC 35801		
cyp125; cytochrome p450	ERDMAN_3890	N/A	N/A	N/A	N/A	N/A	

	ERDMAN_3888	fadE28; acyl-CoA dehydrogenase	←	ERDMAN_3891	fadA5; acetyl-CoA acetyltransferase	\rightarrow	
	ERDMAN_3887	fadE29; acyl-CoA dehydrogenase	←	ERDMAN_3892	hypothetical protein		
	FRDMAN 3886	K07068 uncharacterized protein		FRDMAN 3893	short chain dehydrogenase		-
	ERDMART 5000	No/000 uleilaideterized protein	Aycobacterium	tuberculosis UT205	short chain denydrogendse		
cvp125: cvtochrome	UDA 3545c	N/A	N/A	N/A	N/A	N/A	UD0 3547 U
p450							UD0 3546
	UDA_3544	fadE28; hypothetical protein	→	UDA_3546	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	
	UDA_3543c	fadE29; hypothetical protein	←	UDA_3547	hypothetical protein	\rightarrow	
	UDA_3542c	hypothetical protein; K07068 uncharacterized protein	~	UDA_3548c	hypothetical protein	<i>←</i>	UDA_3544c UDA_3545c UDA_3548c
		My	cobacterium ca	anetii CIPT 14006000	08		
cyp125; cytochrome p450	BN44_110037	N/A	N/A	N/A	N/A	N/A	BN44_110039 BN44_110038
	BN44_110036	fadE; Putative FadE28-like Acyl-CoA dehydrogenase	←	BN44_110038	fadA; Putative acetyl-CoA acetyltransferase FadA5 (acetoacetyl-CoA thiolase)	\rightarrow	L110032 BN44_110040
	BN44_110035	fadE; Putative FadE29-like Acyl-CoA dehydrogenase	<i>←</i>	BN44_110039	hypothetical protein	\rightarrow	N44_110033 BN44_110037 BN44_110034 BN44_110 DN44_140035
	BN44_110034	hypothetical protein	<i>←</i>	BN44_110040	Putative short-chain type Dehydrogenase/Reductase	←	BN44_110035 BN44_110036
	·	My	cobacterium ca	anetii CIPT 14071001	10		
cvn125: cvtochrome	BN42 90040	N/A	N/A	N/A	N/A	N/A	
p450	BI(12_)0010	1011	1011	1.0.11	1011	10/21	BN42_90042BN
	BN42_90039	Putative FadE28-like Acyl-CoA dehydrogenase	<i>~</i>	BN42_90041	fadA; Putative acetyl-CoA acetyltransferase FadA5	\rightarrow	BN42_90041
	BN42_90038	Putative FadE29-like Acyl-CoA dehydrogenase	→	BN42_90042	Conserved protein of unknown function	\rightarrow	90035 BN42_90040
	BN42_90037	K07068 uncharacterized protein	←	BN42_90043	Putative short-chain type Dehydrogenase/Reductase	←	N42_90036 BN42_90043 BN42_90037 BN42_90 BN42_90038 BN42_90039
	1	Мусо	obacterium boy	vis BCG Pasteur 1173	3P2		1
cyp125; cytochrome p450	BCG_3609c	N/A	N/A	N/A	N/A	N/A	
<u>`</u>	BCG 3608c	acyl-CoA dehydrogenase FADE28	←	BCG 3610	K00626 acetyl-CoA C-	\rightarrow	

					acetyltransferase		
	BCG 3607c	acyl-CoA dehydrogenase FADE29	←	BCG 3611	hypothetical protein		
	Bed_source	acyr corraenyarogenase rribib2)		Bed_5011	hypothetical protein		
						\rightarrow	
	DCC 2(0(-	ham ath atical mastering K07069		DCC 2(12-	-hart shain dahadar sanas		_
	BCG_30000	upoheracterized protein	<i>~</i>	BCG_30120	short chain denydrogenase	\rightarrow	
		unenaracterized protein					
				L : AE 2122/07			
		Л	viycobacteriur	n dovis AF 2122/97			
cvn125: cvtochrome	Mb3575c	N/A	N/A	N/A	N/A	N/A	Hb3576
p450	11000700	- //	1011	1.011	1.011	1011	
1	Mb3574c	acyl-CoA dehydrogenase FADE28	←	Mb3576	K00626 acetyl-CoA C-	\rightarrow	
		5 5 6			acetyltransferase		0c Hb3575c
	Mb3573c	acyl-CoA dehydrogenase FADE29	\leftarrow	Mb3577	hypothetical protein	\rightarrow	b3571c Mb3574c
	Mb3572c	hypothetical protein; K07068	\leftarrow	Mb3578c	short chain dehydrogenase	←	Mb3572c
		uncharacterized protein					MD35/3C
							Mb3577 M
							Mb3578c
			ļ, , , , ,	· DOC K 11/6			
arm 125; arta abrama	V60 026920	Miyc	obacterium bo	NIS BUG Korea 1168		NI/A	
p450	K00_030830	19/24	1N/PA	19/75	IN/ZA	IN/A	K60_036850K6
p+30	K60 036820	acyl-CoA dehydrogenase EADE28	-	K60 036840	K00626 acetyl-CoA C-		3770 <u>K60_0</u> 36840 <u>K60_</u>
	R00_050020	acyr corr denydrogenase i ribE20		100_050040	acetyltransferase	ŕ	
	K60 036810	acvl-CoA dehvdrogenase FADE29	←	K60 036850	hypothetical protein	\rightarrow	
	K60 036800	hypothetical protein; K07068	←	K60 036860	short chain dehydrogenase	<i>←</i>	336780 K60_036820 K60_036860
	-	uncharacterized protein		_	5 6		.60_036790 K60_036830 K60_036
		-					K60_036800
							K60_036810
		Μ	lycobacterium	bovis BCG Mexico			
cyp125; cytochrome	BCGMEX_3607	N/A	N/A	N/A	N/A	N/A	
p450	с [—]						
	BCGMEX_3606	fadE28; putative acyl-CoA dehydrogenase	<i>←</i>	BCGMEX_3608	fadA5; acetyl-CoA	\rightarrow	
	с				acetyltransferase		
	BCGMEX_3605	fadE29; putative acyl-CoA dehydrogenase	←	BCGMEX_3609	hypothetical protein	\rightarrow	

	C						
	BCGMEX 3604	hypothetical protein: K07068		BCGMEX 3610	putative short-chain type		-
	c	uncharacterized protein		c	dehydrogenase		
		My	cobacterium l	bovis BCG Tokvo 17/	2		
cvp125:cvtochrome	JTY 3610	N/A	N/A	N/A	N/A	N/A	
p450							JTY_3612
I ···	JTY 3609	fadE28; putative acyl-CoA dehydrogenase	←	JTY 3611	fadA5; acetyl-CoA	\rightarrow	
					acetyltransferase		3960001
	JTY_3608	fadE29; putative acyl-CoA dehydrogenase; K00257	<i>←</i>	JTY_3612	hypothetical protein	\rightarrow	JTY_3609
	JTY_3607	hypothetical protein; K07068 uncharacterized protein	←	JTY_3613	short chain dehydrogenase	←	JTY_3613
		Mycobacte	erium Avium	subsp. paratuberculo	osis K10		
cyp125; cytochrome p450	MAP_1614c	N/A	N/A	N/A	N/A	N/A	17700
	MAP 1613c	K00001 alcohol dehydrogenase	\leftarrow	MAP 1615	hypothetical protein	\rightarrow	
	MAP_1612c	hypothetical protein	←	MAP_1616	hypothetical protein	\rightarrow	MAP_1612c
	MAP_1611	hypothetical protein	→ 	MAP_1617	hypothetical protein	→ 	HAP_1613c HAP_1614c MAP_1617 HAP_1616 HAP_1615HAP, MAP_1614c
		Mycol	bacterium Ind	licus pranii MTCC 9	506	•	
105 1	NUD 04041	2	27/4	-	NT/4	37/4	
p450	MIP_04041	N/A	N/A	N/A	N/A	N/A	
	MIP_04040	Alcohol dehydrogenase	\leftarrow	MIP_04042	hypothetical protein	\rightarrow	
	MIP_04037	hypothetical protein: Pfam: YceI	<i>←</i>	MIP_04043	hypothetical protein: Pfam: Phage_holin_3_6	\rightarrow	
	MID 04025	here effective la sectoire		MID 04045	how the street surveying DC		
	MIP_04036	nypoinetical protein	\rightarrow	MIP_04045	EspB	\rightarrow	
	•	•	Mycobacte	rium Marinum	•		•
cyp125; cytochrome p450	MMAR_2783	N/A	N/A	N/A	N/A	N/A	

	MMAR_2782	NADP-dependent alcohol dehydrogenase AdhC	←	MMAR_2784	conserved hypothetical membrane protein	\rightarrow	
	MMAR_2781	conserved hypothetical membrane protein	~	MMAR_2785	conserved hypothetical membrane protein	\rightarrow	-
	MMAR_2780	conserved hypothetical protein	←	MMAR_2786	conserved secreted protein	\rightarrow	
			Mycobacteriu	m liflandii 128FXT			
cyp125; cytochrome p450	MULP_02541	N/A	N/A	N/A	N/A	N/A	HULP_02544
	MULP_02540	NADP-dependent alcohol dehydrogenase AdhC	<i>~</i>	MULP_02542	putative membrane protein	\rightarrow	P_02537 HULP_02542 HU
	MULP 02539	hypothetical protein	\leftarrow	MULP 02543	transposase for IS2404	\rightarrow	
	MULP_02538	putative membrane protein	←	MULP_02544	pseudogene	\rightarrow	HULP_02539 36 HULP_02540 HULP_02540 HULP_02538 HULP_02541
	1		Mycobacte	rium Avium 104		I	
cyp125;cytochrome p450	MAV_2811	N/A	N/A	N/A	N/A	N/A	MAV_2813 Mav_2812 Mav
CYP 124	MAV_2810	hypothetical protein	<i>←</i>	MAV_2812	aldehyde dehydrogenase; K00001 alcohol dehydrogenase	\rightarrow	.2807HAV_2811 HAV_
	MAV_2809	hypothetical protein	\leftarrow	MAV_2813	hypothetical protein	\rightarrow	MAV_2808 MAV_2814
	MAV_2808	hypothetical protein	<i>←</i>	MAV_2814	hypothetical protein	←	MAV_2809 MAV_2810
		Mycobacte	erium avium s	ubsp. paratuberculo	sis MAP4		
cyp125; cytochrome p450	MAP4_2225	N/A	N/A	N/A	N/A	N/A	MAP4_2227
•	MAP4 2224	hypothetical protein:	←	MAP4 2226	Alcohol dehydrogenase	\rightarrow	
	MAP4_2223	putative membrane protein	<i>←</i>	MAP4_2227	hypothetical protein: Pfam: YceI	\rightarrow	
	MAP4_2222	hypothetical protein: Pfam: EspB	~	MAP4_2228	hypothetical protein:		- {
	·	Myco	obacterium int	racellulare ATCC 1	3950		·
cyp125; cytochrome p450	OCU_21370	N/A	N/A	N/A	N/A	N/A	
	OCU_21360	TetR family transcriptional regulator	\rightarrow	OCU_21380	K01011 thiosulfate/3- mercaptopyruvate sulfurtransferase	<i>←</i>	

	OCU_21350	hypothetical protein:	←	OCU_21390	K14335 alpha-1,6- mannosyltransferase	←	
	OCU 21340	hypothetical protein:	→	OCU 21400	hydroxylase	→	-
		Мус	obacterium ir	tracellulare MOTT	-02	1	
cyp125; cytochrome p450	OCO_21130	N/A	N/A	N/A	N/A	N/A	70 0C0_21
	OCO_21120	TetR family transcriptional regulator	\rightarrow	OCO_21140	K01011 thiosulfate/3- mercaptopyruvate sulfurtr`lansferase	\rightarrow	21986 0C0_21188 0C0_21118
	OCO_21110	TetR family transcriptional regulator		OCO_21150	K14335 alpha-1,6- mannosyltransferase	~	0C0_21130 0C0_21120 0C0_21120 0C0_21140 0C0_;
	OCO_21000	hypothetical protein:		OCO_21160	hydroxylase	→	0C0_21150 0(0C0_21160
		Myc	ohacterium II	ntracellulare MOTT	-64		000_21100
cyp125;cytochrome p450	OCQ_20030	N/A	N/A	N/A	N/A	N/A	
	OCQ_20020	TetR family transcriptional regulator	\rightarrow	OCQ_20040	K01011 thiosulfate/3- mercaptopyruvate sulfurtransferase	→	
	OCQ_20010	hypothetical protein	<i>←</i>	OCQ_20050	K14335 alpha-1,6- mannosyltransferase	<i>←</i>	
	OCQ_20000	hypothetical protein	←	OCQ_20060	hydroxylase	→	
		Myco	bacterium in	tracellulare MOTT-3	36Y		
cyp125;cytochrome p450	W7S_09920	N/A	N/A	N/A	N/A	N/A	
	W7S_09915	TetR family transcriptional regulator	\rightarrow	W7S_09925	K01011 thiosulfate/3- mercaptopyruvate sulfurtransferase	\rightarrow	
	W7S_09910	hypothetical protein	←	W7S_09930	K14335 alpha-1,6- mannosyltransferase	<i>←</i>	
	W7S_09905	hypothetical protein	<i>←</i>	W7S_09935	hydroxylase	→	
		Мусо	bacterium Ind	licus pranii MTCC 9	9506	I	
cyp125;cytochrome p450	MIP_02985	N/A	N/A	N/A	N/A	N/A	
CYP124	MIP_02984	Transcriptional regulator, TetR family	\rightarrow	MIP_02988	K01011 thiosulfate/3- mercaptopyruvate sulfurtransferase	~	

	MIP_02983	Hypothetical protein	\leftarrow	MIP_02990	K14335 alpha-1,6-	←	
					mannosyltransferase		
	MIP_02982	Hypothetical protein	←	MIP_02991	Acihydroxylase	\leftarrow	
			Mycobacterium	smegmatis MC2 155	5		
cyp125;cytochrome p450	MSMEG_3524	N/A	N/A	N/A	N/A	N/A	
	MSMEG_3522	dopamine receptor D4	<i>←</i>	MSMEG_3523	hypothetical protein	<i>←</i>	HSHEG_3521 HSHEG_ G_3519 HSHEG_3526
	MSMEG_3521	K00122 formate dehydrogenase	\rightarrow	MSMEG_3525	XRE family transcriptional regulator	\rightarrow	3518 HSHEG_3525 HSHEG_3520 HSHEG_3524 HSHEG_35;
	MSMEG_3520	TetR family transcriptional regulator	→ 	MSMEG_3526	hypothetical protein	\rightarrow	MSHEG_3522 HSHE 17 HSHEG_3523 H
			Mycobact	erium sp. JLS			
cyp125;cytochrome p450	Mjls_2753	N/A	N/A	N/A	N/A	N/A	Hjls_2750 Hjls_2756 .s_2748 <u>Hjls_</u> 2755
	Mjls_2752	hypothetical protein	←	Mjls_2754	conserved hypothetical protein	←	'47Hjls_2751 Hjls_2753 Hjls_27!
	Mjls_2751	K00122 formate dehydrogenase	\rightarrow	Mjls_2755	transcriptional regulator, XRE family	\rightarrow	
	Mjls_2750	transcriptional regulator, TetR family	\rightarrow	Mjls_2756	conserved hypothetical protein	\rightarrow	Hils_2754 Hils_2754
			Mycobacte	erium sp. KMS			
cyp125;cytochrome p450	Mkms_2767	N/A	N/A	N/A	N/A	N/A	Hkns_2764 Hkns_2770 Is_2762 Hkns_2769
	Mkms_2766	hypothetical protein	←	Mkms_278	hypothetical protein	\leftarrow	61Hkns_2765 Hkns_2767 Hkns_277
	Mkms_2765	K00122 formate dehydrogenase	\rightarrow	Mkms_2769	XRE family transcriptional regulator	\rightarrow	(ns_2763 Mkns_2766 Mkns
	Mkms_2774	TetR family transcriptional regulator	\rightarrow	Mkms_2770	hypothetical protein	\rightarrow	Mkns_2768 1
			Mycobact	erium sp. MCS			
cyp125; cytochrome p450	Mmcs_2723	N/A	N/A	N/A	N/A	N/A	Mncs_2720 Mncs_2726
	Mmcs 2722	conserved hypothetical protein	←	Mmcs 2724	hypothetical protein	\leftarrow	:s_2/18 Hncs_2/25
	Mmcs_2721	K00122 formate dehydrogenase	\rightarrow	Mmcs_2725	transcriptional regulator, XRE family	\rightarrow	717Hncs_2721 Hncs_2723 Hncs_272
	Mmcs_2720	transcriptional regulator, TetR family	\rightarrow	Mmcs_2726	conserved hypothetical protein	\rightarrow	ncs_2719 Hncs_2722 Hnc Hncs_2724
			Mycobacteriun	n gilvum PYR-GCK			
cyp125; cytochrome p450	Mflv_3290	N/A	N/A	N/A	N/A	N/A	
	Mflv 3289	hypothetical protein	\leftarrow	Mflv 3291	conserved hypothetical protein	\leftarrow	

	Mflv_3288	K00122 formate dehydrogenase	\rightarrow	Mflv_3292	transcriptional regulator, XRE	\rightarrow	
	Mfly 3287	transcriptional regulator. Tet R family		Mfly 3293	conserved hypothetical protein		-
	WIIIV 5267	transcriptional regulator, retre family	Mycobacteri	um gilvum Spyr1	conserved hypothetical protein	, ,	
cyp125;cytochrome p450	Mspyr1_26180	N/A	N/A	N/A	N/A	N/A	
	Mspyr1_26170	hypothetical protein	-	Mspyr1_26190	hypothetical protein	<i>←</i>	 Hspyr1_26160 Hspyr1_26140 Hspyr1_26210 26130 Hspur1_26180 Hspur1_26180
	Mspyr1_26160	anaerobic dehydrogenase, typically selenocysteine-containing	\rightarrow	Mspyr1_26200	transcriptional regulator, XRE family	\rightarrow	Hspyr1_26150 Hspyr1_26200 Hsp Mspyr1_26170 Hspyr1_26200 Hsp Mspyr1_26170 Hspyr1_26200 Hsp Mspyr1_26170 Hspyr1_26170 Hsp i120 Hspyr1_26190 Hsp
	Mspyr1 26150	transcriptional regulator, TetR family	\rightarrow	Mspyr1 26210	hypothetical protein	\rightarrow	
			Mycobacterium	1 vanbaalenii PYR-1			
cyp125; cytochrome p450	Mvan_3012	N/A	N/A	N/A	N/A	N/A	
	Mvan 3011	conserved hypothetical protein	←	Mvan 3013	conserved hypothetical protein	←	Hvan_3014
	Mvan_3010	K00122 formate dehydrogenase	\rightarrow	Mvan_3014	transcriptional regulator, XRE family	\rightarrow	Hvan_3010 Hvan_3010 Hvan_3010 Hvan_3009 Image: State
	Mvan_3009	transcriptional regulator, TetR family	\rightarrow	Mvan_3015	pseudogene	<i>←</i>	3; nvan_3011 nvan_3013 Hvan_3013 Hva
			Mycobacteriun	n gilvum PYR-GCK			
cyp125;cytochrome p450	Mflv_1607	N/A	N/A	N/A	N/A	N/A	Hflv_1604
	Mflv_1606	transcriptional regulator, TetR family	<i>←</i>	Mflv_1608	K01945 phosphoribosylamine- -glycine ligase	\rightarrow	_1602 i01 `lv_1603 Hflv_1608 1600
	Mflv_1605	hypothetical protein	-	Mflv_1609	putative esterase	<i>←</i>	Hfly 1605 Hfly 1609
	Mflv_1604	hypothetical protein	\rightarrow	Mflv_1610	putative transcriptional regulator, TetR family	\rightarrow	Hf <u>lv_1606</u> Hflv_1607
	1		Mycobacteri	um gilvum Spyr1		1	1
cyp125;cytochrome p450	Mspyr1_09930	N/A	N/A	N/A	N/A	N/A	

	Mspyr1_09920 Mspyr1_09910 Mspyr1_09900	transcriptional regulator, TetR family hypothetical protein	← ← →	Mspyr1_09940 Mspyr1_09950 Mspyr1_09960	K01945 phosphoribosylamine- -glycine ligase Putative esterase	\rightarrow	
	http://_o//oo	appointenen protein		http://_opport	protein		
			Mycobacte	rium sp. KMS		1	
cyp125; cytochrome p450	Mkms_4660	N/A	N/A	N/A	N/A	N/A	Hkns_4660
F = 2	Mkms_4659	K01945 phosphoribosylamineglycine ligase	←	Mkms_4661	TetR family transcriptional regulator	\rightarrow	355 Hkns_4658 Hkns_4
	Mkms 4658	putative esterase	\rightarrow	Mkms 4662	hypothetical protein	←	
	Mkms_4657	TetR family transcriptional regulator	← 	Mkms_4663	carboxymuconolactone decarboxylase	←	_4656 Hkns_4659 Hkns_4657 Hkns_4661] K_K Hkns_4662 Hk Kns_4663
			Mycobacte	rium sp. MCS	-	•	
cyp125;cytochrome p450	Mmcs_4572	N/A	N/A	N/A	N/A	N/A	Mncs_4572
	Mmcs_4571	K01945 phosphoribosylamineglycine ligase	←	Mmcs_4573	transcriptional regulator, TetR family	\rightarrow	67 Hncs_4570 Hncs_4573
	Mmcs_4570	putative esterase	\rightarrow	Mmcs_4574	conserved hypothetical protein	<i>←</i>	
	Mmcs_4569	putative transcriptional regulator, TetR family	<i>←</i>	Mmcs_4575	K01607 4- carboxymuconolactone decarboxylase	<i>←</i>	.4568 Mncs_4571 Mncs_4574 Mn Mncs_4569 Mncs_4575
			Mycobacterium	vanbaalenii PYR-1			
cyp125;cytochrome p450	Mvan_5151	N/A	N/A	N/A	N/A	N/A	Muan 5151
	Mvan_5150	K01945 phosphoribosylamineglycine ligase	<i>←</i>	Mvan_5152	transcriptional regulator, TetR family	\rightarrow	Hvan_5149 Hvan_5152 5520000 5147 Hvan_5150 Hvan_5153
	Mvan_5149	putative esterase	\rightarrow	Mvan_5153	conserved hypothetical protein	~ _	Hvan_5148 Hvan_5154

	Mvan_5148	putative transcriptional regulator, TetR family	~	Mvan_5154	K01607 4- carboxymuconolactone decarboxylase	→	
		M	lycobacterium	smegmatis MC2 155	5		
cyp125;cytochrome p450	MSMEG_5853	N/A	N/A	N/A	N/A	N/A	
	MSMEG_5852	K01945 phosphoribosylamineglycine ligase	←	MSMEG_5854	TetR family transcriptional regulator	<i>←</i>	HSHEG_5853 HSHEG_5851 HSHEG_5854
	MSMEG_5851	esterase	<i>←</i>	MSMEG_5855	hypothetical protein	\rightarrow	G_5848 HSHEG_5852 HSHEG_585
	MSMEG_5850	esterase	←	MSMEG_5856	K01607 4- carboxymuconolactone decarboxylase	\rightarrow	- MSMEG_5850 MSMEG_5855 MSME MSMEG_5856
			Mycobact	erium sp. JLS			
cyp125;cytochrome p450	Mjls_4955	N/A	N/A	N/A	N/A	N/A	Hjls_4955
	Mjls_4954	phosphoribosylamineglycine ligase	<i>←</i>	Mjls_4956	transcriptional regulator, TetR family	\rightarrow	150 Hjls_4953 Hjls_4956
	Mjls_4953	putative esterase	\rightarrow	Mjls_4957	conserved hypothetical protein	←	
	Mjls_4952	putative transcriptional regulator, TetR family	←	Mjls_4958	K01607 4- carboxymuconolactone decarboxylase	<i>←</i>	_4951 Hjls_4954 Hjls_4957 Hjl Hjls_4952 Hjls_4958
			Mycobacterium	gilvum PYR-GCK			
cyp125;cytochrome p450	Mflv_0425	N/A	N/A	N/A	N/A	N/A	Hflv_0422 Hflv_0427
	Mflv 0424	conserved hypothetical protein	←	Mflv 0426	glycosyl transferase, group 1	←	1_0421 Ht IV_0425 Ht IV_0428
	Mflv_0423	conserved hypothetical protein	\leftarrow	Mflv_0427	Methyltransferase type 11	\rightarrow	
	Mflv_0422	conserved hypothetical protein	\rightarrow	Mflv_0428	K00130 betaine-aldehyde dehydrogenase	\rightarrow	B Hflv_0423 Hflv B Hflv_0423 Hflv Hflv_0424 Hfl Hflv_0426
			Mycobacteri	um gilvum Spyr1			
cyp125;cytochrome p450	Mspyr1_03290	N/A	N/A	N/A	N/A	N/A	Hspyr1_03320 Hspyr1_03310
	Mspyr1_03280	glycosyltransferase	\rightarrow	Mspyr1_03300	hypothetical protein	<i>~</i>	spyr1_03200 nspyr1_03300 _03240 Mspyr1_03280 M _
	Mspyr1_03270	methylase involved in ubiquinone/menaquinone biosynthesis	-	Mspyr1_03310	uncharacterized conserved protein	\rightarrow	Mspyr1_03260 Mspyr1_0333(
	Mspyr1_03260	NAD-dependent aldehyde dehydrogenase	→	Mspyr1_03320	hypothetical protein	\rightarrow	Hspyr1 <u>03270</u> Hspyr1 Hspyr1_03290
		1	Mycobacteriu	m rhodesiae NBB3	-		
cyp125;cytochrome	MycrhN 4756	N/A	N/A	N/A	N/A	N/A	

4.50							
p450							
	MycrhN_4755	putative acyl-CoA transferase	\rightarrow	MycrhN_4757	Rieske (2Fe-2S) domain- containing protein	\rightarrow	
	MycrhN_4754	transcriptional regulator	←	MycrhN_4758	acyl-CoA synthetase (AMP- forming)/AMP-acid ligase II; K02182	\rightarrow	
	MycrhN_4753	short-chain alcohol dehydrogenase	←	MycrhN_4759	hypothetical protein	\rightarrow	
			Mycobacteriu	n smegmatis JS623			
avn125: autochromo	Mussm 02170	N/A	N/A	NI/A	NI/A	N/A	
p450	Mycsin_03179		IN/A	IN/A	N/A	IN/A	
	Mycsm_03178	putative acyl-CoA transferase	\rightarrow	Mycsm_03180	Rieske (2Fe-2S) domain- containing protein	\rightarrow	Hycsn_03182 Hycsn_03181 Hycsn_03178 Hycsn_03180 Hycsn_031
	Mycsm_03177	transcriptional regulator		Mycsm_03181	acyl-CoA synthetase (AMP- forming)/AMP-acid ligase II; K02182	\rightarrow	
	Mycsm_03176	short-chain alcohol dehydrogenase	<i>←</i>	Mycsm_03182	hypothetical protein	\rightarrow	Muc
	Marada N. 2422		Mycobacteriu	m rhodesiae NBB5	NT/A	NT/A	
p450	Mycrnin_2423	N/A	IN/A	IN/A	N/A	IN/A	
	MycrhN_2422	transcriptional regulator	<i>←</i>	MycrhN_2424	N-dimethylarginine dimethylaminohydrolase; K01482	\rightarrow	HycrhN_2421HycrhN_2425 Hyc 418 HycrhN_2424 HycrhN
	MycrhN_2421	transcriptional regulator	\rightarrow	MycrhN_2425	K01945 phosphoribosylamine- -glycine ligase	\rightarrow	hN_2419 HycrhN_2426 HycrhN_2420 HycrhN_2422
	MycrhN_2420	hypothetical protein	<i>←</i>	MycrhN_2426	enterochelin esterase-like enzyme	←	- Hycrnn_2423
			Mycobacteriu	n smegmatis JS623			
cyp125;cytochrome p450	Mycsm_05807	N/A	N/A	N/Ā	N/A	N/A	Mycsn_05810 Mycsn_05809
	Mycsm_05806	acyl-CoA dehydrogenase	<i>←</i>	Mycsm_05808	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	Hycsn_05808
	Mycsm_05805	acyl-CoA dehydrogenase	\leftarrow	Mycsm_05809	hypothetical protein	\rightarrow	Mucsn_05805 Mucsn
	Mycsm_05804	putative nucleic-acid-binding protein containing a Zn-ribbon	→	Mycsm_05810	deazaflavin-dependent nitroreductase family protein	\rightarrow	Hycsn_05806 Hyc Hycsn_05807
			Mycobacteriu	n chubuense NBB4			
cyp125; cytochrome p450	Mycch_4638	N/A	N/A	N/A	N/A	N/A	
	Mycch_4637	acyl-CoA dehydrogenase	\leftarrow	Mycch_4639	K00626 acetyl-CoA C-	\rightarrow	
---------------------------	-------------	---	--------------	---------------------	--	---------------	---
	Mycch_4636	acyl-CoA dehydrogenase	\leftarrow	Mycch_4640	hypothetical protein	\rightarrow	-
	Mycch_4635	putative nucleic-acid-binding protein containing a Zn-ribbon	<i>←</i>	Mycch_4641	deazaflavin-dependent nitroreductase family protein	\rightarrow	_
			Myaabaat	torium on MCS			
cvp125:cvtochrome	Mmcs 4677	N/A	N/A	N/A	N/A	N/A	
p450	10//	1071	14/11	10/11	1.011	1.1/11	Mncs_4680
	Mmcs_4676	acyl-CoA dehydrogenase-like protein	\leftarrow	Mmcs_4679	K00626 acetyl-CoA C- acetyltransferase	←	Mncs_4678 Mn
	Mmcs_4675	acyl-CoA dehydrogenase-like protein	\leftarrow	Mmcs_4680	conserved hypothetical protein	\rightarrow	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
	Mmcs_4674	protein of unknown function DUF35	\leftarrow	Mmcs_4681	hypothetical protein	<i>←</i>	'1 Mncs_4674 Mncs_ Hncs_4675
			Mycobact	terium sp. KMS			
cyp125;cytochrome p450	Mkms_4763	N/A	N/A	N/A	N/A	N/A	Hkns_4766
	Mkms_4762	acyl-CoA dehydrogenase domain-containing protein	\leftarrow	Mkms_4764	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	
	Mkms_4761	acyl-CoA dehydrogenase domain-containing protein	\leftarrow	Mkms_4765	hypothetical protein	←	4758 Hkns_4762 Hkns_4765
	Mkms_4760	hypothetical protein	\leftarrow	Mkms_4766	hypothetical protein	\rightarrow	- kns_4/59 [Hkns_4/63] Hkns_4/6 Hkns_4760 Hkns_ Hkns_4761
		M	ycobacteriur	n vanbaalenii PYR-:	1		
			, 				
cyp125;cytochrome p450	Mvan_5258	N/A	N/A	N/A	N/A	N/A	Hvan 5261
	Mvan_5257	acyl-CoA dehydrogenase domain protein	\leftarrow	Mvan_5259	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	
	Mvan_5256	acyl-CoA dehydrogenase domain protein	<i>~</i>	Mvan_5260	conserved hypothetical protein	\rightarrow	5253 Hvan_5257 I Ivan_5254 Hvan_5258
	Mvan_5255	protein of unknown function DUF35	←	Mvan_5261	hypothetical protein	\rightarrow	— Hvan_5255 Hvan_5256
	1		Ivcobacterii	um rhodesiae NRR3			
cyp125;cytochrome p450	MycrhN_2286	N/A	N/A	N/A	N/A	N/A	

	MycrhN 2285	K00626 acetyl-CoA C-acetyltransferase	\rightarrow	MycrhN 2287	acyl-CoA dehydrogenase	\rightarrow	
	MycrhN_2284	hypothetical protein	\rightarrow	MycrhN_2288	acyl-CoA dehydrogenase	\rightarrow	
	MycrhN_2283	deazaflavin-dependent nitroreductase family	\rightarrow	MycrhN_2289	putative nucleic-acid-binding	\rightarrow	
		protein			protein containing a Zn-ribbon		
		Myaa	haatanium intr	a a allulara MOTT 3	ev.		
avn125-autochromo	W78 22405	N/A				NI/A	
r/50	W/S_22403	11/24	IN/A	IN/A	IN/A	18/74	22380 H7S_22405 H7S_22420
p+30	W78 22400	hypothetical protein	_	W78 22410	hypothetical protein	_	75 W7S_22400 W7S_22410 W7S_22
	W7S 22400	K00965 UDPalucose_hexose_1_phosphate	, 	W7S 22410	acetoin cleaving system	, 	
	W/15_22575	uridylyltransferase	`	W/5_22415	dihydrolipoyllysine-residue	Ì	
		undyryntansierase			acetyltransferase		: 22385 U7S 22415
	W7S 22380	K00849 galactokinase	←	W7S 22420	hypothetical protein	\rightarrow	HI3_22413
		Rooo is galactorinase		1175_22120	nypolitetieta proteini	-	H/5_22390
							N7S_22395
		Myce	obacterium int	racellulare MOTT-	02		
cyp125;cytochrome	OCO_44490	N/A	N/A	N/A	N/A	N/A	
p450							.44430
CUELOA	0.00 44400			0.00 44500			- ,
CYP124	000_44480	hypothetical protein	\rightarrow	0CO_44500	hypothetical protein	\rightarrow	468001
							000 44459
							UCU_44460
	OCO_44470	K00965 UDPglucosehexose-1-phosphate	←	OCO_44510	dihydrolipoyllysine-residue	←	0C0_44470
	_	uridylyltransferase		_	acetyltransferase component of		U
					acetoincleaving system		0C0_44490 0C0_44520
							000 44489 000 44599 000 44
							0C0_44470 0C0_44510
	OCO 44460	K00849 galactokinase	←	OCO 44520	hypothetical protein	\rightarrow	
	_			_			
		Myco	obacterium Int	racellulare MOTT-	.64		
cyp125; cytochrome	OCQ_45630	N/A	N/A	N/A	N/A	N/A	
p450	0.00 45(00			0.00 45(40			
CYP124	OCQ_45620	hypothetical protein	\rightarrow	UCQ_45640	hypothetical protein	\rightarrow	

	OCQ_45610	K00965 UDPglucosehexose-1-phosphate uridylyltransferase	← 	OCQ_45650	dihydrolipoyllysine-residue acetyltransferase component of acetoincleaving system		0C0_44490 0C0_44520 0C0_44480 0C0_44500 0C0_44 0C0_44480 0C0_44500 0C0_44 0C0_44470 0C0_44510
	OCQ_45600	K00849 galactokinase	←	OCQ_45660	hypothetical protein	\rightarrow	_
		Мусо	bacterium Ind	licus pranii MTCC 9	9506		
cyp125; cytochrome p450	MIP_06760	N/A	N/A	N/A	N/A	N/A	06750 HIP_06760 HIP_06763
	MIP_06758	pseudogene	\rightarrow	MIP_06761	Hypothetical protein	\rightarrow	748 MIP_06758 MIP_06761 MIP_06
	MIP_06756	K00965 UDPglucosehexose-1-phosphate uridylyltransferase	<i>←</i>	MIP_06762	Dihydrolipoyllysine-residue acetyltransferase component of acetoin cleaving system	<i>←</i>	'' '06751 MIP_06762
	MIP_06753	Hypothetical protein	←	MIP_06763	Hypothetical protein	\rightarrow	MIP_06756
		Мусо	bacterium int	racellulare ATCC 13	3950		
cyp125;cytochrome p450	OCU_44240	N/A	N/A	N/A	N/A	N/A	14190 0CU_44240 0CU_44270
CYP124	OCU_44230	hypothetical protein:	\rightarrow	OCU_44250	hypothetical protein:	\rightarrow	
	OCU_44220	galactose-1-phosphate uridylyltransferase : K00965 UDPglucosehexose-1-phosphate uridylyltransferase	<i>←</i>	OCU_44260	dihydrolipoyllysine-residue acetyltransferase component of acetoincleaving system	←	_44288 0CU_44268
	OCU_44210	K00849 galactokinase	←	OCU_44270	hypothetical protein:	\rightarrow	000_44220
	1	Mycobact	erium Avium	subsp. paratubercul	osis K10		
cyp125;cytochrome p450	MAP_0522	N/A	N/A	N/A	N/A	N/A	MAP_0524 _0518 MAP_0523
	MAP_0521c	K00626 acetyl-CoA C-acetyltransferase	<i>←</i>	MAP_0523	FadE28; Geraniol degradation	\rightarrow	17 HAP_0522 HAP_0525
	MAP 0520c	hypothetical protein	←	MAP 0524	FadE29; Geraniol degradation	\rightarrow	
	MAP_0519c	hypothetical protein	←	MAP_0525	K07068 uncharacterized protein	\rightarrow	MAP_0519c MAP_0520c MAP_0521c
		Mycobacte	rium avium su	ubsp. paratuberculo	sis MAP4		
cyp125;cytochrome p450	MAP4_3345	N/A	N/A	N/A	N/A	N/A	
	MAP4_3344	putative acyl-CoA dehydrogenase FadE28	<i>←</i>	MAP4_3346	acetyl-CoA acetyltransferase FadA5	\rightarrow	

	MAP4_3343	acyl-CoA dehydrogenase FadE29	~ 	MAP4_3347	hypothetical protein:	\rightarrow	HAP4_3348 HAP4_3347 HAP4_3346 Hi
	MAT4_3342	uncharacterized protein		MAF4_3346	DUF385 Pyridox_oxidase PGC7_Stella		HAP4_3345
			Mycobacter	ium Avium 104		I	
cyp125; cytochrome p450	MAV_0616	N/A	N/A	N/A	N/A	N/A	_0612 MAV_0617
- j p	MAV 0615	K00626 acetyl-CoA C-acetyltransferase	←	MAV 0617	acyl-CoA dehydrogenase	\rightarrow)II
	MAV_0614	hypothetical protein	←	MAV 0618	acyl-CoA dehydrogenase	\rightarrow	
	MAV_0613	AclJ protein	← 	MAV_0619	hypothetical protein; K07068 uncharacterized protein	\rightarrow	
		Myce	obacterium Ind	icus pranii MTCC 9	9506		
cyp125; cytochrome p450	MIP_00975	N/A	N/A	N/A	N/A	N/A	
	MIP_00974	K00626 acetyl-CoA C-acetyltransferase	←	MIP_00977	Crotonobetainyl-CoA dehydrogenase	\rightarrow	MIP_00978 F 30969 <u>MIP_00</u> 977 MIP_00! 67 MIP_00975 MIP_00980
	MIP_00973	hypothetical protein	→ 	MIP_00978	Isovaleryl-CoA dehydrogenase	\rightarrow	КК ГР_00970 MIP_00972 мтр. 66973
	MIP_00972	AclJ protein	~	MIP_00980	K07068 uncharacterized protein	\rightarrow	HIP_00974
		Мусовас	terium Avium s	ubsp. paratubercul	osis K10		
cyp125; cytochrome p450	MAP_2344	N/A	N/A	N/A	N/A	N/A	18 HAP_2344 HAP_2347
	MAP_2343c	hypothetical protein Pfam: <u>Rieske Ring hydroxyl_A</u>	→ 	MAP_2345c	hypothetical protein: Pfam: <u>Fer4_13</u> , <u>Fer4_15,Fer4_19</u>	→ 	<u>ККК К (К</u> <u>RF_2339c</u> MAP_2343cHAP_2346c MAP_2340c MAP_2345c MAP_2341c MAP_2342c

	MAP_2342c	hypothetical protein: Pfam: AMP-binding AMP-binding C	<i>←</i>	MAP_2346c	hypothetical protein: Pfam: CoA transf 3	\leftarrow	
	MAP_2341c	hypothetical protein: Pfam: SnoaL_4	<i>←</i>	MAP_2347	hypothetical protein: Pfam: FCD GntR Rrf2	\rightarrow	
	4		Mycobacter	rium Avium 104		1	•
cyp125;cytochrome p450	MAV_1637	N/A	N/A	N/A	N/A	N/A	MAV_1638 MAV_1640
	MAV_1636	K05337 ferredoxin	\rightarrow	MAV_1638	Rieske (2Fe-2S) domain- containing protein	←	
	MAV 1635	caib/baif family protein	\rightarrow	MAV 1639	AMP-binding enzyme	←	
	MAV_1634	GntR family transcriptional regulator	<i>←</i>	MAV_1640	hypothetical protein	←	V_1633 MAV_1637 MAV. Mav_1634
		Mycobact	terium avium su	bsp. paratuberculo	osis MAP4		
cyp125; cytochrome p450	MAP4_1479	N/A	N/A	N/A	N/A	N/A	
	MAP4_1478	K05337 ferredoxin	\rightarrow	MAP4_1480	oxidoreductase, Rieske 2Fe-2S domain protein	\rightarrow	
	MAP4_1477	putative CoA-transferase family protein	\rightarrow	MAP4_1481	putative AMP-binding enzyme; K02182 crotonobetaine/carnitine-CoA ligase	\rightarrow	nHr4_1477 nHr4_1400 nHr4_1402 1474 HAP4_1478HAP4_1481
	MAP4_1476	Transcriptional regulator, GntR family	←	MAP4_1482	hypothetical protein:	\rightarrow	MAP4_1476
			Mycobacte	rium Marinum			
cyp125; cytochrome p450	MMAR_5032	N/A	N/A	N/A	N/A	N/A	
	MMAR_5031	acyl-CoA dehydrogenase FadE28	~	MMAR_5033	acetyl-CoA acetyltransferase FadA5	\rightarrow	МНАR_5035 МНАR_5034 ННАR_5033 КК К К К К К К К К К К К К К К К К К
	MMAR_5030	acyl-CoA dehydrogenase FadE29	~	MMAR_5034	conserved hypothetical protein	\rightarrow	:_5027 HHAR_ HMAR_5028 HHAR_5032 HHAR_5029 HH HHAR_5029 HH HHAR_5031

	MMAR_5029	conserved hypothetical protein	~	MMAR_5035	conserved hypothetical protein	\rightarrow	
			Mycobacteri	um ulcerans Agy99			
cyp125; cytochrome p450	MUL_4106	N/A	N/A	N/A	N/A	N/A	
Cytoemonic p.c.s	MUL 4105	acvl-CoA dehvdrogenase FadE28	<i>←</i>	MUL 4107	acetyl-CoA acetyltransferase	\rightarrow	
	MUL_4104	acyl-CoA dehydrogenase FadE29	←	MUL_4108	pseudogene	\rightarrow	HUL_4105 HUL_4108 HUL_4107 KKK BHUL_4103 HUL_4106 HUL_4101 HUL_411
	MUL_4103	hypothetical protein	~	MUL_4109	hypothetical protein	\rightarrow	10L_4182 HUL_4185 HUL. HUL_4184
			Mycobacter	rium sp. JDM601		<u> </u>	
cyp125;cytochrome p450	JDM601_3692	N/A	N/A	N/A	N/A	N/A	3900000 1_3687
	IDM601 3691	fadE28: acvl-CoA dehvdrogenase FadE28	<u>←</u>	IDM601 3693	conserved hypothetical protein	<u>←</u>	JN601_3688
	JDM601_3690	fadE29; acyl-CoA dehydrogenase FadE29	←	JDM601_3694	fadA5; acetyl-CoA acetyltransferase	\rightarrow	
	JDM601_3689	conserved hypothetical protein	← 	JDM601_3695	conserved hypothetical protein	→ 	JUH601_3693
cyp125; cytochrome p450	JDM601_3693	N/A	N/A	N/A	N/A	N/A	
	JDM601_3692	cyp125A7; cytochrome P450 125A7 Cyp125A7; K15981 cholest-4-en-3-one 26- monooxygenase	~	JDM601_3694	fadA5; acetyl-CoA acetyltransferase	→	
	JDM601 3691	fadE28; acyl-CoA dehydrogenase FadE28	←	JDM601 3695	conserved hypothetical protein	\rightarrow	

	JDM601 3690	fadE29; acyl-CoA dehydrogenase FadE29	←	JDM601 3696	conserved hypothetical protein	\rightarrow	
		N	Aycobacterium	smegmatis MC2 155	5		
cyp125;cytochrome p450	MSMEG_5995	N/A	N/A	N/A	N/A	N/A	MSMEC 5008
	MSMEG_5994	acyl-CoA dehydrogenase; K00257	~	MSMEG_5996	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	HSHEG_5997 HSHEG_5996 HST
	MSMEG_5993	acyl-CoA dehydrogenase; K00257	<i>←</i>	MSMEG_5997	hypothetical protein	\rightarrow	MSHEG_5993 MSHEG_599 MSHEG_5994 MSHEG
	MSMEG_5992	hypothetical protein	←	MSMEG_5998	hypothetical protein	\rightarrow	HSHEG_5995
		·	Mycobact	erium sp. JLS	·	•	÷
cyp125; cytochrome p450	Mjls_5062	N/A	N/A	N/A	N/A	N/A	K_K_K_K_ ^{53:}
-	Mjls_5061	acyl-CoA dehydrogenase domain protein	-	Mjls_5063	K00626 acetyl-CoA C- acetyltransferase	\rightarrow	.5057 Hjls_5061 ∣ils 5058 Hils 5
	Mjls 5060	acyl-CoA dehydrogenase domain protein	\leftarrow	Mjls 5064	conserved hypothetical protein	←	:Wile 5050
	Mjls_5059	protein of unknown function DUF35	← 	Mjls_5065	conserved hypothetical protein		Hjls_5060 Hjls_5063 Hjls_5063 Hjls_5064 Hjls_5064 Hjls_5064
			Mycobacteriur	n liflandii 128FXT			
cyp125; cytochrome p450	MULP_05284	N/A	N/A	N/A	N/A	N/A	MIII P 85287
	MULP_05283	acyl-CoA dehydrogenase FadE28	←	MULP_05285	fadA5; acetyl-CoA acetyltransferase FadA5	\rightarrow	HULP_05286 HULP_05285
	MULP_05282	acyl-CoA dehydrogenase FadE29	←	MULP_05286	hypothetical protein	\rightarrow	MULP_05281 MULP_05284
	MULP_05281	putative nucleic-acid-binding protein	<i>←</i>	MULP_05287	hypothetical protein	\rightarrow	HULP_05283 HULP_1
			Mycobacteriu	n rhodesiae NBB3			
cyp125;cytochrome p450	MycrhN_4947	N/A	N/A	N/A	N/A	N/A	
	MycrhN_4946	hypothetical protein	\rightarrow	MycrhN_4948	hypothetical protein	\rightarrow	

	MycrhN_4945	putative transcriptional regulator	<i>←</i>	MycrhN_4949	Protein of unknown function (DUF2867)	~	
	MycrhN_4944	conserved lipoprotein/antigen		MycrhN_4950	Protein of unknown function (DUF2867)		
			Mycobacteriur	n smagmatis IS623			
cyp125; cytochrome	Mycsm_03408	N/A	N/A	N/A	N/A	N/A	Mucen 03407 Mucen 034
p450							en A34A3 Hucen A34A9
	Mycsm_03407	hypothetical protein	\rightarrow	Mycsm_03409	hypothetical protein	\rightarrow	
	Mycsm_03406	Protein of unknown function (DUF/32)	<u> </u>	Mycsm_03410	(DUF2867)		
	Mycsm_03405	putative transcriptional regulator	←	Mycsm_03411	Protein of unknown function (DUF2867)	←	5461 ngcsn_03406 Ngcsn_03411 1_03402 Ngcsn_03410 ycsn_03404 Ngcsn_03405
	1	My	cobacterium a	bscessus ATCC 199	77		
cyp125; cytochrome p450	MAB_0101	N/A	N/A	N/A	N/A	N/A	3 MAB_0099 MAB_0102
	MAB_0100	Putative short chain	\rightarrow	MAB_0102	Putative methyltransferase	\rightarrow	0007 WOR 0100 WOR 0102
	MAB_0099	Probable monooxygenase	\rightarrow	MAB_0103	Probable monooxygenase EthA; K10215 monooxygenase	\rightarrow	MAB_0098 MAB_0101 MAB_0104
	MAB_0098	Putative TetR-family transcriptional regulator	\rightarrow	MAB_0104	Probable enoyl-CoA hydratase/isomerase	\rightarrow	
	•	Mycob	acterium absc	essus subsp. bolletii	50594	•	
cyp125;cytochrome p450	MASS_0104	N/A	N/A	N/A	N/A	N/A	
<u> </u>	MASS_0103	putative short chain dehydrogenase/reductase	\rightarrow	MASS_0105	putative methyltransferase	\rightarrow	3 HASS_0102 <u>HASS_</u> 0105 MASS_0101 <mark>HASS_0104</mark>
	MASS_0102	Monooxygenase	\rightarrow	MASS_0106	monooxygenase EthA; K10215 monooxygenase	\rightarrow	S_0100 HRSS_0103 HRSS_0106
	MASS_0101	TetR family transcriptional regulator	\rightarrow	MASS_0107	xylitol oxidase		HRSS_0107
	L	1	Mycobacteri	um abscessus103	1	1	1
cyp125;cytochrome p450	LA61_00515	N/A	N/A	N/A	N/A	N/A	

	LA61_00510	NAD-dependent oxidoreductase	\rightarrow	LA61_00520	methyltransferase	\rightarrow	
	LA61_00505	monooxygenase	\rightarrow	LA61_00525	FAD-containing monooxygenase EthA; K10215 monooxygenase	→ 	
	LA61_00500	TetR family transcriptional regulator	\rightarrow	LA61_00530	crotonase	\rightarrow	
		Mycoba	cterium absces	sus subsp. bolletii M	IA 1948	1	
cyp125;cytochrome p450	LA62_00510	N/A	N/A	N/A	N/A	N/A	185 LA62_00520
	LA62 00505	NAD-dependent oxidoreductase	\rightarrow	LA62 00515	methyltransferase	\rightarrow	10 LH02_00300 LH02_00313
	LA62_00500	monooxygenase	\rightarrow	LA62_00520	FAD-containing monooxygenase EthA; K10215 monooxygenase	\rightarrow	2_00490 LA62_00505 LA62_00525
	LA62_00495	TetR family transcriptional regulator	\rightarrow	LA62_00525	crotonase	\rightarrow	
		Mycob	oacterium absce	essus subsp. bolletii :	50594		
cyp125;cytochrome p450	MASS_0581	N/A	N/A	N/A	N/A	N/A	MASS 8580 MASS 8
	MASS_0580	hypothetical protein	\rightarrow	MASS_0582	acetyl-CoA acetyltransferase	←	MASS_0578 MASS_0583
	MASS_0579	hypothetical protein	~	MASS_0583	putative cytochrome P450; K15981 cholest-4-en-3-one 26-monooxygenase	\rightarrow	630 0576 MRSS_0582
	MASS_0578	short chain dehydrogenase	\rightarrow	MASS_0584	acyl-CoA dehydrogenase FadE	\rightarrow	HHSS_9079
	I	My	cobacterium a	bscessus ATCC 1997	77	1	I
cyp125; cytochrome p450	MAB_0611	N/A	N/A	N/A	N/A	N/A	
	MAB_0610	hypothetical protein	\rightarrow	MAB_0612	Probable acetyl-CoA acetyltransferase	~	

	MAB_0609 MAB_0608	hypothetical protein Probable short-chain dehydrogenase/reductase	← →	MAB_0613 MAB_0614	Putative cytochrome P450; K15981 cholest-4-en-3-one 26-monooxygenase Probable acyl-CoA dehydrogenase FadE	→ →	-
			Mycobacteri	um abscessus103			
cyp125; cytochrome p450	LA61_03005 LA61_03000	N/A hypothetical protein	N/A →	N/A LA61_03010	N/A K00626 acetyl-CoA C-	N/A ←	LA61_03005 LA61_03000 LA61_03
	LA61_02995	nitroreductase	←	LA61_03015	acetyltransferase steroid C27-monooxygenase; K15981 cholest-4-en-3-one 26-monooxygenase		LA61_02990 LA61_03020 31_02985 LA61_03015 2000 LA61_03010 LA61_02995
	LA61_02990	short-chain dehydrogenase Mycobac	→ terium abscess	LA61_03020 sus subsp. bolletii MA	acyl-CoA dehydrogenase A 1948	\rightarrow	1
cyp125; cytochrome p450	LA62_03090 LA62_03085	N/A hypothetical protein	N/A →	N/A LA62_03095	N/A acetyl-CoA acetyltransferase; K00626 acetyl-CoA C- acetyltransferase	N/A ←	LA62_03090 LA62_03085 LA62_03: LA62_03075 LA62_03105 ;2_03070 LA62_03100 LA6;
	LA62_03080	nitroreductase	←	LA62_03100	steroid C27-monooxygenase; K15981 cholest-4-en-3-one 26-monooxygenase	→ 	33065 LA62_03095 LA62_03080

	LA62 03075	short-chain dehydrogenase	\rightarrow	LA62 03105	acyl-CoA dehydrogenase	\rightarrow	
		Мусов	acterium abso	cessus subsp. bolletii	50594		
cyp125; cytochrome p450	MASS_0583	N/A	N/A	N/A	N/A	N/A	HASS_0580 HASS_0585 3_0578 HASS_0583
	MASS_0582	acetyl-CoA acetyltransferase		MASS_0584	acyl-CoA dehydrogenase FadE	\rightarrow	577 MASS_0581 MASS_0584
	MASS_0581	putative cytochrome P450; K15981 cholest- 4-en-3-one 26-monooxygenase	\rightarrow	MASS_0585	putative acyl-CoA dehydrogenase	\rightarrow	; MASS_0582
	MASS_0580	hypothetical protein	→ 	MASS_0586	hypothetical protein	\rightarrow	
		My	cobacterium a	abscessus ATCC 199	977	1	•
cyp125; cytochrome p450	MAB_0613	N/A	N/A	N/A	N/A	N/A	MAB_0610 MAB_0615 MAB_ 0608 M0B_0614 M0B_00
	MAB_0612c	Probable acetyl-CoA acetyltransferase	-	MAB_0614	Probable acyl-CoA dehydrogenase FadE	\rightarrow	37 HAB_0611 HAB_0613 HAB_0616
	MAB_0611	Putative cytochrome P450; K15981 cholest- 4-en-3-one 26-monooxygenase	\rightarrow	MAB_0615	Putative acyl-CoA dehydrogenase	\rightarrow	MAB_0612c IAB_0609c
	MAB_0610	hypothetical protein	\rightarrow	MAB_0616	hypothetical protein	\rightarrow	-
	1	Мусовас	cterium absce	ssus subsp. bolletii N	/A 1948		•
cyp125; cytochrome p450	LA62_03100	N/A	N/A	N/A	N/A	N/A	
	LA62_03095	acetyl-CoA acetyltransferase; K00626 acetyl-CoA C-acetyltransferase	~	LA62_03105	acyl-CoA dehydrogenase	\rightarrow	
	LA62_03090	steroid C27-monooxygenase; K15981 cholest-4-en-3-one 26-monooxygenase	\rightarrow	LA62_03110	acyl-CoA dehydrogenase	\rightarrow	

	LA62 03085	hypothetical protein	\rightarrow	LA62 03115	DNA-binding protein	\rightarrow	
			Mycobacteri	um abscessus103	· ~ ~ ~	•	·
cyp125; cytochrome p450	LA61_03015	N/A	N/A	N/A	N/A	N/A	LA61_03005
	LA61_03010	K00626 acetyl-CoA C-acetyltransferase	<i>←</i>	LA61_03020	acyl-CoA dehydrogenase	\rightarrow	LA61_03000 LA61_03025 02990 LA61_03020
	LA61_03005	steroid C27-monooxygenase; K15981 cholest-4-en-3-one 26-monooxygenase	→	LA61_03025	acyl-CoA dehydrogenase	→ 	985 LA61_03015 600000
	LA61_03000	hypothetical protein	\rightarrow	LA61_03030	DNA-binding protein	\rightarrow	LA61_03010
		•	Mycobacteriun	n gilvum PYR-GCK	•		
cyp125; cytochrome p450	Mflv_1508	N/A	N/A	N/A	N/A	N/A	
	Mflv_1507	K00626 acetyl-CoA C-acetyltransferase	← 	Mflv_1509	acyl-CoA dehydrogenase domain protein	→ 	Hflv_1510 Hflv_1509 Hflv_1 Hflv_1508 Hflv_1511
	Mflv_1506	hypothetical protein	← 	Mflv_1510	acyl-CoA dehydrogenase domain protein	→	- Hflv_1505 34Hflv_1506 Hflv_1507
	Mflv_1505	hypothetical protein	→ 	Mflv_1511	protein of unknown function DUF35	→ 	
	<u> </u>		Mycobacteri	um gilvum Spyr1		1	
cyp125; cytochrome p450	Mspyr1_08920	N/A	N/A	N/A	N/A	N/A	
	Mspyr1_08910	K00626 acetyl-CoA C-acetyltransferase	←	Mspyr1_08930	acyl-CoA dehydrogenase; K00257	\rightarrow	
	Mspyr1_08900	site-specific recombinase XerC	←	Mspyr1_08940	acyl-CoA dehydrogenase; K00257	\rightarrow	

	Mspyr1_08890	hypothetical protein	←	Mspyr1_08950	predicted nucleic-acid-binding	\rightarrow	
		Myo	cobacterium c	anetii CIPT 1400100	59		
cyp125; cytochrome p450	MCAN_35561	N/A	N/A	N/A	N/A	N/A	MCAN_35581 MC
	MCAN_35551	putative 4-hydroxy-2-oxovalerate aldolase (HOA)	←	MCAN_35571	putative hydratase; K02554 2- keto-4-pentenoate hydratase	\rightarrow	- HCAN_35571
	MCAN_35541	PPE62; PPE family protein	<i>←</i>	MCAN_35581	putative dehydrogenase; K05898 3-oxosteroid 1- dehydrogenase	\rightarrow	I_35511 HCAN_35591 HCAN_35521 HCAN_35561
	MCAN_35531	PPE61; PPE family protein	←	MCAN_35591	putative dehydrogenase	←	MCAN_35531 HCAN_35 MCAN_35541 MCAN_35551
			Mycobacter	rium sp. JDM601			
cyp125; cytochrome p450	JDM601_3682	N/A	N/A	N/A	N/A	N/A	ID4004_2005
	JDM601_3681	K02554 2-keto-4-pentenoate hydratase	\rightarrow	JDM601_3683	K05898 3-oxosteroid 1- dehydrogenase	~	JUH691_3685 JDH691_3684 JDH691_3683 JDH691_:
	JDM601_3680	K04073 acetaldehyde dehydrogenase	\rightarrow	JDM601_3684	dehydratase (MaoC-like)	←	K K :676 J0H601_3680 JDH601. .3678 JDH JDH601_3679 JI
	JDM601_3679	K01666 4-hydroxy 2-oxovalerate aldolase	\rightarrow	JDM601_3685	PPE family protein	↓	JDH601_3681 JDH601_3682
		Мусо	bacterium Ind	licus pranii MTCC 9	9506		
cyp125; cytochrome p450	MIP_02350	N/A	N/A	N/A	N/A	N/A	MIP_02347 MIP_02353MIP_02356
CYP124	MIP_02348	K05337 ferredoxin	\rightarrow	MIP_02353	Chlorophyllide a oxygenase	\rightarrow	
	MIP_02347	Formyl-coenzyme A transferase	<i>←</i>	MIP_02355	K02182 crotonobetaine/carnitine-CoA ligase	\rightarrow	
	MIP_02346	Transcriptional regulator, GntR family protein	←	MIP_02356	Hypothetical protein	\rightarrow	P_02345 HIP_02350 HI HIP_02346
		1	Mycobacter	ium sp. JDM601	1	I	1
cyp125; cytochrome p450	JDM601_2803	N/A	N/A	N/A	N/A	N/A	JDN601_2802 JDN60
· *	JDM601_2802	araD; ribulose-5-phosphate 4-epimerase AraD	\rightarrow	JDM601_2804	putative beta-lactamase	-	JDH601_2800 JDH601_2806 2799 JDH601_2805
	JDM601_2801	ABC transporter ATP-binding protein	\rightarrow	JDM601_2805	FadR family transcriptional regulator	\rightarrow	
	JDM601_2800	araD; ribulose-5-phosphate 4-epimerase AraD	\rightarrow	JDM601_2806	araD; ribulose-5-phosphate 4- epimerase AraD	\rightarrow	JDN601_2803 、 JDN601_2804

Chapter 4: CYP125 P450 gene mapping and gene-cluster analysis in the genus Mycobacterium

cyp125; cytochrome p450	JDM601_3609	N/A	N/A	N/A	N/A	N/A	.IDM601_3609
	JDM601_3608	K00038 3alpha(or 20beta)-hydroxysteroid dehydrogenase	\rightarrow	JDM601_3610	zinc-containing alcohol dehydrogenase NAD- dependent AdhB; K00121 S- (hydroxymethyl)glutathione dehydrogenase / alcohol dehydrogenase	→ 	JDM601_3607 JDM601_3606 JDM601_3605 31_3604 JDM601_3612 3603 JDM601_3608 JD
	JDM601_3607	conserved hypothetical protein	\rightarrow	JDM601_3611	conserved hypothetical protein	←	602 JDN601_3610
	JDM601_3606	conserved hypothetical protein	\rightarrow	JDM601_3612	conserved hypothetical protein	\rightarrow	10 C
		Mycobacte	erium Avium	subsp. paratubercul	losis K10		
cyp125; cytochrome p450	MAP_3818	N/A	N/A	N/A	N/A	N/A	MAP_3820 MAP_3815 MAP_3818 MAP_3821
	MAP_3817c	K08977 putative membrane protein	←	MAP_3819	hypothetical protein	\rightarrow	L3 MAP_3816 MAP_3819 1
	MAP_3816	hypothetical protein	\rightarrow	MAP_3820	dcd; Dcd; K01494 dCTP deaminase	\rightarrow	
	MAP 3815	hypothetical protein	\rightarrow	MAP 3821	hypothetical protein	\rightarrow	MAP_3817c
		Mycobacter	rium avium s	ubsp. paratuberculo	sis MAP4		
cyp125; cytochrome p450	MAP4_3931	N/A	N/A	N/A	N/A	N/A	
	MAP4_3930	hypothetical protein; K08977 putative membrane protein	←	MAP4_t42	trnG; tRNA-Gly; K14225 tRNA Gly	←	- MAP4_ <u>3929 MAP4_3933</u> 4_3927 MAP4_3931 MAP4_39 MAP4_3928 MAP4_3932
	MAP4 3929	putative phage integrase family protein	\rightarrow	MAP4 3932	putative exported protein	\rightarrow	╡└╱┢╱┓└╴╱┟╵╊╸└──
	MAP4_3928	hypothetical protein:	\rightarrow	MAP4_3933	deoxycytidine triphosphate deaminase Dcd; K01494 dCTP deaminase	\rightarrow	
		My	cobacterium l	kansassii ATCC 124	78		
cyp125; cytochrome p450	MKAN_03940	N/A	N/A	N/A	N/A	N/A	MKAN_03955
	MKAN_03935	hypothetical protein	\rightarrow	MKAN_03945	TetR family transcriptional regulator	←	
	MKAN_03930	hypothetical protein	\leftarrow	MKAN_03950	hypothetical protein	\rightarrow	
	MKAN_03925	osmotically inducible protein C	←	MKAN_03955	hypothetical protein	\rightarrow	HKAN_03930 H <u>Kan_03935</u> HKan_03940 HKan_03945

		Ν	Aycobacteriu	m chubuense NBB4			
cyp125;cytochrome p450	Mycch_2866	N/A	N/A	N/A	N/A	N/A	Hycch_2867 Hycch_; 861 Hucch 2865 Hucch 28
1	Mycch 2865	hypothetical protein	\rightarrow	Mycch 2867	hypothetical protein	\rightarrow	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
	Mycch 2864	putative transcriptional regulator	←	Mycch 2868	anaerobic dehydrogenase,	←	
	5 _				typically selenocysteine-		Mycch_2863 Mycch_2868 Mycc
					containing		Mycch_2864 Mycch_2869
	Mycch 2863	hypothetical protein	←	Mycch 2869	transcriptional regulator	←	Hycch_2866
-		M	ycobacteriur	n vanbaalenii PYR-1			
cyp125;cytochrome p450	Mvan_0246	N/A	N/A	N/A	N/A	N/A	Mvan_0243 Mvan_0248
-	Mvan 0245	cvtochrome P450	\rightarrow	Mvan 0247	conserved hypothetical protein	\rightarrow	_ <u>8242</u> Hvan_8245 Hvan_8247
	Myan 0244	response regulator receiver protein	<i>←</i>	Mvan 0248	conserved hypothetical protein	\rightarrow	
	Myan 0243	regulatory protein. LuxR	\rightarrow	Myan 0249	conserved hypothetical protein	←	2/000
		8					Hvan_0244 Hvan_0246
							241 Huan 8249
				# 10(2 2			.11
	Manager 05((0	NT/A	Aycobacteriu	m smegmatis JS623	NT/A	NT/A	
cyp125; cytochrome	Mycsm_05668	N/A	IN/A	IN/A	IN/A	IN/A	
p450	Mycsm 05667	N		Mycem 05660	transcriptional regulator	_	– Mycsn_05665
	Wrycsin_05007	in-	<u> </u>	Wycsin_05009	transcriptional regulator		icsn_05664 Mucsn_05669
		K01482					Musen 05000 Musen 05
	Mycsm 05666	K01945 phosphoribosylamineglycine	←	Mycsm 05670	K00215 4-hvdroxy-	←	
	wrycsm_05000	ligase		mycom_ocovo	tetrahydrodinicolinate		
					reductase		
	Mycsm 05665	putative esterase	\rightarrow	Mycsm 05671	ring-hydroxylating	←	15662 Mucsn_05667 Mucsn_05671)
	<u> </u>				dioxygenase, large terminal subunit		· 0ECC2
							1_000000 Nycsn_00070 Ny
							Mycsn_05666 Mycsn_
			Avcobacterii	ım rhodesiae NBB3			
		-	iyeobacterit				
cyp125; cytochrome	MycrhN 0940	N/A	N/A	N/A	N/A	N/A	MuophN 0027
p450	-						
	MycrhN_0939	pseudogene	\rightarrow	MycrhN_0941	acyl-CoA synthetase (AMP-	←	hN_0936MycrhN_0940
					forming)/AMP-acid ligase II;		1934 MycrhN_0938
					K00666	N. A935 Mur	N 8935 MucchN 8939
	MycrhN_0938	anti-anti-sigma regulatory factor (antagonist	\rightarrow	MycrhN_0942	putative nucleic-acid-binding	←	
		of anti-sigma factor)			protein containing a Zn-ribbon;		
					K07068		
							MycrhN_0941 MycrhN.
							33 MucrhN_0942 Mu
							MucchN 0943
							inger ini_0040

	MycrhN_0937	2-polyprenyl-6-methoxyphenol hydroxylase-like oxidoreductase	\rightarrow	MycrhN_0943	acetyl-CoA acetyltransferase	<i>←</i>	
		Ň	Mycobacteriur	n chubuense NBB4	·		
cyp125; cytochrome p450	Mycch_4146	N/A	N/A	N/A	N/A	N/A	Hucch_4143
	Mycch_4145	pseudogene	\rightarrow	Mycch_4147	tRNA-Leu; K14228 tRNA Leu	<i>←</i>	Jcch_4142 Hycch_415 J Hycch_4145 I I
	Mycch_4144	hypothetical protein	<i>←</i>	Mycch_4148	pseudogene	<i>←</i>	_4141 Hycch_4146 Hycch_4
	Mycch_4145	-polyprenyl-6-methoxyphenol hydroxylase- like oxidoreductase	\rightarrow	Mycch_4149	hypothetical protein	-	Hycch_4149 Hycch_4147 Hy Hycch_4148 Hycch_4149
		N	Mycobacteriur	n chubuense NBB4			
cyp125;cytochrome p450	Mycch_4512	N/A	N/A	N/A	N/A	N/A	
	Mycch_4511	K01945 phosphoribosylamineglycine		Mycch_4513	transcriptional regulator	→	Hycch_4512 Hycch_4518 Hycch_4513
		ligase					
	Mycch_4510	hypothetical protein	\rightarrow	Mycch_4514	hypothetical protein	←	
	Mycch_4509	hypothetical protein	~	Mycch_4515	gamma-carboxymuconolactone decarboxylase subunit like protein; K01607	~	Hycch_4509 Hycch_4514 Hyc Hycch_4511 Hycch_4515
105		Myo	cobacterium a	bscessus ATCC 199	77		
cyp125;cytochrome p450	MAB_1211c	N/A	N/A	N/A	N/A	N/A	
	MAB_1210	Putative short chain dehydrogenase/reductase	\rightarrow	MAB_1212c	hypothetical protein	\rightarrow	
	MAB_1209	Probable short-chain Z-isoprenyl diphosphate synthetase	→ 	MAB_1213c	Putative ferredoxin	\rightarrow	

Chapter 4: CYP125 P450 gene mapping and gene-cluster analysis in the genus Mycobacterium

		-								
	MAB_1208	Conserved hypothetical protein	\rightarrow	MAB_1214c	Probable cytochrome P450; K05917 sterol 14-demethylase	\rightarrow				
Mycobacterium abscessus103										
cyp125;cytochrome p450	LA61_06055	N/A	N/A	N/A	N/A	N/A	5 LA61_06045			
	LA61_06050	short-chain dehydrogenase	\leftarrow	LA61_06060	hypothetical protein	←				
	LA61_06045	farnesyl-diphosphate synthase; K12503 short-chain Z-isoprenyl diphosphate	\rightarrow	LA61_06065	ferredoxin	<i>←</i>	LA61_06040 LA61_06060			
		Synthase					LA61_06050 LA61_0 LA61_06055 LA61			
	LA61_06040	membrane protein; K11068 hemolysin III	<i>←</i>	LA61_06070	cytochrome P450; K05917 sterol 14-demethylase	<i>←</i>	LA61_06065 LA61_06070			
	•	Mycobao	cterium abscess	sus subsp. bolletii M.	A 1948		·			
cyp125; cytochrome p450	LA62_06150	N/A	N/A	N/A	N/A	N/A	LA62_06140 L			
	LA62_06145	short-chain dehydrogenase	←	LA62_06155	hypothetical protein	←				
	LA62_061140	farnesyl-diphosphate synthase; K12503 short-chain Z-isoprenyl diphosphate	\rightarrow	LA62_06160	ferredoxin	←	LA62_06135 LA62_06155 LA6;			
		synthase					LA6 <u>2_06145</u> LA62_06170			
	LA62_061135	membrane protein; K11068 hemolysin III	→ 	LA62_06165	cytochrome P450; K05917 sterol 14-demethylase	← 	LA62_06150 LA62_061 LA62_06160 LA62_06165			

Chapter 5

Conclusions and future perspectives

Cytochrome P450 monooxygenases (P450s/CYPs) are heme-thiolate proteins that are distributed in species belong to different biological kingdoms. Since their identification, study on prokaryote P450s especially genome wide annotation and evolutionary analysis has not been carried out. This study address these two research gaps *per se* performing genome wide identification, annotation and phylogenetic analysis of CYP125A1 P450, essential P450 needed for *Mycobacterium tuberculosis* survival. Furthermore, also, genome mapping and gene-cluster analysis of CYP125A1 is completed as part of this study.

Study results will pave the way to select one of CYP125 gene-clusters promoter and its binding elements so that in future one can use them as novel drug target. If we can inhibit CYP125 expression means we can successfully kill the bacteria and the drugs developed based on promoter and its binding elements may have no cross reaction with human P450s considering eukaryote promoter and binding elements different compared to prokaryotes.

Research outputs

Research articles

SCIENTIFIC REPORTS **OPEN** Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on Received: 23 May 2016 mycobacterial P450s Accepted: 19 August 2016 Published: 12 September 2016 Mohammad Parvez¹, Lehlohonolo Benedict Qhanya¹, Ntsane Trevor Mthakathi¹, Ipeleng Kopano Rosinah Kgosiemang¹, Hans Denis Bamal¹, Nataraj Sekhar Pagadala², Ting Xie³, Haoran Yang⁴, Hengye Chen⁴, Chrispian William Theron⁵, Richie Monyaki¹,

Seiso Caiphus Raselemane¹, Vuyani Salewe¹, Bogadi Lorato Mongale¹, Retshedisitswe Godfrey Matowane¹, Sara Mohamed Hasaan Abdalla¹, Wool Isaac Booi¹, Mari van Wyk¹, Dedré Olivier¹, Charlotte E. Boucher⁵, David R. Nelson⁶, Jack A. Tuszynski⁷, Jonathan Michael Blackburn⁸, Jae-Hyuk Yu⁹, Samson Sitheni Mashele¹, Wanping Chen⁴ & Khajamohiddin Syed¹

SCIENTIFIC REPORTS

OPEN Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes

Received: 19 March 2015 Accepted: 27 May 2015 Published: 01 July 2015

Mopeli Marshal Sello¹, Norventia Jafta¹, David R Nelson², Wanping Chen³, Jae-Hyuk Yu⁴, Mohammad Parvez¹, Ipeleng Kopano Rosinah Kgosiemang¹, Richie Monyaki¹, Seiso Caiphus Raselemane¹, Lehlohonolo Benedict Qhanya¹, Ntsane Trevor Mthakathi¹, Samson Sitheni Mashele¹ & Khajamohiddin Syed¹

Conference Attendance

13th International Symposium on Cytochrome P450 Biodiversity and Biotechnology

22-26 July, 2016 Vancouver, B.C., Canada

Program and Abstracts

P 79-S2

Genome mapping of essential P450 CYP125 in mycobacteria

Monyaki, Richie; Mashele, Samson Sitheni; Syed, Khajamohiddin

Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa. rmonyaki@yahoo.com

Tuberculosis (TB) is a leading cause of death worldwide caused by *Mycobacterium tuberculosis*. Genome-wide screening for genes essential for the survival of *M. tuberculosis* has revealed that CYP125A1 is critical for *M. tuberculosis* survival. CYP125A1 play key role in oxidation of cholesterol and help *M. tuberculosis* to utilize cholesterol as carbon source during its inhabitant in host organism. Structural analysis of CYP125A has been elucidated. In this study, genome-mapping of CYP125A1 has been carried out to assess its conservation across sixty mycobacterial species belong to six different categories includes, *M. tuberculosis* complex (MTBC) (27 species); *M. chelonae-abscessus* complex (MCAC) (6 species); *M. avium* complex (MAC) (8 species); Mycobacteria causing Leprosy (MCL) (2 species); Nontuberculous mycobacteria (NTM) (6 species) and Saprophytes (SAP) (11 species). Analysis of genome-mapping revealed conservation of CYP125A1 as per the categories suggesting after speciation CYP125A1 has been conserved both at gene- and protein-level. Furthermore, study also revealed presence of three different ortholog CYP125 P450s that originated before speciation.

DMP 17

Structural analysis of essential P450 CYP125 in ecologically diverse mycobacterial species

R. Monyaki, S.S. Mashele and K. Syed

Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa

Tuberculosis (TB) is a leading cause of death worldwide. Genome-wide screening for genes essential for the survival of *Mycobacterium tuberculosis* (Mtb), has revealed that CYP125A1 is critical for *Mtb* survival. In the previous study we performed comparative structural analysis of CYP125 from mycobacterial strains living in diverse environments to assess if this P450 can serve as a common drug target against all mycobacterial strains. 3D models of three CYP125A P450s from *M. avium, M. marinum* and *M. vanbaalenii* were generated using CYP125A of *Mtb* H37Rv as a template. 3D models of CYP125A showed all the characteristic P450 helices and sheets and overall they had a similar structure. 3D models were validated using different software programs and validation programs favoured the deduced 3D models, suggesting the models are in good quality. Numerous amino acids were found to be in contact with heme and these residues pretty much conserved across the CYP125A P450s analysed in this study. A large number of amino acid residues were found to be part of the active site in CYP125A P450s. Secondary structure alignment of CYP125A P450s and mapping of the residues suggested that the residues lining the active site are highly conserved. It was determined that CYP125A1 is conserved across different mycobacterial strains and serve as a universal drug target.

Ç

Media coverage

CUT's groundbreaking discovery

ery may help fight aquatic animal infection

ng: Research team leader Dr Khajamohiddin Syed and faculty of environmenta science acting dean professor Sam Mashele.

Acting dean of the faculty Prof Sam Mashele said some of the deadli-est pathogens in the world were found in the fish farming industry. He said the discovery was made by researchers from the unit for drug discovery in the institution.

"For many years researchers across the world have been trying to understand these micro-organisms in order to control the disease and de-yeelop novel drugs against these pathogens, and CUT researchers are leading the way in finding solutions

ers: The CUT that will bring an end to this socio economic challenge facing aquati farming," Mashele said.

said microory in in the scientific orld ed to wreak havo tor world

are considered the deadliof pat athogens, causing diminished tion of aquatic food," Mashele The team of researchers who dis-

ered the drug were led by Dr Kha-ohiddin Syed.

jumohiddin Sted. "We collaborated with highly ac-chaimed international scientists such as professors David Nelson from the University of Tennessee in the US, ac-Hyuk Yu from the University of Wis-consin-Madison and Dr Wanping Chen from Huazhong Agricultural

ating solutions that would sus patic resources while help-ease high production levels ing to in qua farming for commercial pur-es, food security and poverty alle-

He said their work highlighted He said their work ngangnree the important role aqua farming plays in promoting healthy living and in fighting poverty and hunger. Syed said aqua farming was a big industry across the world and it in-volved the farming of fish, shrimps,

wns, squid and octopus sidered by the UN as an ir tor that can provide a li

ential nutrients, esp ally for de veloping countries, where they const tute almost half of the total value of

tute almost half of the total value of their traded communities," Syed said, "The results of this study have been accepted for publication in the Nature Publication Group journal Sci-entific Reprots, a prestigious multidis-ciplinary scientific international jour-nal with an impact factor of 5.4."

