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Abstract: This paper considers a model predictive controller with reference tracking that manipulates
the integer switch positions of a power converter. It can be shown that the optimal switch position can
be computed without solving an optimization problem. Specifically, in a new coordinate system, the
optimization problem can be solved offline, leading to a polyhedral partition of the solution space. The
optimal switch position can then be found using a binary search tree. This concept is exemplified for a
three-level single-phase converter with an RL load.
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1. INTRODUCTION

Model predictive control (MPC), also referred to as

receding horizon control is a type of predictive control

which in general uses a model of the system to predict

the future behavior of the controlled parameters. The

predictions are then used to obtain the optimal control

decision by following a specific optimization criterion.

Traditional MPC demanded a great amount of online

computation, since an optimization problem (often a

constrained quadratic program) is solved at each sampling

instant. This has limited the use of these controllers to

processes with relatively slow dynamics but because of

advances in the fields of mathematical optimization and

computational power of the controller hardware it became

possible to consider MPC in power electronic systems with

short sampling intervals [1]. MPC using larger horizons

also has the potential to give significant performance

benefits, but requires more computations at each sampling

instant to solve the associated optimization problem [2, 3].

The online computational burden of MPC can be lessened

by obtaining an solution to the MPC problem offline

by means of multi-parametric quadratic programming

(mpQP) [4, 5]. The offline solution is a state-feedback

control over a polyhedral partition of the state-space. The

control law can be stored in a look-up table, avoiding the

need for solving an optimization problem online [6].

The main purpose of our research is to reduce the online

computational burden so as to practically implement MPC

for a multilevel inverter. To achieve this goal it is necessary

in the offline solution to construct a binary search tree

with minimum depth, which can only be achieved if

the partitioned state-space is of lowest complexity. This

paper presents an algorithm for reducing the complexity

of the partitioned state-space by utilizing the Delaunay

Figure 1: Single-phase Neutral Point Clamped inverter.

triangulation. The paper is organized as follows: Section 2

introduces the model of a multilevel inverter with RL load.

The mathematical background to the MPC problem is laid

out in section 3. In section 4 the partitioned state-space

is geometrically presented. The approach to complexity

reduction along with the proposed algorithm are presented

in section 5. Section 6 concludes the paper.

2. MODELING

We consider a single-phase multilevel inverter as one leg

of a Neutral Point Clamped (NPC) inverter with neutral

point assumed to be constant. The topology is shown in

figure 1. The inverter leg can deliver three voltage levels

of −0.5VDC, 0VDC and +0.5VDC across the load. These

output levels can be represented by the integer values

u∈ {−1,0,+1} that define the state of the switch positions



in the inverter leg. The voltage applied to the RL load

can thus be stated as v(t) = 0.5VDC · u(t). A possible

destructive situation that can occur in this inverter topology

is switching directly from state +1 to state −1 and vice

versa. It is called shoot-through and can lead to high

currents in the inverter leg. This transition is undesirable.

For detailed operation and switching sequence of a NPC

inverter refer to [7].

3. MODEL PREDICTIVE CONTROL

Model predictive control is a method in which the control

action is determined by solving a finite horizon open-loop

optimal control problem at each sampling instant, using

the current state of the system as initial state, searching for

an optimal control sequence over the set horizon and then

applying the first control in this sequence to the system.

With reference tracking the general aim is to control the

inverter switches in such a manner so as to generate an

output current i in the RL load that tracks a reference

current ir as close as possible. The closer the output tracks

the reference, the lower the harmonic distortion will be.

With the switching frequency being inversely proportional

to harmonic distortion in the output current and directly

proportional to internal switching losses of the inverter, a

trade-off between current distortions and switching losses

arises.

An MPC controller operates in the discrete time domain

with the sampling interval Ts. During every sample period

the load current is sampled and from its value all the

possible future load currents are determined which may

arise from applying the different switching states also

called control options, u ∈ {−1,0,+1} to the inverter. The

effect of the possible voltages, v(t) = 0.5VDC ·u(t) applied

to the mathematical model of the load results in a number

of possible load currents equal to the number of control

options. These predicted currents are subjected to a cost

function as one of the control objectives that define the

control system. The switching state u that result in a

predicted current of minimal cost is selected as the optimal

control input for application to the inverter. The cost

function for our application includes the two contradictory

objectives, optimal reference-current tracking and minimal

switching cost.

3.1 Load model

In order for the MPC controller to predict the possible

currents in the load, a mathematical model for the system

needs to be derived. The RL load equation in the

continuous time domain,

v(t) = Ri(t)+L
di

dt

can be rewritten as,

di(t)

dt
=−

Ri(t)

L
+

0.5VDC(t) ·u(t)

L
(1)

With the controller operating at discrete time instants t =
kTs and k ∈ N the load model can be redefined in the

discrete-time domain with u(k) as input vector and i(k) as

state vector. The predicted load current at the discrete time

step (k+ 1) originating from the present output current

value i(k) for an applied control option u(k), can be stated

as,

i(k+1) = Ai(k)+Bu(k) (2)

with,

A= e−Ts/τ, B=
VDC

2R
(1− e−Ts/τ),

τ =
L

R
.

3.2 Cost function

To find the optimal control input to the inverter, all

the predicted load currents i(k + 1) and the respective

switching states u(k) ∈ {−1,0,+1} are subjected to a cost

function (J),

J = ‖ir(k+1)− i(k+1)‖2
2 +λu ‖∆u(k)‖

2
2 (3)

with,

‖∆u(k)‖
2
2 = ‖u(k)−u(k−1)‖2

2 (4)

This quadratic cost function J, consist of two terms. The

first one determine the tracking error of the predicted

load current i(k+ 1) with respect to the reference current

ir(k+ 1), and the second term determines the switching

cost from the previous switching state u(k−1) to u(k). A

tuning factor λu > 0 adjusts the balance between tracking

error cost and switching cost. To avoid shoot through, the

switching constraint ‖∆u(k)‖
2
2≤ 1 must be adhered to. The

switching state that satisfies this constraint and results in

minimum cost is deemed the optimal control option uopt(k)
for application to the inverter.

3.3 Extended horizons

Solving the problem stated above results in a control

action after evaluating the predicted currents at one

discrete time-step into the future, a horizon (N) of

one. This horizon can be extended by determining the

predicted currents over a finite number of time-steps

into the future. The cost of the possible switching

sequences are determined and result in an improved

optimal control decision while still adhering to the the

switching constraint. Equation (3) can be written as a finite

horizon quadratic cost function,

J =
k+N−1

∑
l=k

‖ir(l+1)− i(l+1)‖2
2 +λu ‖∆u(l)‖

2
2 (5)

J is now a function of the switching sequence U(k) =



[u(k),u(k+1), ...u(k+N−1)] over the prediction horizon

N. The number of possible switching sequences that

needs to be evaluated thus increases exponentially with

an extension of the prediction horizon. With U(k) the

optimization problem for N-horizon can be formulated as,

Uopt(k) = argmin
U(k)

J (6)

subject to

i(l+1) = Ai(l)+Bu(l) (7)

u(l) ∈ {−1,0,+1}

‖∆u(l)‖
2
2 ≤ 1

∀l = k, ...,k+N−1

3.4 Vectorization of cost function

In order to obtain a solution for the optimization problem

(6) it is useful to vectorize the cost function (5). Iterating

(7) for all l and rewriting in matrix notation gives,

I(k) = Γi(k)+ϒU(k) (8)

with,

I(k) =













i(k+1)
i(k+2)
i(k+3)

...

i(k+N)













,Γ =















A

A2

A3

...

AN















,

and

ϒ =















B 0 · · · 0

AB B · · · 0

A2B AB B 0
...

...
...

...

AN−1B AN−2B · · · B















.

I(k) then represents the predicted output currents over the

finite horizon from time step k+ 1 to k+N. Substituting

(8) into the cost function (5) results in,

J = ‖Γi(k)+ϒU(k)− IR(k)‖
2
2 +λu ‖SU(k)−Eu(k−1)‖2

2

(9)

IR is the reference current values over the prediction

horizon. S and E are introduced to extract the switching

cost over the extended horizon.

S=













1 0 · · · 0

−1 1 · · · 0

0 −1 1 0
...

...
...

...

0 0 · · · 1













E =













1

0

0
...

0













Minimization of (9) and omitting all constraints, results in

the well known expression for the unconstrained optimum

[2] or unconstrained minimizer [6].

Uunc(k) =−Q
−1Θ(k) (10)

with,

Q= ϒTϒ+λuS
TS

Θ(k) = ((Γx(k)− IR(k))
Tϒ−λu(Eu(k−1))TS)T

and resulting cost function,

J = [U(k)−Uunc(k)]
TQ[U(k)−Uunc(k)]+ const(k) (11)

The Cholesky decomposition of Q produces a lower

triangular matrix H so that HTH = Q. Substituting in (11)

gives,

J = ‖HU(k)−HUunc(k)‖
2
2 + const(k) (12)

The constant term in (12) is independent from U(k) and

can be excluded with the resulting optimization problem,

Uopt(k) = argmin
U(k)

‖HU(k)−HUunc(k)‖
2
2 (13)

subject to the switching constraint,

‖∆u(l)‖
2
2 ≤ 1,∀l = k, ...,k+Np−1

3.5 Nearest Neighbor Quantization

In summary, the optimization problem (13) states that

the optimum switching sequence for the finite horizon

N, can be found as the minimum Euclidean distance

from the optimal unconstrained vector HUunc(k) to any of

the switching-sequence vectors HU(k) in the coordinate

system set by the H-transformation matrix with H ∈ R.

This translates into the nearest neighbor search of the

multi-dimensional vector HUunc(k) to the finite set of

output vectors HU(k) in N-dimensional Euclidean space.

A general technique for solving the optimization problem

(13) is the exhaustive search method. This method

enumerates all possibilities and verifies if the switching

constraint is satisfied. For example, consider an MPC

current controller with reference tracking and horizon N =
2 for the single-phase three-level NPC inverter with an

RL load as in figure 1. Steady state conditions with the

following parameters are assumed. A sampling interval

of TS = 25µs, load- resistance of R = 2Ω, and inductance

L = 2mH. The rated rms output voltage of the inverter is

VAC = 3.3kV with an input dc-link voltage ofVDC = 5.2kV.

Base quantities are used to establish a per unit system and

the current reference is assumed to be 0.8pu amplitude at

50Hz. Applying a tuning factor of λu = 0.02 and the above



Figure 2: Transformed H-coordinate system

stated parameters generates an H-transformation matrix of,

H =

[

0.2286 0

−0.0679 0.1711

]

.

A horizon N = 2 results in a transformed H-coordinate

system in the two-dimensional Euclidean space. Figure

2 shows the transformed H-coordinate system with

possible switching sequences U(k) indicated as dots.

For explanation sake consider the unconstrained optimum

Uunc(k) indicated by the triangle. Assuming a previous

switching state of u(k − 1) = −1 and investigating

the spatial arrangement of the vectors it is evident

that the switching sequence U(k) = [+1,+1] (enclosed

by the rectangle) has the smallest Euclidean norm

‖HU(k)−HUunc(k)‖
2
2 and seems to be the the optimum

solution but the first control action in this switching

sequence is u(k) = +1. This value does not satisfy the

switching constraint ‖u(k)−u(k−1)‖2
2 ≤ 1 since u(k−

1) =−1. Further investigation leads to the second nearest

neighbor U(k) = [0,+1] (enclosed by the ellipse) with

u(k) = 0 which do satisfy the switching constraint. This

sequence is then considered the optimal solution with

u(k) = 0 = uopt(k) which is applied as control input to

the inverter. This process of finding the optimal control

input to the inverter repeats at every sampling interval,

generating an inverter output voltage for application to the

RL load which results in subsequent current flow. Figure

3 shows the simulated result of one cycle of the sinusoidal

reference current ir, switched inverter output voltage v and

tracking load current i displayed in per unit values.

4. VECTOR QUANTIZATION

Although the exhaustive search technique suggested

above is simple to implement, its computational cost

is proportional to the number of possible solutions

which increases exponentially as the horizon is extended.

Figure 3: Inverter output voltage and reference tracking load

current.

Therefore, it is only used for short horizon solutions

[8]. Various solution algorithms for (13) have been

developed but only a recent initiative by [2] incorporated

the switching constraint ‖u(k)−u(k−1)‖2
2 ≤ 1 into an

very effective adaptation of the Sphere decoding algorithm.

In contrast, this research is aimed at exploring the H-space

and attempting to compute a geometrical solution in the

format of a binary search tree (BST) to solve the MPC

problem.

4.1 Voronoi partitioning

A Voronoi diagram of a set of points also called sites or

seeds, is the partition of R Euclidean space into convex

polyhedra of points nearest to each of the sites [9]. Each

of these polytopes is called a Voronoi- or Dirichlet cell.

The nearest neighbor search or quantification of the vector

HUunc can be done by partitioning the N-dimensional

H-space (H ∈ R) into a finite subset of Voronoi cells from

the HU-sites and then determine in which of these cells

HUunc resides. In our case, the Voronoi diagram for 3N

number of HU-sites can be defined as the following set of

polytopes,

Vi =
{

x : ‖x−HUi‖<
∥

∥x−HU j

∥

∥

}

(14)

for

i= 1,2, ,3N ,∀ j 6= i

The vector HUunc thus resides in a Voronoi cell Vi
corresponding to a site HUi if,

‖HUunc−HUi‖<
∥

∥HUunc−HU j

∥

∥ (15)

for

i= 1,2..3N ,∀ j 6= i

Figure 4 graphically illustrates the partitioned

H-coordinate space into nearest-neighbor Voronoi

cells for the respective HU-sites. The most immediate

way of determining in which polyhedral region HUunc

resides is to do a sequential search through all the regions

but this is computationally expensive and not viable for

application in higher dimensions [10]. By example, to

determine the location of HUunc as stated in (15), requires



Figure 4: Voronoi partitions for HU-sites in the transformed

H-coordinate space.

the linear investigation (AT x− b) of 16 hyperplanes that

defines the 9 polyhedral regions (figure 4), N = 3 results

in 27 polyhedra with 98 hyperplanes and N = 4 results

in 81 polyhedra with 544 hyperplanes. Thus finding the

region wherein HUunc resides will result optimal control

sequence U(k) and hence u(k), the optimal control action

for application to the inverter.

5. COMPLEXITY REDUCTION

From the example above it is evident that the complexity

rapidly increases with an extension of the horizon resulting

in higher dimensionality of the H-space. The standard

approach to complexity reduction is to unify adjacent

polyhedral partitions with similar control laws u(k). From

figure 4 it can be noticed that some of the HU(k)-sites

have the same first term value and thus represent the

same control law. Unification of the 9 polyhedral regions

into subsets, each representing one of the control laws

u ∈ {−1,0,+1} reduces the number of hyperplanes to be

investigated in the point location of HUunc from 16 to 10

for the horizon N = 2 case. Horizon N = 3 reduce from 98

to 50 and N = 4 from 544 to 250. Figure 5 shows the three

sets of unified polyhedral regions representing the different

control laws for the N = 2 case. It can be observed that

the control regions are separated by two decision borders,

made up of five hyperplanes each. Investigation of border

A will result in a decision between control laws −1 and 0

and border B will distinguish between laws 0 and +1. The

investigation of the border hyperplanes in solving the point

location problem can further be optimized by constructing

a binary search as proposed by [10]. Further discussion

on binary search trees are omitted since the major concern

of this paper is obtaining the border hyperplanes to a

partitioned state-space of minimal complexity.

The unified polyhedral regions are made up of convex

polyhedral sets but the combined regions them self are

Figure 5: Unified Voronoi partitions in the transformed

H-coordinate space.

non-convex in nature which complicate the process of

defining the border hyperplanes. This paper proposes an

algorithm with a more direct approach in finding only

the hyperplanes defining the decision-borders. Other than

following the traditional approach of determining Voronoi

regions, applying complexity reduction and extracting

common facets, we utilize the Delaunay triangulation and

unique spatial arrangement of theU(k) sites to extract only

the border defining hyperplanes.

The Delaunay triangulation have various structural

properties, see [11]. One in specific, being that the Voronoi

diagram is the dual graph of the Delaunay triangulation

and vice versa [9]. This duality translates into a Delaunay

edge (line-segment connecting two sites) being orthogonal

to, and bisected by the Voronoi plane shared by the

respective sites. It can be observed in figure 5 where the

Delaunay triangulation edges are shown in dotted lines.

The principle is used in many algorithms for obtaining

the Voronoi diagram from its dual. We apply the same

principle but only determine the exact border defining

hyperplanes, hence eliminating unnecessary computations.

We achieve complexity reduction by removing certain

edges from the Delaunay triangulation before calculating

the respective Voronoi planes. Delaunay edges that

connect sites with the same control law values u(k) are

removed since their dual (Voronoi plane) would be of

no significance in solving the point location problem.

Various algorithms exist for determining the Delaunay

triangulation of which the Bowyer-Watson algorithm is

a good option since it is effective in any number of

dimensions. Our proposed procedure for the complexity

reduction and extraction of the border defining hyperplanes

is described in Algorithm 1.

The border hyperplanes obtained from algorithm 1 have

been used in the generation of a binary search tree adapted

from [10]. The binary search tree was then implemented



Algorithm 1 Border selection algorithm

Step 1 Find the Delaunay triangulation of HU(k)-sites.

Step 2 For all Delaunay edges(line segments),

Index edges connecting sites with non-similar control laws

u(k), realizing border-spanning edges.

Step 3 For each border-spanning edge,

Assign the site with u(k) 6= 0 as the normal vector to a

hyperplane,

Assign the mid-point of the edge as a point in the

hyperplane,

Define the hyperplane in point-normal format.

Step 4 Index the hyperplanes in border defining sets

(Border A and B).

Figure 6: Binary Search Tree structure utilizing 10 border

hyperplanes

in a MPC controller for the mentioned inverter. For the

horizon N = 2 case with 10 border defining hyperplanes

a tree structure of 4 levels and 20 nodes as shown in

figure 6 was obtained. This translated into a maximum

of 4 linear (AT x− b) calculations that is required during

online operation to traverse the tree in finding a solution

to the point location problem and hence the control action

uopt(k). Simulations utilizing algorithm 1 up to horizon

N = 4 has produced identical inverter outputs (voltage and

current waveforms) as found from simulations using the

benchmark exhaustive search method.

6. CONCLUSION

We have presented an algorithm for extracting the border

hyperplanes defining the control regions in the partitioned

state-space of an MPC controller for a single phase

multi-level NPC inverter. The algorithm is simple, efficient

and extend into higher dimensions. The simulation

results to date are encouraging in terms of system output

parameters. Currently more work is being done on

reducing the complexity of the partitioned state-space to an

even lower level. Ensuring a minimum hyperplane count

equates to an optimal binary search tree which will be

necessary if we are to be successful in implementing the

MPC controller in a practical real-time application.
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