A MULTI-AGENT SYSTEM FOR

ADMINISTERING THE PRESCRIPTION OF

ANTI-RETROVIRAL AND ANTI-TB DRUGS

Wilhelmina Johanna Kuyler

Dissertation submitted in fulfilment of the requirements for the Degree

MAGISTER TECHNOLOGIAE:

INFORMATION TECHNOLOGY

in the

School of Information and Communication Technology

Faculty of Engineering, Information and Communication Technology

at the

Central University of Technology, Free State

Supervisor: Prof. J.D.M. Kinyua, Ph.D.

Bloemfontein

November 2007

Declaration of Independent Work

|, WILHELMINA JOHANNA KUYLER, identity number ||| ¢
student number 20469543, do hereby declare that this research project
submitted to the Central University of Technology, Free State for the Degree
MAGISTER TECHNOLOGIAE: INFORMATION TECHNOLOGY, is my own
independent work; and complies with the Code of Academic Integrity, as well
as other relevant policies, procedures, rules and regulations of the Central
University of Technology, Free State; and has not been submitted before to
any institution by myself or any other person in fulfilment (or partial fulfilment)

of the requirements for the attainment of any qualification.

W.J. Kuyler DATE

Acknowledgements

| would like to express my gratitude to:

Prof Johnson Kinyua, my supervisor, for encouraging me to become
involved in research and for his ongoing support and positive feedback.
| wish to thank him for his dedication and all the time he spent directing
me and reading through my work.

Dawid, for his encouragement and for always believing in me.
Admill, Francois and Jenny, for making everything worthwhile.
Everybody that contributed to the project by giving me ideas,

information, or any kind of assistance.

My heavenly Father, the Giver of all wisdom, for giving me the strength
to complete this work.

Summary

Multi-agent systems (MAS) consist of a number of autonomous agents that
communicate among themselves to coordinate their activities in order to solve
collectively a complex problem that cannot be tackled by any agent
individually. These kinds of systems are appropriate in many domains where
problems that are complex, distributed and heterogeneous require
communication and coordination between separate autonomous agents, which
may be running on different machines distributed over the Internet and are
located in many different places.

In the health care domain, MAS have been used for distributed patient
scheduling, organ and tissue transplant management, community care,
decision support, training and so on. One other promising area of application is
in the prescription of antiretroviral and anti-TB drugs. The drugs used to treat
the two diseases have many and similar side effects that complicate the
prescription process. These factors have to be considered when prescribing
medication to a person co-infected with HIV and tuberculosis. This is usually
done manually using drug recommendation tables, which are complicated to
use and require a great deal of decision-making. The design and
implementation of a multi-agent system that assists health care staff in
carrying out the complex task of combining antiretroviral and anti-TB drugs in

an efficient way is described.

The system consists of a number of collaborating agents requiring the
communication of complex and diverse forms of information between a variety
of clinical and other settings, as well as the coordination between groups of
health care professionals (doctors, nurses, counsellors, etcetera.) with very
different skills and roles. The agents in the system include: patient agents,
nurse agents, lab agents, medication agents and physician agents. The agents
may be hosted on different machines, located in many different places
distributed over the Internet. The system saves time, minimises decision errors

and increases the standard of health care provided to patients.

Opsomming

Multi-agent stelsels (MAS) bestaan uit ‘n aantal outonome agente wat onder
mekaar kommunikeer om hulle aktiwiteite te koordineer en sodoende
gesamentlik ‘n komplekse probleem op te los wat enige agent op sy eie nie
sou kon aanpak nie. Hierdie soort stelsels is geskik vir baie terreine waar die
probleme kompleks, verspreid en heterogeen is. Dit benodig kommunikasie
en koordinasie tussen afsonderlike outonome agente wat op verskillende
rekenaars verspreid oor verskillende plekke op die Internet mag wees. Op die
terrein van gesondheidsorg word MAS reeds gebruik vir verspreide
skedulering van pasiénte, bestuur van orgaan- en weefseloorplanting,
gemeenskapsorg, ondersteuning van besluitneming, opleiding ensovoorts. ‘n
Ander belowende toepassingsgebied is die voorskryf van antiretrovirale en
anti-TB middels. Die geneesmiddels wat gebruik word om die twee
siektetoestande te behandel, het baie newe-effekte, wat ook baie ooreenkom
en die keuse van medikasie vir ‘n voorskrif kompliseer. Hierdie faktore moet in
ag geneem word wanneer medikasie voorgeskryf word vir ‘n persoon wat
geinfekteer is met beide MIV en tuberkulose. Dit word gewoonlik deur mense
gedoen met behulp van medikasie-aanbevelingstabelle, wat ingewikkeld is om
te gebruik en baie besluitneming verg. Die ontwerp en implementering van ‘n
multi-agent stelsel wat gesondheidsorgpersoneel ondersteun in die uitvoering
van die ingewikkelde taak om antiretrovirale en anti-TB middels op ‘n
doeltreffende wyse te kombineer, word hier beskryf. Die stelsel bestaan uit ‘n
aantal agente wat saamwerk en die kommunikasie van komplekse en diverse
vorms van inligting tussen ‘n verskeidenheid kliniese en ander omgewings
benodig, sowel as die koodrdinasie tussen groepe beroepslui in
gesondheidsorg (geneeshere, verpleegsters, beraders, ens.) met vaardighede
en rolle wat baie van mekaar verskil. Die agente in die stelsel sluit in: pasiént-
agente, verpleegster-agente, laboratorium-agente, medikasie-agente en
geneesheer-agente. Die agente kan op verskillende rekenaars wat verspreid
oor verskillende plekke op die Internet geleé is, gehuisves word. Die stelsel
bespaar tyd, verminder besluitnemingsfoute en verbeter die standaard van
gesondheidsorg wat aan pasiénte verskaf word.

Table of Contents

Declaration of Independent Work...........ooouiiiiiii e ii
ACKNOWIEAGEMENTSeiiiiiiiiiiiii e aeesenennnee iii
SUMMIBITY ettt ettt ettt e e e e e e e iv
(@075 o] 1 410011 o o [T PP PPPPPPPPPPPPPPPP v
1 INTRODUCTION ... e a e e 1
Tl OVEIVIEW ..ttt e e eeeenee e 1
1.2 Statement of the Problem ... 4
1.3 Motivation for the Researchuuuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 5
1.4 HYPONESIS. ...ttt e e 5

1.5 Research Goals and Objectives................uuueiiiiiiiiiiiiiiiiiiiiieiiieeieeeee 5
1.6 Research Methodology...............uuuueiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeees 6
1.7 Organisation of Dissertation...................eueeiiiiiiiiiiiiiiiiieeeeeeeeeeee 6

2 MULTI-AGENT SYSTEMS.......ooee e 7
2.1 The Concept of Software Agents ... 7
2.2 The Concept of Multi-Agent Systems..........ccoi 8
2.3 Characteristics Of AQeNts........coooiiiiiiii 9
2.3.1 AUTONOMY .. 10

2.3.2 REACHVILY «ueeeieieeiie e 10

2.3.3 SOCIADIlItYeeeeeeeeee e 10

234 Pro-activity ... 11

23.5 Learningooooeiiiiii 11

2.4 Agent Application Domain Characteristicscovveeeiiiiiinnneeenne. 11
241 Agents used for solving new Problems ..., 12

vi

242 Agents used for improving the Efficiency of Software

DeVvelopmENt.... ..o 12
2.4.2.1 Distribution of Data, Control, Expertise or Resources 13

2422 The System regarded as a Society of autonomous

cooperating CompPONENTS.........coiiiieiiieiiiiie e 13
2.4.2.3 Legacy Componentscccoeeiiiiiiiiiii 13

2.5 The Applications of Multi-Agent Systems.............cccccn. 14
26 AOSE Methodologies that aid in the Development of MAS 14
RELATED WORK ...ttt e e 17

3.1 User Agents or Personal Agents..........ccoooviiiiiiiiiiiiiiiiie 17
3.2 Industrial ApplicationsS.........ccovriiiiiiiee e 17
3.3 Commercial Applicationsuuiiieeieee e 18
3.3.1 Information Management.............cooooiiiiii s 18
3.3.2 Electronic Commerce ... 18
3.3.3 Business Process Management..............cccccoo, 19
3.4 Entertainment...........ooo 20
3.5 Medical AppliCatioNS........cooiiieiiiiee e 20
3.5.1 Distributed Patient Scheduling within a Hospital 21
3.5.2 Organ and Tissue Transplant Management......................... 21
3.5.3 ComMMUNILY CAreooviiiiiiiiiiiiiiieieeieeeeeeee et 22
3.54 INfOrMation ACCESS.......uuuu e 23
3.5.5 Decision Support SYStemS.........ccoeviiiiiiiiiiiiiee e 24
3.5.6 TPINING ..ttt nnnnnnnne 25
3.5.7 Drug Prescriptions.........oooooiooeeeeeeeee e 26
DESIGN OF MEAAGENT......oo e 28
41 INErOAUCTION. ... 28

Vii

4.2 The MaSE Methodologyuuueeiiiiiiiiiiiiiiiiiiiiieiiieiieeeieeieeieeeenes 31

421 ANAIYSIS. . 31
422 DESIgN e 33
4.3 The Use of agentTooluuuiiiiiiiiiiiiiiiiiiiiiiiiieiieiieeeeeeeeeeeeeeieeeenes 34
4.4 Development of MedAgent System.............eeueiiiiiiiiiiiiiiiiiiiiiiiiieinns 34
441 ANAIYSIS. .. 34
4411 Capturing Goalscoevviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 34
4.41.2 Applying Use Cases.........ccoovvvviiiiiiiiiiiiiiiiiiiiiieeeee 37

442 Design Phase.........ooooiii 42
4421 Creating Agent Classes..........coceuviiiiieiiiiiiiiiiiiiiiieieieieeene 42
4.4.2.2 Constructing Conversations...............ceuueiiiiiiiiiiiiieeeeeennne. 44
4423 Assembling Agents..........cooveviiiiiiiiiiiiiiiiiiiiiieieeeeeee e 46
4424 System Design ..ot 48

443 Database Design..........cooooii 50
4.43.1 Table Information ... 50
4.4.3.2 Relationships.........ooiiei i 53
4.4.3.3 Normalisationccooeeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 54

5 IMPLEMENTATION OF MedAgentccoiueiieeeiiieee e 55
5.1 OVEIVIEW i 55
52 The JADE Platform........ccoooiiiiiiii 55
5.2.1 JADE BEhaVioUrsSouuiiiiiiiiiiiiiiieiieiieeeeeeeee e 56
52.2 JADE MESSAQES......coviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee et 57
5.3 The Agents implemented in MedAgent and their Behaviours.......... 57
5.3.1 PatientAgent..........ooo 57
53.2 NUIFSEAGENT ... 59

viii

5.4

5.5

5.6

6
6.1
6.2
6.3

6.4

5.3.3 PhysicianAgentcooooo oo 60

53.4 LabAGeNt... ..o 61
5.3.5 MDBAGENL. ... 62
5.3.6 MedicationAgent. ... 62
Use Of the SyStem ... 63
54.1 NUISE <. 63
5411 NewPatient...........ooo 64
54.1.2 Existing Patient ... 67
54.2 PRhySICIan. ... 72
5.4.2.1 First Visit to DOCIOrccoooviiiiii 72
54.2.2 FOlOW-UP ViSit...cooeeiiieeee e 73
543 Lab WOrKEr ... 76
54.4 Pharmacist ... 77
The MedAgent Database Implementationcccccccviiieeeeeenn, 79
5.5.1 NEeW RECOIAS.......cooiieeeeeee e 79
5.5.2 Update QUETIESo 82
Messaging between Agents........ ... 84
5.6.1 Messaging when Visit to Doctor commences........................ 85
5.6.2 Messaging during the Prescription Process...........cccccuueeen... 86
5.6.3 Messaging during Drug Issue............cccco, 87
CONCLUSIONS AND FURTHER WORKoeiiiiiiiiiieeeeieee e 89
INErOAUCTION ...t 89
SUMMEBIY . 90
Strengths and Weaknesses of the System.................... 91
FULUIE WOTK.... e 93

10

REFERENGCES e 94

Appendix A: Sequence Diagrams...........cooeeeeiiiiiiiinieeee e 102
Appendix B: Graphical User Interfaces.............ccoooeiiiiiiiiiiciiieeeeee 106
Appendix C: Code Sample.........oooeeeiiiiiiieeeee e 109

Chapter 1

Chapter 1

Chapter 1

1 INTRODUCTION

1.1 Overview

Recently, agent-oriented software development has been used as a paradigm
for software engineering in a wide variety of applications (Jennings &
Wooldridge, 1998). The agent concept constitutes a powerful abstraction tool
for dealing with software development. It also provides a good development
paradigm in domains that are complex, open and distributed, such as the
Internet, which requires agents to act autonomously, learn, compete, and even

cooperate (Wooldridge & Jennings, 1995).

Agents are typically defined by considering the characteristics that they should
have, which include the following: autonomy, reactivity, sociability, mobility,
rationality, and pro-activity (Wooldridge, 2002). In most cases, the solution to
complex distributed problems developed using a Multi-agent system (MAS)
approach is composed of multiple interacting agents acting as computing
elements to achieve the system’s goals. Agents are being used in an
increasingly wide variety of applications, such as intelligent user interfaces,
personal assistants and for handling large amounts of information, such as e-
mail and Internet searches. They are also used in electronic commerce,
process control, air traffic control, enterprise resources planning, health care
and so on (Jennings et. al, 1998). In the health care domain they have been
used for distributed patient scheduling, organ and tissue transplant
management, community care, decision support, training and so on (Nealon &
Moreno, 2004).

The health care domain at all levels (local, regional, national and international),
is characterised as being a vast, open environment where health care

professionals such as doctors and nurses, with different skills and roles,

Chapter 1

manage patients via shared and distributed decision making. Such
environments require the communication of complex and diverse forms of
information between a variety of clinical and other settings. Health care
professionals in such environments, in particular, require information that is
both timely and error-free, and recommendations or decisions offered by
software systems have to be secure and trustworthy. Software agents can be
used to provide information to doctors, nurses and patients. There are
information agents (also called Internet agents) that are specialised in
retrieving information from different sources, analysing the data, selecting the
information of interest to the user, filtering redundant or irrelevant information,

and presenting the appropriate information to the user.

The components of a multi-agent system may be running on different
machines, located in many different places distributed over the Internet. Each
of the agents may keep part of the knowledge required to solve the problem,
such as patient records held in different departments within a hospital or in

several hospitals, clinics, surgeries, or in a government department.

Methodologies to aid in the development process, tools and platforms that
facilitate the implementation of agent systems have also been developed. The
methodologies currently available include: Gaia (Zambonelli et. al 2003),
MaSE (Wood, 2000), Tropos, PASSI, Agent-UML, and so on. See (Weiss,
2002) for a survey of Agent-Oriented Software Engineering (AOSE)
methodologies and the field of AOSE in general. Many agent platforms are
also available and good examples include the following: ZEUS, JAS (Java
Agent Services APIl), JADE, Aglets, Concordia, Voyager, ADK (Agent
Development Kit), FIPA-OS, Madkit, agentTool, AgentAcademy, BlueJADE,
Odyssey, Jumping Beans, Grasshopper, Swarm and JAMES (Bordini et. al,
2005).

According to the World Health Organization Report published in 2005 (UN
Chronicle Online Edition, 2005), it is estimated that one third of the 40 million
people living with HIV/AIDS worldwide are co-infected with tuberculosis (TB).

Chapter 1

HIV affects the immune system, increases the likelihood of people acquiring
TB infection, and promotes the progression of latent TB infection to an active
disease. People that are HIV-positive are up to fifty times more likely to
develop tuberculosis in a given year than those who are HIV-negative.
Without proper treatment, approximately 90 per cent of those living with HIV
die within months of contracting TB. The two diseases speed up the progress
of each other and TB kills up to 50% of all AIDS patients worldwide.

Joint HIV/TB intervention is an item on the WHO list of key areas for HIV/AIDS
programming in the health sector (World Health Organization, 2005). The
recommended interventions provided in this list are considered essential and
have proven highly effective in restricting the HIV epidemic in many locations.
The extent of the TB and HIV/AIDS epidemics is of such a nature that in the
future additional health care staff will be needed and existing staff will need to
be trained or re-trained to ensure that adequate joint interventions take place.

Anti-TB drugs may cause some side effects such as jaundice, hepatitis, rash,
fever, bleeding, decreased vision and dizziness, etc. The side effects of
antiretroviral drugs are numerous and include liver failure, pancreatitis,
metabolic complications, fever, rash, flu-like symptoms, dizziness, insomnia,
diarrhoea, nausea, headache, muscle aches, etcetera. Many of the side
effects of the drugs used in the treatment of the two conditions are the same
and may be increased when a combination of drugs is taken. The complexity
of the matter is increased by the fact that many of these symptoms may be
caused by TB or AIDS. Interaction also occurs between antiretroviral and anti-
TB drugs, which prohibits the use of certain combinations of drugs, or call for a
dose change.

All these factors have to be considered when prescribing medication to a
person co-infected with HIV and tuberculosis. This is done according to drug
recommendation tables, which are complicated to use and require a great deal
of decision-making.

Chapter 1

1.2 Statement of the Problem

The complicated nature of the two medical conditions has to be considered
when prescribing medication to a person co-infected with HIV and TB. At
present most clinics and hospitals in South Africa treat HIV and TB patients
according to the PALSA Plus (Practical Approach to Lung Health South Africa
Plus ART) guidelines for treating patients with TB and HIV.

The first diagnosis of HIV is usually done at a primary health care clinic. If the
patient is found to be HIV positive, he is sent to an HIV clinic for further tests,
to establish if he qualifies for ARV treatment. If the patient qualifies for ARV
treatment, the patient visits a doctor who will do a baseline assessment.
Before starting ARV treatment, the patient has to complete a drug readiness
training programme for three weeks. Then the doctor prescribes the
medication, and the prescription is given to the primary health care clinic that
has to provide the medicine. The prescription is sent through to the
pharmacist, who will verify that the combination and dose of medicines are
correct. The medicine is dispensed and sent to the clinic, where the patient

will receive it.

The patient has to visit the doctor and clinic at regular intervals. At each visit
the doctor or nurse will do some tests. Thereafter the doctor will assess the
condition of the patient and revise the prescription if necessary.

All TB treatment in South Africa is done at TB clinics and combination pills are
used. At this stage TB clinics and HIV clinics work in parallel, without

interaction.

Health workers at clinics and government hospitals as a rule suspend anti-
retroviral treatment until TB treatment is completed. They are not able to treat
the two conditions simultaneously, because it is too complicated and requires
a great deal of decision-making. If a patient already receiving antiretroviral
drugs also contracts TB, the patient has to be treated by a health worker with
special knowledge of the medication interactions. Prescriptions are then

Chapter 1

prepared according to drug recommendation tables, which are complicated to

use and require a great deal of decision-making.

1.3 Motivation for the Research

The complicated task of prescribing anti-retroviral and anti-TB drugs can be
made easier by using a computer application that is able to assist in complex
decision making. Intelligent agents and multi-agent systems are a new
technology for the development of complex, distributed and heterogeneous
information systems. The health care domain is a well suited environment for

applying multi-agent systems.

1.4 Hypothesis

The prescription of anti-retroviral and anti-TB drugs can be made significantly
faster and more accurate by deploying a multi-agent system to generate

prescriptions to save time and minimise decision errors.

1.5 Research Goals and Objectives

The goal of this research is the development of a MAS system for
administering the prescription of anti-retroviral and anti-TB drugs, in order to
assist health care staff in carrying out the complex task of combining
antiretroviral and anti-TB drugs in an efficient way. The system is expected
save time, minimise decision errors and increase the standard of health care

provided to these patients.
The objectives related to this goal are to:
1. Consider the application of agents in different fields.

2. Design a multi-agent system for the prescription of anti-retroviral
drugs.

3. Implement the system and show how the system is used.

Chapter 1

1.6 Research Methodology

The system has been developed using the MaSE methodology for agent-
oriented software engineering. This methodology covers the whole
development life cycle and has a support tool called agentTool. The JADE
(Java DEvelopment Framework) was chosen for the implementation.

1.7 Organisation of Dissertation

The rest of this dissertation is organised as follows: In Chapter Two the
concept of an agent, its characteristics and the application domain
characteristics for Multi-Agent Systems are described. Chapter Three
concentrates on related work, where the application of MASs in various
domains is reviewed. It includes applications of multi-agent systems in
different domains such as industrial, information management, e-commerce
and health care. Chapter Four discusses the design of the MedAgent system.
The method of analysis and design is described in detail. The implementation
of MedAgent in JADE is presented in Chapter Five. The conclusions and

suggestions for further work are presented in Chapter Six.

Chapter 2

Chapter 2

2 MULTI-AGENT SYSTEMS

21 The Concept of Software Agents

Computers are increasingly connected to one another and to larger networks,
including the Internet. This is beneficial, in the sense that information and
communication are much more easily available than in the past. However, the
disadvantage is that there is sometimes too much information and everything
becomes cluttered. Software is also becoming bigger, more complex and
difficult to manage. As software evolves, it attempts to represent the real word
as closely as possible, which means that programmes have to be developed to
work in a dynamic environment, susceptible to change, and where information
is uncertain and incomplete. The World Wide Web is an example of an

information environment that is complex, open, distributed and heterogeneous.

There is a growing need for tools to help with computer and network systems
management. Very large and complex software projects can be made more
comprehensible by decomposing them into smaller components, probably
independent of each other. In order to handle dynamic and open systems it is
important to have autonomous software systems that work independently, but
also communicate with one another. These two concepts, software
components as well as autonomous software, are both part of the agent
technology.

The concept of intelligent agents is a fairly recent development in software
engineering. Agents became a buzzword in the popular computing press in
1994 (Nwana et al., 1999) and it was seen as “the new revolution in software”.
This was also approximately the year when the wider public started to use the

World Wide Web more generally. The first International Conference on Multi-

Chapter 2

Agent Systems was held in San Francisco in 1995 (Wooldridge & Decker,
2000).

Shoham (Shoham, 1997) describes a software agent as a software entity that
functions continuously and autonomously in a particular environment often
inhabited by other agents and processes. Agents need the ability to
communicate and interact with other agents, that is, to be social (Wooldridge,
2002). Agents may be stationary or mobile, which means that they either
reside on individual computer systems or travel from host to host across the

Internet to carry out different tasks.

Recently, agent-oriented software development has been used as a paradigm
for software engineering in a wide variety of applications (Jennings et al.,
1998). Agents have found application in numerous domains as explained in
Section 2.4 below. For example, agents have been used for intelligent user
interfaces, personal assistants and for handling large amounts of information,
such as e-mail and Internet searches. They are also being used in electronic

commerce and other complex, distributed domains.

2.2 The Concept of Multi-Agent Systems

A multi-agent system (MAS) is defined (Durfee & Lesser, 1989) as a loosely
coupled network of problem solvers that work together to solve problems that
are beyond the individual capabilities or knowledge of each problem solver. In
a broader sense, all systems in which agents interact can be called multi-agent

systems.

A MAS has the ability to solve problems that are too large for a single agent
and also enhances speed and reliability. These problem-solving activities

have requirements such as coordination, negotiation and communication.

Zambonelli et al. (Zambonelli et al., 2003) distinguish between two main
classes of MASs, that is, distributed problem solving systems in which the

component agents are explicitly designed to cooperatively achieve a given

Chapter 2

goal; and open systems in which agents are not co-designed to share a
common goal. Distributed problem solving systems are applied to problems
that are computationally intensive, where each agent can be assigned a
specific portion of the task. In this class of MAS the system is closed, the
agents know and trust each other in their interactions, and they collaborate to
accomplish the goal of the system as a whole. Open systems consist of
agents with different objectives that dynamically enter and leave the system.
In these systems agents have to make use of services, knowledge and
capabilities found in other agents spread throughout the network, for example
e-commerce agents and web service agents. In these cases agents must take
into account that other agents may be self-interested or competitive and

cannot always be trusted.

A MAS must provide a general communication mechanism to enable agents to
coordinate their actions and to negotiate with each other. This has to be
considered in the analysis and design of the system.

2.3 Characteristics of Agents

There is no one standard definition of an agent and no real agreement on the
question of exactly what an agent is. They are typically defined by considering
their characteristics (Wooldridge, 2002). According to Wooldridge, an
intelligent agent is a system that is capable of flexible, autonomous action.
Flexibility means that a system is reactive, pro-active and social.

According to Faltings (Faltings, 2000), agents turn software components into
processes that are autonomous, proactive, embedded and heterogeneous.
He describes a number of characteristics beyond these, which are associated

with intelligent agents, namely: adaptive, learning, rational and communicating.

The characteristics of intelligent agents that are also mentioned on the web
site www.openclinical.org (OpenClinical, 2006) include the following:

autonomy, pro-activity, reactivity, communication and co-operation, negotiation

and learning.

Chapter 2

Some of the above-mentioned characteristics are discussed in more detail
below.

2.3.1 Autonomy

An agent is situated in a certain environment where it acts and executes its
specific task to achieve a certain goal. It has its own internal thread of
execution, and it decides for itself which actions should be performed at what
time without direct instructions from outside. An agent has the ability to act on
behalf of users without the direct intervention of humans. It can monitor
events, make observations about changes within its environment and react to
them without requiring explicit commands. It has control over its own actions

and internal state.
2.3.2 Reactivity

A reactive system is one that maintains an ongoing interaction with its
environment. It can examine changes in the environment and react to external
events. According to the changes they observe, intelligent agents can adapt
their behaviour and make appropriate decisions about the tasks that have to
be carried out to accomplish their goals. The responses to the changing

environment have to be done in time for them to be useful.
2.3.3 Sociability

Sociability in agents is the ability to behave socially, to interact and
communicate with other agents via some kind of agent communication
language. Agents exchange information, receive instructions and give
responses, and co-operate when it helps them to fulfil their own goals. They
can also negotiate by means of organised conversations to achieve co-
operation with other agents.

10

Chapter 2

2.3.4 Pro-activity

Being pro-active is more than just reacting to the environment. An agent that
is pro-active will not only be driven by events or act in response to its
environment, but will take the initiative to make changes where appropriate,
and also deliver them in a timely manner. Agents often act in a dynamic and
unpredictable environment, where they are capable of flexible and
autonomous action in order to meet their design objectives. To be flexible,
agents have to be pro-active. They should have the ability to anticipate the
information and knowledge needs of users and to adapt accordingly. They
should use the opportunity to accomplish new goals at the appropriate time.

2.3.5 Learning

Intelligent agents have the ability to learn from the environment in which they
are embedded while they are executing tasks. As a result of this interaction an
agent can learn from previous experiences to improve its performance on the

same task over time.

2.4 Agent Application Domain Characteristics

According to Jennings and Wooldridge (Jennings & Wooldridge, 1998), new
technology can only be considered to be useful in the market place if it can
offer one of two things:

e |t must solve new problems that could not be solved using existing
technology, or problems that would be too difficult, time-consuming, or risky

to solve using existing technology; or

¢ |t must have the ability to solve problems for which solutions already exist in
a significantly better way that will make it much cheaper, solve it in a more

natural way or provide an easier, more efficient or faster solution.

The use of agents can be justified if they can be applied to accomplish any of
the above-mentioned.

11

Chapter 2

241 Agents used for solving new Problems

Reactive systems, which maintain an ongoing, independent interaction with
some environment, are complex and difficult to design and implement
correctly. To develop this kind of system new techniques are required. These
systems can broadly be divided into three classes:

e Open systems, in which the structure of the system itself is capable of

dynamically changing. The components of these systems are not
known in advance and may be highly heterogeneous. The Internet is
an example of an open software environment. A computer system that
must operate on the Internet, must be able to handle the changes
without constant guidance by users.

e Complex systems, which are difficult to develop. Two tools for handling

complexity in software development are modularity and abstraction.
Agents make systems modular, because they are specialised
components that cooperate with one another. Each agent solves a
particular problem in the most appropriate way and is not forced to use
a common uniform approach. The idea of autonomous agents provides
the abstraction needed in a complex system, which makes it a concept
that is appropriate for the development of complex systems.

e Ubiquitous systems in which the computer system should cooperate

with the user as an equal partner to achieve a goal instead of receiving
instructions from the user to the smallest detail. To achieve this,
systems need to be autonomous, proactive, responsive and adaptive.
Intelligent agents have all these properties and can be used to develop
these kinds of systems.

2.4.2 Agents used for improving the Efficiency of Software Development

Agent technology can provide a way of conceptualising and implementing a

given application that is an improvement on previous technology. Three

12

Chapter 2

important domain characteristics are often cited as a rationale for adopting
agent technology in existing systems (Bond and Gasser, 1988):

e Data, control, expertise or resources are inherently distributed.

e The system is naturally regarded as a society of autonomous cooperating

components.

e The system contains legacy components, which must be made to interact

with other, possibly new, software components.
These domain characteristics are discussed below.
2.4.2.1 Distribution of Data, Control, Expertise or Resources

Real-world entities are often distributed and they need to interact with one
another to solve problems. Distributed autonomous agents with their own
resources and expertise provide a natural way of modelling this problem.
They can carry out significant amounts of processing at the data source and
can react with one another to accomplish certain goals.

2.4.2.2 The System regarded as a Society of autonomous cooperating
Components

The concept of an autonomous agent can be used to present certain software
functionality. A programme that filters e-mail can be presented to the user as
a personal digital assistant, while other software (such as meeting scheduling)

acts as an autonomous, social agent that interacts with similar agents.
2.4.2.3 Legacy Components

It is very difficult and expensive to update all legacy components of a system,
but it is necessary to maintain the functionality of a system. A way to keep
legacy software useful is to incorporate them into a wider cooperating
community, that is, to build an agent wrapper around the software, which will

exploit it to communicate with other systems.

13

Chapter 2

2.5 The Applications of Multi-Agent Systems

Agents are being used in an increasingly wide variety of applications, for
example, intelligent user interfaces, personal assistants and for handling large
amounts of information such as e-mail and Internet searches. There are
information agents (also called Internet agents) that are specialised in
retrieving information from different sources, analysing the data, selecting the
information of interest to the user, filtering redundant or irrelevant information,

and presenting the relevant information to the user.

They are also being used in electronic commerce, process control, air traffic
control, enterprise resources planning, health care and so on (Jennings et al.,
1998). In the health care domain, they have been used for distributed patient
scheduling, organ and tissue transplant management, community care,
decision support, training and so on (Nealon & Moreno, 2004). Further
descriptions of the application of agents in various domains are given in
Chapter 3.

The specification of agent behaviour is an important part of multiagent system
development. The agents in a MAS need to work together as a group to solve
a problem, or communicate and negotiate. It is important that agents must be
able to find each other and use a communication protocol that is familiar to all

participating agents.

2.6 AOSE Methodologies that aid in the
Development of MAS

New methodologies and tools had to be developed to aid in the development
of multi-agent systems, resulting in agent-oriented software engineering
(AOSE). Several methodologies have been described in the literature. These
methodologies include AUML (Bauer et al., 2001), MaSE (DelLoach et al.,
2001), PASSI (Cossentino, 2005), Gaia (Zambonelli et al., 2003), RETSINA
(Sycara et al., 2003), ROADMAP (Juan et al., 2002), Tropos (Bresciani et al.,
2004) and several others.

14

Chapter 2

The Unified Modelling Language (UML) (Object Management Group, 2007) is
used widely for object-oriented software engineering. Agent UML (AUML)
contains extensions to UML to accommodate the requirements of agents.

The Gaia methodology (Zambonelli et al., 2003) is a methodology for agent-
oriented analysis and design. Gaia has probably been the most popular
methodology for the analysis of a system as a society/organisation; it consists
of a set of roles that are later assigned to agents. It uses the following
abstractions that characterise a computational organisation: the environment in
which the MAS is immersed; the roles to be played by the different agents in
the organisation; and the interaction between the roles. It also considers

organisational rules and organisational structures.

The ROADMAP (Juan et al., 2002) (Role Oriented Analysis and Design for
Multi-Agent Programming) methodology is an extension of Gaia. It includes
formal models of knowledge and the environment, role hierarchies, explicit
representation of social structures and relationships based on AUML

interaction diagrams, while also incorporating dynamic changes.

The Multi-agent Systems Engineering (MaSE) (DeLoach et al.,, 2001)
methodology contains all the steps the designer has to follow from the initial
set of system specifications up to the implemented agent system. The
agentTool system, which is a graphics-based interactive tool, was designed to
support the MaSE methodology.

RETSINA (Reusable Task Structure Based Intelligent Network Agents)
(Sycara et al., 2003) is a general-purpose modelling framework which
proposes goal, role, context and attitude as first class objects for modelling
multi-agent systems in an open world. PASS/ (Cossentino, 2005) (a Process
for Agent Societies Specification and Implementation) is a step-by-step
methodology for designing and developing multi-agent societies.

The Tropos methodology (Bresciani et al., 2004) is based on the notions of

agents and their goals, and plans are used in all phases of software

15

Chapter 2

development, from the early analysis to the actual implementation. Tropos
also covers the very early phases of requirements analysis.

The system described in this study is a MAS for the prescription of
Antiretroviral and Anti-TB drugs. The MaSE methodology was chosen for the
analysis and design of the system, and the agentTool system was used in the

process.

16

Chapter 3

Chapter 3

3 RELATED WORK

Agents are used in a variety of application domains where complex, distributed
and heterogeneous information systems are appropriate. They have been
used for personal assistants, intelligent user interfaces and for managing
electronic mail. Other domains for the use of agents and MASSs include
telecommunication, industrial, commercial, entertainment and medical

applications.

3.1 User Agents or Personal Agents

User or personal agents are intelligent agents that take action on a person’s
behalf. Intelligent agents can check a user’s e-mail, sort it according to his
priority, and alert him when important messages come through. They can
assemble customised news reports, find information of the user’s choice,
automatically fill in forms and store the user’s information for future reference,
and scan Web pages by looking for and highlighting text in which the person is
interested, etcetera. The website www.user-agents.org (List of User-Agents,

2007) contains an extensive list of user agents under the categories spiders,
robots, crawlers and browsers. Agents can also be used in transport logistics
for market-based transport scheduling and coordination, or as personal travel
assistants.

3.2 Industrial Applications

Process control is a natural application for intelligent agents and multi-agent
systems, as controllers are autonomous reactive systems. Agents are used in
manufacturing, where the manufacturing process is modelled as a number of
work cells that are functioning together. Parunak (Parunak, 1987) describes
the YAMS (Yet another Manufacturing System) that adopts a multi-agent
approach, by means of which each factory and factory component is

17

Chapter 3

represented as an agent. Ljungberg and Lucas describe a sophisticated air
traffic control system known as OASIS (Ljungberg et al., 1992), in which
agents are used to represent both aircraft and the various air traffic control
systems in operation. Agents can also be used in transport logistics for
market-based transport scheduling and coordination, or as personal travel
assistants.

3.3 Commercial Applications
3.3.1 Information Management

The amount of information available to us in our everyday lives has grown
immensely over the last couple of decades, which has resulted in information
overload. The Internet and World Wide Web is a good example of this
problem. Agents can be used to manage information effectively in two ways,
that is, information gathering, to find information that meets our requirements;
and information filtering, to sort out the relevant and important information.
Maes (Maes, 1994) describes an electronic mail filtering agent called Maxims
as well as an Internet news filtering programme called Newt that has the ability
to learn from examples. An agent-based digital library, Zuno Digital Library
(Ferguson et al., 1997), was developed using consumer agents to represent
the user’s interests. These agents maintain models of users and use these to
provide the information they require. The system acts both as an information

filter and information gatherer.

3.3.2 Electronic Commerce

Owing to the growth of the Internet and World Wide Web, online commerce
has progressed substantially. Currently many e-commerce applications are
still driven by human interactions, and information about traders, products and
services are still collected and interpreted by humans. These activities can be
very time consuming, and could be automated by utilising agents. Buying and
selling agents can interact, bargain and make decisions regarding

18

Chapter 3

transactions. Chaves and Maes (Chavez A. & P. Maes, 1996) describe a
simple electronic market place called Kasbah, which creates buying and
selling agents for each transaction. Each commercial transaction takes place
by the interaction of these agents.

Intelligent buyer agents (shopping bots) have been developed and are used
widely by consumers to search for product and pricing information on the Web.
Some systems are closed, such as Shopping.Yahoo.com (Yahoo! Shopping,
2007) and shop.AOL.com (AOL Shopping Main — Online Shopping Made
Easy, 2007). In these systems buyer agents direct users to retailers who
become part of the closed system through subscription. In open systems the
buyer agents travel around the Internet, retrieving information about goods and

services.

The website http://ecommerce.hostip.info/pages/938/Shopping-Bots.html

describes buyer agents that compare the prices of different online merchants
to find the lowest prices for consumers. One of the most popular sites,
mySimon.com (mySimon — Price Comparison shopping, 2007) gathers
information of more than 2000 retailers, and uses Virtual Learning Agent
software. Users can search for a specific product by keyword, or browse
through categories. When shoppers reach a decision, they are routed to the

website selling the item.

Another important buyer agent is PriceSCAN, which also includes offers from
merchants without websites. The BookFinder.com agent (BookFinder.com:
Search for New & Used Books, 2007) searches Amazon, Antigbook, Barnes
and Noble, Bibliofind and other online book retailers. It uses a combined
database of roughly 15 million books, to find the cheapest book prices for

shoppers.

3.3.3 Business Process Management

Managers have to gather information from different sources to make informed

decisions. The gathering of relevant, consistent and current information is a

19

Chapter 3

complex and time consuming process. A number of IT systems have been
developed to assist in business process management. A system named
ADEPT (Advanced Decision Environment for Process Tasks) (Jennings et al.,
1996) employs a number of negotiating agents that each provides one or more
services. Each agent plays a distinct role, and when an agent requires a
service from another agent, they negotiate to obtain a mutually acceptable
agreement. The proactive nature of the agents makes it possible to have just-

in-time scheduling of services.

3.4 Entertainment

Computer games, interactive theatre and virtual reality applications used in
entertainment are full of autonomous, animated characters, which can be

implemented as agents.

Computer games are increasing in complexity and reality. The Sims (The
Sims — Official Site, 2006) is a well-known system consisting of different

agents displaying varied behaviours within an interesting environment.

3.5 Maedical Applications

Medical informatics is an important growth area in computer science, and new

applications for computers in the health industry are being found every day.

The health care domain at all levels (local, regional, national and international)
is characterised by being a vast, open environment where health care
professionals, such as doctors and nurses, with different skills and roles,
manage patients via shared and distributed decision making. Such
environments require the communication of complex and diverse forms of
information between a variety of clinical and other settings, as well as the
coordination between groups of health care professionals with very different
skills and roles (Nealon & Moreno, 2004).

20

Chapter 3

Health care professionals in such environments, in particular, require
information that is both timely and error-free, to ensure that recommendations

or decisions offered by the software systems are secure and trustworthy.

Because the above-mentioned characteristics match the customary properties
of intelligent agents, the health care domain is well suited for the development
of flexible, intelligent computer systems.

Intelligent agents are already being used in different fields within the health
care domain. Below are some examples of application areas in the health
care domain where agents have been deployed.

3.5.1 Distributed Patient Scheduling within a Hospital

Medical procedures have become very complex and include tests and
treatments that are interconnected. The different tasks to be performed on a
hospitalised patient have to be executed in a specific chronological order,
which also include medical restrictions among the procedures. It is very
difficult to schedule these actions manually or to use traditional software
solutions. This can be improved considerably with the use of multi-agent
systems (Decker et al., 1998), (Kumar et al., 1989), (Marinagi et al., 2000). An
agent framework for building cooperative software agents in medical
applications was developed by Lanzola et al., (Lanzola et al., 1999) in which
they proposed a generic computational model that may be specialised to
support the different requirements of a Hospital Information System.

3.5.2 Organ and Tissue Transplant Management

In this field the matching of available organs with the list of waiting patients to
find the most appropriate recipient in a hospital or across a certain region
requires optimal efficiency. When an organ becomes available, it is important
that the most suitable patient must receive the organ as soon as possible. The
time used to do this can be improved significantly with multi-agent systems. A

MAS has been designed and implemented to coordinate the management of

21

Chapter 3

organ transplant in Spanish hospitals (Moreno, 2003). It consists of agents
that have different knowledge and play different roles, which coordinate their
activities to deal with organ transplant management at a national level.
Vazquez-Salceda et al. (2003) developed an agent-based system called
Carrel that assists in managing the allocation of tissues stored in hospital
tissue banks.

3.5.3 Community Care

Intelligent agents can be used to continuously monitor physiological signs in
high-risk citizens, such as the elderly and people with chronic diseases. This
can replace occasional reviews by health care staff. More complete
information on the medical condition of patients will enable both patients and
health professionals to understand better how to manage their activities in
order to avoid or anticipate problems, instead of responding to extremely costly
health crises. In the INCA (Intelligent Community Alarm) elderly care
management system (Beer et al., 2002), an agent is associated with each
elderly patient. This agent receives medical data, gives reminders to the
person and alerts the medical centre if something goes wrong. An architecture
for an inexpensive support system based on the Internet and using stationary
as well as mobile agents was developed by Camarinha-Matos and Vieira
(1999). Rialle et al. (2003) propose an intelligent MAS for telemonitoring
patients at home. They recommend a system using in-home bio-signal
sensors connected to a local area network, remote server and the carers’
computers, as well as software agents with different levels of knowledge on

the different devices.

Another MAS described by Moreno (2003) is the PalliaSys project. This
system is used to improve the management of patients in a Palliative Care
Unit by telemonitoring them continuously. This unit specialises in dealing with
people with terminal illnesses, and its aim is to ease their pain in the final
phase of their lives.

22

Chapter 3

3.5.4 Information Access

Communication of complex and varied forms of information between a variety
of settings, as well as the coordination between groups of health care
professionals with very different skills and roles, is necessary. Information
agents have been developed to collect and organise the vast amount of
medical information available on the Internet. These intelligent and specialised
search engines are used to make searches more efficient and usable.

The Health on the Net Foundation and the Molecular Imaging and
Bioinformatics Laboratory at Geneva Hospital have developed Multi-Agent
Retrieval Vagabond on Information Networks (MARVIN) (Boyer et al., 1997),
(Baujard et al., 1998), which searches sites and documents related to a
specialised scenarion. MARVIN has already been used in the medical field to
index documents according to their relevance to the health and medical field.
This specific information is then used by a medical search engine, MedHunt.
One field in which MARVIN has been implemented is in managing the UK
National Electronic Library for Communicable Diseases (Kostkova et al.,
2002).

A multi-agent system has also been implemented within the AgentCities.NET
European project to build a worldwide network of agent-based platforms that
provide interesting services to citizens and visitors to a city. This has been
applied in the medical field by providing patients with information about
medical centres satisfying certain properties, access to their medical records
and doctors available in a certain centre, on a certain day, to make an
appointment. While examining a patient, the doctor also accesses and
updates the patient’s medical record (Moreno, 2002).

Lieberman and co-workers have developed a browsing assistant, Letizia
(1995), which records a user’s choices in a Web browser and compiles a
profile of the user’s interests. It “follows you around” on the Web and updates
this profile dynamically. They also developed a software agent, Aria

23

Chapter 3

(Lieberman et al., 2001) that detects opportunities for annotation and retrieval
of images in the context of the user’s everyday work. A combination of these

two systems has been used in the management of health care information.

3.5.5 Decision Support Systems

Intelligent agents can be used to continuously monitor physiological signs in
high-risk patients such as diabetics or heart patients. Comprehensive
information on the condition of patients makes it easier to notice a trend and to
predict potential problems. A MAS can notify a patient or healthcare
professional that certain action has to be taken to prevent a potential crisis,
which could be very costly, or even fatal (Barro et al., 1999). The tasks of
monitoring and diagnosing intensive-care patients require knowledge and skill,
and demand correct action in complex, unexpected, and time-critical
situations. A system called Guardian (Hayes-Roth et al., 1992), developed at
Stanford University's Knowledge Systems Laboratory, is an example of such a
knowledge-based system designed to perform these tasks for post-cardiac
surgery patients. An intelligent interface agent with medicine-related common
sense reasoning was proposed to ease the difficult task of gathering useful
patient data and making the correct diagnosis (Hsu et al., 1999). Another
system called Patient Advocate assists maternity patients who are at risk of
gestational diabetes to monitor their own behaviour and physiological condition
(Miksch et al., 1996).

Susan L Mabry et al. (2003) describe a system that utilises intelligent agents
to assist in patient health care. In their system multiple intelligent monitor
agents coordinate as a team, with each agent performing specialised tasks of
monitoring, performing diagnostics and establishing the appropriate
intervention needed. The design includes a single Patient Agent that contains
a GUI and a Data Collection Unit that gathers data about the patient. Multiple
Monitor Agents are created, each narrowly focusing on a specific monitoring
goal. Each monitor agent contains a Dynamic Decision Module, which
comprises different modules for analysing and predicting a trend, and

24

Chapter 3

performing symptomatic and systemic diagnostics. Depending on these
diagnostics, an agent may activate another agent. The agents are mobile in
order to roam the network, collect data and process sensitive patient data at
remote locations. A prototype implementation of their system helps with
emergency trauma centre care of hemorrhagic shock and focuses on fluid
resuscitation and arterial blood gas stabilisation.

A secure and distributed architecture for the monitoring of medical protocols
was developed by Alsinet et al. (Alsinet et al., 2003). They define a system for
the assistance and supervision of the real-time application of medical protocols
in distributed hospital environments with computer-based medical records.
They formalise the communication language of the agents and use the
language to specify a real medical protocol for detecting and controlling
hypertension. A patient, physician and nurse participate in this protocol. They
use a graphical framework called JAFDIS (Java Framework for Dialogical
Institution Specification) (Alsinet et al., 1998) to specify dialogical institutions.

3.5.6 Training

Agents can be used in distance-learning tutoring systems to improve medical

training and education.

An agent-based intelligent tutoring system, Ines (Intelligent Nursing Education
Software), was developed by Hospers and et al. (2003). It provides a generic
teaching environment that uses agents to support learning and is applied to

nurse education.

AMPLIA, as described by Vicari et al. (2003), is a multi-agent intelligent
learning environment designed to support training of diagnostic reasoning and
modelling of domains with complex and uncertain knowledge, which focuses

on education in the medical environment.

25

Chapter 3

3.5.7 Drug Prescriptions

A multi-agent system for monitoring the prescription of restricted use
antibiotics is proposed by Godo et al. (2003). They describe a system to assist
the revision of medical prescriptions containing antibiotics of restricted use in
the pharmacy department of the hospital. A patient agent is attached to each
patient to check the medical aspects of the prescribed therapy. A pharmacy
agent will analyse the information and suggest alternative antibiotic treatment.
These agents work in collaboration with human agents within the hospital

environment.

In this research, we have identified the prescription of anti-retroviral and anti-
TB drugs, which are usually required by people infected with HIV/AIDS, as an

area where a MAS system could be deployed.

Joint HIV/TB intervention is an item on the World Health Organisation list of
key areas for HIV/AIDS programming in the health sector (World Health
Organization, 2005). The recommended interventions provided in this list are
considered essential and have proven highly effective in restricting the HIV
epidemic in many locations. The extent of the TB and HIV/AIDS epidemics is
of such nature that additional health care staff will be needed and existing staff
will have to be trained or re-trained to ensure that adequate joint interventions

take place.

Anti-TB and anti-retroviral drugs may cause numerous side effects. The side
effects caused by the drugs used in the treatment of the two conditions are
often similar and can increase when a combination of drugs is used. Most of
these symptoms may also be caused by TB or AIDS itself, which complicates

the situation even more.

Interactions between the different drugs also prohibit the use of certain
combinations of drugs, or require a change of dose. All these factors should
be considered when prescribing medication to a person co-infected with HIV
and TB. Doing this manually is a complex and time consuming task..

26

Chapter 3

The goal of our system is to assist health care staff in carrying out this task in
an efficient way in order to save time, minimise decision errors, and increase

the standard of health care.

27

Chapter 4

Chapter 4

4 DESIGN OF MedAgent

4.1 Introduction

The MedAgent system was designed to assist in the administering of
prescriptions that combine antiretroviral and anti-TB medications. This
combination is a complicated and time-consuming process, which can be
modelled as a multi-agent system. A number of entities such as patients,
pharmacies, nurses, counsellors, doctors and pharmacists are involved in the

process.

We initially proposed the following agents as part of the system: a patient
agent, a physician agent, a nurse agent, a pharmaceutical agent, a pharmacist
agent, a medication database (MDB) agent and a medication agent. The full
extent of the agent society emerged at the end of the design process as
described in the remainder of this chapter. The initial generic system
architecture is shown in Figure 4.1.

The patient agent is used to collect and contain the medical conditions and
symptoms of a particular patient, which is unique for each person and changes
during treatment. The information can be obtained from existing medical
records or supplied by health care professionals according to their
observations. All access to the medical data of a specific patient is handled by
the patient agent associated with that patient.

A nurse agent is used to assist the nurse to follow the correct procedures in
the treatment of a patient. It reminds the nurse of the tests that have to be
performed at a certain point in time and it interacts with the medication
database (MDB) agent to obtain the prescription which is generated by the
medication agent in consultation with a doctor. The nurse provides information

to the nurse agent about observations made during visits, which are

28

Chapter 4

communicated to the patient agent. It also communicates information to the
medication database agent about medicine issued to a patient. The nurse
agent also informs the lab agent when a blood sample for a given patient has
been dispatched for testing. Later, after the blood testing is completed, the lab
agent sends the results to the patient agent.

> Medication Murse
L Agent Agent
L
®
¥ : 2 : ? = Patient
Fhysician Lah E L Agent
A gent A gent i 'y
¥y :
WDE &Agent T : .
g2l : Pharrmacist Pharmaceutical
: Agent Agent
[e
o + i |
. '
| i
Medication i i Pharmaceutical i Patient
Database E | Database E Database
ol 1
B i
ve ¥

GUI Agents, Data Entry, Admittance, Medication, Tracking, ete.

Figure 4.1: Overview of Generic System Architecture

The medication database agent (MDBAgent) mediates all access requests to
the medication database by the medication agent, pharmacist agent,
pharmaceutical agent, physician agent and nurse agent. The medication
database contains information about prescriptions and drug issues for all
patients, as well as information about available drugs, usage instructions, side

effects and interactions.

29

Chapter 4

The major task of the medication agent is to generate prescriptions for patients
based on their medical conditions. However, a prescription must undergo
certain validation steps before it can be saved on the prescription database.
The doctor must be consulted, who will either accept the prescription or
request alternatives. The medication agent communicates with the
pharmaceutical agent as well as the patient agent to determine the medication
regime for a specific patient. It obtains information about the effect of a
specific drug, as well as the contra-indications. The pharmaceutical agent has
to decide whether the substance is compatible with the other medications
given to the patient. The pharmaceutical agent does this by consulting the
pharmaceutical database and the pharmacist agent, if necessary.

The medication agent communicates with the patient agent to find out if any
condition in the patient prohibits the use of that medication, or warns the health
care professional that caution has to be taken. If no contra-indications exist,
the medication agent adds the medication to the list of prescribed medications.
The completed combination of medications are forwarded to the physician to
confirm and finalise. The prescription is then saved to the medication
database, where it can be accessed by the pharmacist, physician and the

nurse.

The pharmacist agent is responsible for maintaining the pharmaceutical
database and has access to patients’ prescriptions via the MDBAgent. When
the patient visits the pharmacist, the pharmacist agent will access the
medication database to retrieve the prescription so that the medicines can be
issued. The prescription stored in the medication database is also updated to
reflect the fact that the medicines have been issued.

In the system, each doctor is represented by a physician agent. The physician
agent communicates with the patient agent to obtain data about a given
patient and to update the patient data. It communicates with the medication
agent to request a prescription, which must be confirmed by the doctor via the

physician agent. It also communicates with the MDBAgent to obtain patient

30

Chapter 4

prescriptions, as well as the pharmacist agent, whenever there is a need for

consultations with regard to medicines.

The initial generic system architecture, which is incomplete at this stage, is
shown in Figure 4.1. In Section 4.2, the MaSE methodology is described. In
the following sections the application of MaSE to the analysis, design and

deployment of MedAgentis elaborated on.

4.2 The MaSE Methodology

The Multi-agent Systems Engineering (MaSE) methodology (DelLoach et al,
2001) was chosen for the analysis and design of the system, because MaSE is
a complete methodology for developing multi-agent systems and it leads the
designer from the initial system specification to the implemented agent system.
It produces a set of formal design documents in graphically based styles,
some of which are in UML. MaSE is independent of a particular multiagent
system architecture, agent architecture, programming language or message-
passing system, since a system designed in MaSE can be implemented in
several ways from the same design. It is also possible to track changes to the
process, and every design object can be traced backward and forward through
the different phases of the methodology.

The MaSE methodology consists of two main phases namely analysis and
design, as depicted in Figure 4.2 below (DeLoach, 2001). When using MaSE,
iteration can be applied in both phases.

4.2.1 Analysis

The analysis phase consists of three steps: capturing goals, applying use
cases and refining roles. The first step, capturing goals, takes the initial user
requirements, which can be technical documents, other documents or verbal
instructions, and turns them into a structured set of top-level system goals
shown in the form of a Goal Hierarchy Diagram (GHD). These goals are
analysed and structured into a form that can be passed on and used in the

design phase.

31

Chapter 4

In the second step these system level goals are taken and Use Cases are
extracted. A use case is a description of a sequence of events that defines a
certain behaviour of the system. It determines the minimum set of messages
that must be passed between roles. If a message is passed between two
roles, there must be a corresponding communication path between them, and
this means that a conversation must be constructed between the agents that
play those roles. The possible scenarios that are created from sequence
diagrams are represented in the form of Sequence Charts. This step defines

an initial set of system roles and communications paths.

Reguire-
ments
-_

Capturing

Goal
Hierarchy e
d Goals

AR

; Applving Use
Y y Cases

/__,F-f"'
sisfjeuy ——————»

A ,
Concurrent "ﬁq Holes
Tasks | .

Fefining Roles

i Fi
M v
/ Agent | Creating Agent
/ Classes | Classes
Corwer- Constructing 0
[Bty -\\ Conversations o
\Ti' . E
Agent] Assembling
chitecture Agent Classes
‘_‘.
Ceployment . ;
L g J System Design

Figure 4.2: The MaSE Methodology

The third step is to refine the structured goals of the GHD into roles, where a
role is defined as a description of an agent’s expected function. In general,

each goal specified in the first step maps to a specific role, but goals that are

32

Chapter 4

similar or related may be combined into a single role. The roles are captured
in a Role Model, which includes communication paths between roles, derived

from the sequence diagrams in the previous step.

After roles are created, tasks are associated with each role and every goal
associated with a role can have a task that details how the goal is
accomplished. A task is a structured set of communications and activities,

depicted as a State Diagram.
4.2.2 Design

In the design phase, we transform the analysis models into constructs useful
for actual implementation in the multi-agent system. The design phase has
four steps: creating agent classes, constructing conversations, assembling
agent classes and system design. In the first step of the design phase,
creating agent classes, specific agent classes are defined to fill the roles
defined in the analysis phase. The product of this phase is an Agent Class

Diagram, where agents consist of two components: roles and conversations.

After determining the number and types of agent classes in the system, we
can construct conversations between those agent classes in the ‘Constructing
Conversations’ step and define the internal components that comprise the
agent classes in the ‘Assembling Agent Classes’ step. These two steps are
closely linked and may be done in parallel. A conversation in MaSE defines a
coordination protocol between two agents, and consists of two Communication
Class Diagrams, one each for the initiator and the responder. The internals of

agent classes are created in the ‘Assembling Agent Classes’ step.

The final phase of the MaSE methodology uses a Deployment Diagram to
instantiate the agent classes as actual agents. It shows the number of
individual agents, their locations and other system specific items.

33

Chapter 4

4.3 The Use of agentTool

MaSE is supported by a software engineering tool called agentTool (DeLoach
et al., 2001), which simplifies the development process. It is a Java-based,
graphical development environment in which the system designer defines
high-level system behaviour graphically by using the MaSE methodology.

In the MaSE analysis phase, agentTool is used to create a goal hierarchy
diagram. In the next step use cases are added and a sequence diagram is
defined for each use case. The third step creates a role diagram. It
implements the roles by assigning all goals in the hierarchy diagram to a
specific role.

The first diagram created in the design phase is the Agent Template Diagram,
in which agents and their conversations are declared. In the next step, the
agent architecture of each agent in this diagram is then completed by defining
the components of the agent and the connections between the components.
Properties, attributes and methods are defined for each component.

Conversations are defined to accomplish communication between agents.

Finally all instances of agents can be added to the deployment diagram to
define a working system.

4.4 Development of MedAgent System

441 Analysis
4.41.1 Capturing Goals

The main source of information used in the analysis of our system, is the
PALSA Plus (Practical Approach to Lung Health South Africa Plus HIV)
guidelines for treating patients with TB and HIV. These guidelines are used by
most clinics and hospitals in South Africa. The forms that are completed by
health care professionals at the different visits of the patient to the clinics and

hospital, are another source of information.

34

Chapter 4

As discussed in chapter 1, the first diagnosis of HIV is usually done at a
primary health care clinic. If the patient is found to be HIV positive, he is sent
to an HIV clinic for further tests, to establish if he qualifies for ARV treatment.
If the patient qualifies for ARV treatment, the patient visits a doctor, who will do
a baseline assessment. Before starting ARV treatment, the patient has to
complete a drug readiness training programme for three weeks. The doctor
then prescribes the medicine and the prescription is given to the primary health
care clinic, which will provide the medicine. The prescription is sent through to
the pharmacist, who will verify that the combination and dose of medicines are
correct. The medicine is dispensed and sent to the clinic, where the patient

will receive it.

The patient has to visit the doctor and clinic at regular intervals. At each visit
the doctor or nurse will do some tests, and the doctor will assess the condition
of the patient and revise the prescription if necessary. All TB treatment is done
at TB clinics and combination pills are used. At this stage TB clinics and HIV

clinics work in parallel, without interaction.

These requirements were used to identify the system goals, as included in a
goal hierarchy diagram as shown in Figure 4.3. An iterative process was
applied to break down the main goals into sub goals.

35

1 Prescribe
ARV's

1111 Inform
ahout VT

1.2 Patient Ready

1.2.3 Iritiate
Treatment

1.1 Patient not
ready for ARY's for ARY's
1.1.1 Azzess 112 Stage 1.2.1 Do Baseline | |1.2.2
Patient Patient Agzessment Provide DRT
1112 :1:”3 1t 112106 [T122Emmine] 1123 nidte 1231 Assess
Coungel i Histary and assess Follow-Up Readingss

1232
Prescribe ARY'S

1.2.33 Get Bageline
Yiral Loads

1234
Supphy Drugs

Figure 4.3: Goal Hierarchy Diagram

—

1.24.1 Clinic
Follo-Up

12411
BloodTests

12413
Routing Care

12411
Re-issue ARY'S

1.2.4.2 Hosptal
Folloi-Up

12421 Revisa
Prescription

36

Chapter 4

4.41.2 Applying Use Cases

In the Applying Use Cases phase, the following use cases of the system were
identified:

e Inform About VCT

e Counsel and Test for HIV
o Get History

e Examine and Assess

o Baseline Assessment

e Drug Readiness Training
e Assess Readiness

e Prescribe ARVs

e Baseline Viral Loads

e Supply Drugs

e Clinic Follow-Up

e Hospital Follow-Up

Each use case was described in detail using sequence diagrams.

Figure 4.4 shows the sequence diagram for the prescribeARVs use case. The
use cases of the system include: InformAboutVCT, CounselTestHIV,
GetHistory, ExamineAssess, DrugReadinessTraining, AssessReadiness,
PrescribeARVS, BaselineTests, SupplyDrugs, ClinicFollowup,
HospitalFollowup, and so on. The prescribeARVs use case is one the most
complex use cases in the system and is described below to illustrate the drugs
prescription process. Descriptions of the relatively complex SupplyDrugs and
HospitalFollowup use cases are also given below. The sequence diagrams for
all the other use cases are included in Appendix A, but their descriptions will

be omitted owing to space limitations.

The prescription process is done when a patient visits a doctor. The first

request is submitted by the physician agent to the patient agent. The patient

37

Chapter 4

agent then returns the data associated with the medical conditions of this
patient. This enables the doctor to make informed judgements when he/she
examines the patient. Upon examination, the doctor requests a prescription
for the patient based on the latest patient information. The physician agent
sends the request to the medication agent to generate a prescription for this
patient. Together with this request, the physician agent forwards the data that
is required in order to generate the correct prescription.

PrescribeARYs
FPhysician [Fatient] [Medication Agent] [MOBAgent ;] [Pharmaceutical ;]

ReguestPatientdata
L

SendPatientData
*—‘.

Examine

RequestRrescription

Y

GetMedicationData

SendiedicationData
[k

ConfirmCaompatibility

Y

CompatibilityConfirmed

Frestription

CaonfirmPrescription

o
| ot

UpdatePrescription
[p -

UpdatePatientData
=i

Figure 4.4: Sequence diagram for the prescribeARVs use case

The medication agent receives the request, and it then formulates possible
prescription options. Before it can select a specific option, it must first confirm
a few matters. The medication agent requests the MDBAgent to send the
medication data so that it can decide if there are any side effects and contra-
indications for the drug options it has formulated based on the patient’s
medical conditions. It also requests the pharmaceutical agent to confirm that
the drug formulations are compatible with any other medications that the
patient is currently taking. The pharmaceutical agent does this by consulting
the pharmaceutical database and, if necessary, the pharmacist agent. For

38

Chapter 4

simplification this part of the prescription process is not shown in the
prescribeARVs use case.

Once the compatibility between drugs, side effects and contra-indications have
been confirmed, the medication agent decides on valid prescription options
and forwards a valid option to the physician agent. The physician agent will
then confirm the drugs prescription through the doctor. If the prescription is
accepted, the medication agent requests the MDBAgent to update the
prescriptions database. By then, the physician agent will have requested the
patient agent to update the patient records. The prescription process is how
considered to be complete. If the physician agent had rejected the prescription
in the relevant step above, the medication agent would have sent an
alternative prescription, and this would have continued until confirmation was
obtained. The medication agent will only ask the MDBAgent to update the
prescription database after confirmation has been received. During these
conversations, the physician agent may consult the pharmaceutical agent if
necessary.

The SupplyDrugs use case is shown in Figure 4.5 and its description follows.

SupplvDirugs

Fatient Fharmacist: MDBAgent

FPrescription

Getldentification
[dentify

ReguestPrescription

SendFPrescription

LpdateDruglssue

Figure 4.5: Sequence diagram for the SupplyDrugs use case

After a prescription has been finalised, the patient collects the medication from

the pharmacist. The pharmacist retrieves identification detail of the patient via

39

Chapter 4

communication between the pharmacist agent and the patient agent. After
identification has been established, the pharmacist agent requests the
prescription detail from the MDBAgent. The MDBAgent replies by sending
the prescription information to the pharmacist agent. The pharmacist then
issues the drugs to the patient, and the pharmacist agent sends the
information about the drugs issued to the MDBAgent. The MDBAgent then
updates the number of issues completed in the prescriptions and issues

database.

The HospitalFollowup use case is shown in Figure 4.6 and its description

follows.

|| HospitalF allowup I

Physician : Patient ; [Medication Agent] MDB&Agent :

GetPatientData
SendPatientData

Examine

GetFrascription

SendPrescription

ootk
ChangePresdgription?
|
GetMedicationData
SendMedicationData
SugogestedPrekcription
st ag 2
ConfirmPresgription
|

UpdatePrescription

UpdateFatientData

Figure 4.6: Sequence diagram for the HospitalFollowup use case

When the patient visits a doctor at the hospital for a follow-up visit, the first
step of the process is a request from the physician agent to the patient agent
to retrieve the personal and medical data of the patient. The patient agent
replies by sending the data of this patient to the physician agent. The doctor
will then do a physical examination of the patient and use the data obtained
from the patient agent to compare the condition of the patient at a previous

40

Chapter 4

visit with the condition at present. The next step is to see if the prescription
has to be updated. The physician agent sends a request to the MDBAgent for
the current prescription, and the MDBAgent replies to the physician agent with
the information. The physician consults with the medication agent to
determine if the prescription has to be changed. The medication agent
requests the medication data from the MDBAgent and the MDBAgent replies
with the relevant data. The medication agent formulates a prescription in
consultation with the pharmaceutical agent and sends it to the physician agent,
who will confirm the prescription like in the PrescribeARVs use case. When
the prescription is finalised, the medication agent asks the MDBAgent to
update the prescription on the medication database. The physician finally
sends the data obtained during the examination to the patient agent to update
the patient database.

Nine roles for the Role Diagram were identified: Patient, Physician, Nurse,
Counsellor, Medication, Medication Database (MDBAgent), Laboratory,
Pharmaceutical and Pharmacist Agent. Tasks were assigned to the different
roles to satisfy each goal. The counsellor role was not part of the original
design, but was included to fulfil the task of counselling the patient after he has
been diagnosed as HIV positive. This task could also be performed by the
nurse, but it would be more logical to keep this as a separate role. The
complete Role Diagram consists of the nine roles, their task allocations and
external as well as internal communications among the agent roles. The role
diagram gets cluttered very quickly when all these details are included. Figure
4.7 shows part of the role diagram consisting of the Physician, Patient,

Medication and MDBAgent agent roles and the communications among them.

41

Chapter 4

MOBADent

N
Medication Agent AddPrescription

1.2.3.2
1.2.4.11

S &

-~
Prescribe

Physician |~

1.1.2.2 e
1.2.31
1 o e

J ReferForDRT
Getlata

Re}er

Patient
1.1.21

Figure 4.7: Role diagram for Physician, Patient, Medication and MDBAgent

roles
4.4.2 Design Phase

In the design stage agent classes and their conversations were created, and
then assembled to create the agent architecture. As a final step a deployment

diagram was used to show the system structure.
4.4.2.1 Creating Agent Classes

Each role is represented by an agent, which manifests itself as a class or
classes. A class may be associated with more than one role, but each role
must be represented by at least one agent class to ensure that all system
goals that were identified are captured in the design. If an agent class plays

42

Chapter 4

more than one role, the roles being played change dynamically at execution
time. In addition, agents of the same class may play different roles
simultaneously. The association between role and task is not always one-to-
one, although it is the case in this design. It is important to note that roles are
the foundation upon which agent classes are designed.

Roles correspond to the set of system goals defined in the analysis phase and
form a bridge between what the system is trying to achieve (the analysis
phase and goals) and how it goes about achieving it (the design phase of
agent classes). The analyst can easily change the organisation and allocation
of roles among agent classes during design, since roles can be manipulated in

a modular way.

The agent class diagram depicts the agent classes and their conversations,
similar to Object-Orientated (OO) Class diagrams. However, there are two
main differences between the agent class diagram in this stage of MaSE, and
OO class diagrams. The first difference is that agent classes are not defined
by attributes and methods, but by the roles they play. Secondly, the semantics
of the relationships between agent classes are different. All relationships in
agent class diagrams are conversations that may take place between two
agent classes.

Figure 4.8 shows an example agent class diagram in MedAgent. It contains
eight of the nine agent classes, their associated roles and some of the
conversations among them. The rectangles in Figure 4.8 depict agent classes
and contain the class name and the role each agent plays (only one in this
design). The lines with arrows show conversations and point from the initiator
of the conversation to the responder. The name of the conversation is
indicated next to the arrow. Not all conversations between the agents in
Figure 4.8 are shown. Refer to Figure 4.7 for the possible conversations that
can occur between the agents in Figure 4.8. All details of conversations
between agents are elaborated on in the next step of the design process, that

is, constructing conversations.

43

Chapter 4

pre

MedicationAgent
medication Agent

requastData

MOBAgent
MOBAgent

LabAgent requestPreserfiption

Lab dBlood
PhysicianAgent

Physician

requegtData

zendBlood
sendBhandResults reguegtData
Counsellorsgent
MurseAgent Counsellor
Murse ideData
ineAssess Patienttgent

Fatient

‘W PharmacistAgent

FPharmacist

Figure 4.8: Agent Class Diagram
4.4.2.2 Constructing Conversations

Constructing Conversations is the next step in the MaSE design phase. Up to
this point the designer may only have stated the conversations that exist
between agents without defining the communications any further. In this step
the details of conversations are defined and communication class diagrams
are drawn for all conversations between agents. Each of these diagrams is a
finite state machine that defines the conversation states of the two participant
agent classes, that is, the initiator and the responder. The diagram drawn for
the RequestPrescription conversation as shown from the perspective of the

initiator, that is, the PhysicianAgent, is shown in Figure 4.9.

44

Chapter 4

“RejectPrescription

."RequestF‘rescriptinn
endPrescription

YarifyPrescription 1
A

ReguestFailed *ConfirmPrescription

FrescriptionFinalised

Figure 4.9: Communication Class Diagram from perspective of initiator

The PhysicianAgent begins the conversation by sending the first message,
RequestPrescription to the MedicationAgent, and then it enters state Wait1
until it receives message GivePrescription or message RequestFailed. If the
GivePrescription message is received, it enters the state VerifyPrescription
and after verification, it either sends message RejectPrescription and returns
to state Waitl or it sends the message ConfirmPrescription, and enters
stage Wait3 until it receives the message PrescriptionFinalised, and the
conversation is ended. If message RequestFailed is received, it enters the

Failure state and the message is ended.

The same conversation as shown from the perspective of the responder, that
is, the MedicationAgent, is shown in Figure 4.10. In this diagram the
conversation is started when the responder, that is, the MedicationAgent
receives the RequestPrescription message and enters the Prescribe state.
Then it either sends the message SendPrescription and enters the state
Waitl, or it sends the message PrescriptionFailed and enters the Failure
state, after which the conversation is ended. In the Waitl state it will either
receive the message PrescriptionRejected and return to the Prescribe state,

or receive the message PrescriptionConfirmed, and send the message

45

Chapter 4

PrescriptionConfirmed, after which it will enter the Finalise state, send the

message PrescriptionFinalised and the conversation is completed.

RejectPrescription

Prescribe *SendPrescription | Wait?

*PrescriptionFailed

FrescriptionConfirmed

"PrescriptionFinalized Finalize

Figure 4.10: Communication Class Diagram from perspective of responder
4.4.2.3 Assembling Agents

During this step of the design phase the internal details of the agent classes
are created. This is accomplished by defining the agent architecture and
defining the components that make up the architecture. These architectural
components consist of a set of attributes and methods. The components are
represented by boxes in the architecture diagram, which are connected to
inner- or outer-agent connectors. Inner-agent connectors are shown as thin
arrows and define the visibility between components, whereas outer-agent
connectors are shown as thick dashed arrows, which define connections with

external resources such as other agents and databases.

The architecture and the internal definition of components must be consistent
with the conversations defined in Section 4.4.2.2. At the very least, each

action or activity defined in a communication class diagram (for example in

46

Chapter 4

Figure 4.9), should be defined as an operation in one of the internal

components.

The architectures of the PhysicianAgent and the MedicationAgent are
shown in Figures 4.11 and 4.12 below. The actions depicted in Figures 4.9
and 4.10 manifest themselves as methods in the different components of the
agent architecture. The message that initiates the conversation is shown as
method requestPrescription in Physician Examiner, which is a component
of the PhysicianAgent. In the same way all the other messages shown in the
communication class diagrams of this conversation are also implemented as

methods of the agents involved in the conversation (See Figures 4.9 to 4.12).

Architecture for Agent ; PhysicianAgent

Physician Data Handler

#oetPatientDataipatientlD): String
#updateFatientDatalpatientlD, p1, p2, p3ivaid

%

FPhysician Examiner

+|D:Sequenceiype)

Mame:vpe
#requestPrescriptionipatientlD, p1, p2, p3iString
#oonfirmPrescription{patientlDy, presiCy:boolean
fhookappointmentipatientlD, date, sitelD, p1i:hoolean
#referDRTipatientlD, date, sitelD)void

Figure 4.11: Architecture of PhysicianAgent

47

Chapter 4

Architecture for Agent . MedicationAgent

DataHandler

#GetPatientDatalpatientlDy; Sequence
#GetMedicationDatadlDy. Sequence

}

FPrescriptionGeneratar

#FPrescribeiPatientlD PrescriptionlD p1,p2, p3kSequence
#FinalizePrescription(PatientlD, Prescription|D,p1,p2, pdBoolean

Figure 4.12: Architecture of MedicatonAgent
4.4.2.4 System Design

The final step of the system design involves using the deployment diagram to
show the system structure. In constructing the diagram it has been taken into
account that many instances of the same agent class can be running in the
system at the same time. For example, many instances of the PatientAgent,
PhysicianAgent, NurseAgent and PharmacistAgent will be running in the
system at a given time. On the other hand, only one instance of the
MedicationAgent and MDBAgent will be required. More than one instance of
the LabAgent may be required in actual deployment, but in this system there
will only be one instance of this agent. Figure 4.13 shows this deployment
diagram.

This system will be running on a number of hosts at different geographical
locations connected by a computer network. These may be spread within a
town or city and between towns/cities, and even rural community clinic

locations.

The main part of the system will run on a server in a central location named
Server 1 in Figure 4.13. A patient agent for each patient will live on the server,
and access the information about the patient and his medical conditions. The

medication agent, pharmaceutical agent and MDBAgent will also reside on the

48

Chapter 4

server, where information about a patient’s condition and information about

drugs will be used to generate a prescription. The physician agents will be

living on computers used by doctors, either in a hospital or a private practice,

for example, Host 1 in Figure 4.13. The nurse agents will be on computers

used by nurses at clinics in a town or a rural area, or at a hospital. These

computers are shown as Host 2 and Host 3 in Figure 4.13. A computer used

by a pharmacist in a pharmacy will host the pharmacist agent. There may be

multiple pharmacist agents and their environments are shown as Host 4 and

Figure 4.13: Deployment diagram

Host 5.
.. ,J‘
'
A
Host 3 Host 2
v A v A 4
Nurse Nurse Nurse Physician Physician
Agent 1 Agent 2 Agent 3 Agent 4 Agent 1 Agent 2
A A A A A A A A A A A
Server 1
Patient K
> Agent 1 v
> Patient
Agent 2
v v
MDBAgent | ¢—p Medication Pharmaceutical
Agent < Agent 1
Host 4 Host 5 Host 6
A 4
Lab Lab Pharmacist Pharmacist
Agent 1 Agent 2 Agent 1 Agent 2
4
v v Y v

49

Chapter 4

4.4.3 Database Design

The database design as shown in Figure 4.1 was not implemented, because of
time constraints, but it was simplified to a single database.

The following tables were identified to be part of the database:
ARVInfo

ARVIssues

ARVPrescriptions

HealthCentres

HealthWorkers

MedicalConditions

OtherMedicationlssues

OtherPrescriptions

PatientPersonalinfo

4.4.3.1 Table Information
ARVInfo

This table stores the information about the different types of ARV. It

contains the following attributes:

ARVID is an abbreviation of ARV name, which is used by health workers.

This is the primary key of the table.
ARVName contains the full name of the ARV drug.

ARVDoseless40, ARVDose40to60, and ARVDosemore60 contain the
dose of the specific ARV for a person weighing less than 40 kg, between
40 and 60 kg, and more than 60 kg respectively. ARVMessage contains
usage instructions for the ARV.

ARVlissues

Each record in this table contains information about the ARVs issued by a
specific health worker at a specific time. The field issuelD, a unique

identifier, is the primary key.

50

Chapter 4

The fields patientID and prescriptionID identify the patient that received
the medicine and the prescription from which it was issued. The field
healthWorker indicates the pharmacist or nurse that issued the ARVs.
The date field contains the date of the issue. The four attributes ARV 1,
ARV2, ARV3 and ARV4 contain the abbreviated names of the ARVs that

were issued.
ARVPrescriptions

This table contains the information regarding each prescription. The
prescriptionID is a unique number that identifies the prescription, which is
the primary key. It also contains a patientID, the ID of the doctor who
issued the prescription and the date of the prescription (prescriptionDate).
There are four fields ARV1, ARV2, ARV3 and ARV4 that contain the IDs of
up to four different ARVs that may be part of one prescription. For each of
these ARVs there are two counters: one that indicates the number of
months for which the ARV is prescribed and another that indicates the
number of months for which the medicine has been issued. The value
ARVDose indicates the category in which the dose is calculated according

to the weight of the patient.
HealthCentres

This table stores the names of the clinics and hospitals that are part of the
system. It contains a unique counter (centreNo) as well as the name of the

hospital or clinic (centreName).
HealthWorkers

This table stores the names (healthworkerFirstname) and surnames
(healthworkerFirstname) of health workers, as well as their role
(healthworkerRole).

51

Chapter 4

MedicalConditions

This table contains information about the medical conditions of a specific
patient at a specific visit to the clinic or hospital. The counter visitCount:
combined with the patientID provides a unique identification of the visit.
Other information about the consultation is stored in field healthWorker,
which is the ID of the health worker who did the examination and the

visitDate that contains the date of the visit.

The values stored in this table include the physical aspects of weight,
temperature and respiratoryRate as well as the results of blood tests: the
CD4 count (CD4), viral load (VL), ALT, Hb, fastingGlucose,
fastingCholesterol and Triglycerides.

OtherMedicationlssues

This table stores the same type of information as that in ARVIssues, and
contains Boolean values to indicate whether the patient was issued with
Cotrimoxazole, Fluconazole, INH or TBTreatment. These are
medications that may be issued by a nurse during a clinic visit, and no
prescription is needed.

OtherPrescriptions

This table stores prescriptions other than ARVs that may be issued by a
doctor, and each record contains information about a single medication.
The fields prescriptionID, patientID, doctor and prescriptionDate all
have the same meaning as in ARVPrescriptions, but each prescription
only has a single attribute, Medication, that contains the medication name,

dose and duration of one prescribed drug.
PatientPersonalinfo

The table is used to store the personal information about a particular

patient. The patientID attribute is a unique identification of the patient.

52

Chapter 4

The treatmentStage indicates what tests have been completed, if the
patient is ready for ARV treatment, or if the patient is already receiving

ARVs. Other fields dateOfBirth,

include firstName, surname,

IDNumber, gender, etcetera.

4.4.3.2 Relationships

EEAH ; r_
healt PaientlD | — ﬁmmmm -
healthcentrelD kreatmentStar = patientID
centreMamne dateOfBaselin doctar
centreType haospital prescripkionCrate
F"l'li': Medication
irstMame
E} gt sUFmame Eé
issueCount dateOrBirth vistCount
patientID IDMumber patientID
healthwarker gender hiealthwWarker
date dateDiagnnse;I visitDate
weight weight
Cokrimoxazole Temperature
Fluconazole D4
INH _ : arvpre WL
TETreatrment presriptionID ALT
heaktworkerID patientID Hb
hiealthwworkerFirst dackar FastingGlucose
gr healthworker Surr prescriptionDiate FastingChalesterc
U healthworkerRols AR Triglycerides
;:‘t-i':]n?ID monthsARY 1Pres
i monkthsARY 1 Issm
prescriptionID — AR
I;:tallath'-.-'-.-'urkﬁr m = manthsARY2Pres
i monthsARY2Issm
ARYMarme ARNT
:E:g ARYDoseless40 months&RY3Pres
ARYDose40kaG0 months &R Y 3Iss0m
ARNM4 ARYDosermoresl ARy
ARVMessage monthsARY4Pres
monkthsARY4Issm
ARYDose

Figure 4.14: Relationships between tables in the database

The relationships between the tables are shown in Figure 4.14. For each
patient whose personal information is stored in patientPersonallnfo there can
be a number of records in medicalConditions, arvPrescriptions, arvissues,
otherPrescriptions and otherMedicationlssues. Multiple records will be

created to contain information about the medical conditions of the patient at

53

Chapter 4

different stages, the ARVs and other medications prescribed, and the issues of
the prescribed drugs.

For each prescription in arvPrescriptions there can be more than one record
in arvissues because a prescription is usually given for six months, but the
patient is issued with one month’s supply of drugs at a time. It is also possible
to issue only a single drug or some components of a prescription.

The table arvinfo contains a single record for each type of ARV. There is a
one-to-many relationship between the arvID in this table and the four fields
ARV1, ARV2, ARV3 and ARV4in both arvPrescriptions and arvissues.

4.4.3.3 Normalisation

The design of the tables was done in such a way as to exclude the possibility
of update, insertion and deletion anomalies, and to reduce data duplication
and inconsistencies that could lead to loss of integrity of the database. To
accomplish this goal the tables in the database were normalised to at least the

third normal form.

The criteria for the first normal form are that a table must be guaranteed not to
have duplicate records, and that every column must be atomic. These criteria
were met by identifying a primary key for each table, and by placing only a
single value in each field. The criterion for second normal form is that it does
not include partial dependencies. This was accomplished by creating separate
tables to store data that is only dependant on a single primary key that
consists of just one attribute. Third normal form also requires that a table must
contain no transitive dependencies. This was reached by placing attributes

that are only indirectly dependent on the primary key in separate tables.

54

Chapter 5

Chapter 5

5 IMPLEMENTATION OF MedAgent

5.1 Overview

The agent classes as well as the conversations between them as discussed in
the previous chapter and shown in the class diagram (Figure 4.8), were
implemented. The only exception is the counsellor agent, whose role was

implemented as a component of the task of the nurse agent.

5.2 The JADE Platform

MedAgent was implemented by using JADE (Java Agent DEvelopment
Framework) (JADE, 2005). JADE is a software framework fully implemented
in the Java programming language. To utilise this framework, agents should

be implemented in Java.

JADE simplifies the implementation of multi-agent systems through a middle-
ware that complies with the FIPA (Foundation for Intelligent Physical Agents)
specifications (FIPA, 2005). It provides a runtime environment where agents
can “live”, and a library of classes that can be used in application development.
It also contains a set of graphical tools that support the debugging and
deployment phases.

The agent platform can be distributed across machines, which could even use
different Operating Systems and the configuration can be controlled via a
remote GUI. The configuration can even be changed at run-time by moving
agents from one machine to another, as and when required. The minimal
system requirement for running JADE is version 1.4 of JAVA (the run time
environment or the JDK). The latest version of JADE at the time of writing,
JADE 3.3, which was released on 2nd March 2005, was used in this

implementation.

95

http://www.fipa.org/
http://jade.cselt.it/images/JADEscreenshot.jpg
http://jade.cselt.it/images/rma.gif
http://jade.cselt.it/download.php

Chapter 5

JADE is composed of a number of packages including the following:

e The kernel of the system is JADE.core, which includes the Agent class that

must be extended to create the different agents in the application.

e A sub-package JADE.core.behaviours contains a Behaviour class
hierarchy. Behaviours implement the tasks, or intentions, of an agent.
They are logical units of activity that can be composed in various ways to
achieve complex execution patterns and these units can be executed

concurrently.

e The JADE.lang.acl package processes Agent Communication Language

according to FIPA standard specifications.

e The JADE.domain package contains classes that represent agent
management, for example, the Agent Management System (AMS) agent
that provides the naming service and the Directory Facilitator (DF) agent

that provides yellow pages services.

JADE also contains tools that simplify platform administration and application
development. These tools include a Remote Management Agent (RMA),
which acts as a graphical console for platform management and control, and a
number of other agents for monitoring the activities of running agents. One of
these agents, called the SnifferAgent, is used to track and graphically display

the messages sent between a set of agents selected by the user.
5.21 JADE Behaviours

The tasks of an agent are implemented in JADE as Behaviour objects.
Behaviours can be added to an Agent class whenever they are needed to
accomplish the agent’s tasks. Two of the Behaviour classes that have been
used frequently in the implementation of the MedAgent system are the
CyclicBehaviour and the OneShotBehaviour. The CyclicBehaviour stays

active as long as its agent is alive and will be called repeatedly after every

56

Chapter 5

event. This behaviour is useful to handle message reception. The
OneShotBehaviour executes only once and dies. This behaviour is used
when an agent has to execute a task only once, such as sending a request or
a reply. A combination of the different behaviours can be used to create a
complex series of tasks executed in a particular order.

5.2.2 JADE Messages

Individual agents communicate and interact with each other through the
exchange of messages. JADE messages are all objects of the ACLMessage
class in JADE that represents ACL (Agent Communication Language)
messages. The attributes and interaction protocols of this class are defined
according to FIPA standards. When a message is created, the content of the
message as well as different attributes are set to describe and identify the
message. Some of the frequently used attributes include the Performative
(type), Receiver, Sender (initialised automatically) and ConversationID

attributes.

5.3 The Agents implemented in MedAgent and their
Behaviours

5.3.1 PatientAgent

The PatientAgent represents a single patient and handles all access to the
personal data of that patient. It contains a number of cyclic behaviours that
are executed to serve incoming requests from other agents, as well as a
number of oneshot behaviours to send replies. Its cyclic behaviours are

summarised below.

e DisplayHistory: to serve incoming requests to display the patient
history. It displays a list of all visits of the patient to health workers with
the visit date, the name of the health worker, as well as the results of
the physical examination and blood tests. It also displays a list of all the

57

Chapter 5

ARV issues that were done for the patient, together with the date and
the name of the health worker that issued the ARVs.

GetBloodResults: to serve incoming requests from a PhysicianAgent
to get information of the last blood tests of the patient. The
PatientAgent replies by sending a message to the sender of the
message with the test results and the test date.

GetClinicVisitData: to serve incoming requests from a NurseAgent to
get clinic visit data. The PatientAgent replies by sending a message to
the sender of the message with the personal data of the patient, as well
as the medical conditions during the last visit, and the results of the
physical and blood tests done at that point in time.

GetPatientData: to serve incoming requests from a PhysicianAgent to
get patient data. The PatientAgent sends a reply to the sender of the
message, which contains the information about that patient that was

acquired by the doctor during the baseline test.

GetPrescriptionData: to serve incoming requests from the
MedicationAgent, to get patient data necessary for the compilation of a
prescription. Information about the gender, weight and physical
condition that could influence the combination of medication, are sent in

reply to these requests.

UpdateBloodResults: to serve incoming requests to update results of
blood tests. After blood tests for a specific patient have been done by a
technician at a laboratory, the LabAgent sends the results to the
PatientAgent. The PatientAgent updates the medical conditions of the
patient by adding the results of the blood tests to the patient’s

information.

UpdateClinicVisit. to serve incoming requests to update data obtained

during a clinic visit. When the visit of a patient to a clinic nurse has

58

Chapter 5

been completed, the NurseAgent sends the information that was
gathered during the visit to the PatientAgent. The PatientAgent

creates a record of that specific visit in the database.

e UpdatePatientData: to serve incoming requests to update patient data
acquired by a doctor during a hospital visit. After a patient has
completed a visit to a doctor, the PhysicianAgent sends the
information updated by the doctor to the specific PatientAgent, to

update its patient database.
5.3.2 NurseAgent

The NurseAgent gets and updates patient data through the PatientAgent,
and gets prescription data from the MedicationAgent. When the patient visits
the nurse, the NurseAgent will determine whether the patient exists on the
system. If the patient exists, the NurseAgent requests the personal
information of the patient from the PatientAgent. The NurseAgent also
requests the prescription data from the MedicationAgent. The nurse issues
medicines from the prescription and the NurseAgent informs the
MedicationAgent which drugs were issued. The NurseAgent uses the

following behaviours:

e CreatePatient: oneshot behaviour to create a new PatientAgent when

patient visits clinic for the first time.

e VisitClinic: oneshot behaviour to start a visit session and get

information about a patient visiting the clinic who is already on ARVs.

e PatientDataReceived. cyclic behaviour to receive a message from a

PatientAgent containing a patient’s personal information.

e VisitDataReceived: cyclic behaviour to receive a message from a
PatientAgent containing information about the previous visit of the

patient to a clinic nurse.

59

5.3.3

Chapter 5

PrescriptionReceived: cyclic behaviour to receive a message from the
MedicationAgent containing the names of the drugs prescribed to a

patient.

PatientDataUpdated: cyclic behaviour to receive a message from a

PatientAgent to confirm the update of patient data.

UpdatePatientData: oneshot behaviour to send a message with the

personal information of a new patient to the PatientAgent.

GetPatientData: oneshot behaviour to send a request to a

PatientAgent to get the patient’s personal and medical information.

GetPatientHistory: oneshot behaviour to send a request to a
PatientAgent and the MDBAgent to get the history of a patient and the

medication issued to the patient.

SendBlood: oneshot behaviour to send a request to the LabAgent to

do a blood test.

UpdateClinicVisit. oneshot behaviour to send a request to a
PatientAgent, to update the data acquired or changed during the clinic

visit.

PhysicianAgent

The PhysicianAgent represents a doctor at a hospital or private practice. The

PhysicianAgent communicates with the PatientAgent, MedicationAgent and

MDBAgent. The PhysicianAgent has a number of oneshot behaviours that

are executed to send requests to the other agents, as well as a number of

cyclic behaviours to receive replies. Its behaviours are summarised below:

BloodResultsReceived: cyclic behaviour to receive the results of the

last blood test of a patient from the PatientAgent.

60

534

Chapter 5

GetPatientData. oneshot behaviour sending a request to a

PatientAgent to get the data of that patient stored at the previous visit.

IssuePrescription: oneshot behaviour sending a request to the

MedicationAgent to generate a prescription.

PatientDataReceived: cyclic behaviour to receive data from a
PatientAgent in reply to the message sent in the GetPatientData

behaviour.

PatientDataUpdated: cyclic behaviour to receive a reply from a

PatientAgent to confirm the update of patient data.

PrescriptionReceived: cyclic behaviour to receive the prescription from
the MedicationAgent.

UpdatePatientData: oneshot behaviour sending the data acquired
during a visit to the doctor to a PatientAgent, to update the database

for that patient.

LabAgent

The LabAgent receives requests from the NurseAgent or the

PhysicianAgent to do blood tests and sends back the test results in reply to

these requests. It uses the following two behaviours to accomplish this task:

e BloodReceived: cyclic behaviour used to receive a request to do the tests

on one blood sample sent to the lab.

. SendBloodResults: oneshot behaviour to send the results of the blood

test to the PatientAgent to which it belongs, to update the record on the

database.

61

Chapter 5

5.3.5 MDBAgent

The MDBAgent (Medical Database Agent) handles all access to the medical
data on the system. Information about drugs, prescriptions and drug issues
are manipulated by the MDBAgent. Other agents, for example, the
NurseAgent, PhysicianAgent, PharmacistAgent and LabAgent request
data from the MDBAgent, and send data to the MDBAgent to update the

medical database. The behaviours used by this agent are:

. GetMedicationData: cyclic behaviour to receive a request for
medication data from the MedicationAgent to be used in the preparation

of a prescription.

. GetPrescriptionData: cyclic behaviour to receive a request from a
PharmacistAgent or NurseAgent to send the information about the
current prescription for a specific patient and the number of issues left for
each drug.

. NewPrescription: cyclic behaviour to receive the information about a
new prescription from the MedicationAgent and create a prescription

record.

. Updatelssue: cyclic behaviour to receive a request from a
PharmacistAgent or NurseAgent to update the information about a

patient’s prescription and drugs issued.
5.3.6 MedicationAgent

The main task of the MedicationAgent is to generate prescriptions as
requested by a PhysicianAgent. This is done by communicating with a
PatientAgent and the MDBAgent to retrieve the information about the patient
and the drugs that could be suitable for the patient. It does this by executing

the cyclic behaviour PrescriptionProcess with the following steps:

62

Chapter 5

1 Receive a message from a PhysicianAgent and send a request for the

personal data of that patient to the PatientAgent.

2 Receive the patient’'s data from the PatientAgent and request the data

about the different medications from the MDBAgent.

3 Receive the medication data from the MDBAgent, compile and send a

prescription to the PhysicianAgent.

When the doctor is satisfied with the prescription, the PhysicianAgent
sends a message to the MedicationAgent. The message is received in
cyclic behaviour AcceptPrescription, which sends the prescription

information to the MDBAgent to create a new prescription record.

5.4 Use of the System

The people who use the system are nurses, physicians, pharmacists and
laboratory workers. Each person interacts with a specific agent by entering
data and making choices in graphical user interfaces. This information is used
by the agent that in turn interacts with other agents to make decisions, store
data and keep track of events. The use of the system in terms of how a nurse,
physician, pharmacist and laboratory worker interact with the system is

discussed in this section.

5.4.1 Nurse

When the NurseAgentis activated, it executes method newConsultation and

the interface NurseGuiis displayed as indicated in Figure 5.1 below:
=lail

Free State
Adult HIV Care and Treatment Programme™™"

Visitto Clinic Nurse

Patient File Number: [1 |

Close ‘ i Hext >

Figure 5.1: The NurseAgent GUI for entering patient ID

63

Chapter 5

The nurse enters the patientID and the NurseAgent communicates with the
AMSAgent (Agent Management System Agent) to determine if that
PatientAgent is active on the system. If the patient is found, a sequence of
tasks will be executed for an existing patient, but if the patient is not found, the
nurse will have the opportunity to create a new patient. These sequences of
events are described below.

5.4.1.1 New Patient

If the patient does not exist on the database, the message box shown in
Figure 5.2 is displayed and the nurse can press “OK” to create a new patient
record, or “Cancel’ to go back to the initial interface to retype the patient

number.

The file number does not exist.

Click OK to create a new file, or Cancel to return.

‘ 0K ‘ ‘ Cancel |

Figure 5.2: Option to create new patient

When a new patient is created, the nurse has to fill in the personal information
of the patient as shown in Figure 5.3.

64

Chapter 5

B

Patient Personal Information

Patient First Name: | |

Patient Surname: | |

Date of Birth:
ID Mo.: |

Gender:) Male ® Female

| <Previous | | Next > |

Figure 5.3: Enter personal information of new patient

The nurse will then start to establish the HIV status of the patient by examining
the patient according to the list of symptoms that could indicate a positive HIV

status as displayed in Figure 5.4.

CEX

First wvisit of patient to clinic in order to establizsh HIV status

Does the patient have any of the following symptoms? Mark all that are applicable.

me [_] Unintentional weight loss [] Mouth lesions, e.q. thrush
[_] Recurrent respiratory infections [] Diarrhoea for more than 1 month [_] Painless swollen glands
[Sexually transmitted infections [] Unexplained fever for more than 1 month [] Skin lesions, e.g. shingles, Kaposi's sar

DOES THE PATIENT REQUEST AN HIV TEST? () Yes ® No

Figure 5.4: Establish HIV status

After completion of this examination the nurse continues to inform the patient
about the process of voluntary confidential counselling and testing (VCT) as

shown in Figure 5.5.

65

Chapter 5

INFORM PATIENT ABOUT VOLUNTARY CONFIDENTIAL COUNSELLING AND TESTING [VCT)

Tick off ewery action that is completed

[Educate patient about H\AIDS, mehods of transmission and risk factors

Explain about WCT: [] Who will perform the counselling and testing
[] That it is completely voluntary
[] That testing is confidential
[_] How testing is done
[] when and how results are given
[] What the result means

Does patient agree to VCT? il Yes % No

| < Previous | | Next =

Figure 5.5: Inform about VCT

After explaining the VCT, the nurse has to explain the testing procedure to the
patient, and tick off every item on the form as displayed in Figure 5.6.

STRICTLY CONFIDENTIAL
PRE-TEST CONSENT TO HIV TESTING

Hawe you explained the following to the patient?

| what HvialDs is? O es @ No |
| How the test will be done? O Yes ® No |
| What a negative result means? ' Yes i No |
| \What the window period means? ' Yes i No |
| \What the advantages of testing are? ' Yes i No |
| \What the disadvantages of testing are? ' Yes i No |
| Why the information is needed?) Yes ® No |
| How a positive result will affect treatment? ' Yes i No |
| what will happen if the test is not done? i Yes ® No |
| Have vou yourself explained the above? ' Yes i No |
| Has a translator been used to explain the above?) Yes ® No |
Did the patient give consent that a spouse, relative or friend can be
informed of his/her HIV positive status? i Yes ® No
| < Previous | | Next » |

Figure 5.6: Explanation of testing procedure and pre-test consent

When the pre-test procedure is completed and the patient has agreed to be
tested, the dialogue box shown in Figure 5.7 is displayed to remind the nurse
that the blood test must now be done and the blood must be sent to the

66

Chapter 5

laboratory for testing. When the nurse clicks “Save changes”, the NurseAgent
sends information about the patient to the PatientAgent to update and it sends
a message to the LabAgent to indicate that blood was sent to the laboratory to

be tested.

A hlood test will now he done and blood will be
sent to the laboratory. The patient will receive
the test results from the laboratory.

Select 'Save changes' to save all information about
this consultation or *Cancel’ to discard all changes.

‘ Save changes ‘ | Cancel |

Figure 5.7: Blood tests will be done
5.4.1.2 Existing Patient

If the PatientAgent exists on the system, the NurseAgent executes behaviour
VisitClinic to execute the tasks that have to be performed during a follow-up
visit to the nurse. The NurseAgent communicates with the PatientAgent to
retrieve the personal information of the patient. It also communicates with the
MDBAgent to retrieve information about the latest prescription for that patient,
from which the nurse will issue medications. The personal information of the

patient as shown in Figure 5.8 is the first interface to be displayed.

PATIENT PERSONAL INFORMATION AND SUMMARY OF PREVIOUS VISIT TO CLINIC
PERSONAL INFORMATION

Patient First Name: John Patient Surname: Smith Date of Birth: 1980-12-31

ID No.: TETTIT Hospital File Number: 1 Gender: n

SUMMARY OF PREVIOUS VISIT

Date of previous visit: 2006-03-01
Weight(kg): 66
HIV refated conditions Medication issued Blood results
[] Cough andior difficult breathing ARMA: ate coa: 5
] weight loss ARVZ: ATT VL 5
[5kin rashed/lesions
- ARV 4T ALT: 5
[] Headache
[]vAisual disturbances oLl 2
[] Burning/numbness of taes andior fingers Ol prophylaxis Fasting Glucose: 5
[Ivomiting Cotrimoxazole: Fasting Cholesterol: 5
ud Drai e Fluconazole: Trighycerides: 5
[_] Abdominal pain (no diarrhoea)
i INH:
[] Painful throatimouth/ips
[] Sexually transmitted infections:
T8 Treatment:

Display Patient History < Previous ‘ ‘ Next >

Figure 5.8: The patient personal information window

67

Chapter 5

The patient history, which includes the history of the medical conditions of the
patient as well as the ARV issues made to the patient, can be displayed by
clicking on the appropriate button “Display Patient History’ in Figure 5.8, and
the results will be as shown in Figure 5.9 below.

£ History of Medical Conditions and ARY Issues ;IEILI

[History of medical i i
visitDate healthiiorker weight ternperature cD4 WL ALT hE fastingGlucose fastingCholest.| Triglycerides

2006-11-02 Murse Mary 45.00 ar.zo 200.00 2500.00 28.00 13.00 H 3

2007-02-28 MHurse Jane 46.50 28.00 260.00 1000.00 28.00 12.00 4.80 6.80 1.40

s
[History of ARY issues 7

date
2006-08-22 Fharmacist 1 04T EFy
2006-08-23 Pharmmacist 1 E
FO0E-NG-30 Fharmacist 1 04T 3TC EFY
2006-11-02 HUrse Mary 04T ITe EFV

Figure 5.9: Window showing the history of medical conditions and ARV issues

In the next step the nurse has to do a physical examination of the patient to
measure the weight, temperature and respiratory rate of the patient and enter

it. Figure 5.10 below shows the interface used for this step.

=o)|
COMPLETE THE FOLLOWING PHYSICAL EXAMINATION
Measure weight: ’\7 kilograms
Measure temperature: ’7 degrees Celcius
Measure respiratory rate: [] vreaths per Minute

Figure 5.10: Capturing physical examination data

Thereafter, the nurse will ask the patient about possible TB symptoms. A
message is displayed that compares the weight of the patient at the previous
visit with the current weight as depicted in Figure 5.11 below.

68

Chapter 5

=10

ASK PATIENT ABOUT TB SYMPTOKMS

boes the patient hawve a cough for more than two weeks?) Yes) No |
boes the patient have unexpected weight loss?) Yes) No |
Previous weight = 56.00 Current weight = 60
bnes the patient have dreanching night sweats?) Yes) No |
‘ < Previous | | Mext >

Figure 5.11: About patient TB symptoms

If any of the answers to the questions is positive, a message is displayed for
the nurse to send sputa samples to the laboratory to test for TB as indicated in
Figure 5.12.

Patiens shows TB Symptoms. Take sputa samples and send to laboratory.

-

Figure 5.12: If patient shows any TB symptoms, samples are sent to a laboratory

The next step is to look for HIV related conditions as displayed in Figure 5.13
below and treat them.

LOOK FOR HIY RELATED CONDITIONS AND TREAT IF NECESSARY
[] Cough and/or difficult breathing [visual disturbances [Abdominal pain (no diarrhoea)
| Weight loss [_| Burninginumbness of toes andior fingers || Painful throat/mouth/lips
[_] Skin rashedlesions [Vomiting [_] Sexually transmitted infections
[] Headache [] Diarrhoea [_] Lymphadenopathy

[Draw blood and send blood to laboratory to be tested

| < Previous | | Next »

Figure 5.13: Treat HIV related conditions

69

Chapter 5

The next task of the nurse is to issue the ARV drugs for the next four weeks.
The medications as prescribed by a doctor are displayed as shown in Figure
5.14, and the nurse may select to issue one or more medications. Only the
medications for which there are issues left may be chosen by the nurse. If all
issues of a certain ARV have been done, a message will be displayed to
indicate this, as shown in the case of the ARV Lamivudine (3TC) in Figure
5.14. The NurseAgent can generate the dates for the next visit to the clinic
nurse and doctor by clicking the appropriate buttons, and the nurse will

communicate this information to the patient.

~ioix|

ISSUE PRESCRIBED ARVS AND MAKE APPOINTMENT FOR NEXT WISIT

Issue the following medication for the next four weeks:

Lammudine (3TC) All issues done
[1AZT Zidovudine (AZT) 300mg bd
[1d4T Stavudine (d4T) 30mg bd
| Generate date of next visit to Nurse | | _|
| Generate date of next visit to Doctor | | _| | < Previous | | Next = |

Figure 5.14: Issue prescribed ARVs and make appointment for next visit

When the nurse clicks the “Next’ button, the NurseAgent displays the
message shown in Figure 5.15 and the nurse has to confirm that the

appropriate ARVs were issued.

70

Chapter 5

Flease confirm that the following
ARYs have been issued:

Zidovudine (AZT)
Stavudine (d4T)

| Mo - Return to previous | | ¥es - continue |

Figure 5.15: Confirm ARV issues

Finally the NurseAgent informs the nurse that all tasks have been completed,
and she is reminded to tell the patient the date of the next hospital and clinic
visit as shown in Figure 5.16. The nurse is also reminded that the blood
sample must be sent to the laboratory for testing. The NurseAgent now sends
the patient information gathered during the visit to the PatientAgent to update,
and it sends a message to the LabAgent that a blood sample has been sent

and has to be tested.

£ Next Visit 1ol =]

All tasks of this clinic follow-up appointment have been completed.

Inform patient about the date of the next appointment.

Date of next visit to Clinic-based Nurse: 2007-07-1 8| |
Date of next visit to Hospital-based doctor: |2IJEIB-D1 -24

Send the blood sample to the laboratory

R

Figure 5.16: Tasks completed, patient reminded of next visit and blood sample

sent to laboratory

71

Chapter 5

5.4.2 Physician

The PhysicianAgent starts with an interface similar to the one displayed by
the NurseAgent as was previously shown in Figure 5.1. The doctor has to
type in the patient number and the PhysicianAgent will test whether the
patient exists on the system. This is done similarly to the procedure followed
by the NurseAgent as described in Section 5.3.1. If the patient exists, the
PhysicianAgent determines the treatment stage of the patient and follows a
set of procedures accordingly. The sequences of events for a patient coming
for a first visit, as well as a patient coming for a follow-up visit, are described in
the following sections.

5.4.2.1 First Visit to Doctor

Sometimes a patient will visit the doctor without visiting the nurse at the clinic
beforehand. In that case the patient does not exist on the system and the
PhysicianAgent will create the patient. The doctor then starts by entering the
personal details, followed by the information gathered during the medical

examination.

If the patient does exist, the PhysicianAgent determines whether the current
visit is the first one to a doctor, in which case the doctor will do a baseline
examination, guided by the PhysicianAgent, which displays a series of input
interfaces for the doctor to enter the results of the different baseline tests. The
interfaces that are used to enter the data are shown in Appendix B.

During the visit to the doctor, the PhysicianAgent will determine from the test
results whether the patient is at a stage where ARV treatment has to be
started. If so, the doctor will send the patient for drug readiness training
(DRT).

72

Chapter 5

5.4.2.2 Follow-up Visit

When a patient visits the doctor for a follow-up, the personal information of the
patient as well as the medical conditions and medication received previously
are displayed as shown in Figure 5.17 below. The doctor examines the patient
and enters the current information. The interfaces used during this

examination are shown in Figures 5.18 and 5.19 below:

4 visit to dr un P] |
PATIENT PERSONAL INFORKMATION AND SUKMMARY OF CONDITIONS AND TREATHENT

PERSONAL INFORMATION

Patient First Name: John Patient Surname: Smith Date of Birth: 1980-12-31

ID No.: TITITY Hospital File Number: 1 Gender: 1]

PREVIOUS TREATMENT AND BLODD RESULTS

Current ARY Prescription Blood results
ARV Name Number of issued left Date of blood tests: ~ 2007-03-28
ARV Stavudine (d4T) 2 CD4: 260.00
ARV2: Lamivudine (3TC) 2 Wl 1000.00
ARW3: Efavirenz (EFV) 7 ALT: 28.00
ARV Hh: 12.00
Fasting Glucose: 480

Fasting Cholesterol: 6.80
Trighycerides: 1.50

Display Patient History | < Previous | | Hext > |

Figure 5.17: Previously captured information shown during follow-up visit

£ poctor DoctorX follow-up visit =101 =]

Reason for Visit

Booked follow-up Appointment) No) Yes

ARY Side Effects and Adherence (choose allt...

[] Skin Rash [] Gastrointestinal [_] Peripheral Neuropathy [] Other | | [] Mone

Comment on Adherence: [|

Opportunistic Infection Propydaxis {choose all that apphy)

[] Cotri IR I [1INH ["] None of these

< Previous Hext >

Figure 5.18: First interface for entering data during follow-up visit

73

Chapter 5

£ Doctor DoctorX follow-up visit (Ol x|
TB Status {choose one)
) On TB Treatment - ifyes, months:
) 1B Symptoms - ifyes, was sputum sent? : (Mo () Yes . ifyes,enter resulis: sputum 1:) positive ' negative

| No TE Treatment and No TB Symptoms sputum 2 O positive) negative |

Weight
Today. | | kg Previously | | ky
Family Planning { Oniy) all that apphy)
[] Injectable ["] Birth Control Pills [] Other [] Mone

Hospitalisation since last visit

) No) ¥es - how manytimes?

R Hospitalisation 1: |

Hospitalisation 2: \

Figure 5.19: Second interface for entering data during follow-up visit

The next step in this sequence of events is to revise the previous prescription if

necessary. This is an important component of the doctor’s task.

The

PhysicianAgent starts by contacting the MDBAgent to retrieve the current

prescription, if available. The prescription is then displayed in the interface

shown in Figure 5.20 below. If a prescription was not found, an empty form

would be displayed.

% HH -
ARY PRESCRIPTION
Name of Hospital |Pe|onomi | Prescription Date:
Doctor |>o< |
Patient Name [John Smith |
ID Number [rrerre Weight: 65 | kg Birth date: [1980-12-31
Medication Dosage Months repeated
Stavudine {d4T) 40mg bd 3] |
Efavirenz {(EFv) 600my at night 3]
Lamiudine (3TC) 150my bd |4}
Accept Prescription | | Modify Prescription | | Request new Prescription |

=1olx]

2006-07-04 |

Gender: |

Figure 5.20: Current ARV Prescription

74

Chapter 5

The doctor now has different options to obtain a new prescription. If the doctor
selects option “Request new Prescription”, the PhysicianAgent sends a
message to the MedicationAgent to compile a new prescription. The
MedicationAgent decides which drugs to use based on the physical and
medical conditions of the patient. It replies with the new prescription, which is

displayed in the ARV Prescription window.

The MedicationAgent retrieves information about the combination of drugs
suited for the specific patient from the medication database via the
MDBAgent. In the current system only the gender of the patient is used as
the criterion for choosing a combination of drugs. In future this will be
developed to include drug interactions and symptoms of the patient.
Information about the doses of drugs is also retrieved from the medication
database and a selection is made depending on the weight of the patient.

If the doctor is not satisfied with the rendered prescription, he can request
another prescription from the MedicationAgent, or he could change the
prescription by selecting “Modify Prescription” to modify the prescription
manually. The available ARVs as well as the ARVs that are currently selected
for the prescription are displayed as shown in Figure 5.21. The doctor may
select one or more items to add or remove from the prescription. When the
doctor is satisfied with the prescription and clicks “OK”, the names of the
selected drugs are displayed on the ARV Prescription form (Figure 5.20) with
the appropriate dosage for the patient as retrieved from the medication

database.

75

Chapter 5

BUILD PRESCRIPTION
RAvailable ARVs: Selected ARVS:

Zidovudine (AZT) Stavudine {d4T)
Didanosine {ddl) Lamivudine (3TC)
Lopinavir {LPV) Efavirenz {EFv)
Nevirapine (NVP) | Add > ‘
Ritonavir {(R1)

| < Remove ‘

| Ok ‘ | Cancel ‘

Figure 5.21: Build prescription

The default number of months that each drug is prescribed is set to six
months, but the doctor has the option to change this value for each drug

individually.

When the doctor is satisfied with the prescription, and clicks “Accept
Prescription, the prescription information is sent to the MedicationAgent,
which sends a request to the MDBAgent to save it on the database. A hard
copy of the prescription can now be issued to the patient, and the prescription
is available on the system to be accessed by the nurse or pharmacist when

drug issues are done.
5.4.3 Lab Worker

When blood has been sent to the laboratory to be tested, the LabAgent
receives the message, and the interface shown below in Figure 5.22 is
displayed on the computer in the lab. When the blood tests have been
completed, the lab worker enters the test results. When the lab worker clicks
“‘OK’, the LabAgent sends a message to the PatientAgent to add the results

to the medical conditions of the patient.

76

Chapter 5

COMPLETE THE FOLLOWING BLOOD TESTS

Patient file number: 7
Date: 2007-06-14

CcD4:
‘iral Load: |

ALT: |
Hb: |

Fasting glucose:
Fasting cholesterol: |

Triglycerides: |

Finish

Figure 5.22: Enter Results of Blood Tests
5.4.4 Pharmacist

When the PharmacistAgent is activated, the interface shown in Figure 5.23 is
displayed. The pharmacist enters the patient number of the patient visiting the
pharmacy for whom he has to issue the medicine as prescribed by a doctor.
When the pharmacist clicks the “Next’ button, the PharmacistAgent sends a
request to the PatientAgent for the personal information of the patient. The
PharmacistAgent also requests the information about the last prescription for
this patient from the MDBAgent.

Visit to Pharmacy

Patient Humber: H

Close Hext >

Figure 5.23: Interface for Pharmacist to enter patient number

77

Chapter 5

The personal information about the patient is displayed as shown in Figure
5.24. The pharmacist has to make sure if this is the correct patient by asking

the patient for some form of identification, and will then click “Next” to continue.

=113

Patient Personal Information

Patient First Name: [lohn |

Patient Surname: [5mith |
Date of Birth: [tos0-12-31 |
ID No.: [rreere]
Gender: |Male—|
Weight (ku): s]

| < Previous | | Mext = |

Figure 5.24: Patient Personal Information

The interface showing the prescription is then displayed as shown in Figure
5.25. The pharmacist may select the ARVs that will be issued to the patient
from the list of ARVs that are part of the prescription. When the pharmacist
clicks “Finish”, he will be asked to confirm whether these ARVs have been
issued. This message is shown in Figure 5.26.

=101]

ISSUE PRESCRIBED ARVS TO PATIENT

Issue the following medication for the next four weeks.
Tick all drugs that have been issued:

[]azT Zidovudine (AZT) 300mg bd
[ddi Didanosine {ddl) 250mg od
[Py Lopinavir (LPV) 400mg bd
[IR1 Ritonavir (R1) 100mg bd

| Cancel | | Finish |

Figure 5.25: Select ARVs to issue to patient

78

Chapter 5

Please confirm that the following
ARWs have been issued:

Lamivudine (3TC)
Fidovudine (AZT)
Stawudine (d4T)

| Mo - Return to previous ‘ ‘ Yes - continue |

Figure 5.26: Confirm that the correct ARVs were issued

When the pharmacist confirms the issue of ARVs, the PharmacistAgent
sends the information about the issue to the MDBAgent to update the

prescription information and the issue of drugs on the database.

5.5 The MedAgentDatabase Implementation

The database design described in Section 4.3.3 used with MedAgent was
implemented using MySQL. The initial database design consisting of
distributed databases, as described in Figure 4.1, was simplified and
implemented as a single database because of time constraints. Some
examples of the records in the different tables and the queries of the data as
done by the agents are shown in this section.

5.5.1 New Records

New records are inserted into the tables of the database at different points in
the system. Some examples of the creation of new records will be described
in this section.

When a patient visits a nurse for the first time, the nurse gathers and enters
the personal information of the patient. At the end of the visit the NurseAgent

sends this information to the PatientAgent to update the database. The

79

Chapter 5

PatientAgent connects to the MySQL database and inserts a record into the

PatientPersonallnfo table. After each visit to a nurse the medical conditions

of a patient will also be added to the MedicalConditions table in a similar

manner. The code that is used to build the query and execute the update to

in

sert the record into the MedicalConditions table is given in Figure 5.27

below:

// Build MySQL query string

String insertString = "INSERT INTO medicalconditions SET " +
"patientID = '" + getAID() .getLocalName() +

"', healthWorker = '" + healthWorker + "', visitDate = '" +
visitDate + "', weight = " + weight + ", Temperature = " +
Temperature + ", CD4 = " + CD4 + ", VL = " + VL +", ALT = " +
ALT + ", Hb =" + Hb + ", fastingGlucose = " + fastingGlucose +
", fastingCholesterol = " + fastingCholesterol +

", Triglycerides = " + Triglycerides;

// Execute update

statement.executeUpdate (insertString) ;

Figure 5.27: Insert Record into MedicalConditions table

Some records of table MedicalConditions that were created in this way are

shown in Figure 5.28 below:

B [Table] medicalconditions @patient (root)

File Edit Wiew ‘Window
a Import YWizard {ﬂ Export Wizard L_érﬂ Filter Wizard = Memo §| Hex g_\ﬂ Image ¥ Sart Ascending W Sart Descending i)
visitCountIpatientID|healthWorker wisitDate JweightlTemperature|CD4|VL |ALT |Hb |FastingGIucose|Fastingcholesterol|Triglycerides ~
L 11 Murse Betby 2006-07-24 45 37.5 250 3000 28 12 4.5 3.5 1.6
1 22 Murse Mary 2006-07-26 56 35.5 200 800 32 11 5 2.2 1.3
1 33 Murse Jane | 2006-03-22 8 S53.4 39 180 3000 28 13 12.5 6.3 1.7
42 Murse Mary | 2006-03-24 8 55.5 37.5 220 730 31.5 10 9.2 2.9 1.4
| 5|4 Murse Betky 2006-08-24 | 57.8 40 | 150 4500 32.1 11 3.5 3.5 1.3
: 6 3 Murse Mary 2006-09-30 55 35.5 180 2500 27.5 14 10.8 6.5 1.7
1 72 Murse Jane 2006-09-30 55 37 240 500 30.8 10 5.3 3 1.5
L 53 Murse Eetky | 2006-10-31 g8 35,5 190 2700 28.5 13 11.5 £.9 1.7
91 Murse Mary 2006-11-02 45 37.2 200 25000 28 13 4.4) 1.5
| | LIRS Murse Jane | 2007-02-25 0 46.5 35 260 1000 =28 12 4.6 6.8 1.5
[] 1113 Murse Betky 2006-07-31 52 39200 2500 29.5 12 13.1 6.4 1.7 T
ek = s Lol Record 1 af 11 in Page 1
SELECT * FROM *medicalconditions™ LIMIT 0,1000 |

Figure 5.28: Table MedicalConditions

80

Chapter 5

Every time when a nurse or pharmacist issues one or more ARVs to a patient,

the NurseAgent or PharmacistAgent sends the information to the

MDBAgent, which connects to the database and creates a new record in table

ARVIssues. The code in Figure 5.29 is used to accomplish this task:

// Insert record into database
String insertString = "INSERT INTO ARVIssues SET " +
"patientID = '" + patientID +
"', prescriptionID = " + prescriptionID +

", healthWorker = '" + healthWorker +

"', date = '" + date + "', ARV1 = '" + ARV1 +
"', ARV2 = '" + ARV2 + "', ARV3 = '" + ARV3 +
ma , ARV4 - T + ARV4 + mwa ";

//Update database table
statement.executeUpdate (insertString) ;

Figure 5.29: Insert Record into ARVIssues table

The content of table ARVIssues is shown in Figure 5.30 below:

& [Dock] - [Table] arvissues @patient (localhosk)

] [Table] arvissues @patie. ., 1 [Table] arvissuss @patie. . |

File Edit Wiew ‘Window

=10] x|

'-,':] Import Wwizard {ﬂ Export Wizard 'j:é Filter Wizard | =!I Memo =] Hex g;ﬂ Image | 3 sart Ascending >:
issuslD|patientIn [prescriptiondt [healthiwarker |date A ARy =]
L 111 1 Nurse Bethby 2007-01-24 d4T 3TC EFY
= 2.2 3 |Nurse Mary 2007-01-26 d4T 3TC MYP
= 3|1 1 Pharmacist 1 2007-02-22 d4T EFY
Il 4 3 2 Murse Jane 2007-03-22 AZT ddl LPY R1
L 52 3 Pharmacist 1 2007-03-23 d4T
= 611 1 'Pharmacist 1 2007-03-23 3TC
l 54 4 Murse Bekby 2007-03-24 :Id4T EFY
Il 7z 3 Murse Mary 2007-03-24 3TC MYP
L 9.3 2 Nurse Mary 2007-04-30 AZT ddl LPY R1
= 0|2 3 Murse Jane 2007-04-30 d4T ST YR
[111 1 Pharmacist 1 2007-04-30 d4T 3TC EFY T
I 12 3 2 Murse Betby 2007-03-31 AZT ddl LPY R1
L] 13 |4 4 |Pharmacist 1 2007-06-01 d4T 3TC YR
= 141 1 Nurse Mary 2007-06-02 d4T 3TE EFY
[151 5 Pharm 2007-07-05 AZT ddl
|
4 o4 b b f = a O Record 7 of 15 in Page 1
URDATE " arvissues™ SET " date’ ="2007-01-24' WHERE (" issuell’="1" e oo o W

Figure 5.30: Table ARVIssues

When the doctor finalises a prescription, the MedicationAgent sends the new

prescription to the MDBAgent, which connects to the database and creates a

81

Chapter 5

new record in table ARVPrescriptions. Sample records are shown in Figure
5.31 below. A combination of up to four drugs can be used in one ARV
prescription and for each drug the name of the medication, the number of
months for which it has been prescribed, as well as the number of months for

which the issues have been completed, is shown.

B [Table] arvprescriptions @patient (root)

File Edit Wiew window
- - x -~ >
a Impork Wizard Q Export Wizard "3‘; Filter Wizard = Memo E| Hex gﬂ Image H sar Ascending W sort Descending o
|prescriptionID |patientID1doct0r prescriptionCate |..\.5.R\-'1 |m0n||m0ntJAR'\n'2|montlmont|ARVSImont}Jmonth:l.ﬁ.RV‘I |m0ntl‘im0nth:]ARUDn| "~
11 Doctor Conrad | 2006-05-05 d4T G 4 3TC G 4 EFY & 4 1
4 23 Dockar Steven | 2006-05-07 AZT 5] 3 dd & 3 LPY & 3 R1 5] 3 2
3 Dockar James | 2006-06-05 d4T 5] 4 3TC 5] 4 MWP & 4
44 Doctor Steven | 2006-07-05 d4T & 2 13TC & 2 EFY & Z2
v
A4 A b b o = . [] Record 2 of 4in Page 1
SELECT * FROM * arvprescriptions ™ LIMIT 0,1000 e W

Figure 5.31: Table ARVPrescriptions
5.5.2 Update Queries

The database is updated at several occasions in the system when information
is gathered and entered by a nurse, doctor, pharmacist or lab worker. Some

examples of changes made to existing records are shown in this section.

When a nurse completes the examination of a patient, a record of the medical
conditions is created as previously shown in Figures 5.27 and 5.28, but the
blood drawn during that visit has to be sent to a laboratory to be tested before
the results can be added to the record. After the laboratory worker has
completed the tests, and entered the results, the LabAgent sends the results
of the blood tests to the PatientAgent, which updates the record in table
MedicalConditions that was created after the clinic visit, to include the blood

test results.

The code in Figure 5.32 is used to generate and execute the update query:

82

Chapter 5

statement = connection.createStatement() ;

// update database
String updateStr = "UPDATE medicalconditions SET " +

"Ch4 = '" + CD4 + "', VL = '" + VL +

"', ALT = '" + ALT + "', Hb = '" + Hb +

"', fastingGlucose = '" + fastingGlucose +

"', fastingCholesterol = '" + fastingCholesterol +
"', Triglycerides = '" + Triglycerides +

"' WHERE " +

" (patientID = '" + getAID() .getLocalName() +

"') AND (visitCount = " + wvisit + ")";

statement. executeUpdate (updateStr) ;
Figure 5.32: Update Query

The table ARVPrescriptons is updated every time after ARVs have been
issued to reflect the number of issues of each drug completed. The following
code is used to do this update:

// Generate query to retrieve information from database

String x = "SELECT patientID, monthsARVl1Issued, " +
"monthsARV2Issued, monthsARV3Issued, monthsARV4Issued " +
"FROM ARVPrescriptions WHERE prescriptionID = '" +
prescriptionID + "'";

// Execute query to retrieve information from database

ResultSet resultSet2 statement. executeQuery (x) ;
String patientID = "";

// Increment issue counts

while (resultSet2.next()) {
patientID = resultSet2.getString("patientID") ;
monthsARV1Issued =

Integer.parselnt (resultSet2.getString ("monthsARV1Issued")) ;
if (ARV1 !'= "") {monthsARVlIssued += 1;}
monthsARV2Issued =

Integer.parselnt (resultSet2.getString ("monthsARV2Issued")) ;
if (ARV2 !'= "") {monthsARV2Issued += 1;}
monthsARV3Issued =

Integer.parselnt (resultSet2.getString ("monthsARV3Issued")) ;
if (ARV3 !'= "") {monthsARV3Issued += 1;}
monthsARV4Issued =

Integer.parselnt (resultSet2.getString ("monthsARV4Issued")) ;

if (ARV4 !'= "") {monthsARV4Issued += 1;}
}

83

Chapter 5

// create Statement for updating database
statement = connection.createStatement() ;

String X = "UPDATE ARVPrescriptions SET " +

"monthsARV1Issued = " + monthsARV1Issued +

", monthsARV2Issued = " + monthsARV2Issued +

", monthsARV3Issued = " + monthsARV3Issued +

", monthsARV4Issued = " + monthsARV4Issued +

" WHERE " + " (prescriptionID = " + prescriptionID + ")";

// Update database
statement.executeUpdate (X) ;

Figure 5.31: Table ARVPrescriptions

5.6 Messaging between Agents

Agents communicate by sending out messages to other agents and receiving
messages from other agents. In the MedAgent system the PatientAgentis the
only agent that has access to a patient’s information on the database and the
MDBAgent is the only one that has access to the medication database. The
other agents that have user interfaces to gather information, or provide
information, have to communicate with the former two agents to retrieve or
save the information. The MedicationAgent also has to communicate with the
PhysicianAgent to agree on the composition of a prescription. Some
examples of the messaging between agents will be described in this section.
The figures in this section are screenshots that were taken of the message
tracking as gathered during programme execution and displayed graphically
by the JADE SnifferAgent.

All messaging in the system are done via the FIPA messages REQUEST and
INFORM. REQUEST messages are used in all cases where data is
requested, and the reply is done using an INFORM message as seen in Figure
5.33.

84

Chapter 5

5.6.1 Messaging when Visit to Doctor commences

When a visit to a doctor commences, the PhysicianAgent has to determine
whether the patient exists on the system, and information about the patient,
medical conditions and prescription as saved previously, have to be retrieved
from the system. The messages sent between agents to accomplish this are
shown in Figure 5.30 below. The agents that were tracked by the
SnifferAgent are a PhysicianAgent (a), a PatientAgent (b), the MDBAgent
(c) and the AMSAgent (d). The PhysicianAgent sends the first message
(Request 0) to the AMSAgent to determine whether the PatientAgent exists
on the system. An affirmative reply is sent back to the PhysicianAgent. The
PhysicianAgent then sends a request to the PatientAgent (Request 1) for the
personal information of the patient, another request (Request 2) to the
MDBAgent for information about the previous prescription issued for the
patient, and finally a request to the PatientAgent (Request 3) for the medical
conditions and blood test results of the patient. The results of Requests 0, 1, 2
and 3 do not depend on one another, and the reply messages to these
requests may be sent back to the PhysicianAgent in any order as seen in
Figure 5.33.

85

Chapter 5

- sniffer1@dawid:1099,/IADE - Sniffer Agent (=]]
Actions About
o =1l s = 1
vy = H eeam H
T (a) (b {c] (d)

a 2

REQIEST:O

1 P

o INFORRA:O i

= RECQUEST:1

REQUEST:2
4 P =
= REQUEST:Z
INFOIRRA: 2
5]
INFORkA:Z
7 |
INFORRA

2 -

a
NCEEN M Te] |

Mo Message

Figure 5.33: Messaging at the beginning of a visit to a doctor

A conversation ID as well as the receiver is set for each message that is sent
to identify the type of message and the agent that has to respond to it. Other
information when requesting data about a patient includes the ID of the patient.
In the case of a request about a prescription, the prescription ID is sent to the
MDBAgent. The reply is sent to the agent that initiated the request, and
contains the data requested in that specific instance.

5.6.2 Messaging during the Prescription Process

When the doctor requests the generation of a prescription by the system, the
different steps of the prescription process have to be completed in a particular
order. First the patient data has to be obtained, then the medications suitable
for the patient have to be retrieved and finally, the prescription is issued. The
messages sent between the agents involved in the prescription process are
shown in Figure 5.34 below.

86

Chapter 5

The process starts when a PhysicianAgent (a), sends a request (Request 0)
for a prescription to the MedicationAgent (c). The MedicationAgent sends a
message to the PatientAgent (b) to request the personal and medical
information of the patient (Request 1). It waits for the information from the
PatientAgent before sending a request to the MDBAgent for all possible
drugs suitable for the patient (Request 2). The requests, as well as the replies
from the MDBAgent and the PatientAgent to the MedicationAgent
containing the suitable information, can be seen in Figure 5.34. Finally when
the MedicationAgent has selected a combination of drugs and the generation
of the prescription is completed, the MedicationAgent sends the prescription

to the PhysicianAgentin reply to the first request.

= sniffero@dawid:1099,/JADE - Sniffer Agent -0 x|

Actions About
' v 2 E eea N
a 'EIE B’ [!_!Ei_@._?!i | |
il (&) (b) {c) (d)
0 ot
; REDLIEST:D‘
: REQUEST:1
=zl =
L
3
4
= |
b INFORRA:O
2 " |
i 4] i [Te]

NoMessage

Figure 5.34: Messages sent during the prescription process
5.6.3 Messaging during Drug Issue

The messages sent between agents when drugs are issued by a pharmacist
are shown in Figure 5.35. The three agents involved are a PharmacistAgent
(a), a PatientAgent (b) and the MDBAgent (c). The PharmacistAgent sends

87

Chapter 5

a request (Request 0) to the PatientAgent to retrieve the personal information
of the patient for identification purposes. The PharmacistAgent also requests
the latest prescription for this patient from the MDBAgent (Request 1). When
both reply messages have been received, the pharmacist may issue the
prescribed drugs. The PharmacistAgent completes the process by sending
the names of the drugs that were issued to the MDBAgent (Request 2) to
update the prescription and issues done. The MDBAgent replies to confirm

that the update has been completed.

- sniffer0@dawid:1099,/JADE - Sniffer Agent | o =]
Actions About
= e =l | e
. .ﬂﬂ =HH i_!ji_@_:!_l |Jll
il
: bt
1
= REQUEST:A
11 o =
IMFORR 1
5 i
F L
REQUEST:2
= P
— INFORRA:2
- =] ! L
(CENE KN I T |

Mo Message

Figure 5.35: Messages sent during a drug issue

88

Chapter 6

Chapter 6

6 CONCLUSIONS AND FURTHER WORK

6.1 Introduction

The main goal of this research was to develop a MAS for administering the
prescription of anti-retroviral and anti-TB drugs, assisting health care staff in
carrying out the complex task of combining antiretroviral and anti-TB drugs
efficiently. To accomplish this goal, the following objectives were part of the

research:
e Study intelligent agents and their application in different fields
e Design a multi-agent system for the prescription of anti-retroviral drugs.
¢ Implement the system and show how the system is used.

The extent to which these objectives were accomplished is highlighted in
Section 6.2 below.

The use of agents makes it possible to create software systems that consist of
components that are autonomous software systems working independently,
but also communicating with one another. The concept of Multi-Agent
Systems and the characteristics of intelligent agents, as well as application of
an Agent-Oriented Software Engineering methodology that supports the
development of MAS, were all part of the study.

One way of using agents is to have them act on the behalf of a user as user
agents or personal agents. The field that was of particular interest in this study
was the medical and health care domain. The health care domain is a vast
open environment where professionals with different skills and roles
communicate and co-operate. This domain is very well suited for the use of
MASs. Medical MASs include distributed patient scheduling within a hospital,

89

Chapter 6

organ and tissue transplant management, community care, information

access, decision support systems, training and drug prescriptions.

In this study the prescription of anti-retroviral and anti-TB drugs as an area
where a MAS system could be deployed was identified. A brief summary of the
achievements and shortcomings of the work is given in Section 6.2 below, and
directions for possible future work are outlined in Section 6.3.

6.2 Summary

Different AOSE methodologies that aid in the development of MAS were
considered and the MaSE methodology supported by a software engineering

tool called agentTool was chosen for the analysis and design of the system.

In the analysis phase the system requirements were used to capture the goals
of the system, then use cases were applied and the different roles were
defined. In the design phase agent classes were created, the conversations
between agents were constructed and then the agent classes were defined in
more detail. Finally a deployment diagram was drawn to show the system

structure.

The MaSE methodology was very helpful, because the different stages are
well defined and it leads the user through the analysis phase and the design
phase. The diagrams created by agentTool are easy to interpret and to
modify. The whole process is iterative and if a change is made in one stage, it
is reflected in the following stages.

All stages from the original requirements until the final implementation can be
visualized, including the agents, their roles and the communication that takes
place among them.

The database was designed to contain information about patients, health
workers, health care centres, medications, prescriptions and issues done to
patients. Relationships between the different tables were described.

90

Chapter 6

The JADE platform was selected for the implementation of the system,
because it provides a runtime environment where agents can “live”, as well as
a library of classes that can be used in application development. It also
contains a set of graphical tools that supports the debugging and deployment
phases. The software framework is fully implemented in the Java
programming language and the agents are also implemented in Java.

All communication and interaction between agents have been done through
the exchange of JADE messages, and all actions of agents have been
implemented as JADE behaviours. The implementation of the database has
been done in MySQL.

The database design having a distributed database located on a number of
computers, was not implemented in the current system, but it was simplified
and implemented as a central database. This was done because of time

constraints.

6.3 Strengths and Weaknesses of the System

The system that was implemented is a good demonstration of the use of
agents in MAS. All agents that were identified in the design process were
implemented, except the counsellor agent. The behaviours of the different
agents to execute their actions and accomplish their own personal goals, as
well as the communication between agents via messages, have been

implemented.

The system can accomplish the necessary actions that take place during a
patient’s visit to a nurse or doctor. A new patient can be added to the system,
and the personal and medical information of the patient can be captured by the
nurse or the physician to be stored by the PatientAgent. For an existing
patient, the PatientAgent can access the information of that patient and make
it available to the other agents. These agents may be on the same site or they

may be located at another hospital or clinic. This is a great improvement on

91

Chapter 6

the current system, which is mainly paper-based and where all information has
to be gathered again when a patient moves to another location.

Collaboration takes place between the different agents in the system to
determine whether a prescription for ARVs has to be compiled or changed.
The patient agent provides the personal information, whereas the medication
database agent provides information about the medication that is suitable for
that patient. The medication agent combines the information and compiles the
prescription, which can be changed and has to be confirmed by the doctor
before it is finalised. Although the decision-making process of the system can
still be refined, in many cases the prescription that is compiled by the
medication agent can be used unchanged. A hard copy of the prescription can
be given to the patient, and the pharmacist also has access to the information
on the system.

The decision-making process used by the medication agent in the compilation
of prescriptions is not very sophisticated at this stage. It only distinguishes
between three different predefined treatment regimes for ARVs: one for males,
one for females and a third for persons for whom the previous treatment was
not successful. The doctor can afterwards add or remove components from
the prescription to adapt it for patients with special needs. The prescription of
anti-TB drugs is not part of the current system. These three ARV regimes are
the only prescriptions used in most public hospitals in the country, while TB
treatment is done separately by special clinics. To improve the process of
compiling more personalised prescriptions automatically and to include the
prescription of anti-TB drugs, more data about drugs and symptoms has to be
incorporated into the system. To do this, the involvement of specialists in the
field of ARVs and anti-TB drugs will be needed, who have more insight
regarding the pharmacological effects of the different drugs, the interaction

between drugs and the side effects caused by these drugs.

At the moment the system is activated by means of a command line instruction

that initialises the JADE platform and creates a number of agents. The agents

92

Chapter 6

reside on the system all the time and cannot be deleted from the system or
added to the system, except via the JADE graphical user interface. The only
exception is the patient agent, where new instances of the agent can be
created by the nurse agent or physician agent when a patient visits the clinic or
hospital for the first time.

6.4 Future Work

The system has not been tested in a working environment and some actions
will be changed or improved during the testing phase. Security and privacy
issues also have to be addressed. An authentication process must be

included before the system can be set into operation.

Future work will include the implementation of the system distributed over
different computers. The database implementation will also be be changed
from a single database to distributed databases located on a number of hosts.

In the current system the information that is gathered for patients includes TB
symptoms and a history of TB treatment, but in the compilation of prescriptions
it only includes the prescription of ARVs, and not TB medication. This is to
conform with the treatment of Aids patients in public hospitals in South Africa,
where these two conditions are treated separately with little coordination. The
system could be improved to include the prescription of TB drugs and to
coordinate the treatment of the two diseases, which will be a vast improvement
on the status quo.

The decision-making of the system in the compilation of prescriptions can also
be improved. More information about pharmacological effects, drug interaction
and side effects can be combined with symptoms experienced by patients to
create better and more personalised prescriptions. A further possible
improvement to the system will be to make it more adaptive, so that it can
incorporate new information as research in this field is done and more drugs
become available. It is also possible to add a learning ability to the system to
make it more adaptive and intelligent.

93

References

7 REFERENCES

Alsinet, T., Ansotegui, C., Béjar, R., Fernandez, C. and Manya, F. (2003).
Automated monitoring of medical protocols: a secure and distributed
architecture. Artificial Intelligence in Medicine 27 (2003): 367-92.

Alsinet, T., Béjar, R., Ansétegui, C., Fernandez, C. and Manya, F. (1998).
JAFDIS, a Java framework for dialogical institution specification. Technical
Report DIEI-98-RT-2, Universitat de Lleida. Also available at
http://fermat.eup.udl.es/~cesar/recercal/jafdis ev.ps.gz, Accessed on 12
August 2005.

AOL Shopping Main - Online Shopping Made Easy, http://shopping.aol.com/
(2007), Accessed on 10 July 2007

Barro, S., Presedo, J., Castro, D., Fernandez Delgado, M., Fraga, S., Lama,
M. and Vila, J. (1999). Intelligent telemonitoring of critical-care patients. IEEE

Engineering in Medicine and Biology Magazine, Jul-Aug; 18 (4), 80-88.

Bauer, B., Mdller, J.P., Odell, J. 2001. Agent UML: A Formalism for
Specifying Multiagent Interaction, Agent-Oriented Software Engineering, Paolo
Ciancarini and Michael Wooldridge eds., Springer-Verlag, Berlin, pp. 91-103,
2001.

Baujard, O., Baujard, V., Aurel, S., Boyer, C. and Appel, R.D. (1998). MARVIN,
a multi-agent softbot to retrieve multilingual medical information on the Web.
Medical Informatics 23 (3), Taylor & Francis, London, 187-191.

Beer, M.D., Huang, W. and Sixsmith, A. (2002). Using agents to build a
practical implementation of the INCA-Intelligent Community Alarm- system. In:
Jain, L.C., Chen, Z. and Ichalkaranje, N. (eds.): Intelligent Agents and their
applications. Studies in Fuzzines and Soft Computing, Physica-Verlag, Berlin,
320-345.

94

References

Bond, A.H. and Gasser, L. (1988) An analysis of problems and research in
DAI. In Alan H. Bond and Les Gasser, editors, Readings in Distributed Artificial
Intelligence, pages 3-36. Morgan Kaufmann Publishers: San Mateo, CA,
1988.

BookFinder.com: Search for New & Used Books, Textbooks, Out-of-Print and
Rare Books, _http://www.bookfinder.com/ (2007), Accessed on 10 July 2007

Bordini R.H., Dastani, M., Dix, J., and El Fallah Seghrouchni, A., editors. Multi-
Agent Programming: Languages, Platforms and Applications. Number 15 in
Multiagent Systems, Atrtificial Societies, and Simulated Organizations.
Springer, 2005.

Boyer, C., Baujard, O., Baujard, V., Aurel, S., Selby, M. and Appel, R.D.,
(1997). Health on the Net automated database of health and medical
information. International Journal of Medical Informatics, Volume 47, Number
1, November 1997 , pp. 27-29(3)

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A. 2004.
TROPOS: An Agent-Oriented Software Development Methodology. Journal of
Autonomous Agents and Multi-Agent Systems, Kluwer Academic Publishers
8(3), pp. 203 — 236.

Camarinha-Matos, L.M. and Vieira, W. (1999). Intelligent mobile agents in
elderly care, Journal of Robotics and Autonomous Systems (Elsevier), Vol. 27,
N. 1-2, April 1999, ISBN 0921-8890, pp. 59-75

Chavez, A. and Maes, P. (1996). Kasbah: An Agent Marketplace for Buying
and Selling Goods, Proceedings of the First Intern. Conf. on the Practical
Application of Intelligent Agents and Multi-Agent Technology. London, UK,
April 1996.

Cossentino, M. (2005). From Requirements to Code with the PASSI
Methodology. In: Henderson-Sellers, B. and Giorgini, P., editors (2005). Agent-
Oriented Methodologies. Idea Group Publishing., Chapter IV, pp. 79—106.

95

References

Decker, K. and Li, J. (1998). Coordinated hospital patient scheduling. In
Proceedings of the Third International Conference on Multi-Agent Systems,
ICMAS-98. p. 104-111., Paris, France.

DelLoach, S.A. (2001). Analysis and Design using MaSE and agentTool. In:
Proceedings of the 12th Midwest Atrtificial Intelligence and Cognitive Science
Conference, March 2001. Miami University, Oxford, Ohio.

DelLoach, S.A. and Wood, M. (2000) Developing multiagent systems with
agentTool. In Intelligent Agents VII. Agent Theories Architectures and
Languages, 7th International Workshop (ATAL 2000), C. Castelfranchi, Y.
Lesperance (Eds.). Lecture Notes in Computer Science. Vol. 1986, Springer
Verlag, Berlin, 2001. 1429-1436, 2001.

DelLoach, SA., Wood, M.F., Sparkman, C.H. (2001) Multiagent systems
engineering. In The International Journal of Software Engineering and
Knowledge Engineering, Vol. 11, No. 3, 231-258, 2001.

Durfee, E.H. and Lesser, V. (1989). Negotiating task decomposition and
allocation using partial global planning. In L. Gasser & M. Huhns, Distributed
artificial intelligence (Volume Il) (pp. 229 — 244). London/San Mateo, CA:
Pitman Publishing/Morgan Kaufmann, 229-224.

Faltings, B. (Ed.), (2000) Intelligent Agents: Software Technology for the new
Millennium, INFORMATIK 1/2000

Ferguson |.A., and Wooldridge, M.J. (1997). Paying Their Way: Commercial
Digital Libraries for the 21st Century in D-lib magazine, June 1997, ISSN 1082-
9873

FIPA, http://www.fipa.org (2005), Accessed on 12 August 2005.

Godo L., Puyol-Gruart, J., Sabater, J., Torra, V., Barrufet, P. and Fabregas, X.
(2003). A multi-agent system approach for monitoring the prescription of

96

References

restricted use antibiotics. Artificial Intelligence in Medicine Volume 27, Issue 3,
Pages 259-282.

Hayes-Roth B., Washington, R., Ash, D., Hewett, R., Collinot, A., Vina, A., and
Selves', A. (1992). Guardian: A Prototype Intelligent Agent for Intensive-Care
Monitoring. Artificial Intelligence in Medicine, Vol. 4, No. 2, Mar. 1992, pp. 165-
185.

Hospers, M., Kroezen, E., Nijholt, A., Op den Akker, H.J.A., Heylen, D.K.J.
(2003) An Agent-based Intelligent Tutoring System for Nurse Education.
Technical Report TR-CTIT-03-18 Centre for Telematics and Information
Technology, University of Twente, Enschede. ISSN 1381-3625

Hsu, C-C. and Ho, C-S. (1999). Acquiring patient data by an intelligent
interface agent with medicine-related common sense reasoning. Expert
Systems with Applications, Volume 17, Issue 4, 257-274.

JADE, http://JADE .cselt.it/ (2005), Accessed on 12 August 2005.

Jennings, N.R. and Wooldridge, M. (1998). Applications of Intelligent Agents in
Agent Technology: Foundations, Applications and Markets (eds. N.R.
Jennings and M. Wooldridge) Queen Mary & Westfield College, University of
London. 3-28.

Jennings, N.R., Faratin, P., Norman, T.J., O'Brien, P., Wiegand, M.E.,,
Voudouris, C., Alty, J.L., Miah, T., Mamdani, E.H. (1996) ADEPT: Managing
Business Processes using Intelligent Agents. Proceedings of the 16th Annual
Conference of the British Computer Society Specialist Group on Expert
Systems, 1996.

Jennings, N.R., Sycara, K., Wooldridge, M. (1998) A roadmap of agent
research and development. Journal of Autonomous Agents and Multi-Agent
Systems, 1(1): 7-38, 1998.

97

References

Juan, T., Pearce, A., and Sterling, L. (2002). ROADMAP: Extending the Gaia
Methodology for Complex Open Systems. (International Conference on
Autonomous Agents, Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), Bologna,
Italy, Pages: 3 — 10, July 2002

Kostkova, P., Mani-Saada, J. and Weinberg, J. (2002). Agent-based up-to-
date data management in the National Electronic Library for Communicable
Disease. In Proceedings of the Workshop on Agent Applications in Health
Care, at the 15th European Conference on Artificial Intelligence, ECAl 2002.
Eds: U. Cortés, J. Fox, A. Moreno. Lyon, France, 59-63.

Kumar, A.D., Kumar, A.R., Kekre, S., Prietula, M.J. and Ow, P.S. (1989). Multi-
agent systems and organizational structure: the support of hospital patient
scheduling. In: Proceedings of the 3rd International Conference on Expert
Systems and the Leading Edge in Production and Operations Management,
South Carolina, USA, (1989) 551-566.

Lanzola, G., Gatti, L., Falasconi, S. and Stefanelli, M. (1999) A framework for
building cooperative software agents in medical applications. Artificial
Intelligence in Medicine, vol. 16, no. 3, pp. 223 — 249.

Lieberman, H. and Mason, C. (2002) Intelligent Agent Software for Medicine in
Future of Health Technology, Renata Bushko, ed., IOS Press, Amsterdam,
2002.

Lieberman, H., (1995), Letizia: An Agent That Assists Web Browsing,
International Joint Conference on Atrtificial Intelligence IJCAI-95, Montréal,
August 1995.

Lieberman, H., Rosenzweig, E. and Singh, P. (2001) Aria: An Agent For
Annotating And Retrieving Images, IEEE Computer, July 2001, pp. 57-61.

List of User-Agents (Spiders, Robots, Crawler, Browser), http://www.user-

agents.org/ (2007), Accessed on 20 January 2007.

98

http://www.user-agents.org/

References

Ljungberg, M. and Lucas, A. (1992) The OASIS Air Traffic Management
System. Proc. of the Second Pacific Rim International Conference on Atrtificial
Intelligence (1992).

Mabry, S. L., Schneringer, T., Etters, T. and Edwards, N. (2003). Intelligent
Agents for Patient Monitoring and Diagnostics, ACM International Symposium
on Applied Computing (SAC 2003), Melbourne, FL.

Maes, P. (1994). Agents that Reduce Work and Information Overload,
Communications of the ACM, 37(7).

Marinagi, C., Spyropoulos, C.D., Papatheodorou, C., Kokkotos, S. (2001)
Continual Planning and scheduling for managing patient tests in hospital
laboratories, Artificial Intelligence in Medicine vol. 20, no. 2, pp. 139-154.

Miksch, S., Cheng, K. and Hayes-Roth, B. (1996). The patient advocate: a
cooperative agent to support patient-centered needs and demands., Proc
AMIA Annu Fall Symp. 1996, 244-8.

Moreno, A. and Isern, D. (2002). Accessing distributed health-care services
through smart agents. Proceedings of the 4th IEEE International Workshop on
Enterprise Networking and Computing in the Health Care Industry (HealthCom
2002), Nancy, France, 34-41.

Moreno, A., Medical Applications of Multi-Agent Systems, (2003) AIME,
http://cyber.felk.cvut.czZ/EUNITEQ3-BIO/pdf/Moreno.pdf , Accessed on 21
March 2006.

mySimon — Price Comparison shopping (2007), http://www.mysimon.com/,
Accessed on 10 July 2007.

Nealon, J.L. and Moreno, A. (2004). Agent-Based Applications in Health Care.
In: e-Health: Applications of Computing Science in Medicine and Health Care.
Research in Computing Science, 5. Instituto Politecnico Nacional Centro de

Investigacion en Computacion.

99

References

Nwana, H.S. and Ndumu, D.T., (1999) A Perspective on Software Agents
Research. The Knowledge Engineering Review Volume 14, Issue 2,
September 1999, Pages: 125 — 142.

Object Management Group - Unified Modeling Language (2007),
http://www.uml.org/, Accessed on 30 January 2007.

OpenClinical: knowledge management technologies for healthcare: Software
Agents (2007), http://openclinical.org/agents.html, Accessed on 20 January
2007.

Parunak, H.V.D. (1987). Manufacturing experience with the contract net, in: M.
N. Huhns, ed., Distributed Atrtificial Intelligence, Morgan Kaufmann Publishers,
285-310.

Rialle, V., Lamy, J.-B., Noury, N. and Bajolle, L. Telemonitoring of patients at
home: A Software Agent approach. Computer methods and programs in
Biomedicine, pages 257-268, 72 (3) 2003.

Shoham, Y., (1997). An Overview of Agent-oriented Programming, ed. J.M.
Bradshaw, Software Agents, AAAI Press, Menlo Park, California.

Shopping Bots (2007), http://ecommerce.hostip.info/pages/938/Shopping-
Bots.html, Accessed on 10 July 2007.

Sycara, K., Paolucci, M., Van Velsen, M., Giampapa, J.A. (2003). The
RETSINA MAS Infrastructure. Autonomous Agents and Multi-Agent Systems,
Vol. 7, No. 1/2, July, 2003, pp. 29 —48.

The Sims — Official Site (2006), http://thesims.ea.com, Accessed on 10 July
2007.

UN Chronicle: WHO Report 2005: TB linked to HIV at alarming Levels in Africa
(2005), http://www.un.org/Pubs/chronicle/2005/issue2/0205p17.html,.
Accessed on 18 August 2005.

100

http://ecommerce.hostip.info/pages/938/Shopping-Bots.html
http://thesims.ea.com/

References

Vazquez-Salceda, J., Padget, J.A., Cortés, U., Loépez-Navidad, A. and
Caballero, F. (2003). Formalizing an electronic institution for the distribution of

human tissues. Artificial Intelligence in Medicine, Volume 27, Issue 3, 233-258.

Vicari, R.M., Flores, C.D., Silvestre, A.M., Seixas, L.J., Ladeira, M. and
Coelho, H. (2003). A multi-agent intelligent environment for medical
knowledge. Artificial Intelligence in Medicine, Volume 27, Issue 3, March 2003,
335-366.

Weiss G. (2002). Agent orientation in software engineering. Knowledge
Engineering Review, January 2002.

Wood, M. (2000). Multiagent Systems Engineering: A Methodology for
Analysis and Design of Multiagent Systems, M.Sc. Thesis.

Wooldridge, M. and Decker, K., 2000. Agents on the Net. IEEE Internet
Computing, http://computer.org/internet/

Wooldridge, M.J. (2002). Introduction to Multiagent Systems, John Wiley &
Sons Inc February 2002. ISBN 0 47149691 X.

Wooldridge. M. and Jennings, N.R. (1995). "Agent Theories, Architectures,
and Languages: a Survey", in Wooldridge and Jennings Eds., Intelligent
Agents, pp. 1-22, Berlin: Springer-Verlag.

World Health Organization: HIV/AIDS topical information (2007),
http://www.who.int/hiv/topics/en/, Accessed on 18 August 2007 .

Yahoo! Shopping, http://shopping.yahoo.com/ (2007), Accessed on 10 July
2007

Zambonelli, F., Jennings, N.R., Omicini, A. and Wooldridge, M. (2003).
Developing multiagent systems: The Gaia methodology. ACM Transactions on
Software Engineering and Methodologies (TOSEM), Vol. 12, No. 3, July 2003,
Pages 317 — 370.

101

http://www.who.int/hiv/topics/en/

8

Appendix A: Sequence Diagrams

References

[nformAbauticT

Patient

Murse :

InformAbout/CT

TestFarH?

Yes

L

LpdatePatientData
et

Inform About VCT

CounselTestHY

Fatient

=t

Counsellor:

Counsel

Test Results

HI%Test

Counsel

Test Results

Lab:

Counsel and Test for HIV

102

References

IGetHiStDr"g.f
Physician : |

GetHistory

Fatient

SendHistory

LlpdateHistany

Get History

Examinefssess

| Patient FPhysician :

Examine

SendBlood

SendzD

HResuUlts

Lah:

BookFollowup

Examine and Assess

103

References

BaselineAssessment

Fatient FPhysician :

DrawBlood

SendBlood

TegtResult

Lah:

Baseline Assessment

DrunReadinessTraining

()

[Cnunaellnr: J [Patient:]

ReadinessTraining

-

E?eadineaaTraining
R

Drug Readiness Training

AssessReadiness

Patient :

=il

Physician ;

FPatientReady?

ConfirmPhysicalReadiness

ConfirmPsychologicalReadiness

InitiateTreatment

Assess Readiness

104

References

BaselineTests

Examine

Patignt : Physician : Lah:

BloodTest

TestHesult

Baseline Viral Loads

ClinicF ollowwup

Fatient Murse : MOBEADent

GetPatientData

SendPatientData
|

Examine

lssuelruns

GetPrescriptionData

SendPrescriptionData
r=atll

RoutineCare

Updatelssues

Clini

c Follow-Up

105

9

Previous ARV treatment:

\Was previous treatment:

Doctor DoctorX baseline: previous ARYs

Appendix B

() Appropriate

) Inappropriate

Indicate previous ARY's taken:

Drug

[13TC (Lamivudine)
[] d47 (Stavudine)
[| EFY (Efavirenz)

[] NWP (Nevirapine)
[] AZT (Zidovudine)

Durabion {months]

[]

L]
[]
[]
[]

< Previous

Drug
[_] ddl {Didanosine)

[] LPW {Lopinavir)

[R {Ritonawir)
[] other

Hext =

LTE

Durabion [months)

[]
[]
[
[1

£ poctor DoctorX baseline: WHO Staging

WHO Staging System

WHO Stage 1

] asymptomatic. HIV infection

Doctor Baseline Test Screen 1

|| Persistent generalised ymphadenopathy

\WHO Stage 2

[_] Herpes zoster (within last 5 years)

|| Minor it ifest

[] Recurrent upper repiratory tract infections

] wieight loss < 10% of body weight

< Previous

WHO Stage 3

[Severe bacterial infection

|| oral candidasis {thrushy

[] Unexplained chronic diarrhoea > 1 month)

[] unexplained prolonged fever
{intermiconst = 1 month)

|| Oral hairy leukoplakia
[] TB pulmonary {within last yvear)

[] weight loss >= 10% of body weight

WHO Stage 4

[_] Candida (esoph, bronchi, trachea or lung)

'D Cryptococcosis - extrapulmonany

'D Cryptosporidiosis with diarrhoea (> 1 mo...
[_] CMV (other than liver, spleen, kinph node...
| Herpes simplex (or > 1mo, visceral any d...
] H encephalopathy

"] Hiv wasting syndrome

[| Kaposi's sarcoma

(] Atypical mymcobact

iosis,

] Mycosis, disseminated (histo, coccidiodo...

] Tuberculosis - extrapulmonary

Clpcp

[PML {progressive multifocal leucoencep...
'D Salmonella septicemia - non-typhoid

"] Toxoplasmasis - CNS

1o x|

Appendix B: Graphical User Interfaces

Doctor Baseline Test Screen 2

106

Appendix B

£ Doctor DoctorX baseline: TB History = 101 x|
TB History
Previous TB: O No () Yes

Number of times treated: Duration in months of first treat it |
Duration in months of second treatment:

TB Status ({choose one)
i On TB Treatment - if yes, months:
) TB Symptoms - if yes, was sputum sent? : JNo (Yes -ifyes,enter results: sputum 1: O positive () negative

sputum 2: O positive ' negative
) No TB treatment and no TB symptoms

< Previous Mext >

Doctor Baseline Test Screen 3

£ Doctor DoctorX baseline: Reproductive History

Reproductive History (Women onhy)

Previous Tubal ligation:) Mo) Yas

If no, Pregnancy test:) Positive ! Negative

Doctor Baseline Test Screen 4

107

Appendix B

£ poctor Doctor¥ baseline: Karnofsky index

Physical Examination

Weight in Kilograms: Q

Features peripheral neuropathy:) No) Yes

Karnofsky Index {choose one)

1 100% Mormal, no complaints, no evidence of disease

o0t
0 80%
0 70%
 60%
[E
0 40%
0 30%
) 20%
10

Able to carry out normal activity, minor signs or symptoms of disease
Hormal activity with effort, some signs or symptoms of disease

Care for self,unahle to carry on normal activity or do active work

Reqguires occasional assistance, but is able to care for most of herhis needs
Requires considerable assistance and frequent medical care

Disabled, requires special care and assistance

Severely disabled, hospitalization is indicated although death not imminent
Very sick, hospitalization necessarny, active support treatment necessany
Moribund, fatal processes progressing rapidhy

< Previous ‘ ‘ Hext > ‘

=Ky

Doctor Baseline Test Screen

108

Appendix C

Appendix C: Code Sample

/***

Pharmacist Agent:

Gets prescription data from MDBAgent.

Issues medicine and informs MDBAgent that medicine was issued.

***/

import
import
import
import
import
import
import
import
import
import

import

import
import
import
import
import
import

import

jade.
jade.
jade.
jade.
jade.
jade.
jade.
jade.
jade.
jade.

jade.

java.
java.
java.
java.
java.

java.

java.

core.Agent;

core.AID;

core.behaviours. *;
lang.acl.ACLMessage;
lang.acl.MessageTemplate;
domain.DFService;
domain.AMSService;
domain.FIPAAgentManagement. *;
domain.FIPAException;

wrapper .AgentController;

wrapper.PlatformController;

util.*;
text.SimpleDateFormat;
util.*;
sql.Connection;
sql.Statement;
sql.DriverManager;

sql.ResultSet;

109

Appendix C

import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.awt.*;

import java.awt.event.¥*;

import Jjavax.swing.¥*;

public class PharmacistAgent extends Agent {

// User interfaces

public PharmacistGui myGui;
public PharmacistPatientPersonalInfo myPersonalInfoForm;

public PharmacistIssueARVs myPharmacistIssueARVs;

//***

// Agent initializations

//***

protected void setup() {

// Add behaviours

addBehaviour (new PatientDataReceived()) ;

addBehaviour (new PrescriptionReceived()) ;

// Initialize GUI

newConsultation() ;

//***

// Agent clean-up operations

//***

protected void takeDown () {

110

Appendix C

// Close the GUI

myGui .dispose() ;

//***

// Behaviours

//***

/***/
public void getData () {
/* Oneshot behaviour activated when patient number is entered by pharmacist
Send request to PatientAgent to send personal data of patient

and send request to MDBAgent to send prescription of patient */

addBehaviour (new OneShotBehaviour() {

public void action() {

// Create Request for Data to send to Patient Agent
String ID = myGui.textFileNumber.getText() ;
ACIMessage getMessage = new ACIMessage (ACIMessage.REQUEST) ;
getMessage.addReceiver (new AID(ID,AID.ISLOCALNAME)) ;
getMessage.setConversationId("clinicVisit") ;
getMessage.setContent (ID) ;
getMessage. setReplyWith ("clinicVisit"+System. currentTimeMillis()) ;

myAgent. send (getMessage) ;

// Create Request for Data to send to MDBAgent
ACIMessage getPrescriptionMessage = new
ACIMessage (ACIMessage . REQUEST) ;
getPrescriptionMessage.addReceiver (new AID ("Med" ,AID.ISLOCAINAME)) ;
getPrescriptionMessage. setOntology ("pharmacy-get-request") ;

getPrescriptionMessage. setConversationId ("getPrescription") ;

111

Appendix C

getPrescriptionMessage.setContent (ID) ;

getPrescriptionMessage. setReplyWith ("getPrescription'+
System. currentTimeMillis()) ;

myAgent.send (getPrescriptionMessage) ;

// Open Personal Info GUI

myPersonalInfoForm.setVisible (true) ;

})
} // End of getData/()

/***/

112

Appendix C

/***/

public void Updatelssues() {
/* Oneshot behaviour activated by Next button in PharmacistIssueForm
* Sends request to PatientAgent to update visit data */
addBehaviour (new OneShotBehaviour() {
public void action() {

ACIMessage updateIssueMessage = new ACIMessage (ACIMessage. REQUEST) ;

updateIssueMessage .addReceiver (new AID("Med" ,AID.ISLOCAINAME)) ;

updatelIssueMessage.setConversationld ("issueUpdate") ;

// Create Content of Message (String)

Properties issueData = new Properties();

issueData.setProperty ("patientID", patientID);

issueData.setProperty ("prescriptionID" ,prescriptionID. toString()) ;

// Update all ARVs that were issued

if (myPharmacistIssueARVs. jCheckBoxARV1.isSelected()) {
issueData.setProperty ("ARV1",
myPharmacistIssueARVs. jCheckBoxARV1.getText()) ;

}

else {issueData.setProperty ("ARV1","");}

if (myPharmacistIssueARVs.jCheckBoxARV2.isSelected()) ({
issueData.setProperty ("ARV2",
myPharmacistIssueARVs. jCheckBoxARV2.getText ());

}

else {issueData.setProperty ("ARV2","");}

if (myPharmacistIssueARVs.jCheckBoxARV3.isSelected()) ({
issueData.setProperty ("ARV3",
myPharmacistIssueARVs. jCheckBoxARV3.getText ());

}

else {issueData.setProperty ("ARV3",6"") ;}

if (myPharmacistIssueARVs.jCheckBoxARV4.isSelected()) {
issueData.setProperty ("ARV4",

myPharmacistIssueARVs. jCheckBoxARV4.getText ())

113

Appendix C

}

else {issueData.setProperty ("ARV4",6"") ;}

updateIssueMessage.setContent (issueData.toString()) ;
updatelIssueMessage.setReplyWith ("issueUpdate"+

System.currentTimeMillis()) ;
// Send message

myAgent. send (updateIssueMessage) ;

})
} // End of UpdatelIssues/()

/***/

/***/
private class PatientDataReceived extends CyclicBehaviour ({
// Cyclic Behaviour to receive patient data from PatientAgent
public void action() {
// Receive message
MessageTemplate receiveTemplate =
MessageTemplate.MatchConversationId("clinicVisit") ;

AClLMessage receiveMessage =

myAgent.receive (receiveTemplate) ;

if (receiveMessage !'= null) ({
// Break up message content into string values
Properties values = (new
MyProperties (receiveMessage.getContent ())) . GetMyProperties () ;
firstName = values.getProperty("firstName",6"") ;
surname = values.getProperty ("surname","");
dateOfBirth = values.getProperty ("dateOfBirth") ;

IDNo = values.getProperty ("IDNo","0") ;

114

Appendix C

weight = values.getProperty ("weight","0") ;

gender = values.getProperty ("gender","0") ;

patientID = receiveMessage.getSender () .getLocalName () ;

// Put received values into GUI
myPersonalInfoForm. jTextFieldFirstName.setText (firstName) ;
myPersonalInfoForm. jTextFieldSurname.setText (surname) ;
myPersonalInfoForm. jTextFieldDateOfBirth . setText (dateOfBirth) ;
myPersonalInfoForm. jTextFieldIDNo.setText (IDNo) ;
if (gender.equals("M")) {

myPersonalInfoForm. jTextFieldGender.setText ("Male") ;
}
else {myPersonalInfoForm.jTextFieldGender.setText ("Female") ;}

myPersonalInfoForm. jTextFieldWeight. setText (weight) ;

}

else { // No message received. Block execution
block() ;

}

} // End of action

} // End of Behaviour PatientDataReceived

/***/

/***/

private class PrescriptionReceived extends CyclicBehaviour {
// Cyclic Behaviour to receive prescription data from MDBAagent
public void action() {
MessageTemplate receiveTemplate =
MessageTemplate.MatchConversationld("getPrescription") ;
// Receive message
ACIMessage receiveMessage = myAgent.receive (receiveTemplate) ;

if (receiveMessage !'= null) ({

115

Appendix C

// Break up message content into string values
Properties values = (new

MyProperties (receiveMessage.getContent ())) .GetMyProperties () ;
String prescriptionstr =

values.getProperty ("prescriptionID","") ;
if (prescriptionstr != "") {
prescriptionID = Integer.parselnt (prescriptionstr);}

String ARVIDl= values.getProperty ("ARVID1","") ;

String ARVNamel

values.getProperty ("ARVNamel","") ;
String ARVDosel = values.getProperty ("ARVDosel","") ;
Integer ARVl1Issuesleft =

Integer.parselnt (values.getProperty ("ARVlIssuesleft","0")) ;
String ARVID2= values.getProperty ("ARVID2","");

String ARVName2

values.getProperty ("ARVName2","") ;
String ARVDose2 = values.getProperty ("ARVDose2","") ;
Integer ARV2Issuesleft =

Integer.parselnt (values.getProperty ("ARV2Issuesleft","0")) ;

String ARVID3= values.getProperty ("ARVID3","");

String ARVName3 = values.getProperty ("ARVName3","") ;
String ARVDose3 = values.getProperty ("ARVDose3","") ;
Integer ARV3Issuesleft =

Integer.parselnt (values.getProperty ("ARV3Issuesleft","0")) ;

String ARVID4= values.getProperty ("ARVID4","") ;

String ARVName4 = values.getProperty ("ARVName4","");
String ARVDose4 = values.getProperty ("ARVDose4d","");
Integer ARV4Issuesleft =

Integer.parselnt (values.getProperty ("ARV4Issuesleft","0")) ;

// Place values in GUI

myPharmacistIssueARVs. jCheckBoxARV1. setText (ARVID1) ;

myPharmacistIssueARVs. jCheckBoxARV2.setText (ARVID2) ;

116

Appendix C

myPharmacistIssueARVs.
myPharmacistIssueARVs.

myPharmacistIssueARVs.

myPharmacistIssueARVs

myPharmacistIssueARVs.
myPharmacistIssueARVs.
myPharmacistIssueARVs.
myPharmacistIssueARVs.
myPharmacistIssueARVs.

myPharmacistIssueARVs.

if (ARVID1=="") {

myPharmacistIssueARVs. jCheckBoxARV1.

}

jCheckBoxARV3. setText (ARVID3) ;

jCheckBoxARV4. setText (ARVID4) ;

jLabelARV1Name.
. jLabelARV2Name .
jLabelARV3Name .
jLabelARV4Name.
jLabelARVl1Dose.
jLabelARV2Dose.
jLabelARV3Dose.

jLabelARV4Dose.

setText (ARVNamel) ;
setText (ARVName2) ;
setText (ARVName3) ;
setText (ARVName4) ;
setText (ARVDosel) ;
setText (ARVDose2) ;
setText (ARVDose3) ;

setText (ARVDose4) ;

setVisible (false) ;

if ((ARVID1!="") && (ARVlIssuesleft < 1)) {

myPharmacistIssueARVs. jLabelARV1Dose.setText (

"All issues done");

myPharmacistIssueBARVs. jCheckBoxARV1.setVisible (false) ;

}

if (ARVID2=="") {

myPharmacistIssueARVs. jCheckBoxARV2.setVisible (false) ; }

if ((ARVID2!="") && (ARV2Issuesleft < 1)) {

myPharmacistIssueARVs. jLabelARV2Dose . setText (

"All issues done");

myPharmacistIssueARVs. jCheckBoxARV2.setVisible (false) ;

}

if (ARVID3=="") {

myPharmacistIssueARVs. jCheckBoxARV3.setVisible(false) ;}

if ((ARVID3!="") && (ARV3Issuesleft < 1)) {

myPharmacistIssueARVs. jLabelARV3Dose.setText (

"All issues done");

myPharmacistIssueARVs. jCheckBoxARV3.setVisible (false) ;

117

Appendix C

}
if (ARVID4=="") {
myPharmacistIssueARVs. jCheckBoxARV4.setVisible (false) ;}
if ((ARVID4!="") && (ARV4Issuesleft < 1)) {
myPharmacistIssueARVs. jLabelARV4Dose. setText (

"All issues done");

myPharmacistIssueBARVs. jCheckBoxARV4.setVisible (false) ;

}

else { // No message received. Block execution
block() ;

}

} // End of action

} // End of PrescriptionReceived

/***/

118

Appendix C

/***/

protected void closeGUIs() {

// Close GUIs for Pharmacist
myGui.setVisible(false);
myGui.dispose() ;
myPersonalInfoForm.setVisible (false);

myPersonalInfoForm.dispose() ;

/***/

/***/

protected void newConsultation () {

// Open GUIs for Pharmacist

myGui = new PharmacistGui (this);
myPersonalInfoForm = new PharmacistPatientPersonalInfo(this);

myPharmacistIssueARVs = new PharmacistIssueARVs (this);

myPersonalInfoForm.setVisible(false) ;
myPharmacistIssueARVs.setVisible (false);

myGui.setVisible (true) ;

/***/

/***/

// Variables declaration

String dateDiagnosed, dateBaseline, dateOfBirth, dateToday, dateARVStart;
String CD4Date, hospitalisationl, hospitalisation2, hospitalisation3;
String pretreatmentCD4Date, timesHospitalised, firstName;

String hospital, patientID, IDNo, referringClinic;

119

Appendix C

String surname, weight, gender;

String datePreviousVisit, prevARV1;

String prevARV2, prevARV3, Cotrimoxazole, Fluconazole, INH;
String TBTreatment, CD4, VL, ALT, Triglycerides;

String Hb, FastingGlucose, FastingCholesterol, ARV1, ARV2, ARV3, ARV4;
int treatmentStage;

int year,month,day;

String ARVID1, ARVNamel, ARVDosel;

String ARVID2,ARVName2 ,ARVDose2;

String ARVID3,ARVName3,ARVDose3;

String ARVID4,ARVName4,ARVDose4;

boolean ARVl1Issued=false,ARV2Issued=false,ARV3Issued=false,ARV4Issued=false;

Integer prescriptionID = 0;

120

