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Abstract 

The stabilization process in pavement construction is not a new process, but hitherto 

this process has not been fully implemented in the design methods for pavement 

structure. Its partial implementation in design has contributed to the failures 

experienced in pavement structure, which result in such pavement needing 

excessive maintenance and rehabilitation, thereby increasing the operational cost of 

the roads. Additionally, the use of an empirical design method for pavement structure 

has led to the over-design of pavement, resulting in wasteful design and construction 

of pavement structure. Nevertheless, Mechanistic-Empirical seems to be the way 

out. Consecutively, with the advent of powerful design software based on different 

methods such as the Finite Element (FE), Discrete Element, Finite Difference, 

Boundary Element Methods, the possibility of design and construction of quality 

pavement structures are enhanced. Therefore, the main focus of this study is to 

provide a modelling tool for using fly ash as alternative stabilizer for base layers of 

flexible pavement. To achieve the aim of the study, various objectives were set in 

place based on literature reviews which are documented in this study. 

Considering the fact that FE is the method most adopted in pavement analysis and 

with the ability to obtain stresses and strains at the bottom of the surface layer, and 

compressive stress/strain within the base layer and at the top of sub-grade, it was 

considered in this study. Validations of a 3D FE model over 2D were conducted for 

fly ash stabilized base layer. Thereafter, the importance of an asphalt layer on a 

stabilized base layer was checked, and the efficiency of non-linear model for material 

characterization was also checked. Overall, a comparative analysis of FE modelling 

and an empirical method of pavement design was conducted. The results show that 

the use of 3D FE models is more efficient than 2D axisymmetric models; use of a 

non-linear material characterization model is more efficient than linear material 

characterization, and the use of empirical design methods results in the over-

designing of pavement structure. Thus, the overall results suggest the use of 3D FE 

models, coupled with a non-linear material characterization model are suitable for 

the design of flexible pavement with a stabilized base layer. 

 

© Central University of Technology, Free State



   

                Abbreviations 
 

v 
 

Abbreviations  

®  Registered trademark symbol 

2D  Two dimensional 

3D  Three dimensional 

AASHTO American Association of State Highway and Transportation Officials 

ACAA  American Coal Ash Association 

Al2O3  Aluminium oxide 

ASTM  American Society for Testing and Materials Classification 

C3 Cemented natural gravel materials used as base or sub-base 
according to COLTO 1998 classification 

C3D8R 8-node solid continuum elements with reduction integration 

C4 Cemented natural gravel materials used as base or sub-base 
according to COLTO 1998 classification 

Ca  Calcium 

CaO  Calcium oxide 

CAX4R 4-node bilinear axisymmetric quadrilateral elements with reduction 
integration 

CBR  California Bearing Ratio 

COLTO Committee of Land Transport Officials 

CSIR  Council for Scientific and Industrial Research 

CSLHA Coconut shell, leaf and husk ash 

D-P  Drucker-Prager plasticity model 

FE  Finite Element 

Fe2O3  Iron (III) oxide or ferric oxide 

FEM  Finite Element Method 

FM5-410 Field Manual 5-410 

G5 Unbound granular used as sub-base material according to COLTO 
1998 classification 

GBS  Granular blastfurnace slag 

K  Flow-stress ratio 

kN  kilo Newton 
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m  metre 

M-C  Mohr-Coulomb plasticity model 

ME  Mechanistic-Empirical method 

MEDG Mechanistic-Empirical design guide 

MgO  Magnesium oxide 

mm  millimetre 

MPa  Mega Pascal 

MR  Resilient Modulus 

Psi  pound per square inch 

SAMDM South African Mechanistic-Empirical Design Method 

SANRAL South African National Road Agency Ltd 

SAPDM South African Pavement Design Method 

SiO2  Silicon dioxide 

SN  Structural Number 

UCS  Unconfined Compressive Strength Test 

WAC  West Africa Compaction 

WASHO Western Association of States Highway Officials 
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CHAPTER 1: INTRODUCTION 

 

1.1. Background 

Road transportation among transportation modes has expanded the most over the 

past 50 years, both for passengers and freight transportation (Rodrigue, Slack and 

Comtois, 2013). In South Africa, there are 750 000 kilometres of road network and 

9.7 million vehicles, which make all sectors of the economy depend on roads to 

transport goods. The majority of goods, estimated at 83 percent, are transported by 

road, and in addition, forecasts reveal that freight transport demand will grow by 200 

percent to 250 percent over the next 20 years (Ndebele, 2012). Considering its 

significant role in the economic and communication activities of the modern 

societies, researchers have been searching to attain the most suitable road 

pavement behaviour (Shafabakhsh, Motamedi and Family, 2013a), and 

consequently design and construct safe, stable, cost-effective and environment-

friendly roads. With all the attention from researchers, pavement structures 

experience failure before the desirable design life resulting from the low bearing 

capacity of soil (Kordi, Endut and Baharom, 2010), overloading of the pavements, 

inadequacy in designs and unsuitable design methods used (Kordi et al. 2010; 

Shafabakhsh et al., 2013a). Its construction becomes uneconomical most often 

because of the cost incurred on materials used. With an appropriate method of soil 

stabilization, the soil’s stability may be improved; resulting in stable pavements as 

well as the cost of construction may be reduced. However, the challenges with 

respect to the design of pavements remain. With the advent of powerful design 

software based on different methods such as the Finite Element, Discrete Element, 

Finite Difference, and Boundary Element Methods, the possibility of design and 

construction of quality pavement structures is enhanced. Therefore, in this study an 

attempt is made to simulate the behaviours of the flexible road pavements having fly 

ash as an alternative soil stabilizer, by using Finite Element Method (FEM). 

1.1.1.  Materials 

Selection of materials for road pavement design is based on a combination of 

suitable materials, environmental consideration, construction methods, economics 
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and previous experience (Bureau for Industrial Cooperation, 2012). Previously, road 

construction had depended mainly on the virgin materials from the nearest borrow 

pit, but in situations where the available soil lacks some geotechnical properties such 

soil needs to be stabilized. Soil stabilization, refers to the method aimed at 

increasing or maintaining the stability of soil mass and the chemical alteration of soils 

to enhance their engineering properties via different techniques, such as mechanical 

compaction, dewatering and addition of materials which are more advantageous 

(Gyanen, Savitha and Gudi, 2013; Yadu and Tripathi, 2013). According to Aminaton, 

Nima and Houman (2013), stabilizing soil using lime, cement, chemicals, plastics, 

rice husk ash, millet husk ash, corn cob ash, coconut shell ash, foundry sand, 

cement kiln dust, granular blastfurnace slag (GBS), or fly ash increases the soil’s 

resistance, strength and permeability. Furthermore, results and experience show that 

lime as a stabilizer yields better results than others, but its use will make pavement 

structure uneconomical, which in turn makes fly ash an alternative stabilizer. 

Fly ash, a finely divided residue that results from the combustion of pulverized coal, 

an amorphous ferro-alumino silicate with a matrix very similar to soil and its 

elemental composition varies with types and source of coal (Comberato, Vance and 

Someshwar, 1997). These ash particles are transported from the combustion 

chamber by exhaust gases as a result of their light weight and collected in control 

devices such as filter bags and electrostatic precipitators. They are spherical in 

shape and range in size from 0.5 micron to 100 micron (Heyns and Mostafa Hassan, 

2013). From the point of view of the American Coal Ash Association (ACAA) (1995), 

fly ash particles are composed of glass with crystalline matter, carbon, and varying 

quantities of lime. Its chemical and physical properties depend greatly on several 

factors such as production type, raw feed and the handling method. This in turn 

gives the two classes of fly ash based on the chemical composition. Class C ashes 

are from sub-bituminous and lignite coals and may contain more than 20 percent 

CaO with 1 percent to 3 percent free lime, while Class F ashes are generally 

obtained from bituminous and anthracite coal and contain less than 20 percent CaO 

with no free lime ASTM C618 (ASTM-C618 2011).This industrial by-product is 

considered in this research because it is readily available and various measures of 

success have been achieved when used as stabilizer in pavement structures. 
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1.1.2.  Design and Analysis 

Pavement structural design is a daunting task with the basic geometry being quite 

simple, while everything else is not. Its traffic loading is a heterogeneous mix of 

vehicles, axle types, and axle loads with distributions that vary with time throughout 

the day, from season to season, and over the pavement design life (Schwartz and 

Carvalho, 2007). Also, pavement material characteristics such as viscoelasticity, 

non-linearity and linearity, respond to these loads in complex ways coupled with 

stress state and magnitude, temperature, moisture, time, loading rate, and other 

factors. Previously, design was done by the empirical method, then by layered 

elastic method, but as a result of the assumptions of the aforementioned, design 

sometimes results in errors (Huang, 2004). Thus, to model pavements correctly, it is 

necessary to use numerical methods, such as the finite difference method, the 

boundary element method and FEM (Áurea, Evandro and Lucas, 2006). However, 

FEM is the most adopted in pavement analysis and will be considered. 

FEM is a numerical technique for finding approximate solution to boundary value 

problems for differential equations, also with the ability of handling changes of 

material properties such as Resilient Modulus and Poisson’s Ratio in both vertical 

and horizontal directions and having successfully been used not only for designing 

pavement structures, but also for optimizing the design by stimulation (Brooks, 

Hutapea, Obeid, Bai, and Takkalapelli, 2008; Shafabakhsh et al., 2013a). 

Additionally, it is suitable for eliminating tensile stresses in granular layers by stress 

transfer method and also enables pavement designers to predict with some amount 

of certainty the life of the pavement (Brooks et al. 2008). FEM includes two-

dimensional (2D) and three-dimensional (3D) methods, both of which can be 

employed to capture the structural response of flexible pavements. 

Lastly, the failures experienced in pavement structures has been a long-standing 

global challenge to roads engineers, but with the success recorded through soil 

stabilization (fly ash as stabilizer), it would be ideal to feature this in the FEM to cut 

costs and time spent on laboratory work. In addition, the structural characteristics 

and mechanical behaviours of stabilized soil bases have not been investigated so 

extensively (Peng and He, 2009). Hence, this brought about this research work.  
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1.2. Problem Statement 

The poor performance of flexible pavements results from the use of poor-quality 

materials, inappropriate stabilization (Paige-Green, 2008) and/or inadequacy in 

designs (Kordi et al., 2010; Shafabakhsh et al., 2013a). These later result in higher 

expenditure on maintenance and rehabilitation. Consequently, this influences the 

national annual budget, which is observed to be increasing at a higher rate every 

year (Ndebele, 2012). Furthermore, it is observed that flexible pavements in most of 

the South African roads experience permanent deformation (usually referred to as 

rutting), cracking of surface course and creation of potholes (Council of Scientific and 

industrial Research (CSIR) 2010), which are generally caused by various factors, 

such as soil expansion (Kordi et al., 2010), inadequate soil stabilization, 

inappropriate use of materials in the base courses and provision of inadequate 

thickness of pavement layers. As a result, the roads need regular maintenance and 

rehabilitation, which increases the operational cost of the roads. However, with the 

help of FEM, the behaviour of the flexible pavements can be simulated and the 

adequacy of pavement design can be examined by considering soil stabilizers as 

one of the major influential parameters for flexible road pavements. Based on the 

developed simulated scenarios, appropriate design and construction interventions 

can be taken to design and construct the pavements adequately using fly ash as a 

base course stabilizer, consequent upon which the cost of the maintenance and 

rehabilitation of flexible pavement roads will be reduced. Hence, this study pertains 

to the use of FEM to simulate the behaviour of flexible pavements of South African 

roads in which fly ash will be considered as a soil stabilizer in the base course. 

1.3. Research Aim 

This research aims at providing a modelling tool for the use of fly ash as alternative 

stabilizer for base layers of road. Moreover, this tool can be extended to other non-

traditional materials as well. 

1.4. Specific Objectives 

To achieve the aim of this research, the following specific objectives need to be 

considered:  
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1. To evaluate the efficiency of using 3D FE model for design of flexible 

pavement. 

2. To determine the structural response of stabilized base layers in flexible 

pavement system due to traffic loads using the 3D FE model. 

3. To validate the use of fly ash as stabilizer through a 3D FE model. 

4. To compare laboratory test empirical results already available against the 

3D FEM results. 

 

1.5. Delimitation 

In this dissertation the development/formulation of a new mathematical model for the 

characterization of the material (fly ash stabilized base) is not considered. However, 

appropriate selection is made from the existing material characterization model. 

Lastly, this selection is based on the proper findings from literature reviews and the 

ability of the model to represent the behaviour of the material under loading. 

1.6. Significance of the Study 

This research is worth doing because of the important information it renders to future 

road engineers and researchers. Overall, the design of new road projects located in 

areas short of high-quality materials would result in very long material hauls. Thus, it 

may require pavement structure alternatives other than the conventional granular 

base. Understanding such material behaviour under loading is of great importance 

for effective pavement design. Recent studies undertaken on the use of waste and 

by-product materials as soil stabilizers have left a gap, between fly ash as stabilizer 

(empirical design approach) and its computer-aided design for pavement structures. 

Simulation of pavement structures has been carried out for different purposes, but 

not in the use of fly ash as alternative stabilizing material. As a result, this study will 

save time, human error and cost of laboratory experiments in carrying out projects 

and address the problems relating to road construction industry. 

1.7. Outline of Dissertation 

The remainder of this dissertation is organized as follows: 
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Chapter 2: This chapter presents the literature review on flexible pavement, 

pavement composition and behaviour, secondary materials in road construction and 

a brief background to pavement design. 

Chapter 3: This chapter continues with the literature review on numerical simulation 

of flexible pavement with reviews on stresses, strains and deflections in flexible 

pavement, approach of mechanistic empirical design, layered elastic and finite 

element simulation of flexible pavement. 

Chapter 4: This chapter presents the detail simulation design used for fly ash 

stabilized base layer flexible pavement via Abaqus® 3D FEM analysis; four models’ 

analysis were used in line with the set objective and comparative analysis of 

laboratory test empirical results, and 3D FEM was carried out. 

Chapter 5: Presentations and discussions of results obtained from the models in 

Chapter 4 were undertaken. These presentations were presented graphically and 

through contour plots. 

Chapter 6: This chapter gives the conclusions, general recommendations and 

further studies for this dissertation. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Flexible Pavement 

Before any design of pavement structure, an appropriate pavement type selection is 

of importance as it is usually based on some critical factors such as soil composition, 

climate, traffic volume, life cycle, constructability and cost. In addition, there are 

secondary factors that need to be also considered, including: tire-pavement noise 

generation, surface smoothness and environmental sustainability. Flexible 

pavements have suitably met all the requirements, which made it to be used most 

frequently (Asphalt Pavement Alliance, 2010). 

Flexible pavements with asphalt on the surface are used all around the world. The 

various layers of this pavement structure have different strength and deformation 

characteristics which make the layered system difficult to analyse in pavement 

engineering. At the surface there is a viscous material with its behaviour depending 

on time and temperature, and pavement foundation geomaterials; coarse-grained 

unbound granular materials in base/sub-base course; and fine-grained soils in the 

sub-grade, exhibiting stress-dependent non-linear behaviour (Kim, 2007). 

Furthermore, with the introduction of soil stabilization which brought about the use of 

new materials with different characteristics such as cementitious and polymeric, the 

design of flexible pavement has become more complex. However, the analysis of 

pavement via empirical methods, as previously mentioned, sometimes result in 

errors, but if material characterization is properly understood, finite element analysis 

can be successfully used in the design of flexible pavement, which in turn makes 

design adequate. 

This chapter covers the literature review on pavement composition and behaviour, 

secondary materials, soil stabilization concept, fly ash as stabilizing agent, and lastly, 

details on pavement design background. 
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2.2. Pavement Composition and Behaviour 

Pavement structure a composite system, consisting of superimposed layers of 

processed materials above the natural soil sub-grade, with the primary function of 

distributing the applied vehicle loads to the sub-grade. This structure’s ultimate aim 

is to ensure that the transmitted stresses due to the loading are sufficiently reduced, 

so that they will not exceed sub-grade bearing capacity (Adu-Osei, 2001). In other 

words, the tensile and compressive stresses induced on the pavement by heavy 

wheel loads decreases with increasing depth (Figure 2.1). In order to take maximum 

advantage, pavement layers are usually arranged in order of descending load 

bearing capacity, with the highest load-bearing capacity material on the top and the 

lowest load-bearing capacity material at the bottom, as seen in flexible pavement 

(Figure 2.1). However, in flexible pavements the unbound granular layers serve as a 

major structural component of the structure (Adu-Osei, 2001). Further, in developing 

countries like South Africa, the main structural element is formed by the unbounded 

granular layer as thick base and sub-base layers placed over the sub-grade; and for 

economic reasons, the asphalt layer is very thin, with a limited structural function, 

which mainly provides protection against water ingress (Araya, 2011). 

Overall, the material properties and their influence on pavement behaviour must be 

thoroughly understood. According to The South African National Road Agency Ltd. 

(SANRAL) (2013a), there are a number of fundamental properties that influence the 

behaviour of a material regardless of its situation. These are: inter-particle friction, 

particle distribution, cohesion, elasticity, particle hardness, durability and porosity. In 

addition to fundamental properties, there are the situational properties that influence 

the behaviour, such as density, moisture content and temperature. The majority of 

these properties are considered in the design of pavement, but the most essential of 

these are the engineering properties which are actually the basic results in the 

design. Some of the engineering properties are: ultimate strength, elastic modulus, 

resistance to deformation and crack propagation and fatigue, all obtained from 

various laboratory tests. 

Furthermore, various factors that have significant effects on the soil behaviour can 

be loading condition, stress state, soil composition, compaction and soil physical 

states (Kim, 2007). As a result of these factors the material characteristics of the 
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entire pavement change continuously over time with environmental changes which 

later result in pavement failure. To avert pavement failure and reduce the cost of 

hauling natural materials, researchers introduced the use of secondary materials. 

 

Figure 2.1. Typical Flexible Pavement and Load Distributions (Steve Muench, 

2003) 

2.3. Secondary Materials 

Using by-products, recycled and waste materials as alternatives to naturally 

occurring aggregates in the construction of roads helps to conserve the supplies of 

good-quality aggregates, leads to less energy and environmental cost associated 

with the extraction and transportation of conventional aggregates, and assists in 

problems arising from the disposal of unwanted materials (Sherwood, 1974). Such 

materials are referred to as secondary materials or aggregates. This practice results 

from the current and projected high demand for conventional aggregates and the 

increasing difficulty of obtaining planning consent for their extraction. Moreover, this 

is combined with a greater awareness of the considerable quantities of ‘waste 

aggregates’ that are stockpiled and currently arising from the mineral extraction 

industries, the construction/demolition industry and industrial processes. All these 

have stimulated greater interest in the use of secondary materials in road 

construction (Nunes, Bridges and Dawson, 1996; Brennan and O’Flaherty, 2002). 

Some of the secondary materials considered for road works are blast furnace and 

steel slag, spent oil shale, china clay waste, slate waste, rice husk ash, millet husk 
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ash, corn cob ash, coconut shell ash, waste foundry sand, cement kiln dust, fly ash, 

bottom ash and demolition and construction waste (Sherwood, 1974; Mostafa 

Hassan and Khalid, 2010; Amin, 2012; Bindu and Vysakh, 2012; Yadu and Tripathi, 

2013). These materials are subjected to various laboratory tests before considering 

their use for road construction work. Such laboratory tests may include grain size 

analysis, specific gravity, compaction, Triaxial and leaching tests, etc., depending on 

the material type. Overall, the use of any of these materials depends on its 

availability at a particular location. 

All in all, secondary materials are inferior to the natural materials used in 

construction, but the lower cost of these inferior materials makes it an alternative if 

adequate performance can be achieved (Heyns and Mostafa Hassan, 2013). In the 

quest to certify the use of secondary materials, researchers discovered that the one 

or a mixture of these materials with unstable natural materials yields an increase in 

its engineering properties. Hence, this relates to the process called soil stabilization. 

2.3.1.  Soil Stabilization Concept 

In South Africa, the bearing capacity of the pavement is provided by the unbound 

base and sub-base or by the unbound base and stabilized sub-base (Araya, 2011). 

The asphalt layer provides a smooth riding surface and provides skid resistance. 

These structures have been successfully used in South Africa for moderately and 

heavily loaded roads. However, the minimum California Bearing Ratio (CBR) 

required for the sub-grade is 15 percent; when this is not reached, improvement of 

the sub-grade should take place (Molenaar, 2009). 

Yet the concept of soil stabilization is not new, as it can be dated back to 5000 years 

ago. McDowell (1959) mentioned that stabilized earth roads were used in ancient 

Mesopotamia and Egypt, and that the Greeks and Romans once used soil-lime 

mixtures. Over the years, research has focused on improving the durability, safety 

and efficiency of pavement materials and structures within both economic and 

environmental constraints. This brought about the various means of stabilizing soil 

which are practical and economical. 
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Soil stabilization mainly aims at improving soil strength and increasing resistance to 

softening by water through bonding the soil particles together, waterproofing the 

particles or a combination of the two (Sherwood, 1993). It is used to treat a wide 

range of materials including expansive clays to granular materials (Openshaw, 

1992). The stabilization process can be accomplished by several methods. All these 

methods fall into two broad categories (FM5-410 2012), namely: 

 Mechanical stabilization 

Stabilization is achieved via a physical process by altering the physical nature of 

natural soil particles by either induced vibration or compaction and also by 

introducing coarse or fine materials and geosynthetic materials. Recently, 

mechanical stabilization has been used for pavement structure through 

geotextiles materials (Hejazi, Sheikhzadeh, Abtahi, and Zadhoush, 2012) which 

yielded a great increase in the property strength of the structures. Further, using 

a geogrid, Al-Azzawi, (2012) noted that placing this reinforcement at the base-

asphalt interface leads to the highest reduction of the fatigue strain. 

 Chemical stabilization 

Stabilization depends mainly on chemical reactions between stabilizer 

(cementitious material) and soil minerals (pozzolanic materials) to achieve the 

desired effect, including lime, cement, secondary materials and chemicals. 

Recently, with the increase in the problem posed by secondary materials and its 

availability locally, researchers considered their use as an alternative stabilizer. 

Some of these are: Mgangira (2006) Waste Foundry Sand on clayey soils, 

Bindu and Vysakh (2012) Coconut Shell, Leaf and Husk ash (CSLHA) on 

lateritic soils, Yadu and Tripathi (2013) GBS and Fly ash on soft soils, and Amin 

(2012) reviewed on soil stabilization using low-cost methods. Based on these 

studies, GBS, foundry sand, CSLHA, fly ash and scrap tyres are low-cost and 

effective as stabilizer. Further review will be done on fly ash as stabilizer as it is 

a centre to this dissertation. 

 

Nevertheless, among these stabilization methods, results have shown that chemical 

stabilization is more advantageous (Makusa, 2012; Gyanen et al., 2013; Yadu and 

Tripathi, 2013). Overall, researchers noted that the presence of organic matters, 
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sulphate, sulphide and carbon dioxide in the stabilized soils may inhibit the 

stabilization process (Makusa 2012). Likewise, compaction, moisture content, 

temperature and freeze-thaw further contribute (Sherwood, 1993; Makusa, 2012). 

Additionally, Paige-Green (2008) noted that failure in stabilization process may 

further result from lack of suitable skill and experience, inadequate specification, 

change in construction equipment and construction techniques. 

2.3.2.  Fly Ash as Stabilizer 

South Africa being the fourth largest producer of fly ash at 30 mega ton per year 

after China, USA and India, results from the fact that coal plays an important role in 

its economy and is the primary energy source for electricity generation (Furter, 

2011). Fly ash is a heterogeneous material with SiO2, Al2O3, Fe2O3 and occasionally 

CaO as its main chemical components. This ash also contains Ca-bearing minerals 

such as Anorthite, Gehlenite, Akermanite and various Calcium Silicates and Calcium 

Aluminates identical to those found in Portland Cement (Snellings, Mertens and 

Elsen, 2012). Considering its production per year in South Africa, the government is 

at the stage where it is strategically finding ways to reduce fly ash through treatment, 

re-use and beneficiation (Heyns and Mostafa Hassan, 2013). 

All over the world, fly ash is being used for various purposes such as cement 

production, concrete production (Torii, Hashimoto, Kubo and Sannoh, 2013), soil 

stabilization, asphalt (Lin Li, benson and Edil, 2007), embankment, flow-able fill and 

waste stabilization owing to its cement-like property, yet in South Africa only 6 

percent of the annual production is utilized. Further, in pavement structure, fly ash 

has a wide application which is incorporated in sub-grade, granular base/sub-base, 

asphalt base/surface and structural fill (United States Environmental Protection 

Agency, 2009). Also, it has been combined with other products or by-products to 

improve pavement materials and its light weight and ability to be handled easily on 

construction site with little safety precaution (Kim, Prezzi and Salgado, 2005; Mathur, 

2011; Heyns and Mostafa Hassan, 2013), contributes to it’s usage. 

Various studies have been conducted on its utilization as stabilizer and as an 

alternative to the use of virgin materials. Senol, Bin-Shafique, Edil, and Benson, 

(2002) carried out a study on the use of self-cementing class C fly ash for the 
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stabilization of soft sub-grade. In this study, the optimum mix design and stabilized 

layer thickness were estimated by strength and modulus-based approaches. The 

results obtained showed that the engineering properties such as unconfined 

compressive strength (UCS), CBR and resilient modulus increase substantially after 

fly ash utilization. Also, in 2002, Pandian and Krishna conducted laboratory CBR 

tests on the stabilized fly ash-soil mixtures and observed that fly ash is an effective 

admixture for improving the soil quality. In addition, Brooks (2009) reported the soil 

stabilization with rice husk ash and fly ash mixed together with natural soil, the study 

showed improvement in CBR values and UCS. Also, researchers have proven that 

mixtures of fly ash with inert materials reach 50 percent to 70 percent of the strength 

of the corresponding cement-inactive materials (Eskioglou and Oikonomou, 2008). 

Further, an innovative research was undertaken by Heyns and Mostafa Hassan 

(2013), utilizing three different types of fly ash (Kendal Dump Ash, Durapozz and 

Pozzfill) at 16, 18, 20 and 22 percent enhanced with cement on G5 sub-base 

material classified according to the Committee of Land Transport (COLTO) (1998) 

officials, and results show that G5 sub-base material is stabilized to meet up with the 

C3 and C4 stabilized standard according to COLTO. Fly ash controls the shrink-swell 

by cementing the soil grains together and also have the tendency to increase the 

maximum dry density (Ban and Park, 2014) and improve the CBR of soil by 100 

percent (Umar, Alhassan, Abdulfatah, and Idris, 2013). Consequently, any fly ash 

that has at least some self-cementitious properties can be engineered to perform in 

transportation projects. 

Furthermore, studies have been concluded that, if fly ash is used properly, it is not 

hazardous to the environment when used for soil stabilization. This was done with a 

combination of batch-leaching tests to determine potential impact on the 

environment of fly ash as trace element mobility in soil stabilization (Heebink and 

Hasselt, 2001). Similarly, Tanosaki, Yu and Nagasaki (2011) studied an image of fly 

ash being an ‘environmentally friendly’ product. The measurements were carried out 

only on Hunter brightness or reflectivity. Three hundred lots of coal ash samples 

were analysed, whereby it was determined that coal ash possesses a wide range of 

colour hues. Due to strong correlations between hue and spherical rate, Chroma(C) 

and CaO+MgO content of coal ash, it could be used as a base for quality control 
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standards. Overall, the use of fly ash is accepted worldwide due to saving in cement, 

consuming industrial waste and making durable materials, especially due to 

improvement in the quality when used as stabilizer (Heyns and Mostafa Hassan, 

2013). 

Generally, the compressive strength of fly ash-stabilized soils is dependent on in-

place soil properties, delay time, moisture content at time of compaction and fly ash 

addition ratio as discussed by ACAA (1995). Summarily, the performance of 

pavement structure depends on the satisfactory performance of each material used, 

thus proper evaluation is required in respect to the properties of each material 

separately. Overall, the proper understanding of the behaviour of natural materials, 

secondary materials and the soil stabilization process are important to the successful 

implementation of any design method. 

2.4. Pavement Design Background 

Pavement design is the process of developing the most economical combination of 

pavement layers (in relation to both thickness and materials type) to suit the soil 

foundation and the traffic to be carried during design life. From the SANRAL (2013b) 

point of view, pavement design is to ensure that materials within the pavement layers 

are not overstressed at any time during the course of these changes in the 

pavement’s life. Over the years, in the pursuit of accurate simulation of pavement 

structure behaviour under loading, various design methods have been developed. 

These design methods, on individual capacity, have been used to simulate 

pavement behaviour based on some assumptions. Figure 2.2 gives a background on 

the design of flexible pavement. 

At the outset, pavement designs were based on empirical methods which are back-

dated to the development of the Public Roads soil classification system in the 1920s 

(Huang, 2004; Schwartz and Carvalho, 2007). Empirical methods are derived from 

experience in terms of field observation performance of in-service pavement or 

laboratory test sections. The purpose of laboratory methods is to subject a 

representative pavement material sample to an environment (consisting of simulated 

traffic loading and environmental conditioning) that closely simulates field conditions 

(Adu-Osei, 2001). These methods also define the interaction between pavement 
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performance, traffic loads and pavement thickness for a given set of paving 

materials, soil, location and environmental conditions (Schwartz and Carvalho, 

2007). Although the design of flexible pavements is still largely empirically based, 

these methods remain accurate only for the exact conditions for which they were 

developed, and perhaps invalid outside the range of variables used in its 

development. 

This brought about the various examples of empirical design methods developed 

with different location such as the American Association of State Highway and 

Transportation Officials (AASHTO) in the USA (1993), Road Note in the UK (Road 

Research Laboratory, 1970), Western Association of States Highway Officials 

(WASHO) in Malad and West Africa Compaction (WAC) in West Africa Countries 

(Fall, Ba, S., Sarr, Ba, M. and Ndiaye, 2011), to mention but a few. 

Even though empirical methods tend to be simple and easy to use, these methods 

are associated with various limitations such as one climate condition, limited traffic, 

material type, and new construction only (i.e. cannot be used for rehabilitation). If 

these conditions change, the design is no longer valid (Wang, 2001; Huang, 2004). 

To further buttress this point, Huber, Andrewski, and Gallivan (2009) found that the 

AASHTO 1993 pavement design guide typically over-designed pavements in Indiana 

by 1.5 to 4.5 inches, amounting to approximately 600 to 800 tons of materials per 

lane-mile beyond what is needed. 

Before the final introduction of mechanistic-empirical design guide (MEDG) in the 

21st century, other design methods aside, empirical methods were developed 

between 1940 and the 1960s which are: limiting shear failure method, limiting 

deflection method, and regression method, all based on pavement performance 

and/or road test. However, these methods have various limitations and likewise do 

not satisfy all necessary requirements for an ideal design which makes them 

obsolete (Huang, 2004). Ultimately, pavement design methods differ from one to 

another yet, they are affected by the same factors which are: traffic and loading, 

structural models, materials, environment, and failure criteria. Nevertheless, a better 

approach to the design of perpetual pavements is the mechanistic-empirical method. 
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Figure 2.2. Flexible pavement design background
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2.5. Summary 

Chapter Two of this dissertation dealt with the literature review on flexible pavement, 

pavement composition and behaviour, secondary materials, the soil stabilization 

concept, and fly ash as stabilizer and pavement design background. Research has 

shown that the use of fly ash and other industrial by-products as stabilizer in 

pavement structure has recorded great success and also, fly ash is proven to be 

environment-friendly if proper precaution is taken into consideration when used. 

Further, on the aspect of design, the inadequacy of empirical, limiting shear failure, 

limiting deflection and regression based method for pavement design as contributed 

to pavement failures, but the FEM is seen as a way out. With the foundation made in 

this chapter, the next chapter will be building upon it by reviewing in detail on 

numerical simulation of flexible pavement. 
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CHAPTER 3: NUMERICAL SIMULATION OF FLEXIBLE PAVEMENT 

 

3.1. Stresses, Strains and Deflections in Flexible Pavement  

Pavement analysis has been transitioning from empirical methods to numerical 

approaches (Kim, 2007). However, beforehand - due to the limitations of 

computational capabilities - pavement designs were dominated first by empirical 

methods which are limited to a certain set of environmental and material conditions, 

but with the advent of powerful computer storage capabilities, this design can now be 

done on personal computers (Adu-Osei, 2001; Huang, 2004; Shafabakhsh et al., 

2013a). In numerical approach (also known as mechanistic), the pavement is treated 

as a layered structure with the proper understanding of its components in respect to 

the constituent materials (Kim, 2007). 

Mechanistic Analysis exploits mathematical capability to calculate the stress, strain, 

or deflection in a multi-layered system such as pavement, when subjected to 

external loads (Hafeez, 2010). The stresses, strains and deflections generated in 

flexible pavements result from the material properties and thickness of each layer 

and loading condition (Al-Khateeb, Saoud and Al-Msouti, 2011). Further, with the 

use of computer programs one can evaluate the theoretical stresses, strains, and 

deformations anywhere in the structure. However, there are a few critical locations 

which are of interest and are often used in pavement analysis (NCHRP, 2004; 

Pavement Interactive, 2008; Darwish, 2012; SANRAL, 2013b) (Figure 3.1) such as; 

 Surface deflection 

 Tensile horizontal strain at the bottom of the surface course (for surface course 

fatigue cracking) 
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 Compressive vertical stresses/strains within the base/sub-base layers (for 

rutting of unbound layers) 

 Compressive vertical stresses/strains at the top of the sub-grade (for sub-grade 

rutting) 

  
Figure 3.1. Critical Pavement Responses and Locations (Pavement Interactive, 

2008) 

Furthermore, in mechanistic analysis, the material’s resistant behaviour is 

characterized using mathematical models. Thus, this method translates the 

analytical calculations of pavement response to performance. Nevertheless, the 

design of pavement structure is not totally mechanistic, as dependence on observed 

performance is necessary because theory alone has not proved sufficient to realistic 

pavement design (Huang, 2004), and also laboratory testing is often required to 

provide a relationship between loadings and failure which enhance the development 

of a proper mathematical model. Hence, this brought about the concept of the 

mechanistic-empirical (M-E) method of pavement design. 

This chapter gives detailed background on pavement design through layered elastic 

simulation and finite element simulation with more attention on critical factors, such 

as the geometry selection, material characterization, and boundary and loading 

condition. Further, in review of FEM types, the software ABAQUS® will be 

introduced and thereafter the concept of failure analysis was discussed. 
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3.2. Approach of Mechanistic Empirical (M-E) Design 

An M-E design approach uses empirical relationships between cumulative damage 

and pavement distress to determine the adequacy of a pavement structure to carry 

the expected traffic load (Nicholas and Lester, 2010). This approach combines 

theory and physical testing with the observed performance in pavement design. This 

design is also historically aimed at developing more accurate pavement models with 

a lot of emphasis on developing the mechanistic parts of the model (Theyse and 

Muthen, 2000). As a result, this gives M-E analysis advantage over empirical 

methods. Some of such advantages are: accommodation of new materials and 

changing load types, better utilization of available materials, capability of being used 

for the design of both existing pavement rehabilitation, and new pavement design in 

which empirical methods are limited. 

Despite the advantages of M-E analysis, many developing countries still rely on 

empirical methods, realizing that more sophisticated mechanistic design procedures 

often require too many assumptions regarding material behaviour and too 

complicated material testing techniques to be of direct practical use (Araya, 2011). 

Nevertheless, the end results outweigh its complexity. Via M-E analysis, two major 

approaches are employed to compute the stresses and strains in pavement 

structures which include layered elastic theory and FEM, which are further 

discussed. In addition, the effectiveness of any M-E method relies on the accuracy of 

the predicted stresses and strains. Hence, this gives FEM an edge over the layered 

elastic theory. Further, the success of this method hinges on some critical variables, 

which are material properties, traffic, environmental conditions, and pavement 

geometry. Nonetheless, for accuracy in pavement response prediction through M-E 

methods, more focus should be placed on constituent materials’ behaviour and their 

accurate characterization (Johnson, Sukumaran, Mehta, and Willis, 2007; Araya, 

2011). 

3.3. Layered Elastic Simulation 

Layered elastic simulation is the most common and easily understood procedure of 

the M-E design methods. In this simulation the pavement structure is divided into an 

arbitrary number of horizontal layers with the thickness of each individual layer and 
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materials assumed to be homogeneous and linearly elastic (Wang, 2001). Firstly, 

Burmister (1943) obtained the primary equations for a two-layer, three-layer and later 

multilayer system. These equations were derived from the original elastic theory by 

Boussinesq (1885). The original elastic theory was used to compute stress and 

deflection in a half-space soil composed of homogeneous, isotropic and linearly 

elastic material which is still widely used in soil mechanics and foundation design 

(Wang, 2001; Huang, 2004). Yet, Burmister’s equations led to the significant 

development in pavement analysis using mechanistic method; these equations are 

included in the earliest software CHEV 1963. In addition, other software was 

developed based on these equations but with different modifications. A number of 

these are: BISAR 1973, developed to incorporate rate independence; VESYS 1974, 

to incorporate the serviceability and reliability concept; ELSYM5 1986, to incorporate 

multilayers; DAMA 1979, to incorporate nonlinear elastic granular materials; and also 

KENLAYER for nonlinearity in granular materials, which is still commonly used 

(Wang, 2001; Huang, 2004; NCHRP, 2004). 

In South Africa, a great contribution has been made through the development of the 

South African Mechanistic-Empirical Design Method (SAMDM), which is now known 

as the South African Pavement Design Method (SAPDM) (Van Vuuren, Otte and 

Paterson, 1974; Theyse, de Beer, Maina, and Kannemeyer, 1996; SANRAL, 2013b). 

The SAMDM analysis for flexible pavement is based on linear elastic multilayer 

theory and here the structural pavement layers are assumed to be isotropic (Steyn, 

Maina and Repsold, 2013). Although SAMDM is sound in principle and has been 

applied successfully to the design of pavement, this method is faced with the intense 

challenge of its inability to cater for the cross-anisotropic behaviour of materials 

(Steyn et al., 2013) and its over-sensitivity to the changes in the input variables, 

which lead to inadmissible and counter-intuitive results and provide unrealistic 

pavement design (Theyse et al., 2011). These in turn contribute to the increases in 

its scrutiny and criticism in the recent past (Jooste, 2004). However, for SAMDM to 

achieve more realistic values of predicted life for pavement section, it must include 

cross-anisotropic analysis (Steyn et al., 2013); as a result, SAMDM is being revised 

(SANRAL, 2013b). 

© Central University of Technology, Free State



 

Chapter 3     Numerical Simulation of Flexible Pavement 
  

22 
 

Overall, considerable efforts have been reported regarding linear elastic simulation 

of pavement structures, yet the assumptions, on which this approach works, make it 

inappropriate for the real pavement properties and actual scenario on-site. Such 

assumptions are (Tutumluer and Thompson, 1997; Wang, 2001; Huang, 2004); 

 Each layer is homogeneous, isotropic and linearly elastic with a finite 

thickness. 

 Material is weightless. 

 Circular uniform pressure is applied on the surface. 

 Continuity and frictionless interface condition. 

 

However, Mansurkhaki, Hesami, Khajehhassani, and Khordehbinan (2014) maintain 

that there are no significant differences between the mean values of the parameters 

obtained from layered elastic analysis and FEM, which is similar to the opinion of 

Ameri, Salehabadi, Nejad, and Rostami, (2012), but on the other hand Ameri et al. 

state that results from FEM are most appropriate compared with that of multi-layer 

system. Also, Gupta and Kumar (2014) reported discrepancies in results from 

KENLAYER; compared with those of FEM it shows that maximum vertical deflections 

are lower in KENLAYER. In addition, various studies have shown that using linear 

elastic simulation for pavement vertical stress and strain prediction results in error, 

especially in low-thickness layers of asphalt pavement (Theyse et al., 1996; Abed 

and Al-Azzawi, 2012; Al-Azzawi, 2012; Shafabakhsh et al., 2013a). Yet the simplicity 

and speed of multi-layer analysis has been used as justification for relative results 

obtained (Zaghloul, 1993). Overall, since stress, strain and relative conditions of 

different layers in pavement structure are used in predicting pavement failures, the 

need for considering materials’ behaviour in nonlinear form increased significantly. 

This substantiates the fact that many researchers have found that the nonlinear 

elastic behaviour of base and sub-grade materials is important in accurately 

estimating stresses and strains in pavements (De Beer, Fisher, and Jooste, 1997; 

Mun, 2003; Tiliouine and Sandjak, 2014). In view of the aforementioned limitations, 

FEM is more preferred because it provides a more realistic analysis for predicting 

pavement response (Zaghloul, 1993) and its capability to accommodate nonlinearity 

of pavement materials (Tiliouine and Sandjak, 2014). 
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3.4. Finite Element Modelling (FEM) 

FEM has wide application in lamella mechanics, hydrodynamics, soil mechanics, and 

structural mechanics because of its great capability for finding approximate solution 

to boundary value problems (Peng and He, 2009). In FEM, the whole problem is 

divided into small and simpler parts through mesh generation which are called finite 

elements and solved by calculus of variation in order to minimize associated error 

function (Reddy, 2005; Dixit, 2007; Yagawa, 2011). Over the years, FEM has been 

applied extensively in road engineering (Peng and He, 2009) and so far, it is the 

most versatile of all analysis techniques, with capabilities for 2D and 3D geometric 

modelling, able to analyse stable (static), time-dependent problems, non-linear 

material characterization, large strains/deformations, dynamics analysis and other 

sophisticated features (NCHRP, 2004). Furthermore, FEM can deal with complicated 

loading (static, dynamic and spatially distributed form) conditions and more accurate 

than the multilayer elastic method. The application of FEM to solve any problem 

consists of three separate stages, as shown in Figure 3.2. 

 

Figure 3.2. FEM application stages (Abaqus, 2013) 

 Pre-processing (Modelling) 

This is the first stage in any FEM analysis, and here can be referred to as the 

input files stage, which is the most critical for the accurate prediction of the 

result in terms of stress, strain and deflection. At this stage the following 

selection/input are made: the geometry of pavement (in terms of dimensions), 

material characterization, relationship between parts (assembling and 

interactions), loading and boundary conditions, and analysis type. Further 

discussion will be introduced on the input files in this thesis.  

Pre- processing 

(Modelling) 

Processing 

(Evaluation & Simulation) 

Post Processing 

(Visualization) 
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 Processing (Evaluation and Simulation) 

In this stage, the job step is the main step and the input files are processed to 

produce the results (output file). Basically, at this stage the analysis process is 

only monitored in case an error is detected. 

 

 Post-processing (Visualization) 

This stage is a graphic rendering phase of the output file from the processing 

stage. Results are well represented in the realistic format and the maximum 

and critical area of interest can easily be accessed. Further, results in graph 

format can be obtained as well. 

 

3.4.1. Critical Factors in FEM Simulation of Pavement 

Generally, creating a FE model for flexible pavement analysis involves the 

consideration of all the steps in the pre-processing, with a critical look at some 

factors. Any FEM generated must capture important features of the physical situation 

without irrelevant details (Abaqus Inc., 2003). Overall, the success of any FEM 

simulation depends greatly on these factors as it can lead to error in the design of 

pavement if not properly put into consideration. Some of these factors are discussed 

below, with their effects on pavement design. 

3.4.1.1. Geometry 

In pavement simulation via FEM, geometry in terms of dimension and 

sharpness is of importance as it affects the overall analysis, time efficiency 

and accuracy of the results. Regarding geometry, there are some major areas 

of concern such as: dimension size, element type and mesh. Generally, the 

larger the dimension size and complexity of model, the more analysis time is 

required, as a result, Duncan, Monismith, and Wilson (1968) reported that a 

reasonable pavement response can be obtained by using 50 times and 12 

times the circular loading area in vertical and horizontal direction respectively. 

FEM achieves its aim by dividing the problem domain into a number of 

simpler subdomains - the finite elements. Various element types exist in the 

use of FEM for pavement simulation, such as: linear or first-order, quadratic or 
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second-order, modified second-order, continuum and infinite element, to 

mention but a few (Figure 3.3). These element types further utilize the 

reduction integration techniques for reducing analysis running time (Abaqus, 

2013; Zaghloul, 1993). Thus, careful consideration must be given to the 

element aspect ratios; however, the use of infinite elements was discouraged 

as it is not necessary in achieving accurate result (Sukumaran, 2004). In 

addition to 3D FEM analysis, Zaghloul (1993), Rahman, Mahmud and Ahsan, 

(2011) and Ibrahim, Gandhi and Zaman (2014) recommend the use of the 

solid continuum element with reduction integration as it has the capability of 

representing large-scale deformation and material nonlinearity.  

 

Figure 3. 3 Some element families in Abaqus (Psarras et al. 2002) 

  

On mesh, FEM employs mesh generation technique for dividing a complex 

problem into small elements (Lo, 2002; Yagawa, 2011). It is known that the 

finer the mesh, the more accurate the results obtained (Al-Jhayyish, 2014) 

and the more analysis time required. On this note, Hjelmstad, Kim and Zuo 

(1996) investigated issues on mesh construction aspects of modelling 

pavement structures with 3D finite element analyses such as mesh 

refinement, domain extent, computational memory, and element size 

transitions, result shows that there is a great relationship between mesh 

refinement and accuracy of results obtained and good aspect ratio resulted in 
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accurate results and reduce computation time.  More so, on the aspect of 

mesh construction and refinement reports as shown that the more fine the 

meshing is, the more the accuracy in the result generated, consequently, 

researchers concluded that, the mesh should be fine near loading area and 

coarse at distances away from applied load for efficient model (Hjelmstad, 

Kim and Zuo, 1996; Sukumaran, 2004; Peng and He, 2009; Tiliouine and 

Sandjak, 2014). 

3.4.1.2. Material Characterization 

Proper material characterization is another major aspect of FEM-based 

design of pavement for accurate response prediction as the reliability of 

pavement design depends on it (Çöleri, 2007). However, an accurate material 

characterization is the selection or formulation of proper constitutive equations 

to represent the behaviour of the materials under loading (Kim, 2007). 

Qualitative choice is needed in material characterization and it is important 

that the model captures the major features of material behaviour while minor 

features may be ignored in the model (Abaqus Inc., 2003). Furthermore, 

resilient modulus (MR) is one of the important inputs alongside with Poisson’s 

Ratio and it is a primary material property for characterizing all unbounded 

layers and soils in any FEM model for flexible pavement design (Kim and 

Siddiki, 2006; Harold and Von Quintus, 2007; Ji, Siddiki, Nantung, and Kim, 

2014). MR values may be estimated directly from laboratory testing such as: 

Triaxial, Oedometer and Shear test (level 1 input), indirectly through 

correlation with other laboratory/field tests (CBR, Isotropic compression test, 

Uniaxial strain test, Indirect tensile strength and UCS) (level 2 input) or back-

calculated from deflection measurements (level 3 input) (Mallela, Harold, Von 

Quintus, Smith, and Consultants, 2004; Harold and Von Quintus, 2007; 

Eluozo, 2013; Ji et al., 2014). Yet, correlation (level 2) is commonly used, 

based on the fact that level 1 depends on difficult laboratory testing. However, 

further discussions are presented in section 3.4.2 and 3.4.3 for level 2 and 

level 1 respectively, based on the available results for this study. 

Primarily, two material constitutive models are used in pavement structures, 

which are Elasticity; Elastic and Viscoelastic, and Plasticity; Viscoelastic, 

© Central University of Technology, Free State



 

Chapter 3     Numerical Simulation of Flexible Pavement 
  

27 
 

Drucker-Prager (D-P), Mohr-Coulomb (M-C), Modified Cam-Clay model, and 

Modified Cap model to mention but a few (Abaqus Inc., 2003; Ti, Huat, 

Noorzaei, Jaafar, and Sew, 2009; Desai, 2012). Ultimately, a realistic 

constitutive model should better understand the mechanical behaviour of the 

represented material and must be capable of representing material behaviour 

in any relevant spatial situation (i.e. 1-dimensional, 2D and full 3D analysis). If 

the models are not properly selected it may lead to under- or over-design of 

the pavement structure. 

3.4.1.3. Analysis Type, Boundaries and Loading Conditions 

In FEM analysis, there are two major types of analysis procedure (also called 

STEP in Abaqus®) depending on the modelling nature; these analyses are: 

general and linear perturbation. In these procedures, there are forms such as; 

Geostatic, Mass diffusion, Heat transfer, Static, dynamic analysis, etc. 

However, these two analyses’ procedure can be used in pavement analysis. 

The linear perturbation analysis procedure is usually employed for linear 

analysis work, while the general analysis procedure goes with the non-linear 

analysis work (Abaqus, 2013). As a result, the use of linear perturbation for 

non-linear analysis will only consider the linear effects, thus resulting in error. 

Furthermore, boundaries conditioning is of importance and has a significant 

influence on the predicted response (Zaghloul, 1993). Boundary conditions 

are the degrees of freedom at each node in an element. A model can either 

be restrained in vertical, horizontal direction or set of nodes; on the other 

hand, if boundary conditions are not properly selected it may lead to 

generation of excess stresses and strains, both in vertical and horizontal 

direction. In view of these, researchers have suggested the use of fixed 

constraints at the bottom of the element (sub-grade) and roller constraints on 

the vertical boundaries (Peng and He, 2009; Al-Khateeb et al., 2011; 

Rahman, Mahud and Ahsan, 2011; Abed and Al-Azzawi, 2012; Sinha, 

Chandra and Kumar, 2014). Furthermore, various forms of contact interaction 

(mechanical and thermal) occur between the pavement layers. This 

interaction usage was encouraged (Peng and He, 2009) as it improves the 

results. Additionally, most researchers (Peng and He, 2009; Shafabakhsh et 
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al., 2013a; Shafabakhsh et al., 2013b) prefer the use of perfect bond between 

the layer so allow uninterrupted distribution of stresses, strains and 

deflections through the layers, yet this is not the real scenario in reality as full 

bounding is not always achieved (Sutanto, 2009). 

Regarding loading, tyre load representation is another critical factor to be 

considered in pavement simulation. Representing the tyre contact wrongly will 

affect the overall results. Over the years, various methods have been 

suggested in representing the loading in pavement design. Initially, a circular 

representation is used (Al-Khateeb et al., 2011; Sinha et al., 2014; Tiliouine 

and Sandjak, 2014), but at present, various representations have also been 

made in different studies (Peng and He, 2009; Rahman et al., 2011) with 

positive results. Furthermore, in reality, pavement is subjected to a moving 

loading, yet several researchers (Rahman et al., 2011; Shafabakhsh, 

Talebsafa, Motamedi, and Badroodi, 2013b; Sinha et al., 2014) have used 

static load for analysis rather than dynamic load because of the theoretical 

and practical difficulties involved in the analysis when using a dynamic load 

(Kim, 2002). 

In a nutshell, with the great aptitude of FEM to analyse stable problems, time-

dependent problems and those problems with non-linear properties of materials 

(Salehabadi, 2012), a careful balance is required in all the above-mentioned factors 

to meet the demand for solution and memory without sacrificing accuracy 

(Sukumaran, 2004). FEM has been successfully used in the analysis of the major 

forms of failure in pavement structure such as rutting and fatigue cracking at different 

layers (Walubita and van de Ven, 2000; Al-Khateeb et al., 2011; Abed and Al-

Azzawi, 2012), and also used to determine the accurate positioning of geogrid 

materials (Al-Azzawi, 2012), thickness of each layer (Shafabakhsh et al., 2013a; 

Sinha et al., 2014) and the interaction between pavement and its instrumentation 

(Zafar, Nassar and Elbella, 2005; Yin, 2013). 

3.4.2. Correlation Equations in FEM Simulation 

MR is the measure of material stiffness (i.e. stress divided by strain for rapidly applied 

loads). This can be mathematically expressed as the ratio of applied deviator stress 
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to recoverable strain (George, 2004; Pavement Interactive, 2007; Ji et al., 20014). 

Determining MR is of vital importance for any mechanistically based design/analysis 

procedure for pavements because it represents the structural strength of pavement 

layer on through which the thickness design is based (Eluozo, 2013; Ji et al., 2014).  

However, AASHTO recommends that MR be obtained from repeated Triaxial testing, 

but due to the complexity of the test and time required, its results are not readily 

available. In view of this, researchers improvise through the use of correlation 

equations for readily available test results, for example CBR (Heukelom and Klomp, 

1962; Sas, Głuchowski, and Szymański, 2012) and UCS (Little, Snead, Godiwalla, 

Oshiro, and Tang, 2002; Kim and Siddiki, 2006; Rao, Titus-Glover, Bhattacharya, 

and Darter, 2012; Al-Jhayyish, 2014). This material input method is referred to as 

level 2 inputs. Correlation equations help to convert readily available results to 

corresponding MR values. However, results from UCS testing is more common and 

popularly used as its data are readily available (Rao et al., 2012) and a better 

property to predict design MR (George, 2004). As a result, it is a necessity to 

evaluate design MR of stabilized base layer based on the available UCS data. Table 

3.1 suggests few of several equations to estimate MR with results from UCS test. 

Of all the promising equations suggested in the above table, according to Little et al. 

(2002) and Al-Jhayyish (2014), the correlation equations proposed by Barenberg 

(1977) for cement-stabilized soils are in good agreement with the laboratory results. 

However, a cement-fly ash-base layer is considered in the research, yet there is no 

direct correlation equation for it. Considering and validating the two equations by 

Barenberg, it was found the equation for ‘cement-stabilized coarse-grained sandy 

soils’ gives a closer result when compared with the recommended MR for cemented 

materials used in SAMDM 1996 (SANRAL, 2013b). Since the material used in the 

previous research is a G5 material (usually gravel with coarse-grained properties) 

which is stabilized to C3 and C4 by using cement-fly ash as stabilizer (Heyns and 

Mostafa Hassan, 2013). Thus, the correlation equation by Barenberg (1977) for 

‘cement-stabilized coarse-grained sandy soils’ is suitable and will be used to 

estimate the design MR which will serve as the input for material property in the 

software. Largely, careful consideration should be given to the unit of parameters in 

the equation and their conversion to avoid error. 
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Table 3.1. Summary of correlations between the unconfined compressive 

strength and modulus 

Correlation Source of the 

Correlation 

Application Area 

MR (ksi) = 500 + UCS (psi) 
American Coal Ash 

Pavement Manual (1990) 

Lime-cement-fly ash 

stabilized soils 

MR (psi) = 1200 UCS (psi) 
Barenberg (1977) 

 
 

Cement-stabilized 

coarse-grained sandy 

soils 

MR (psi) = 440 UCS (psi) + 

0.28 UCS2 (psi) 
Barenberg (1977) 

Cement-stabilized 

fine-grained soils 

MR (ksi) = 0.124 UCS (psi) 

+ 9.98 
Thompson (1966) Lime-stabilized soils 

MR (psi) = 0.25 UCS2 (psi) 
McClelland Engineers 

(unpublished) 

Lime-cement-fly ash 

mixtures 

MR (MPa) = 2240 UCS0.88 

(MPa) + 110 

Australian Road Research 

Laboratory (1998) 

Cemented natural 

gravel 

 

3.4.3. FEM Material Characterization via Direct Testing Results 

Although, the use of Triaxial, Oedometer and Shear test results as material 

characterization are level 1 input, considered more accurate (Mallela et al., 2004), 

but as a result of these tests’ unavailability, it is considered second in the research 

studies. The use of direct testing results (level 1 inputs) in material characterization 

gives a more realistic constitutive model, which consequently gives a better 

understanding of the mechanical behaviour of the material (in terms of material non-

linearity) (Abaqus Inc., 2003; Mallela et al., 2004). While the level 2 (correlation input 

methods) only gives room for obtaining limited parameters (such as MR, Poisson 

ratio) which therefore, results in the use of linear material characterization and are 

basically considered for preliminary study. Using any of the direct test results 

requires at least one to two laboratory tests for calibration in the FE model. 

Additionally, these test results are used in obtaining the MR and further inputted into 
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various constitutive models in the FE model for the characterization of the material in 

question. 

Over the years, various models have been developed for obtaining MR through 

Triaxial laboratory results. Table 3.2 suggests a few of the several models available. 

Overall, amongst the listed models in Table 3.2, the LTTP model, – a modification of 

the Universal model – is adopted in the NCHRP 1-37A Design Guide (United States 

Department of Transportation – Federal Highway Administration (USDT-FHA) 2014), 

thus will be considered in this study based on its general acceptance. Further study 

can be found on these various models for MR calculation in a report by George 

(2004). However, these models are affected by important parameters such as 

Atterberg limits, grain size distribution, moisture content and density, which are used 

in the calculation of coefficients (k) to form regression analysis (George, 2004; 

Dione, Fall, Berthaud,  and Makhaly, 2013; Ji et al., 2014). Also, the result in terms 

of MR obtained is inputted in constitutive material models in the FE Model. 

As mentioned earlier (section 3.4.1.2), the two constitutive material models are 

Elasticity and Plasticity, but the Plasticity model has got various models which can 

be used as a close representative of non-linearity of geotechnical materials such as 

gravel and soil (Abaqus Inc., 2003; Shafabakhsh et al., 2013a). However, out of the 

various Plasticity models (Viscoelastic, D-P, M-C, Modified Cam-Clay, Modified Cap 

model, etc.), the D-P and M-C Plasticity model had been considered to be a better 

representation for base, sub-base and sub-grade layer materials in pavement. Yet, 

more consideration has been given to D-P because of its capability to model material 

behaviour in high stresses, volumetric shear and strain (Peng and He, 2009; Ti et al., 

2009; Al-Azzawi, 2012; Shafabakhsh et al., 2013a; Maharaj and Gill, 2014) and 

simplicity (Al-Khateeb et al., 2012), therefore, it is considered in this study. 

D-P model is a Plasticity model and a modified version of Mises criteria which is 

approximate to M-C criterion for simulating frictional materials (Abaqus Inc., 2003; 

Peng and He, 2009). In this model, there is a period of purely elastic response, after 

which some material deformation is not recoverable (plastic), thus it should be used 

along with Elasticity models, which makes this model elasto-plastic in nature 

(Abaqus Inc., 2003; Abaqus, 2013; Shafabakhsh et al., 2013a). The D-P model has 

a choice of three different yield criteria, such as: linear, hyperbolic and a general 
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exponent form (Abaqus Inc., 2003; Abaqus, 2013). Nevertheless, the most common 

of the three yield criteria is the exponent form, which provides the most flexibility in 

matching Triaxial test data, such that Abaqus® determines the material parameters 

required for this model directly from the Triaxial test data, thus minimizing relative 

error (Abaqus, 2013). However, D-P is not non-linear, yet according to Rodriguez-

Roa (2003), there is no much difference between non-linear elastic and elasto-plastic 

behaviour, thus, the elasto-plastic model such as D-P can be used as a close 

representation of non-linearity in pavement materials. 

Furthermore, the yield criteria for the general exponent form provide the most 

general yield criteria available which is expressed in equation 3.1. Overall, other 

parameters used in the D-P model – such as: Dilation angle (ψ), Flow-stress ratio (K) 

– can be determined by the M-C model. 

𝐹 = 𝑎𝑞𝑏 − 𝑝 − 𝑝𝑡 = 0…………………………Equation 3.1 

Where: 𝐹 = Yield surface 

  𝑎𝑏 = Constant with respect to stress 

  𝑝 = Mean normal stress 

𝑝𝑡 = Hardening parameter that represents the hydrostatic tension 

strength of material 

  𝑞 = Mises equivalent stress 

Essentially, various research studies have been done on the layers in flexible 

pavement via FEM. Yet granular materials do not feature strongly, as more focus is 

given to designing the asphalt layer and sub-grade condition (Araya, 2011). 

Similarly, only limited work has been done on stabilized base and sub-base layers 

(Peng and He, 2009). Hence, stabilized granular material as a base layer will be 

considered. As earlier mentioned in introduction, FEM can be applied in two ways: 

2D and 3D. However, the use of 3D appears to be the best approach (Wang, 2001; 

Sukumaran, 2004; Rahman et al., 2011; Shafabakhsh et al., 2013a). Nevertheless, 

there are various sources of error in pavement performance predictions and most 

are more difficult to control than the response model (NCHRP 2004). Therefore, a 

reality check through validation of results with field testing or available results is of 

importance. 
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Table 3. 2. Summary of resilient modulus constitutive models (George, 2004). 

S/N Model Source of Model Comments 

1 𝑀𝑅 = 𝑘1 (
𝜃

𝑃𝑎
)

𝑘2

 
Seed et al. (1967) 

(k–θ model) 

This model does not incorporate 
the realistic responses of confining 
and deviator stress in MR 
properties. 

2 𝑀𝑅 = 𝑘1 (
𝜎3

𝑃𝑎
)

𝑘2

 Dunlap (1963) It does not consider the effect of 
deviator stress on the MR. 

3 𝑀𝑅 = 𝑘1 (
𝜎𝑑

𝑃𝑎
)

𝑘2

 
Moossazadeh and Witczah (1981) 

(k-σd model) 

Adequate for cohesive soils but 
does not consider the effect of 
confining stress on MR for clay 
soils. 

4 𝑀𝑅 = 𝑘1𝑃𝑎 (
𝜃

𝑃𝑎
)

𝑘2

(
𝜎𝑑

𝑃𝑎
)

𝑘3

 May and Witczah (1981) 

It describe the nonlinear behaviour 
in Triaxial test by considering the 
effect of shear stress, confining 
stress and deviator stress in terms 
of bulk and deviator stress.  

5 𝑀𝑅 = 𝑘1𝑃𝑎 (
𝜃

𝑃𝑎
)

𝑘2

(
𝜏𝑜𝑐𝑡

𝑃𝑎
)

𝑘3

 
Uzan (1992) 

(Universal model) 

Universal cause of the ability to 
conceptually represent all types of 
soil from pure cohesive to non-
cohesive. 

6 𝑀𝑅 = 𝑘1𝑃𝑎 (
𝜃

𝑃𝑎
)

𝑘2

[(
𝜏𝑜𝑐𝑡

𝑃𝑎
) +1]

𝑘3

 
Yau and Quintus (2002) 

(LTTP model) 

It combines both the stiffening 
effect of the confinement or bulk 
stress.  

Where; MR= Resilient modulus; θ = Bulk stress (σ1 +σ2 +σ3);  Pa = Atmospheric Pressure; σd = Deviator stress; σ3 = Confining stress;   
𝜏𝑜𝑐𝑡 = Octahedral stress (√2

3
σd); ki= Regression coefficient 
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3.5. 2D versus 3D Analysis 

The 2D FEM analysis generally assumes plan strain or axis-symmetric condition in 

the development of the model (pavement structure) utilizing the horizontal and 

vertical (X and Y) dimensions. Comparing this against the layered elastic method, it 

is more practical as it considers material anisotropy, non-linearity and variety of 

boundary conditions, yet the method is challenged by some limitations as it cannot 

accurately capture non-uniform tyre contact and multiple wheel loads (Stoffels, 

Solaimanian, Morian,  and Soltani, 2006; Rahman et al., 2010). In contrast, 3D FEM 

analysis is more of the real-life representation of the pavement structure utilizing the 

horizontal, vertical and depth (X, Y and Z) dimensions – not only that, it has the 

ability of accounting for multiple wheel loads as well as moving wheels (Wang, 

2001). 

Effectively, through the use of 2D FEM analysis programs such as DSC2D, JULEA, 

MICHPAVE, ILLIPAVE and ABAQUS® (NCHRP 2004), investigation of flexible 

pavements’ responses has been done and also utilized for single-wheel load 

analysis (Harichandran, Yeh and Baladi, 1989; Sukumaran, 2004). Al-Khateeb et al. 

(2011) predicted rutting in flexible pavement using 2D FEM: results show that the 

use of linear-elastic models to predict stresses and strains in pavement structures 

can lead to significant errors and rut depth increases with decreasing sub-grade 

strength. Further, Tiliouine and Sandjak (2014) used 2D axis-symmetric in simulation 

of granular materials behaviour on the basis that it can adequately represent the 

granular material non-linearity under various stress conditions. On a comparison 

note, Cho, McCullough, and Weissmann, (1996) present 2D axis-symmetric as a 

good alternative over 2D plan strain and 3D, when traffic load is away from the 

edges, considering the failure of 2D plan strain in calculating the appropriate stress 

distribution and high computation resources of 3D, but it must be noted that axis-

symmetric cannot model moving traffic load only static loading. Likewise, Hua 

(2000), using both 2D and 3D model to predict surface profile under 5000 wheel 

passes, shows that there is no significant difference (< 2 percent) between the two 

models. 

Although, the 2D FEM analysis has been adequate for the study of nonlinear 

analysis, the 3D FEM is believed to be used for more accurate pavement responses 
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(Kim, 2007; Al-Khateeb et al., 2011). Considering this fact, 3D via Abaqus® has 

been used in the study of flexible pavement under spatially varying tyre/contact 

pressure by which 2D is limited (Wang, 2001; Rahman et al., 2011). The 3D-based 

EverStressFE1.0 Software for analysis of flexible pavement was developed by 

Davids (2009), addressing the shortcomings of traditional analysis software 

packages such as EverStress, mePADS, BISAR, or KENLAYER. Further, through 

Abaqus® 3D, Zaman, Pirabarooban, and Tarefder (2003) developed a FEM to 

simulate the laboratory testing of asphalt mixes in asphalt pavement analysis for 

rutting; results show that the speed of moving load has a significant effect on 

predicted rutting. Shafabakhsh et al. (2013a) via Abaqus® presented the influence of 

asphalt thickness on settlement of flexible pavement: an increase in the pavement 

thickness and a decrease displacement value. Also, Shafabakhsh et al., (2013b) 

reported the consistency of results for a 3D model with moving load impact on the 

tensile strain at the bottom of the asphalt layer when compared with that of field 

measured pavement responds, and similarly, Abaza (2007) discovered that cyclic 

and non-linear materials give results close to field measurement results. In 2011, 

Rahman et al., using Abaqus® 3D FEM, study a preliminary research of traffic-

related factors in the design of flexible pavement under specific material properties, 

model geometries, etc. 

Conclusively on 3D, Peng and He (2009) simulated the design and construction 

process of flexible pavement with cement-stabilized base layer using ADINA FEM 

software. However, the construction process has little effect on the outcome of 

results, yet the use of 3D is encouraged, based on its ability for layer-contact 

modelling. As mentioned earlier, the use of 3D is a drawback because it’s difficult, 

high demand in data preparation and computation time (Wang, 2001; Zafar et al., 

2005; Al-Khateeb et al., 2011). In view of this, through Abaqus®, Sukumaran (2004) 

tried to discover a less computationally intensive 3D model that would still maintain 

accuracy; as a result, the use of 3D symmetric model was presented as a suggestion 

on mesh construction, mesh refinement and element aspect ratio. Besides, the 

newer versions of the 3D software have been improved by making it user-friendly 

and interactive and overall increased speed in the analysis time. 
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3.5.1.  Motivation for 3D FEM 

Among the three models of representation in FEM analysis (2D plan strain, 2D axis-

symmetric and 3D), the 3D FEM model is used to achieve the aim of this research 

work. According to the above review, the following are the tangible reasons why 3D 

FEM is used: 

 Its ability to capture the effect of non-linear materials or the effect of 

combination of loads (Abaza, 2007; Shafabakhsh et al., 2013b). 

 Its capability to account for multiple wheel load as well as moving wheel load 

(Wang, 2001; Zaman et al., 2003). 

 

3.5.2.  Comparative Study on FEM Software 

Quite a number of FEM software programs are available and many have been found 

useful for pavement design purposes. Basically, in pavement design, there are two 

major categories of FEM software, the general purpose and the specific purpose 

software (NCHRP 2004). The general purposes are those with a wide range of 

applications aside from pavement design, in areas such as medicine, lamella 

mechanics, hydrodynamics, soil mechanics, structural mechanics; examples are 

Abaqus®, ADINA, ANSYS and DYNA3D, while the specific purposes are developed 

particularly for analysis of pavement design. Examples are EverStressFE, ILLI-

SLAB, ILLI-PAVE and MICH-PAVE. Various successes have been recorded through 

the use of the aforementioned software, yet the general purpose is more powerful 

and capable of conducting 3D non-linear dynamic analysis perfectly. Additionally, it 

provides optimum flexibility to manipulate a variety of FE models with sophisticated 

geometry and boundary conditions (Wu, Chan and Young, 2011). Further, NCHRP 

(2004) did a comparative study on the software regarding issues of efficiency issues 

and operational issues; in that study, Abaqus® is considered as a potential 

candidate based on its technical capabilities and its extensive past usage in research 

oriented pavement analysis, but it was disregarded because of its high licensing 

costs and restrictive licensing terms. Yet, Abaqus® has wide applications in the 

aspect of pavement design; this software is introduced and used in this study. 
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3.5.3.  Abaqus® as FEM Software 

Abaqus®, a general purpose and commercial FEM modelling software, has widely 

been applied for pavement analysis. As mentioned above, in Finite element 

simulation (section 3.4), it contains three major process stages: pre-processing, 

processing and post-processing. In 1990, Chen Marshek, and Saraf, 

comprehensively studied various pavement analysis programs and showed that the 

results from the Abaqus® program were comparable to those from other programs. 

Also, from the above review (section 3.4.3 and 3.4.5) on FEM it can be seen that 

Abaqus® has been preferred above others. 

Further, Abaqus®/CAE is a complete Abaqus® environment that provides a simple, 

consistent interface for creating, submitting, monitoring and evaluating results from 

Abaqus®/Standard, Abaqus®/Explicit simulation and others (Abaqus, 2013). It is 

divided into modules and in each module logical representation of the modelling 

process can be defined such as defining the geometry, generating a mesh and 

assigning material properties, etc. The model built in Abaqus®/CAE generates an 

input file to submit to the Abaqus®/Standard or Abaqus®/Explicit analysis product. 

The analysis product performs the analysis, sends information to Abaqus®/CAE to 

allow the progress of the job to be monitored, and generates an output database. 

Finally, the visualization module of Abaqus®/CAE is used to read the output 

database and view the results of the analysis (Abaqus, 2013). 

Furthermore, Abaqus® is a modular code consisting of a library of over 300 different 

element types and a comprehensive material model library with materials ranging 

from linear to nonlinear and isotropic to anisotropic behaviour, which are useful for 

pavement analysis and also allows for the introduction of new materials through its 

user-defined sub-route (Rahman et al., 2011; Abaqus, 2013). Also, it is capable of 

analysing a variety of problems (linear, nonlinear, static, dynamic, structural and 

thermal) (Britto, 2010). Overall, ABAQUS® usage is enhanced by its friendly and 

interactive user-guide which is available in PDF and HTML version. 

Motivation for Abaqus® 

ABAQUS® will be used in this research because of its capabilities in solving 

pavement engineering problems: 
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 Material modelling as linear and nonlinear elastic, viscoelastic, and elasto-

plastic in 2D and 3D analysis 

 Static, harmonic dynamic and transient dynamic loading simulation  

 Contact/Interface modelling with friction 

 Cracking propagation modelling (Abaqus, 2013) 

 Analysis which involve temperature gradient (Sukumaran et al., 2004; Britto, 

2010; Shafabakhsh et al., 2013a). 

 

3.6. Failure Criteria in Numerical Simulation 

Failure criteria based on fracture mechanics have been developed for pavement 

layers, with the aim of enhancing design to provide sufficient resistance to pavement 

failure (Mamlouk and Mobasher, 2004). This analysis requires models which relate 

the output from FEM or elastic-layered analysis (stress, strain, or deflection) to 

pavement behaviour in terms of performance, cracking, rutting, roughness and life 

span (Ekwulo and Eme, 2009). It is one of the empirical portions of M-E design and 

also known as damage models (SANRAL, 2013b). Equations used for these models 

are derived from observation and performance of pavement with relation to observed 

failure and initial strain under various loads, thereby computing the number of 

loading cycles to failure (Pavement Interaction, 2008). Various types of failure criteria 

exist depending on the type of pavement layer in question, such as: Asphalt surface 

– Fatigue cracking; Unbound granular base and sub-base layer − Permanent 

deformation; Cemented base and sub-base layers − Crushing failure, Effective 

fatigue and Permanent deformation; Sub-grade – Permanent deformation or rutting. 

Nonetheless, two are widely recognized: fatigue cracking in asphalt and deformation 

in the sub-grade (Pavement Interaction, 2008; Ekwulo and Eme, 2009; SANRAL, 

2013b). 

In South Africa, failure analysis has been checked through damage models 

suggested by SAMDM (1996), but according to SANRAL (2013b), (1996) SAMDM 

fatigue transfer functions for asphalt are not that reliable and permanent deformation 

transfer functions for granular materials are on the conservative side. As a result, the 

SAMDM damage model is out-dated (SANRAL, 2013b), therefore, it is appropriate to 

consider other damage models, such as: Shell (Huang, 2004), Transport and Road 
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Research Laboratory, Asphalt Institute (Asphalt Institute, 1982), etc. However, the 

fatigue criterion in the M-E approach is centred on limiting the horizontal tensile 

strain at the bottom of the asphalt layer due to repetitive loads on the pavement 

surface. If this strain is excessive, it will result in cracking (fatigue) of the layer 

(Ekwulo and Eme, 2009), and the relationship is given in the equation 3.2 by Asphalt 

Institute (Asphalt Institute, 1982), which is commonly accepted. Permanent 

deformation can initiate in any layer of the structure, making it more difficult to predict 

than fatigue cracking (Pavement Interaction, 2008). However, critical rutting can be 

attributed mostly to a weak pavement layer (sub-grade). This is typically expressed 

in terms of the vertical compressive strain at the top of the sub-grade layer and is 

given by Asphalt Institute by equation 3.3. 

Nf = 0.0796(εt)−3.291(E)−0.854   ……………………… Equation 3.2 

Where:  Nf = Number of repetitions for fatigue cracking 

εt  = Tensile strain at the bottom of the asphalt surface in microstrain 

E = resilient modulus of asphalt in psi 

Nr = 1.365x10−9(Ec)−4.477 ……..…………………….. Equation 3.3 

Where:  Nr = Number of repetitions for sub-grade rutting failure 

  Ec = Compressive strain on top of the sub-grade.  

Overall, the failure analysis models are used to define the point at which failure 

occurs in a pavement by determining the incremental damage. 

3.7. Summary 

Chapter Three of this dissertation presented reviews on numerical simulation of 

flexible pavement. Away from the empirical method of design, numerical simulation 

uses the level of stress, strain and deflection in the design of pavement structure. 

However, there are two major approaches in numerical design of pavement, but the 

effectiveness of FEM in predicting the stress and strain gives it an edge over the 

layered elastic method. 3D FEM has its own challenges of input parameters and 

computational time, but reviews have shown that it is the more preferred of the two 

FEMs because of its ability to design more complex problems relating to the actual 

conditions of pavement structures.  

© Central University of Technology, Free State



  

Chapter 3     Numerical Simulation of Flexible Pavement 
  

40 
 

Furthermore, various material characterization inputs (level1 and 2 inputs) were 

explored and thereafter, failure criteria in numerical simulation were considered and 

the Asphalt Institute model for both fatigue and rutting in terms of number of 

repetitions before failure would be used in this study. Abaqus® provides user 

flexibility and as a result; it has wide attention in pavement design. Therefore, based 

on the useful information from this chapter, the following study methods will be 

presented in the next chapter: 

 Development of the geometry model for representation/description of a fly-

ash- stabilized base layer in a typical South African road through Abaqus®; 

 Appropriate selection of a material model for the accurate characterization of 

the stabilized base layer; and 

 Appropriate selection of boundary conditions and loading analysis that 

suitably represent the already available laboratory results. 
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CHAPTER 4: DESIGN AND SIMULATION  

 

4.1. Introduction 

This chapter establishes detail on the steps for development of FEM and its analysis. 

Likewise, it presents a description of two FE models in line with the set objectives 

and a comparative analysis of the laboratory and FEM results. The first model was 

used to validate the efficiency of using 3D FEM over axisymmetric in the design of 

pavement structure; it was also used to examine the structural response of a 

cement-fly ash-stabilized base layer in terms of the stresses and strains on the top of 

the sub-grade, while the second model was developed to evaluate the protective 

importance of surface layer over stabilized base layer by estimating the tensile strain 

at the bottom of the surface layer and the surface of the sub-grade. Thirdly, a 

comparative analysis of the non-linear and linear material characterization will be 

undertaken. Lastly, the results obtained from FEM analysis will be compared with the 

already available laboratory empirical results for validation. Overall, all the models 

were developed using Abaqus® 6.13 software. 

4.2. Development of Flexible Pavement Model 

Abaqus® analysis modules starts with a batch program, with the objective of 

assembling an input file which describes a problem so that Abaqus® can provide an 

analysis (Liang, 2000). The input file for Abaqus® contains model data and history 

data. Model data defines a FEM in terms of geometry, element properties, material 

definitions and any data that specifies the model itself (Liang, 2000; Britto, 2010; 

Abaqus, 2013). Further, the history data define what happens to the model and the 

sequence of loading for which the model’s response is sought, including the 

procedure type, control parameters for time integration or non-linear solution 

procedures, loading and output request (Liang, 2000; Britto, 2010; Abaqus, 2013). 

Data can be defined by the user with relevant option blocks provided in the modules 

(Abaqus, 2013). 

Applying the file, Abaqus® automatically controls the time step and increments of the 

load and records the message and data in all the analysis procedures according to 
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data defined in the file; afterwards the results are obtained by using Abaqus®/post. 

Overall, there are two basic methods of inputting data into Abaqus® software 

(Abaqus, 2013) which are 

 Input file usage 

 Abaqus®/CAE usage 

 

However, of these two input methods, Abaqus®/CAE usage is preferred because of 

simplicity in terms of not including code writing, so it is used in this study. The 

general steps for the development of flexible pavement through Abaqus®/CAE 

usage input method are summarized in Figure 4.1 and briefly explained thereafter. 

 

4.3. Abaqus®/CAE Usage for Flexible Pavement Model 

In Abaqus®/CAE usage, there is no particular order for modelling of a member in 

Abaqus®, but in any FEM analysis the input (in terms of geometry) are basically 

considered first. Since a conventional flexible pavement which contains surface-, 

base- and sub-grade layer is used in this study; the use of this 3-layer pavement 

system is to properly understand the behaviour of the stabilized base layer without 

the interference of other layers such as a sub-base. The part module is used to input 

the pavement layers’ geometries by creating a 2D sketch which is extruded in 3D, 

with other features such as partitioning, generating meshes for parts, creating sets 

and assigning of names to all members. On the material properties module, the 

characterization of each part, such as surface, base and sub-grade layer, are 

inputted; thereafter, via the assembling and steps module, the parts are put together 

to form a composite conventional pavement structure. The step module is used to 

capture changes in the loading and boundary conditions with respect to the parts’ 

interaction with each other. 

Various forms of contact interaction (mechanical and thermal) occur in pavement, 

thus the interactions and load module are used to define the interface in line with the 

already created steps in the step module; the load defines the transferred load 

(traffic load) and boundary condition in an attempt to represent the on-site condition 

of the pavement. Lastly, job module in Abaqus is used to submit, analyse and 
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monitor the created pavement model and afterwards the results are viewed in the 

visualization module. Conclusively, in using Abaqus® software, careful attention 

should be given to all the modules to avoid warnings and prevent errors. 

4.4. 3D versus Axisymmetric 

4.4.1. Description 

This FEM is a scenario of unpaved pavement structures which are developed for a 

two-layered system (base and sub-grade layer) with the aim of achieving the set 

objectives which are; 

1. To evaluate the efficiency of using 3D FE model for design of flexible 

pavement. 

2. To determine the structural response of stabilized base layers in flexible 

pavement system due to traffic loads using 3D FE model. 

 

The scenario consists of 16, 18, 20 and 22 percent fly ash with 1 percent cement 

stabilized base layer over a sub-grade and would be modelled in axisymmetric and 

3D FEM. In this model, the thickness of the sub-grade layer is kept constant at a 

specific depth (2000 mm), while the base layer thickness changes over a range (100 

mm – 500 mm). Comparative analyses of the results obtained from axisymmetric 

and 3D FEM would be undertaken for the structural response of the base and sub-

grade layer in terms of: 

1. Compressive vertical stresses/strains within the base layer 

2. Compressive vertical stresses/strains at the top of the sub-grade layer. 

 

4.4.2. Model Geometry and Material Properties 

The axisymmetric model is basically 3000 mm radius with a total depth that varies 

based on the thickness of the base layer, which changes over a range of 100 mm – 

500 mm (Figure 4.2). This geometry, particularly the radius (breadth), is similar to 

that used by Al-Jhayyish (2014). However, sub-grade depth is infinite, but for the 

purpose of boundary conditioning it is assumed to 2000 mm (Rahman, 2011), since 

there is no deformation after a certain depth. On material properties, level 2 input 
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methods (section 3.4.1.2) would be used and material properties of the stabilized 

base layers were obtained from laboratory testing (UCS) conducted by Heyns and 

Mostafa Hassan (2013). 

The UCS results used were those of 16, 18, 20, 22 percent fly ash with 1 percent 

cement, where AFRISAM was the cement and Pozzfill as the fly ash (Table 4. 1) 

(Heyns and Mostafa Hassan, 2013). These material properties are obtained using 

correlation formula by Barenberg (1999) (section 3.4.2) and other material properties 

are selected from SANRAL (2013b), as presented in Table 4. 1 and 4.2. All material 

properties are assumed to be linearly elastic for simplicity as non-linear properties 

require many input parameters which are not readily available (Al-Jhayyish, 2014). 

The 3D FE model utilizes 3000 mm length by 3000 mm breadth with the total depth 

varying based on the thickness of the base layer as in the axisymmetric model 

(Figure 4.3). This geometry is similar to that used by Ahmed (2006), with the aim of 

avoiding edge error when loaded. Materials properties are all assumed to be linearly 

elastic, thus a static linear perturbation analysis procedure type will be used. These 

material properties are presented in Table 4. 1 and Table 4.2; these data were 

utilized to define the material properties of the model layers in ABAQUS®. 
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Figure 4.1. General steps for the development of flexible pavement 

(Abaqus®/CAE usage) 
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Figure 4.2. Axisymmetric model geometry of the stabilized base and sub-grade 

layer with meshing, load and boundary conditions 

 

4.4.3. Model Mesh and Element types 

In the axisymmetric model, 4-node bilinear axisymmetric quadrilateral elements 

(CAX4R) with reduction integration were used. The stabilized base and sub-grade 

layer were seeded at 0.025 m at the loading area because displacement gradients 

are higher in this region, while other areas were seeded at 0.1 m; as a result, 

meshes are fine in/near loading area and coarse at distances away from applied 

load for efficient modelling, as suggested by Peng and He (2009) and Tiliouine and 

Sandjak (2014) (Figure 4.2). The total number of elements range from 888 – 1480. 

For the 3D FEM model, 8-node solid continuum elements (C3D8R) with reduction 

integration were used; similarly, the stabilized base and surface layer were seeded 

as in axisymmetric model, overall the total number of elements range from 19443 – 

36075 (Figure 4.3). 
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Figure 4.3. 3D model geometry of the stabilized base and sub-grade layer with 

meshing, load and boundary conditions 

4.4.4. Boundary Conditions and Loading  

The pavement layers were assumed to bond together perfectly; although in reality 

full bond is not always achieved (Sutanto, 2009) but proper distribution of stresses, 

strains and deflections between the layers, it is assumed to be perfectly bonded. 

Also, the models are fixed at the bottom of the sub-grade and roller constraints on 

the vertical boundaries (i.e. the model can move only in y-direction) (Figure 4.2 and 

4.3). On loading (section 3.4.1.3), a static standard equivalent single-axle load with 

dual tyres was used in these models, since Wu et al. (2011) specified that the 

maximum stress at a specific point in the pavement occurs when the wheel load is 

directly above it, while the stress can be assumed at zero when the load is quite far 

from that point. In an axisymmetric model, the breadth of tyre load (224 mm) 

proposed by Huang (2004) (Figure 4.2) was used while, in the 3D model contact 

area of 72557 mm2 (Figure 4.3) with a rectangular area of contact was placed above 

the stabilized layer (Huang, 2004; Al-Jhayyish, 2014). These loads were standard 

equivalent single-axle load (80 kN) with dual tyres and applied uniformly with a 
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pressure of 0.65 MPa in accordance with South African standard (TRH 4, 1996; 

Theyse et al., 2011). Conclusively, this analysis will be run as a static linear 

perturbation analysis procedure type. 

Table 4. 1. Material properties of the stabilized base layer (obtained from 

Heyns and Mostafa Hassan, 2013) 

Stabilized Base 

(percent Flyash+1 

percent Cement) 

Material code 

(Colto, 2008) 

USC 

(Kpa) 

Modulus of 

Elasticity 

(MPa) 

Poisson’s 

Ratio 

16 C3 3310 3972 0.35 

18 C3 2133 2560 0.35 

20 C3 3830 4596 0.35 

22 C3 2298 2758 0.35 

 
Table 4.2. Material properties of other pavement layers 

Layer Material code 

(Colto, 2008) 

Modulus of 

Elasticity (MPa) 

Poisson’s Ratio 

Surface AG 3000 0.44 

Granular Base G5 200 0.35 

Sub-grade G10 45 0.35 

4.5. Paved Stabilized Base Layer 

4.5.1. Description 

A scenario of paved flexible pavement is developed for a three-layered system of the 

pavement structure, which are: asphalt surface, 18 percent fly ash with 1 percent 

cement stabilized base, and sub-grade layer. The 3D FEM was used in the 

development of these models. The thicknesses of the stabilized base and sub-grade 

layer were kept constant at a specific depth in accordance with results from 3D vs 

axisymmetric case (300 mm and 2000 mm respectively). Here, the protective 

importance of surface layer over stabilized base layer will be evaluated in terms of: 

1. Surface layer deflection; 

2. Tensile strain at the bottom of the surface layer;  
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3. Compressive vertical stresses/strains within the base layer; and 

4. Compressive vertical stresses/strains at the top of the sub-grade layer. 

 

4.5.2. Model Geometry and Material Properties 

A 3D model with 3000 mm length by 3000 mm breadth and the total depth varying 

based on the thickness of the surface layer over a range of 25 mm–100 mm was 

developed. This geometry is also similar to that used by Ahmed (2006), with the aim 

of avoiding edge error when loaded. The material properties and analysis procedure 

type are similar to the above, with properties for 18 percent fly ash with 1 percent 

cement stabilized as the material for the base layer (Table 4. 1). 

4.5.3. Model Mesh and Element type 

In order to keep the size of the problem manageable in terms of analysis time and 

storage capacity (Saad, Mitri and Poorooshasb, 2006), the meshing is fine in/near 

loading area and coarse at distances away from applied load; this is similar to those 

in the 3D vs axisymmetric case. Additionally, 8-node solid continuum elements 

(C3D8R) with reduction integration were used; as they have the capability of 

representing large deformation and material nonlinearity. 

4.5.4. Boundary Conditions and Loading  

Similarly, pavement layers were also assumed to bond together perfectly and the 

models are fixed at the bottom of the sub-grade and roller constraints on the vertical 

boundaries (Figure 4.3) (section 4.4.4). Here, a rectangular contact area of 72 557 

mm2 was placed on the asphalt surface layer and was applied uniformly with a 

pressure of 0.65 MPa (Theyse et al., 2011). 

4.6. Non-Linear versus Linear Material Characterization 

A comparative analysis of the two material characterizations input in the FE model is 

undertaken here. Although, the linear material characterization method has been 

used in the first two analyses, which is justifiable by the fact that results are easily 

available. In this analysis, a scenario (Non-Linear Material model) of paved flexible 
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pavement is developed for a three-layered system of the pavement structure: asphalt 

surface, 18 percent fly ash with 1 percent cement stabilized base, and sub-grade 

layer. The model geometry, model mesh and element type, and boundary conditions 

and loading are the same as in the paved stabilized base layer (section 4.5), with the 

introduction of non-linear material characterization for the stabilized base layer in a 

static-general analysis procedure, so as to consider the non-linear effect.  

As mentioned in the review (section 3.4.3), LTTP model (Yau and Quintus, 2002) 

which was adopted in the NCHRP 1-37A Design Guide (USDT-FHA 2014) was used 

in obtaining the MR (1301 MPa) for 18 percent fly ash with 1 percent cement-

stabilized base layer, parameters such as (bulk stress = 1854kPa) are obtained from 

Heyns and Mostafa Hassan (2013) and regression coefficients (k1 = 3000psi and k2 = 

0.5) suggested by AASHTO (as cited in USDT-FHA 2014). Coupled with the elastic 

model, D-P plasticity model in Abaqus was used for the material characterization to 

be non-linear. In the D-P model, the shear criterion is selected to be ‘exponent form’ 

so as to allow for the use of sub-option (Triaxial test data) (Appendices A1 – C1) and 

the dilation angle is assumed to be 15o. Furthermore, to validate the results obtained 

from D-P model, a quick M-C model will be run in the model as well. Thereafter, the 

results obtained will be compared with those obtained for linear material 

characterization. 

4.7. Comparative Analysis 

The fourth objective of this dissertation is to compare laboratory-test empirical results 

already available against that of 3D FEM. A comparative analysis of the empirical, 

multilayer linear elastic software (mePADS) (Theyse and Muthen, 2000) and 3D 

FEM (Non-Linear and Linear Material) results for a paved three-layered system with 

18 percent fly ash plus 1 percent cement stabilized base layer is carried out. 

However, estimating the structural capacity of flexible pavement through empirical 

methods can be undertaken by the following: Pavement Structural Number, dynamic 

cone penetrometer, 1993 AASHTO Structural Number (SN), etc. (SANRAL 2013b). 

Nevertheless, the use of 1993 AASHTO SN is widely accepted, yet it has its own 

disadvantages based on its assumptions (Pavement Interactive, 2008; SANRAL, 

2013b). This method is based on the results of the AASHTO road test executed in 
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Ottawa, Illinois during the late 1950s to early 1960s and can be used for new and 

rehabilitation pavement design. AASHTO SN empirical method is presented by 

equation 4.1: 

log10(SC) =  ZR X So + 9.36 X log10(SN + 1) − 0.2 +  
log10(

∆PSI

4.2−1.5
)

0.40+ 
1094

(SN+1)5.19

+

2.32 X log10(MR) − 8.07 ………………………….………………. Equation 4.1 

Where: SC = Predicted number of 80 kN ESALs 

 ZR = Standard normal deviate 

 So = Combined standard error of the traffic and performance predictions 

 SN = Structural number of the total pavement thickness 

∆PSI= Difference between the initial (PSI0) and terminal (PSIt) serviceability 

indices 

MR = Sub-grade resilient modulus (in psi) 

SN = a1D1 +  a2D2m2 + a3D3m3 ….     ………………………..…..Equation 4.2 

Where: SN = Structural number of the total pavement thickness  

a = ith layer coefficient (per inch) (Table 4.3) 

D = ith layer thickness (inches) 

m = ith layer drainage coefficient; assumed = 1.0 

 

Table 4.3. Layer coefficients (SANRAL, 2013b) 

 

Materials Ranges for South African Materials 

Asphalt concrete 0.20 – 0.44 

Crushed stone 0.06 – 0.14 

Cemented-treated material 0.10 – 0.28 

Bituminous-treated material 0.10 – 0.30 

 

Using the above equation, the structural capacity (in terms of ESALs) of flexible 

pavement is calculated. To use this equation, the following input assumptions were 

extracted from AASHTO design procedure (1993), Pavement Interactive (2008), and 
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SANRAL (2013b); the pavement was assumed to be a category B with the following 

characteristic: reliability = 90 percent (ZR = 1.282), So = 0.45, total equivalent traffic 

loading = 0.3 – 10 X 106, PSI0 = 4.5 and PSIt = 2.0 and MR = 45 MPa (Table 4.2). 

Careful consideration should be given when using this equation as it is in imperial 

units. Results obtained for empirical method (AASHTO SN) were compared with 

those obtained for the 3D model in paved stabilized base layer. Furthermore, the use 

of mePADS (see Appendices A2 – F2 for inputs data) serves as a check for the 

performance of the 3D models. mePADS is mechanistic pavement design software, 

which combines a stress-strain computational engine with pavement material models 

and it’s capable of analysing pavement for bearing capacity. mePADS generates 

outputs inform of pavement layer lives and contour plots of stresses and strains 

(CSIR Built Environment, 2009). Although, there are various multilayer linear elastic 

software but mePADS was selected based on its availability and suitability for South 

Africa pavement design. Further, table 4.4 presents brief comparison between 

Abaqus® and mePADS. Yet, recent report states that mePADS is currently been 

updated since it works with the SAPDM principle which is currently under review 

(CSIR Built Environment, 2009; SANRAL, 2013b) (see Section 3.3 and 3.6). 

 

Table 4. 4 Comparison between Abaqus® and mePADS 

Comparison Criterial Abaqus mePADS 

Analysis Method 3D and 2D 2D-Axisymmetric 

Developer Abaqus Inc. CSIR 

Development Status Actively Developed Under Review 

Loading Type Capacity Static and Dynamic Static 

Operation Techniques FEM Multi-layer Elastic Method 

Pavement Layer Non-limited 5 layers maximum 

Problem Type Capacity Linear, Non-linear, etc. Linear only 

Required Disk Space Very Small Required A lot of Space Required 

Time of Analysis 
Seconds to Hours 

(analysis dependent) 
Seconds 

Year of Originally Released 1978 2000 
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4.8. Summary 

In this chapter, four different basic scenarios were developed to achieve the set 

objectives of this study. These scenarios are: axisymmetric versus 3D, paved 

stabilized base layer, non-linear versus linear material characterization, and a 

comparative analysis of empirical and 3D FEM results, and a check by mePADS 

software. Essentially with these scenarios the following will be achieved: 

1. The efficiency of using 3D FEM for design of flexible pavement over 

axisymmetric and the structural response of stabilized base layer in flexible 

pavement; 

2. The structural response effect of asphalt layer over stabilized base layer; 

3. Efficiency of non-linear material characterization over linear; and 

4. Benefits of 3D FEM design for flexible pavement over empirical methods. 
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  CHAPTER 5: RESULTS AND DISCUSSION 

 
5.1. 3D versus Axisymmetric Results 

This model was employed to study the efficiency of using the 3D model for design of 

flexible pavement and the effect of unpaved stabilized base layer thickness on the 

vertical compressive strain and stress at the top of the sub-grade. Firstly, from Figure 

5.1 and 5.2, it was observed that the addition of stabilizer to natural G5 material 

decreases the vertical compressive strain and stress at the top of the sub-grade 

layer. On the other hand, the vertical compressive strain and stress at the top of the 

sub-grade layer decrease with increase in the thickness of the stabilized layer for 

axisymmetric model (Figure 5.1 and 5.2). It was observed that the increase in the fly 

ash percentage was added, which resulted in an increase of the modulus of elasticity 

of the base contributing to the reduction of vertical strain and stress at the top of the 

sub-grade layer. Thus, increase in the modulus of elasticity of a layer reduces the 

vertical strain and stress in the underneath layer. Similarly, the vertical compressive 

strain and stress at the top of sub-grade layer decrease with the stabilized layer 

thickness increase in 3D model. However, the results obtained from 20 percent fly 

ash-stabilized base layer shows better results when compared with others; this 

results from the high modulus of elasticity of the 20 percent stabilization. However, 

considering the economical aspect and the fact that beyond 20 percent fly ash 

strength starts to decrease, thus, 18 percent fly ash is considered best and 

economical (Figure 5.1 and 5.2). However, it is recommended that a lower 

stabilization percentage (10 percent–15 percent) should be experimented. Secondly, 

comparing the results obtained from axisymmetric and 3D model for 18 percent fly 

ash-stabilized base (Figure 5.3 and 5.4); results show that the 3D model is more 

efficient, as vertical strain is centralized in the model against that of the axisymmetric 

which tends to diverge toward a side of the model (Figure 5.5), which is far from 

reality and overall vertical strains at the sub-grade are smaller. This implies that 

numbers of load repetitions will be very small for axisymmetric (4.92 x 103) when 

compared with that of 3D (1.30 x 106) and ASSHTO SN (11.54 x 106) results, taking 

300mm stabilized base layer as an example. Thus, the axisymmetric model tends to 

under-design, which is not economically wise. In both models the stabilized base of 
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100 mm generated excess strain and stress; this shows that the use of thinning 

stabilized base layer would quickly result in pavement failure. 

Furthermore, sub-grade rutting failure criteria analysis (section 3.5) using Asphalt 

Institute model equation 2 (section 3.5) (Asphalt Institute 1982) for 18 percent fly 

ash-stabilized base layer are presented in Table 5.1. The 3D model shows better 

results, as it is obvious that using a 100-mm stabilized base layer would initiate 

permanent deformation in the sub-grade layer under some loadings, such as 2.57 

load repetitions against the result from axisymmetric model (62.6 number of load 

repetitions). Thus using thinning stabilized base layer should not be encouraged and 

overall, proper curing of stabilized base is necessary. Additionally, the 3D model 

shows an increase in the number of load repetitions to failure for 200 mm–500 mm 

thickness of base layer over that of axisymmetric model, implying that axisymmetric 

tends to under-design for deep thickness and over-design for thin thickness. 

However, using 300-mm stabilized base layer thickness against 100-mm increases 

the capacity of the structure by approximately 100 percent. 

 

Figure 5.1. Effect of stabilized base layer thickness on vertical compressive 

strains on the top of sub-grade (Axisymmetric model) 
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Figure 5.2. Effect of stabilized base layer thickness on vertical compressive 

stress on the top of sub-grade (Axisymmetric model) 

  

Figure 5.3. Effect of stabilized (18 percent fly ash + 1 percent cement) base 

layer thickness on vertical compressive strains on top of sub-grade 

(Axisymmetric and 3D model) 
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Figure 5.4. Effect of stabilized (18 percent fly ash + 1 percent cement) base 

layer thickness on vertical compressive stress on top of sub-grade 

(Axisymmetric and 3D model) 

 

Figure 5. 5 Contour plots showing deformation of vertical compressive strain 
at the top of sub-grade (A- 3D Model and B- 2D Model) 
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Table 5.1. Rutting failure analysis based on Asphalt Institute response model 

(1982) for Axisymmetric and 3D model 

Rutting Criterion 

Base Layer 

Thickness 

(mm) 

Vertical Strain 

Ԑc (10-6) in 

Sub-grade 

(3D) 

No. of 

Repetitions to 

Failure Nr (3D) 

Vertical Strain 

Ԑc (10-6) in Sub-

grade (2D) 

No. of 

Repetitions to 

Failure Nr (2D) 

100 8481 2.57 4155 62.6 

200 999.9 36.8 x 103 2276 0.9 x 103 

300 451.0 13.0 x 105 1568 4.9 x 103 

400 272.7 12.4 x 106 1228 14.7 x 103 

500 187.9 65.6 x 106 1039 31.0 x 103 

5.2. Paved Stabilized Base Layer Results 

The protective importance of surface layer over stabilized base layer is evaluated by 

the paved stabilized base layer model. On surface deflection, it can be seen from 

Figure 5.6; that asphalt layer-deflection decreases with an increase in thickness, 

which is related to the conclusion in a study by Shafabakhsh et al. (2013a). The 

conclusion was that increase in asphalt layer thickness reduces the surface 

deflection and the other layer. Similarly, vertical compressive stress/strain at the top 

of the sub-grade layer compared with the unpaved also decreases in the same 

manner (Figure 5.7 and 5.8). However, the use of 50 mm thickness of asphalt is 

recommended in developing countries for economic reasons (Araya, 2011). 

Similarly, the tensile horizontal strain at the bottom of the surface layer (Figure 5.9) 

shows a decrease: quite the reverse for 100 mm thickness, as there was an increase 

in strain; this implies high probabilities for bottom-up fatigue cracking to occur with 

increase of asphalt surface thickness over a stabilized base layer. Additionally, the 

stabilized base layer-vertical strain increases initially and tends to decrease on 100 

mm thickness of asphalt (Figure 5.10); this implies that an increase in asphalt layer 

has a significant effect on stresses and strains generated in all layers of flexible 

pavement. 
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Figure 5.6. Effect of asphalt layer thickness on surface deflection over a 

stabilized base layer (3D Model) 

 

Figure 5.7. Effect of asphalt layer thickness on vertical compressive strains on 

the top of sub-grade (3D Model) 
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Figure 5.8. Effect of asphalt layer thickness on vertical compressive stress 

within stabilized base/on the top of sub-grade (3D Model) 

 

Figure 5.9. Effect of asphalt layer thickness on tensile horizontal strain at the 

bottom of asphalt layer (3D Model) 
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Figure 5.10. Effect of asphalt layer on vertical compressive strain within 

stabilized base layer (3D Model) 

Table 5.2. Fatigue and rutting failure analysis based on Asphalt Institute 

Response Model (1982) for 3D model 

Asphalt Layer 

Thickness 

(mm) 

Fatigue Criterion Rutting Criterion 

Tensile Strain 

Ԑt (10-6) 

bottom of 

Asphalt Layer 

No. of Load 

Repetitions 

to 

Failure Nf 

Vertical 

Strain 

Ԑc (10-6) in 

Sub-grade 

No. of Load 

Repetitions 

to 

Failure Nr 

25 31.94 7.6 x 108 376.60 2.92 x106 

50 27.53 12.39 x 108 325.50 5.60 x 106 

75 23.08 22.14 x 108 286.70 9.89 x 106 

100 35.60 5.32 x108 253.90 17.04 x106 

 

According to the model suggested by Asphalt Institute, the capacity in terms of 

number of load repetition before failure is calculated for the paved stabilized base 

layer pavement. From Table 5.2, it was observed for both asphalt fatigue and sub-

grade rutting; that increase in thickness of asphalt surface layer increase the number 
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increase load repetition (17.04 x106) before rutting failure, yet the fatigue failure in 

terms of load repetition (5.32 x108) decreases at this thickness. Thus, increase in the 

asphalt surface layer does not necessary increase the bearing capacity of the 

pavement structure as other pavement layers are contributing factors to flexible 

pavement bearing capacity. 

 

5.3. Non-Linear versus Linear Material Characterization Results 

According to Abaza (2007), non-linear material characterization over linear gives a 

close field measurement, thus here a comparative analysis of non-linear and linear 

material characterization was undertaken. Figures 5.11 – 5.13 show the contour 

plots for displacements, strains and stresses in 25 mm asphalt thickness layer 

respectively. From Figure 5.11, it was observed that the maximum magnitude of 

deflection (rutting - 4.544 x 10-4 m) was higher in Figure 5.11B, which is for non-

linear model, implying that material acts like an elasto-plastic thus did not totally 

return to the original state. Similarly, from Figure 5.12, the maximum strain (1.838 x 

10-4 m) was higher in the non-linear model but also worth to noting that the minimum 

strain (-5.076 x 10-6 m) was higher in the linear model, thus implying that strain in the 

linear model extended to the lower part of the sub-grade which will overall result in 

failure. 

In Figure 5.12, the maximum stress transfer (tyre load) through the linear model was 

high, thus implying that more stress is transferred to the rest of the layers. Overall, 

there are not many differences in the results obtained, despite the MR (1301 MPa) 

used in non-linear model is smaller when compared with that of linear model (2560 

MPa). 
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Figure 5.11. Displacement contour plot for 25 mm thickness asphalt layer (A- 
Linear model and B- Non-linear model) 

 

Figure 5.12. Strain contour plot for 25 mm thickness asphalt layer (A- Linear 
model and B- Non-linear model) 
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Figure 5.13. Stress contour plot for 25 mm thickness asphalt layer (A- Linear 
model and B- Non-linear model) 

 

Table 5.3. Effect of asphalt layer thickness for non-linear material model 

Asphalt Layer Thickness 

(mm) 

Vertical Strain 

Ԑc (10-6) in Stabilized 

base Layer 

Tensile Strain Ԑt (10-6) 

bottom of Asphalt Layer 

25 259.1 38.57 

50 285.7 30.92 

75 273.9 41.46 

100 247.5 61.55 

 

Furthermore, from Table 5.3 above it is of a great interest to note that it is against the 

trend in the linear model for increase in thickness of asphalt layer which was 

reported in Figures 5.9 and 5.10 for vertical compressive strain in stabilized base 

and tensile horizontal strain in asphalt layer. The results for the non-linear model 

experienced an increase in the compressive strain for stabilized base in 50 mm 

thickness asphalt layer and thereafter a decrease. Conversely, the horizontal 

decreases in the 50 mm thickness and thereafter increases for subsequent 

thickness, thus, implying that the thickness of asphalt layer beyond 50 mm may 

result in bottom-up fatigue cracking. On a comparative note, the results obtained 
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from D-P model compared with those of the M-C model; at first (i.e. in 25 mm 

Asphalt thickness layer) experienced a difference of about 0.2 percent in the results 

obtained for displacements, strains and stresses. However, the subsequent results 

were comparable. This implies that the D-P model or M-C model is a good non-linear 

material representation for stabilized base layers in pavement design. Overall, it is 

worth noting that the use of 50 mm thickness of asphalt layer over the stabilized 

base layer by developing countries, is not only justifiable by economic reasons, but 

also on its effectiveness to prevent failure such as bottom-up fatigue cracking which 

can be experienced in thicknesses beyond 50 mm. 

5.4. Comparative Analysis Results 

Comparing the results obtained from Abaqus (Linear model) and that of mePADS in 

terms of horizontal strain at the bottom of asphalt layer and the vertical strain in the 

subgrade (Table 5.4). Results show that the strains generated in the mePADS are 

generally low when compared to that of Abaqus. On like in Abaqus, results at 100 

mm asphalt layer thickness did not follow the regular pattern but that of mePADS 

was consistent. Thus, the results from Abaqus can be said to be dynamic in nature. 

Table 5. 4 Effect of asphalt layer thickness for Abaqus and mePADS 

Asphalt Layer 

Thickness 

(mm) 

Abaqus 3D (Linear Model) mePADS 

Tensile Strain 

Ԑt (10-6) 

bottom of 

Asphalt Layer 

Vertical 

Strain 

Ԑc (10-6) in 

Sub-grade 

Tensile Strain 

Ԑt (10-6) 

bottom of 

Asphalt Layer 

Vertical 

Strain 

Ԑc (10-6) in 

Sub-grade 

25 31.94 376.60 14.13 195 

50 27.53 325.50 26.26 169 

75 23.08 286.70 40.58 149 

100 35.60 253.90 41.81 134 

 

Furthermore, Table 5.5 presents the pavement structural capacity results obtained 

from the use of 1993 AASHTO SN empirical method, mePADS and those obtained 

using 3D FEM (Non-Linear and Linear Material (Table 5.2)) with the Asphalt Institute 

model. Results from the mePADS (see Appendices A2 – F2); which serves a check 
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for the performance of 3D FEM models, although within a close range yet, tends to 

be higher than those of AASHTO SN and those of 3D FEM models. This is so 

because the SAPDM damage model used in software in question is outdated and 

currently under review (SANRAL, 2013b). 

However, there are not many differences in the results obtained from AASHTO SN 

and those of 3D FEM-linear materials, yet those of 1993 AAHSTO were higher. In 

the report by Huber, Andrewski and Gallivan (2009), the AASHTO 1993 pavement 

design guide was found to have typically over-designed pavements in Indiana by 1.5 

to 4.5 inches beyond what was needed. Thus, it can be concluded that the 1993 

AASHTO SN tends to over-design, which makes its use uneconomical. Additionally, 

from Table 5.5, results from linear models are higher than those of non-linear, which 

also show that the linear model tends to over-design as a result of the MR of the 

stabilized base layer used. This MR is obtained using level 2 inputs (lower reliability 

when compared with level 1), thus it can be concluded that MR has a significant 

effect on the design of pavement through FEM. Overall, the 3D FE non-linear model 

tends not to be partial in its design as there are few assumptions to be made in using 

it for the design of pavement structure and the fact that MR was obtained through 

Triaxial testing, which gives the true strength of materials used in pavement 

structure. 

 

Table 5.5. Structural capacity results for 1993 AASHTO, mePADS and 3D FEM 

models 

Asphalt 

Layer 

Thickness 

(mm) 

Predicted No. 

of 80 kN 

ESALs (1993 

ASSHTO SN) 

Sub-grade 

Bearing Capacity 

(mePADS 

Results) 

No. of Load 

Repetitions 

to Failure Nr  

(Linear 

Model) 

No. of Load 

Repetitions to 

Failure Nr 

(Non-Linear 

Model) 

25 10.59 x 107 30.70 x 1012 2.92 x106 5.41 x 105 

50 31.00 x 107 12.70 x 1014 5.60 x 106 1.13 x 106 

75 79.00 x 107 43.11 x 1014 9.89 x 106 2.13 x 106 

100 185.20 x 107 10.00 x 1015 17.04 x106 3.91 x 106 

 

© Central University of Technology, Free State



  

Chapter 5            Results and Discussion 
  

67 
 

5.5. Summary 

Results of this study were presented in this chapter. As expected, based on the 

literature reviews, the following results were observed: 

1. 3D FE model results for design of flexible pavement were more efficient when 

compared with those of axisymmetric; 

2. The structural response of stabilized base and asphalt layer were discovered 

and are of great importance in flexible pavement; 

3. The current update for mePADS software is quite necessary, especially in 

terms of the damage models; 

4. Non-linear material characterization model is efficient over linear model; and 

5. Overall 3D FEM design for flexible pavement is efficient over empirical 

methods. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

6.1. Introduction 

The stabilization process in pavement construction is not a new process, but hitherto 

this process has not been fully implemented in the design methods for pavement 

structure. Although, in recent decades, researchers have tried to implement it in the 

existing empirical methods (Al-Jhayyish, 2014), but these methods are already 

inaccurate in their design and are limited in their capacity (Huang, 2004), thus, 

bringing about the use of FEMs. Considering the success recorded using FEMs, it is 

a necessity to incorporate the stabilization process such as fly ash-stabilized base 

layer into it, which was the essence of this study. As a result, an attempt was made 

to simulate the behaviour of the flexible road pavements having fly ash as an 

alternative soil stabilizer using FEM. This simulation study was undertaken by 

creating FEMs using Abaqus® to study the structural responses of the stabilized 

base layer and the responses of flexible pavement when constructed with fly ash-

stabilized base layer. Therefore, in this final chapter the main conclusions of this 

thesis are summarized and some recommendations are given. 

6.2. Conclusions 

As a result of the modelling and analysis which were performed in this study the 

following conclusions were obtained; 

 3D FE models are more efficient than 2D axisymmetric models. 

 Increase in the MR of any material in pavement structure, increases the overall 

pavement resistivity to failure. 

 Increase in the thickness of fly ash-stabilized base layer increases the 

resistance of pavement to failure in terms of surface deflection, vertical 

compressive stresses/strains on top of the sub-grade layer; however, increase 

beyond 300 mm results in strength decrease. 

 In the same manner, increase in the thickness of asphalt layer increases 

pavement resistivity to failure; however, increase in thickness beyond certain 
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thickness, especially over a stabilized base may result in bottom-up fatigue 

cracking. 

 The use of non-linear material characterization model is more efficient than 

linear material characterization. However, as a result the unavailability of 

Triaxial test results, the linear material characterization model can be used as 

a preliminary study. 

 The results obtained from D-P and M-C models are comparable, thus either 

can be used in a material characterization model in pavement design. 

 

Overall, the uses of empirical deign methods result in over-designing of pavement 

structure, consequently resulting in uneconomical pavement design and 

construction. However, the use of 3D FE models and most especially, the non-linear 

material characterization model provides better results and gives some amount of 

certainty on the design life of the pavement. 

6.3. Recommendations 

Since the structural element in the pavement is formed by the thickness and strength 

base and sub-base layers placed over the sub-grade, there is a need for further 

study on the materials used in these layers. Furthermore, it is recommended that the 

fly ash as a stabilizer should be experimented with a lower percentage (10 percent – 

15 percent), as percentages beyond 20 percent result in strength reduction and 

economical unwise. 

6.4. Further Studies 

Firstly, it was discovered that the fly ash stabilizer for pavement materials lacks 

correlation equations for deriving MR using UCS test data; secondly, there is a need 

to develop resilient modulus constitutive material models for South Africa granular 

material, especially for stabilized materials as it is commonly used as a base and 

sub-base layer in flexible pavement. Lastly, for further study there is a need to put 

into consideration the effect of climate conditions in terms of temperature, rainfall, 

etc., on the material characterization model in FEM design of pavement structures.
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Appendix A1, B1 and C1 are extract form the Triaxial test results (Heyns and 

Mostafa Hassan, 2013). 
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Appendix A2 – F2 are extract from the mePADS software results showing the 

various steps and results.  
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